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Abstract

Classical methods of DOA estimation such as the MUSIC algoriare based on estimating the
signal and noise subspaces from the sample covariancexmi@di a small number of samples, such
methods are exposed to performance breakdown, as the sapyalgance matrix can largely deviate
from the true covariance matrix. In this paper, the probldr®OA estimation performance breakdown
is investigated. We consider the structure of the samplaréavce matrix and the dynamics of the root-
MUSIC algorithm. The performance breakdown in the threghebion is associated with the subspace
leakage where some portion of the true signal subspaceegesidhe estimated noise subspace. In this
paper, the subspace leakage is theoretically derived. ¥depabpose a two-step method which improves
the performance by modifying the sample covariance matigk shat the amount of the subspace leakage
is reduced. Furthermore, we introduce a phenomenon namegb&swap which occurs in the root-
MUSIC algorithm in the low sample size region and degradespgrformance of the DOA estimation.
A new method is then proposed to alleviate this problem. Nigakexamples and simulation results
are given for uncorrelated and correlated sources tolilitesthe improvement achieved by the proposed
methods. Moreover, the proposed algorithms are combinéd tive pseudo-noise resampling method

to further improve the performance.
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I. INTRODUCTION

Classical parameter estimation methods of directionrota (DOA), Doppler shifts, frequen-
cies, time delays, etc. such as the multiple signal claasific (MUSIC) [1], root-MUSIC [[2],
and estimation of signal parameters via rotational invexgatechniques (ESPRIT)![3] are based
on estimating the signal and noise subspaces from the satafdecovariance matrix. It is well-
known that these methods suffer from performance breakdowa small number of samples
or low signal-to-noise ratio (SNR) values where the exgkestimation error departs from the
Cramér-Rao bound (CRB)[[4]. The SNR region at which thisn@meenon happens is known as
the threshold region.

The fidelity of the sample data covariance matrix to the trawaovariance matrix plays a
critical role in a successful estimation. At the low SNR amdémall sample size region, the
sample data covariance matrix can largely deviate fromrine @ne. There are various methods
introduced in the literature which target at improving thetireation of the covariance matrix
[51-112].

Diagonal loading [[6] and shrinkage-based [6] methods iwm@rthe estimate of the data
covariance matrix by scaling and shifting the eigenvalueth® sample data covariance matrix.
However, the eigenvectors are kept unchanged. As a resgltestimated signal and noise
projection matrices from the improved covariance matraresexactly the same as those obtained
from the sample data covariance matrix. Therefore, thedbade are not really beneficial for
the subspace-based parameter estimation algorithms.

Data covariance matrix estimation can be also improved leyntfeans of using forward-
backward averaging (FB) [7] and spatial smoothing-baselnigues([8]. The effect of FB is
known to be equivalent to approximately doubling the numidfesamples. Thus, the covariance
estimate improves accordingly. The spatial smoothing riiggle can also be interpreted as
virtually increasing the number of samples at the cost ofayiag over sub-arrays of smaller size
compared to the whole array. These approaches can alsaelat@pairs (in case of FB) or more
correlated source signals. Inl [9], techniques from randoatrisntheory have been developed
to improve the performance of the MUSIC algorithm. The idtroed method considers the
asymptotic situation when both the sample size and the nuoflaray elements tend to infinity

at the same rate. It is then inferred that the improved megioes a more accurate description
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of the situation when these two quantities are finite and @ratge in magnitude. However, the
performance of the introduced method is not satisfactothetsmall sample size scenario [13].

A more promising approach to remedy the performance breakdd the threshold region was
introduced in[[10] and has been further improvedLinl [11] ab?].[ These methods are based on
a technique called pseudo-noise resampling which usebetycdlly generated pseudo-noise to
perturb the original noise. The pseudo-noise is added tolikerved data, and a new estimate of
the covariance matrix is obtained, which leads to new DOAmedes. This process is repeated
for a number of times, and the final DOAs are determined basethe bank of the DOA
estimates.

In this paper, we tackle the problem of the performance lWeak at the threshold region
by considering the structure of the sample data covariarateixrand the dynamics of the root-
MUSIC algorithm. It is shown in[[14] that the performance dkdown problem is associated
with the inter-subspace leakage “whereby a small portiotheftrue signal eigenvector resides
in the sample noise subspace (and vice versa)”. The notideatage comes originally from
the performance assessment strategy based on the first appgeoximation of the estimation
error caused by the perturbed subspace estimate, whiclehsyecause of the additive noise
contribution [15]-[18]. This approach directly models tleakage of the noise subspace into
signal subspace and allows to compute the correspondinmripation matrix between the
components of the subspaces. Here, we formally definesthespace leakagaotion as a
Frobenius norm of the perturbation matrix, and we preserthi¢goretical derivation. We propose
a two-step method which improves the performance of the MldSIC algorithm by modifying
the sample data covariance matrix such that the amount ofubspace leakage is reduced.
Furthermore, we introduce a phenomenon nameweaisswapwhich occurs in the root-MUSIC
algorithm at the threshold region and degrades the perfacenaf the parameter estimation. A
new method is then proposed to alleviate this problem.

It will be shown that there are undesirable by-products & sample data covariance matrix
that tend to zero as the number of samples goes to infinity.edew for a limited number of
samples, these terms can have significant values leadingatgeamount of subspace leakage.
One possible approach to remedy the effect of the undesimahponents is to consider the
eigenvalue perturbatiortaused by these terms. The incorporation of this knowledge the

estimation method can result in better estimates of theabigmd noise subspaces. In this paper,
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we propose a two-step algorithm in order to reduce the effédhe undesirable terms. The
introduced method is based on estimating the parametetseatirst step and modifying the
covariance matrix using the estimated parameters at tlumdestep. We will theoretically derive
the subspace leakage at both steps. Then, it will be showrg usimerical examples that the
subspace leakage is reduced at the second step leadingdp feformance.

In the root-MUSIC method, the estimation error of the roo#s la variance which is pro-
portional to the variance of noise over the number of sami@s Therefore, at the threshold
region, the variance of the estimation error can have afggni value which in turn can result in
a swap between a root corresponding to a signal source watth@nroot which is not associated
with any signal source. We dub this phenomenon as root-sWam, a new method is proposed
to remedy this problem. The introduced method consideferdifit combinations of the roots as
the candidates for the signal sources. These candidategbemwesvaluated using the stochastic
maximum likelihood (SML) function, and the combination timainimizes the objective function
is picked up for the parameter estimates.

