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DOA Estimation with Small Sample Size
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Abstract

Classical methods of DOA estimation such as the MUSIC algorithm are based on estimating the

signal and noise subspaces from the sample covariance matrix. For a small number of samples, such

methods are exposed to performance breakdown, as the samplecovariance matrix can largely deviate

from the true covariance matrix. In this paper, the problem of DOA estimation performance breakdown

is investigated. We consider the structure of the sample covariance matrix and the dynamics of the root-

MUSIC algorithm. The performance breakdown in the threshold region is associated with the subspace

leakage where some portion of the true signal subspace resides in the estimated noise subspace. In this

paper, the subspace leakage is theoretically derived. We also propose a two-step method which improves

the performance by modifying the sample covariance matrix such that the amount of the subspace leakage

is reduced. Furthermore, we introduce a phenomenon named asroot-swap which occurs in the root-

MUSIC algorithm in the low sample size region and degrades the performance of the DOA estimation.

A new method is then proposed to alleviate this problem. Numerical examples and simulation results

are given for uncorrelated and correlated sources to illustrate the improvement achieved by the proposed

methods. Moreover, the proposed algorithms are combined with the pseudo-noise resampling method

to further improve the performance.
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I. INTRODUCTION

Classical parameter estimation methods of direction-of-arrival (DOA), Doppler shifts, frequen-

cies, time delays, etc. such as the multiple signal classification (MUSIC) [1], root-MUSIC [2],

and estimation of signal parameters via rotational invariance techniques (ESPRIT) [3] are based

on estimating the signal and noise subspaces from the sampledata covariance matrix. It is well-

known that these methods suffer from performance breakdownfor a small number of samples

or low signal-to-noise ratio (SNR) values where the expected estimation error departs from the

Cramér-Rao bound (CRB) [4]. The SNR region at which this phenomenon happens is known as

the threshold region.

The fidelity of the sample data covariance matrix to the true data covariance matrix plays a

critical role in a successful estimation. At the low SNR and/or small sample size region, the

sample data covariance matrix can largely deviate from the true one. There are various methods

introduced in the literature which target at improving the estimation of the covariance matrix

[5]–[12].

Diagonal loading [5] and shrinkage-based [6] methods improve the estimate of the data

covariance matrix by scaling and shifting the eigenvalues of the sample data covariance matrix.

However, the eigenvectors are kept unchanged. As a result, the estimated signal and noise

projection matrices from the improved covariance matricesare exactly the same as those obtained

from the sample data