The rest of the paper is organized as follows. The system Imniedgiven and the root-
MUSIC algorithm is briefly reviewed in Sectidn Il. The tweeptand root-swap algorithms are
proposed in Sectioh_lll. Subspace leakage is defined andeteally derived in Sectiof IV.
Numerical examples and simulation results are given ini@e&fl Section[V] concludes the
paper. AppendiX_A gives an approximation for the probabibf root-swap, and finally, the
details of the subspace leakage derivation for the two4siepMUSIC algorithm are presented
in Appendices B and]C.

II. SYSTEM MODEL AND BACKGROUND

An example of a noise-corrupted linear superpositioAaindamped exponentials received by
M (M > K) antennas is the array processing model. Thus, congideumber of narrowband
plane waves impinging on a uniform linear array (ULA) fromeditionsf,, 6s,-- -, 0. Without
loss of generality, assumern/2 < 6; < 6, < --- < 0 < 7w/2. The antenna elements are
separated from each other by a distancelof \/2 where X is the wavelength of the plane

wave impinging on the array. The steering vector of the auéy) € CM*! is then given as

a(b) Iy [17 6—j27r(d/)\)sin(6)7_‘_’ 6—j27r(M—1)(d/>\)sin(9)]T 1)
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where (-)" stands for the transposition operator. At time instart N, the received vector

z(t) € CM*1 is given by

K
z(t) = Y a(0;)s:(t) + n(t) )
1=1
wheres;(t) € C is the amplitude of thé-th wave (source) and(t) € CM*! is the noise vector at
timet. By arranging the amplitudes of the sources in the veetr= [s1(t), sa(t), - - - , sx(1)]" €
CE*1 and forming the Vandermonde matrig = [a(6,), a(6s),- -, a(fx)] € CM*E the

model [2) can be rewritten in matrix-vector form as
x(t) = As(t) + n(t). (3)

We consider the noise vectat(t) to be independent from the sources and noise vectors at
other time instances and to have the circularly-symmetimomex jointly-Gaussian distribution
Nc(0,021,,) wherel ), is the identity matrix of sizél/. Considering the system modEél (3), the

data covariance matriR € CM**M is given by
R2E{zt)z"(t)} = ASA" + ol 1y (4)

where S = E {s(t)s"(t)} € CK*¥ is the source covariance matrix and” and E{-} stand
for the Hermitian transposition and the expectation opesatrespectively.

Let Ay < A < -+ < Ay be the eigenvalues aR arranged in nondecreasing order, and
let g,, g5, -, g, _x be the noise eigenvectors associated WAth Ao, ---, Ay_x and
e, ey, -, ex be the signal eigenvectors correspondingMQ_x 1, Av—xi2, ", Aum-
Let also G € CM*WM=K) and E € CM*K be defined asG' £ [g;, g,, -+, gy _x] and
E 2 [e), ey, -, ex]. The range spaces a& and E represent the true noise and signal
subspaces, respectively.

Let N number of snapshots (samples) be available. The basic th&dh@stimating the data

covariance matrix from the samplest) (1 <t < N) is
1 N
DA H
R= N tEZI x(t)x" (t) 5)

where R € CM*M s the sample data covariance matrix. Consider the eigeneasition of
R. Let di, 92, , gy_x be the estimated noise eigenvectors @nd é.,---, ex be the

estimated signal eigenvectors. Fothe CM*M-K) and E € CM*X py placing the estimated
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noise and signal eigenvectors as the column&'aind E, respectively. The range spacesféf
and E represent the estimations of the noise and signal subspaspectively.

Recalling [1) and defining £ ¢727(@/2)sn(9)  the steering vector can be rewritten @) =
(1,274, z—(M—”}T. In the root-MUSIC method, the roots of the equaﬁrTr(z‘l)@@Ha(z):
0 which are located inside the unit circle are considered s&heots are sorted based on their
distance to the unit circle, and the fira&f number of the roots which are closer to the unit
circle are picked. The estimates of the DOAs denoted bybs, - - - , O are then obtained by
multiplying the angles of the selected roots b¥(27d) and taking the inverse sinusoid function

of the results.

[1l. PROPOSEDMETHODS
A. Two-step root-MUSIC algorithm

Let us start by expandingl(5) using (3) as follows

_A % 3 s(t)sH(t)} A 4 % S n(t)nt (1)

t=1
! H RS H H
+A{N;s(t)n (t)}+{ﬁtz:;n(t)s (t)}A . (6)

Comparing [(B) with [(4), it can be observed that the expansibﬂ?t consists of four terms
while the model forR comprises two summands. The first two termsfbfgiven by [6) can
be considered as estimates for the two summandR,ofvhich represent the signal and noise
components, respectively. The last two termadin (@) are undesirable by-products which can
be viewed as estimates for the correlation between the Isggrthnoise vectors. In the system
model under study, we consider the noise vectors to be zeanmand also independent of the
signal vectors. Therefore, the signal and noise comporaetsincorrelated to each other. As a
result, for a large enough number of samplésthe last two terms i (6) tend to zero. However,
the number of available samples can be limited in practipglieations. In this case, the last
two terms in [(6) may have significant values, which cause®#tienates of the signal and noise

subspaces to deviate from the true signal and noise sulsspace
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The main idea of our two-step root-MUSIC algorithm is to nfgdhe sample data covariance
matrix at the second step based on the DOA estimates obtaintbe first step. The modified
covariance matrix is obtained by deducting a scaled versfahe estimated undesirable terms
from the sample data covariance matrix.

We derive the steps of the proposed method for a general smaariance matrixS, so
that correlated sources can also be handled by the algorihrthermore, the proposed method
can also be beneficial in the case that the assumption on nelatcon between the source and
noise vectors is not fully met. This is achieved by estingand removing the correlation terms
between the source and noise vectors from the sample dadaiaose matrix.

The steps of the proposed method are listed in Table I. Thaitign starts by computing the
sample data covariance matriX (5). Then, DOAs are estimagetdj the root-MUSIC algorithm.
The superscript-)(!) refers to the estimation made at the first step. At the sectap] the Van-
dermonde matrix is formed using the available estimatefi®fIOAs. Then, the amplitudes of
the sources are estimated such that the squared norm offifx@nices between the observations

and the estimates are minimized. The corresponding prolddormulated as
5(t) = arg min ||z(t) — As]|2. 7)

The minimization of [V) is performed using the least squdte) technique and the corre-
sponding solution is given as

_1/\H

5(t) = (EH,Z) Az(1). (8)

The noise component is then estimated as the differenceebatthe estimated signal and the

observation made by the array, i.e.,

n(t) = o(t) — As(2). (9)
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After estimating the signal and noise vectors, the thirdnhter (6) can be found as

P, (10)
where

~ o H AL A

P,2A <AHA) a" (11)
is an estimation for the projection matrix of the signal ude, and

P21, P, (12)

is an estimation for the projection matrix of the noise saegp The forth term i {6) is equal to
the Hermitian of the third term, i.eZ'*’. Finally, the modified data covariance matrix is obtained
by deducting a scaled version of the estimated terms fromrtitial sample data covariance
matrix as follows
RY-R-—~y(T+T". (13)

The scaling factory in (13) is a real number between zero and one. Ideally, theevaf
would be equal ta if the estimates of the undesirable terms were perfect. Mewestimation
errors are inevitable, and therefore, we have introducéd deal with the imperfections. The
scaling factory can be considered as a reliability factor which takes a valose tol for an
estimate ofI" with small error and a small value if an estimateTois erroneous. Given a value
for ~, the modified data covariance matrﬁ(z) is computed and the DOAs are estimated again
using the root-MUSIC algorithm.

The value ofy can be fixed to a predetermined value before running the igdgoror it can
be obtained based on the observations. Sineea real number between zero and one, we can
consider different values foy taken on a grid (e.gy =0, 0.1, 0.2,---, 1). For each value of
~, a set of DOA estimates is obtained based on the modified da&iance matrix. Next, we

determine which value of results in a better estimation. This can be done by choosiset a
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of DOA estimates that has a higher likelihood of being theafarue DOAs. In other words,
we use the maximum likelihood (ML) criterion to evaluate tingality of the estimated DOAs.
Since the system model given inl (4) is stochastic, we use tt@hastic ML (SML) objective
function given by [[20]

~(2) ~ ~ (2
Fous(y) = Indet | PV RP! + (14)

- M-K 4
where Tr{-} stands for the trace operatcff’,f) is an estimation of the projection matrix of the
signal subspace obtained from the estimated DOAs basedeanddified data covariance matrix
and 13j(2) =TIy — 13(;). The objective function in((14) is evaluated for each valfie/.oThen,
the set of DOA estimates corresponding to the value tiiat minimizes[(1I4) is chosen as the
output of the algorithm.

B. Root-swap root-MUSIC algorithm

Consider the root-MUSIC polynomial” (:~')GG" a(z) which is formed by the noise eigen-
vectors obtained from the eigendecomposition of the datar@nce matrixR. This polynomial
has K number of roots on the unit circle which correspond to thealigources. Let thesE
roots be denoted by;, z3,---, zx and be referred to as the true signal roots. The polynomial
also has additional/ — K — 1 number of roots inside the unit circle. Let these roots berretl
to as the true noise roots and be denotedBy:, zxio, -, Zym_1-

An estimation for the root-MUSIC polynomial can be formedngsthe noise eigenvectors
obtained from the sample data covariance maltix_et us assume that in the estimation of the
noise and signal subspaces, no subspace swap has occyrréthddestimated polynomial is
given byaT(z‘l)aaHa(z). This polynomial has\/ — 1 number of roots inside the unit circle.

Let z;, 25,---, Zgx be the roots of the estimated root-MUSIC polynomial whichrespond
to z1, 2o,---, zx. We refer to these roots as the estimated signal roots. érantire, let
ZK41, ZK+2,°°+, 2Zy—1 be the roots corresponding tQ¢.1, zxi2,---, Zy_1. These roots

are referred to as the estimated noise roots.
In the root-MUSIC method, we do not have the knowledge abduthvof the roots of the

estimated root-MUSIC polynomial correspond to the truengigoots. The conventional rule is
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TABLE |

TwO-STEP ROOFMUSIC ALGORITHM

I nputs:
M, d, A\, N, K, and
received vectors: (1), x(2),---, x(N)
Outputs:
Estimate)”, 6 ... 4%
Step 1.
R=%3) =)z (1)
{%”, S éﬁ?} “ root-MUSlC(R K,d, )\>
Step 2

A= o). o). a()
1

H

P,=A (21H21)_ A
~1 ~
Py=1Iy—Py
T-P,RP
Determine + as the minimizer of (14)

~@ o .

R =R-~(T+T")

(07,00, 802} root-MUSIC(IA%@),K, 0.2

to selectK’ number of the estimated roots which are closer to the unitecias the estimates
for the true signal roots. Then, the DOAs are estimated basdthe angles of these roots.

Due to the finiteness of the available samples, the estimat@s obtained from the sample
data covariance matri® deviate from their corresponding true roots obtained fromttue data
covariance matrixR. Let r; and7; represent the magnitudes efand z; for 1 <i < M — 1,
respectively. Furthermore, lekr; = 7, — r; be the difference between the magnitude of the
i-th estimated root and the magnitude of the correspondung rioot. It is shown in[[19] that
Ar; (for the signal roots) has a variance which is proportiomab?/N. Therefore,Ar; can
have a significant value for a small number of samples and ge laalue ofs? (low SNR

region). Consequently, there can be a considerable pidigabat an estimated signal root takes
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a smaller magnitude than an estimated noise root. We refériggghenomenon as a root-swap.
The root-swap probability is approximately found in Apperidlas

P(root-swap ~ 1 — [ | 1:[ Q<_1+Tm+0k\/i\j4—f<—(3/4)>
O

k=1m=K+1
where @ (-) is the tail probability of the standard normal distributiand ¢7/4 is the variance

(15)

of Ary, and it is proportional tar?/N.

In the case that the root-swap happens, selecting the fosesi/K’ roots to the unit circle
results in picking a noise root instead of a signal root. Tal déth this problem, we propose an
algorithm that considers different combinations of thetso@s candidates for signal roots. The
method is dubbed the root-swap root-MUSIC algorithm.

The root-MUSIC polynomial had/ — 1 number of roots inside the unit circle. Our goal is to
find the roots which have a higher likelihood of being asdedavith the X' sources. Consider
choosing X number of roots out of thé/ — 1 roots inside the unit circle. There arg, £
(M —1)!/ (K\(M — K — 1)!) different possible combinations. L&t = {©,, ©,, ---, Oy}
where©; (1 <i < N,) is a set containing the DOA estimates obtained fromitttecombination
of the roots. Then, the root-swap root-MUSIC method estmnahe DOAs as

{él, ég, cee é}(} = alg glel{“l FSJ\/[L (@) (16)

where Fg),; (©) is the SML function given by

~ T{PsR}
Fsyp(©) = Indet | PoRPg + ﬂpg (17)
and Pg is the signal projection matrix obtained froéh as
Po £ A(0) (A7(©)A(0)) " AT (0). (18)

The complexity of the introduced root-swap root-MUSIC noethcan be reduced by pre-
eliminating some of the roots. Specifically, et K roots closest to the unit circle be picked,
and letg number of roots closest to the origin (furthest from the @iitle) be ignored. Our task
is to choosek — p number of roots out o/ —p—q¢—1 roots. Then, there a®, = (M —p—q—
DY/ (K —pl(M — K —q—1)!) different possible combinations which is significantly $iera
than N.. The rest of the algorithm is the same as above except forhirat each combination
containsK — p number of roots. Therefore, in order to evaluate the SML fiong the fixedp

pre-selected roots are added to each combination.
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IV. SUBSPACELEAKAGE

The performance breakdown of the subspace based DOA estmmaéethods in the threshold
region has been associated with the subspace leakage slsdttion, we study the subspace

leakage for both steps of the proposed two-step root-MU3gGrihm.

A. Definition

Recall the matrice€s and E which are composed of the true noise and signal eigenvectors
obtained from the eigendecomposition of the data covagianatrix R. Note that the matrix of

the eigenvector) , = [G E| € C**M is a unitary matrix(Q Q7 = I ), therefore
GG" + EE" =1, (19)

or
P-+P=1y (20)

where, P £ GG and P £ EE" are the true projection matrices of the noise and signal
subspaces.

Ideally, the estimation of each signal eigenveatpr(1 < k£ < K) would perfectly fall in
the true signal subspace. In practice, however, the endrtyeqrojection ofe, into the noise
subspace|{ P&, |2 is almost surely nonzero, which can be viewed as the leakigg imto the
true noise subspace.

We define the subspace leakage as the average value of tlyy erighe estimated signal

eigenvectors leaked into the true noise subspace, i.e.,
1 K
pE D IIP el (21)
k=1
Note thatP* is the orthogonal projection matrix. Therefogpecan be written as

K
1 Z X R
p= E 2 ekHPlek. (22)
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Using (20) and some algebra, the expression (22) can beifisdpb

—1- %Tr {1313} (23)

~ ~~H . . . . . .
where P £ EE s the estimated signal projection matrix.

B. Analysis of two-step root-MUSIC algorithm

The estimated signal and noise projection matrices olddairmen the eigendecomposition of
the sample data covariance matdX are deviated from the true signal and noise projection
matrices. LetAR 2 R — R be the estimation error of the data covariance matrix, and le

V2 R0, =ASA"

K

= ()\M—K+k—gr2]) ekeg. (24)
k=1

Denote the pseudo-inverse Bf asV' e CM*M |t is given by

K
1
Vi=) — — —eref. 25
;AM—KM—Uﬁekek (25)

Let p; and p, be the subspace leakage due to the error in the estimatidmed$ignal and
noise subspaces obtained frafhand IA%(Q), respectively. Note that; only depends orR and
AR, and it is not specific to the proposed two-step root-MUSIgoathm.

It is shown in Appendix B thap; and its expected value are given by

1
p1 = ?Tr {VIARP'ARV'} (26)
and K«
ol (M - K) AM—K+k
E = - 27
{p1} NK ; ()\M—K—i-k - Uﬁ)Q ( )
respectively.
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It can be seen fron_(27) that the expected value of the subdpa&age is proportional to
o2 /N. Therefore, the amount of the subspace leakage can be signifor a small number of
samples or low SNR values. The varianceppfhas also been studied in [21], and it has been
shown that Vatp,) is in the order ofl /N?.

The subspace leakage at the second step of the two-steMtBIE algorithm is computed
in Appendix[C and is given by
2(y =7

K

whereRe {-} stands for the real part operator, anB is the first order term in the Taylor series

2
pr=(1=27+2) p1 + Re {Tr{VIARP*dP}} + Tr{dPP'dP} (28)

expansion ofP , around the true DOAs. It is also shown in Appendix C that theeeted value
of p, for a fixed value ofy is given by

E{p} = (1=2v+7°) E{pi}
a)" P+ 24 (AMA)7 AMVIRVa,

NK Pt 2 <a]il)HP¢alil))

Tr { M>H proa (AHA)_I}

K K D,
2NK ; ; (CLS)HPJ'CL,(:)> (al(l)HPJ_al(l)>

Re {a{f VIRV aka,(j)HPiaf.l)}

(29)

wherew, £ 27(d/))sin(6;), ay, is a shorthand notation far(6,,), anda!” € CM*! is defined
as

af) &[0, ¢ g (M — 1)) T (30

It can be seen in_(29) that for = 0, F {p>} reduces tok' {p;} as expected, and foy = 1,
the first two terms in[(29) are equal to zero.

V. NUMERICAL EXAMPLES AND SIMULATION RESULTS

In this section, the performance of the proposed two-step-MiJSIC and the root-swap
root-MUSIC algorithms is investigated and compared with prerformance of the unitary root-
MUSIC method [[22] and the improved unitary root-MUSIC aligfum based on pseudo-noise
resampling [[12]. We also consider the combination of theppsed methods with the other

methods in order to achieve further performance improvénteompared to the root-MUSIC
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method, the unitary root-MUSIC algorithm has a lower compiohal complexity as it uses the
eigendecomposition of a real-valued covariance matritheéumore, the unitary root-MUSIC al-

gorithm has better performance for the case that the soareesorrelated. The improved unitary
root-MUSIC algorithm based on pseudo-noise resamplingeages the estimator complexity, but
it is advantageous in removing the outliers, which resultbetter performance.

We considerK = 2 sources impinging on an array @ff = 10 antenna elements from
directionsf; = 35° x (w/180) and 6, = 37° x (7/180). The interelement spacing is set to
d = A/2 and the number of snapshotsi&= 10. Each source vectos(¢) is considered to be
independent from the source vectors at other time instaanog$o have the circularly-symmetric
complex jointly-Gaussian distributiaW- (0, .S). The source covariance matri is given by

S = o2

S

r 1

where0 < r < 1 is the correlation coefficient. The SNR is defined as SNRO log,, (02/02).

The performance of the proposed algorithms is investigitedonsidering the subspace
leakage, mean squared error (MSE), probability of sourselugéion, and conditional mean
squared error (CMSE). Source resolution is defined as thet @tegen both DOAs are estimated
within one degree of their corresponding true values, tte ,difference between the true value
of each DOA and its estimated value is less thanhx (7/180). The CMSE is defined as
the expected value of the estimation error conditioned artessful source resolution, i.e.,
E {Ele 16, — 0,]|3 | successful source resoluti})nThe reason for using the CMSE is to fur-
ther investigate the accuracy of the algorithms after n@gkunccessful detection. We estimate the
probability of root-swap, subspace leakage, MSE, proliglof source resolution, and CMSE
using the Monte Carlo method with0> number of trials. Two cases are considered in the
simulations: 1) the two sources are uncorrelated,.e:,0, and 2) the two sources are correlated
with a correlation coefficient of = 0.9.

Let us start by investigating the probability of root-swapthe root-MUSIC algorithm for
the case of the uncorrelated sources. The probability dfsaap is estimated using the Monte
Carlo simulations. Its approximate value is also obtair@dai(15%). The corresponding curves are
shown in Fig[l. It can be seen that at the low SNR region, tla@ah that a root-swap occurs is

quite significant, which results in the performance breakdof the root-MUSIC algorithm. This
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Fig. 1. Probability of root-swap and probability of ML faikl versus SNR for uncorrelated sources.

problem justifies the need for a method to deal with the re@psphenomenon. In this paper,
we proposed the root-swap root-MUSIC algorithm which iadtef picking the roots closer to
the unit circle, selects the roots based on the SML criterlonFig. [1, we thus also draw a
curve which shows the probability that the selected rootdheyML criterion include a noise
root. This situation is considered as a breakdown, and fibrerethe corresponding probability
is called the probability of ML failure. As can be seen, thislmbility is significantly smaller
than the probability of root-swap. As a result, it is expdctbat the root-swap root-MUSIC
algorithm outperforms the conventional root-MUSIC methddis will be shown in the rest of

this section.
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The subspace leakage in the two-step root-MUSIC algorithinhfe case of the uncorrelated
sources is investigated next. The expected value of thepaabsleakage is estimated using
(23) and the Monte Carlo simulations. The approximate vétuehe subspace leakage is also
obtained from the theoretical derivations inl(27) ahd (Z9e value ofy is fixed at0.5. The
results are shown in Fid.l 2. The solid lines represent thesmade leakage at the first step,
and the dashed lines depict the subspace leakage at theds&temnof the proposed two-step
root-MUSIC algorithm. It can be seen that the curves obthiinem the simulations are very
close to those obtained from our theoretical derivationkigih SNR values. At the low SNR
region, the curve associated with the theoretical appration at the second step deviates from
the curve obtained by simulations. The reason is that in #revations, the first order Taylor
series expansion is used. More accurate results can benettthy using higher order Taylor
series. However, the computations can become intractablEig. [2, it can be observed from
both theoretical and simulation results that the subspagealge from the modified covariance
matrix at the second step is significantly smaller than thHesgace leakage from the sample
data covariance matrix at the first step. This is achievecehyoring the undesirable terms from
the sample data covariance matrix leading to an estimatbkeo$§ignal projection matrix that is
closer to the true signal projection matrix, which is eqléwa to a lower subspace leakage at
the second step.

We next consider the performance of the proposed two-sggitim when applied to the root-
MUSIC [2], unitary root-MUSIC [[22], improved unitary rodtUSIC with pseudo-noise resam-
pling [12], root-swap unitary root-MUSIC, and root-swagptary root-MUSIC with pseudo-noise
resampling methods. The unitary root-MUSIC algorithm takenefit from the forward-backward
averaging/[7] which is approximately equivalent to dou@lihe number of samples. For the cases
that the pseudo-noise resampling is usBdepresents the number of times that the resampling
process has been performed. In the figures, the root-MUShWEary root-MUSIC, and root-
swap unitary root-MUSIC methods are denoted by R-MUSIC, MBSIC, and RSUR-MUSIC,
respectively. The value of the scaling factpiis obtained by minimizing the SML function as
described in the two-step root-MUSIC method. In the roogsvalgorithm, the parametegs
and ¢ are set top = 1 and ¢ = 0, which means the closest root to the unit circle is picked
up and paired with other roots one at a time in order to find thie of DOA estimates that

minimizes the SML function. In this case, the number of défe possible combinations of the
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Fig. 2. Subspace leakage versus SNR for uncorrelated soufbe solid and dashed lines represent the subspace leakage

the first and second steps of the proposed two-step root-KRjorithm, respectively.

roots is/V, = 8. The number of samples used for the pseudo-noise resampktigod is set to
P = 50. According to our simulations, using more number of samplesld not yield in any
considerable improvement in the performance.

The MSE versus SNR performance of the methods tested forabke of the uncorrelated
sources is presented in Fig. 3. The corresponding CRB [23]ss shown in the figure. For
the R-MUSIC method, the modification of the covariance maini the second step of the
introduced two-step method shifts the MSE curve by almodt dadB to the left. For the
UR-MUSIC method the improvement is more significant and isuttone dB. For the rest of

the methods, there is no considerable change in the MSErpeaafee. However, as it will be
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Fig. 3. MSE versus SNR for uncorrelated sources. The sokiidashed lines are based on the first and second steps of the
proposed two-step method, respectively. The methods us#teitwo-step algorithm are R-MUSIC, UR-MUSIC, and RSUR-
MUSIC methods.P is the number of samples used for the pseudo-noise resaadtjorithm.

shown in the next figures, the modification of the covarianegrim has benefits in terms of the
CMSE performance and probability of source resolution fese methods. It can also be seen
from Fig.[3 that the proposed RSUR-MUSIC algorithm perfoabsut2 dB better than the UR-
MUSIC method, while imposing only a small amount of compiotadl complexity for evaluating
the SML function for N, = 8 different combinations of the roots. The best performarge i
achieved by the RSUR-MUSIC algorithm combined with the pigenoise resampling method.
Fig.[4 shows probability of source resolution versus SNRtfieruncorrelated sources. For the

R-MUSIC method, the second step of the two-step algorithpraves the performance kyto
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Fig. 4. Probability of source resolution versus SNR for unelated sources. The solid and dashed lines are based dinsthe
and second steps of the proposed two-step method, resggciine methods used in the two-step algorithm are R-MUSIC,
UR-MUSIC, and RSUR-MUSIC methods.

2 dB. The rest of the algorithms have almost the same perfarenaith the root-swap based
methods slightly outperforming the other algorithms at IBWR values. It is observed that the
second step of the two-step algorithm results in adodB improvement in the performance.
Finally, Fig.[d illustrates the performance of the algarmhtested for the uncorrelated sources
in terms of the CMSE. The R-MUSIC method is significantly iioyed by the two-step method
with an improvement ranging frori dB at low SNR values td dB at high SNR values. The
rest of the algorithms show similar performance, and thdiegipn of the two-step method

leads to up t@ dB improvement in the CMSE performance.
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Fig. 5. CMSE versus SNR for uncorrelated sources. The salil dashed lines are based on the first and second steps
of the proposed two-step method, respectively. The metlisdsl in the two-step algorithm are R-MUSIC, UR-MUSIC, and
RSUR-MUSIC methods.

The results for the case of the correlated sources with 0.9 are depicted in Figs.]6 to
[10. Similar observations are made from these figures as thissessed for the case of the
uncorrelated sources. Compared to the uncorrelated das@etformance breakdown occurs at
a higher SNR value. This makes the importance of the imprawethods more significant, as
there is a higher chance that the actual SNR of a system faltka breakdown region. As
seen from the figures for the correlated sources, the prdposghods prove to be helpful in
dealing with the performance breakdown problem. The gatainbd by the improved methods

is also more significant compared to the case of the unctecekources. For instance, the MSE
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Fig. 6. Probability of root-swap and probability of ML faitl versus SNR for correlated sources with- 0.9.

improvement achieved by the two-step root-MUSIC methodHeruncorrelated sources is about
half a dB, while in the case of the correlated sources, the M@ke is shifted by more than
2 dB to the left. Similarly, more significant performance gasre obtained for the probability

of source resolution and also the CMSE.

VI. CONCLUSION

The performance breakdown of the subspace based DOA estmmaéethods in the threshold
region where the SNR and/or sample size is low has been dtiithis paper. The subspace
leakage as the main cause of the performance breakdown waallp defined and theoretically

derived. The two-step algorithm has been proposed in omleeduce the amount of subspace
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Fig. 7. Subspace leakage versus SNR for correlated souiities w- 0.9. The solid and dashed lines represent the subspace

leakage at the first and second steps of the proposed twdrspSIC algorithm, respectively.

leakage. The introduced method is based on estimating ths®the first step and modifying
the covariance matrix using the estimated DOAs at the secbepl. We have theoretically
derived the subspace leakage at both steps, and have shawvthelsubspace leakage is reduced
at the second step of the proposed method leading to bettErmpance. The algorithm can
also be extended to the third step by further modifying theadance matrix based on the
improved estimates obtained at the second step. We havstiggted the performance of the
algorithm for further steps through simulations (not ired in the paper). However, the achieved
improvement is marginal and does not justify the added ceriggl The behavior of the root-

MUSIC algorithm in the threshold region has been also stydsd a phenomenon called

February 3, 2015 DRAFT



24

—e—R-MUSIC
=L} R-MUSIC, Step 2
-5r —— UR-MUSIC I
X UR-MUSIC, Step 2
_10- UR-MUSIC, P = 50 i
4> UR-MUSIC, P = 50, Step 2
—A-RSUR-MUSIC
-15¢ RSUR-MUSIC, Step 2
—#—RSUR-MUSIC, P = 50
_o0b ; RSUR-MUSIC, P = 50, Step 2|
= . |——CRB
(7 :
~  -25© 1
Ll
N
z _30 L ,
_35 - -
_40 - -
_45 - ,
_50 | | | | | | | | | | |

14 16 18 20 22 24 26 28 30 32 34

SNR (dB)

Fig. 8. MSE versus SNR for correlated sources with- 0.9. The solid and dashed lines are based on the first and second
steps of the proposed two-step method, respectively. Thbatde used in the two-step algorithm are R-MUSIC, UR-MUSIC,
and RSUR-MUSIC methods.

root-swap has been observed to contribute to the perforenareakdown. Then, an improved
method has been introduced to remedy this problem by camsideifferent combinations of the
roots and picking up the one that minimizes the SML functibne performance improvement
achieved by the proposed methods has also been demonsisatgdnumerical examples and
simulation results. We also combined the proposed alguosthith the previously introduced

methods in the literature, which resulted in further immnoent in the performance.
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Fig. 9. Probability of source resolution versus SNR for elated sources with = 0.9. The solid and dashed lines are based
on the first and second steps of the proposed two-step metbsgectively. The methods used in the two-step algorithen ar
R-MUSIC, UR-MUSIC, and RSUR-MUSIC methods.

APPENDIX A

PROBABILITY OF ROOT-SWAP APPROXIMATION

The root-swap is defined as the event when at least one of tireaésd signal roots,
(1 < k < K) has a smaller magnitude than the magnitude of an estimaies® moot z,,
(K+1<m< M-1),i.e.,7, < 7y, Let us denote the probability of the event that< 7, by
pem- The complement of this event represents the case wheh-thestimated signal root has
not been swapped with the-th estimated noise root, and its probability is givenibyp,,,. Let

us denote the probability of root-swap B(root-swap. The complement of the root-swap event
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Fig. 10. CMSE versus SNR for the correlated sources with0.9. The solid and dashed lines are based on the first and second

steps of the proposed two-step method, respectively. Thaaude used in the two-step algorithm are R-MUSIC), UR-MUSIC
and RSUR-MUSIC methods.

is the event when none of the estimated signal roots has lvesgpped with an estimated noise
root, and its probability is given by — P(root-swap. Assuming that the individual root-swap
events are independent from each other, we have

K M-1

1—P(root-swap =[] ] (1—pwm)- (31)

k=1m=K+1
In the sequel, we derive an approximation fgr,. Noting thatr, = 1 for the true signal
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roots, we have

Prkm = P("ﬁm > rAk’)
= P(Ar, —Arg>1—1y,). (32)
In order to proceed with the computation gf,,, we consider the distributions akr,, and

Arg. It is shown in [19] thatAr,, (1 < k < K) follows the — (04/v2) \/x? (2(M — K) — 1)
distribution wherey? (¢) denotes a chi-square distribution wittdegrees of freedom angf is

given by

AM—K+i 2
0’,3 B N( PLak ) ; (Anr— x4 103)2 ‘Eﬁak‘ (33)
where P+ is the true projection matrix of the noise subspace aﬁa is given by [(30).

We next consider the distribution &fr,,. In [19], the distribution ofAr; is computed using a
second order Taylor expansion of the estimated root-MUSi@rmial around the true signal
roots (which are located on the unit circle). The computatibthe distribution ofAr,, requires
the analysis to be performed around the true noise rootshndrie located inside the unit circle.
The second order expansionsa(fs;,) anda” (2, ') around the true signal roat, are given by
[19]

a(Zy) ~ ap + jag)Awk + a,(:)Ark

H

T(zkl) ~ a —jak Awk — a,/LC Ark (34)

a
where Aw;, is the difference between the angle of th¢h estimated root and the angle of the

corresponding true root. For the-th noise root, leta,, be defined as
Qp, = |:17 e_jwm7 ) e_j(J\/[_l)wm}T (35)

wherew,, is the angle ofz,,. Let alsoa'y be defined similar to[(30) withu, replaced with
wm- Then, the second order expansionsi¢f,,) anda”(z;!) around the true noise roet, are
given by
A
a(,)~R} (am + jaV Aw,, + all) <ﬂ))

m

a’ (3N~ (afi —jaWH A, — aVH <Arm))Rm (36)

T'm
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, rﬁnM_l).

whereR,, is a M x M diagonal matrix with its diagonal elements equalltor,,, - - -
Since the Taylor expansion for the steering vectors of tlaésron the circle and the expansion
for the roots inside the circle, i.el, (34) andl(36) have Einstructures, it is reasonable to assume
that Ar, and Ar,, /r,,, also have similar distributions. Then, the variance\ef, is in the order
of the variance ofAr, multiplied byr2 . Sincer,, < 1, the variance ofAr,, is smaller than the
variance ofAr. In order to simplify the computation of,,,, we ignore the effect ofAr,, and
approximatepy,,, by

Prm = P (=Arp > 1—1r,). (37)

This is equivalent to using the probabilify (7, < r,,) as an approximation fopy,,. Since we
have the distribution ofAr;, we can compute,,, using [37). When\/ — K > 1, Ar,, follows
approximately a normal distributioA/ <—ak\/M—K— (3/4),0,3/4) [19]. Using [37), the
probability p,,,, can be approximated by

pm%ay(l”m“”f”f‘[(‘(?’/“)). (39
o /4

Finally, the approximation of the probability of root-swatiroot-swap is found by using the
approximation[(38), the expressidn{31), and the fact @atz) =1 — Q(x) as

P(root-swap ~ 1 — [ [ 1:[ Q <_1+Tm+ak\/M_K_(3/4)> . (39)

2
k=1m=K+1 op/4

It completes the derivation.

APPENDIX B

SUBSPACE LEAKAGE AT THE FIRST STEP

Let us start with the computation pf. Let AP £ P — P be the estimation error of the signal
projection matrix. Then, using the properties ti2t = P and Tr{ P} = K, the expressiori (23)
for the first step of the two-step root-MUSIC algorithm canviagtten as

1
1

1
= —Tr{APP}. (40)
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It is shown in [19] that the series expansionfafbased oM\ R is given by
P=P+§P+- - +6"P+-- (41)

where
§P = P'ARV' + VIARP* (42)
and the rest of the terms are related by the following receee
§"P = —P* (5" '"P)ARV'+ P*AR (5" 'P) V!
~VIAR (6"'P) P+ V' (§"'P) ARP*
— nz_:l P(§'P) (8" 'P)P
-
+> P (5'P) (0" 'P) P (43)
=1
The following lemma will be further used.

Lemma 1. The columns oV' belong to the signal subspace, i.2V ' = V1.

Proof: The proof follows by multiplyingP by V' and then substituting® with EE“ and
v with 25). n

In a similar way to Lemmal1, it can also be shown that
VVi=Viv = p. (44)

Using [@0), the series expansion Bfin (@), expression$ (42) and {43) up to &P term,
and the facts thaP P+ = PP = 0 and PP = P, we can writep; as

pr = —%Tr{—P (6P) (6P)} . (45)
Then, p; is computed by substituting_(42) in_(45), usili)" P~ = P+, and Lemmall as
pr = %Tr{P (P*ARV' + VIARPY) (P*ARV' + VIARPY) |
= %Tr{PVT ARP'P ARV}

= %Tr {VIARP-ARV'}. (46)
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Computation of the expected value of the subspace leakag@es considering the statistical

properties ofAR. We use the following two properties in our derivations| [19]

Lemma 2. For all matricesA;, A, € CM*M we have
1
E{ARA/AR} = Tr{RA} R (47)

and
E{Tr{ARA,} Tr{ARA,} } = %Tr{RAlRAg}. (48)

Using (46) and[(47), the expected valuefcan be computed as

E{n} = %Tr {VIE{ARP"AR} V'}
1

1
= ETr{VTNTr{RPl}RVT}

1
= v PRI {VIVIR}. (49)

Since the range space of the matdxis the same as the signal subspace, we Havel = 0.
As a result, T{ P* R} can be simplified as

Tr{P"R} = Tr{P" (ASA" + 571}
= Tr{oiP"} = ofTr {1, — P}
= 02 (M - K). (50)

Furthermore, using (25) and the fact that the eigenvectbrR @re orthonormal, the product

VIVTR can be written as
K A
VIVIR=Y" MoRAE el (51)

= (Av—x4r—03)

which results in

K

AM—

ty 1 o M—K+k

Tr{VIVIR} =) P2 (52)
k=1 —K+k n

Finally, E {p,} is obtained by substituting (50) and {52) (n49) as

0’% (M—K) K )\M—K—i—k

E{p} =5 (53)

— (Avi—kr — 03)°
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APPENDIX C

SUBSPACE LEAKAGE AT THE SECOND STEP

The subspace leakage at the second step of the two-stepltdBIC algorithm can be obtained
through the same steps taken for the computatiop, oReferring to [(46), the subspace leakage
po IS given by

Py = LTy {VT AR® PLAR VT } (54)
K

whereAR® £ I?E(z) — R is the estimation error of the covariance matrix at the séciap of
the algorithm. Using[{d3), the estimation errdaiR® is given by
AR® = AR -~ (T +T"). (55)
Recalling [I0), we havd’ = P,RP,.
Consider the first order Taylor series expansiorﬁmc around the true DOAs given by

whereP, £ A (AHA)_1 A™ is equal to the true signal projection mel-&l,ijce., P,=P, and

dP is given by
K

oP
dP=>" &u: Aw. (57)
k=1

Here Aw;, £ &), — wy, is the estimation error afy, with @y, £ 27(d/\) sin(6},).
Note that for any square and invertible matiik the partial derivative o3B! with respect

to the variablew is given by [24]

a?: = —B‘lg—fB‘l. (58)
Using (58), the partial derivativeP 4 /0w, can be computed as
881:: = g—i (ATA)™ AT 4 A2AA4) %if)_l AT A(ATA) (g—i)H
_ g_i (A7A) A" — A (A" A)” ((g—i) TA+ Aﬁ—i) (A7A)7" AT
+A(ATA) (g—i)H . (59)

INote that althoughP 4 is equal toP, the estimates? 4 and P are obtained in different ways and are not essentially equal

to each other.
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Then, using[(20) an®® = A (AHA)_1 A" the partial derivativé)P 4 /0wy, is given by

=P —(A"A) A" +A(A"A — | P-. 60
Owy, Owy, ( ) i ( ) Owy, ( )
The estimation error ofy;, i.e., Aw,, in (57), can be written based ahR as [19]

a"" P*ARV'a, — a?VIARPa!”

2j <a,(€1)HPla,(€1)>
The first order Taylor series expansionﬁﬁ is obtained using (12) and_(56) as
P,~P._dpP (62)

where P 2 I, — P,.
The matrixT" can be then computed using expressiéns$ (10), (56),[and (@2 keeping only
the first order terms and noting th&, = P, P; = P+, and PRP* =0 as

T = (P4s+dP)(R+ AR) (P; — dP)

~ —PRdIP + PARP' + dPRP". (63)

We can now compute, using expressions (54}, (55), and|(63) as
py = %Tr{vT (AR =5 (T +T")) P* (AR -~ (T +T")) v}
= %Tr{VT(AR —v(- PRAP + PARP* + dPRP"* — dPRP + P-ARP
+P-RdP))P- (AR —v(— PRdP + PARP" + dPRP"
~dPRP + P*ARP + P-RAP))V']. (64)

Then, using expressions (57, [60), and the fact A&* = P'P =VPt = P'Vi=0to

eliminate the terms that equal zem, is computed as
1
p» = =T{ V(AR —(~ PRAP + PARP* + iPRP"))

«P-(AR— (- dPRP + P*ARP + PLRdP))VT}. (65)
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Expanding the terms in(65) and using the fact tRa&t" = VP = VT results in the following

expression forp,
pp= %Tr{VTARPlARVT —4(~VIARP*dPRV' + VIARP-ARV'
+VIARP*RIPV' — VIRIPP*ARV' + VIARP*ARV'
+VdPRP"ARV') + ¥*(VIRIPPdPRV' — VIRIPP ARV
~V'RIPP*RIPV' — VIARP-dPRV' + VIARP-ARV'
+VIARP*RIPV' — VIdPRP+*dPRV' + VI{PRP*ARV"
+VIdPRP*RIPV")}.
(66)
By reordering the terms if_(66), the subspace leakagean be further rewritten as
pa= %Tr{ (1-2v++*) VIARPARV' + (v’ —v) (- VIARP'dPRV"
+V'ARP"RIPV' — VIRIPP"ARV' + VIdPRPARV")
+7*(VIRIPP dPRV' — VIRIPP*RIPV' — VI{PRP dPRV
+VidPRP*RIPV) } (67)

The terms multiplied by(~* — v) in (€7) can be simplified using expressions](24})] (44), and
the fact thatP*V =0 as

~VIARP AP (V +0;1y) VI + VIARP (V + 01,) dPVT
~V(V +031y)dPP ARV + VIdP (V + 071,) P* ARV
= —-V'ARPYdPP — PiPP*ARV'. (68)
In a similar way, the terms multiplied by? in (67) can be simplified to
VIRIPP AP (V + 021y) V' = VIRAPP* (V + 021,) dPV'
—VIdPRPdP (V + 0iIy) VI + VIdPRP" (V + 021 ,) dPV'
= V'RIPP*dPP — V'dPRP*dPP
=V (V +02Iy)dPP"dPP — V'dP (V + 0p1,) P*dPP
= PIPPdPP (69)
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which using the fact thaP+dPP* = 0 (see [[5F) and (80)) can be further simplified to
PdPP-dPP = (I,; — P")dPP"dP (I, — P")
= dPP*dP. (70)

Finally, using expressions (46}, (67), (68),1(70), and Lemniiy the subspace leakage is
computed as
2(v=%)
K
Computation of the expected value @f involves finding the expected value of the two trace
functions in [(71). Using expressioris [57) ahd] (60), the etqubvalue of the first trace function

in (Z1) is given by

2
pr=(1=2v+)p1 + Re {Tr{VIARP*dP}} + %Tr {dPP+dP}. (71)

K
E{Tr{VIARP dP}} =E {Tr {ARZ pr4 (A7A)™ AHAkaT}} . (72

1 &uk
Then, by substituting (61) in_(72), we have

K
E{Tr{VIARP'dP}} = E{Tr{ 3 ARPYIA (47 4) APV
k=1 Ow

1
X
27 (a,(ﬁl)HPLa,(cl))

The order of the summation and trace operatoiin (73) can lapetv Moreover, the last two

(a,(j)HPLARVT ay, — allv1 ARPla,(j)) } } (73)

terms can be written using the trace operator as

K
1
E{Tr{VIARP dP\) = FE
{ { }} { l; 2 <a](€1)HPLa](€1)>

xTr{ARPlgTA (A7A)" AHVT} (Tr {ARVT aka,g”HPl}
k

T {ARPLa,g”akH vt } ) } (74)
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The expression i (74) can be computed using (48) as

1 & 1

N 5 (al Prap)

E{Tr{VIARP'dP}} =

x(Tr{RPLSTA(AHA) A"VIRV'aiay” Pi}
k

(94

—Tr{ RP
Wi

(A7A)" A"VIRP a"al VT}> . (75)

The second trace function i (75) equals zeroVAsR P+ = 0. Then, expressiori (¥5) can be

rewritten as

9 K () PLoA (AH AV AHVIRVE
E{Tr{VIARP*dP}} = 2% : o (4 4) a’“ (76)
(H pL (1)
kzl 27 (ak P-a, )

where we used the equalifp* R = o2 P,
In a similar way, using expressions [57) amndl(60), the exukorlue of the second trace
function in (71) is given by

E{Tr{dPPdP}} =

K K
E{Tr{§ S A(AfA) (S—A) PigA (A"A)" AHAkawZ}}. (77)
W W;

k=1 i=1

Then, by substituting (61) in_(Y7), we have

E{Tr{dPP*dP}} = E{Tr{ XK: ZK: A(ATA) <%)H Pt g:: (A7 A)~" AT

k=1 i=1 0wy

1

"2 (" Pra) 2 (al) e o)

(Tr{ARVTakak L} Tr{ARPiak al VT})
P} -

Tr{ARP*a{Vaf'V'} ) } }

(78)

(Tr {ARVTaZ
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which is computed using (#8) and the fact tat RV’ = 0 as

K K Tr{(%)HPLg—::(AHA)_I}
L
E{Tr{dPP dP}} = —ZZ (algl)HPJ_algl)> ( WH pl, ())

DO

xRe{ 1yt RV eV PLa! } (79)

Finally, the expected value of, for a fixed value ofy is obtained using expressions (71),

(76), and [(7P) as

E{p} = (1-2v+7°) E{p}

"ptoA (A" A)" A"VIRVa,

L20=)om . ZK:“S) .
NK 2,] (a’](gl)HPla’](gl)>
(

%) PJ_BA (AHA) 1}
Re

K K
Yo
+
2NK ;; (akl)HPJ_al(gl)> (az(l)HPJ_al(l)>

{HV*RV*aa Hplg }

(80)

It concludes the derivation.
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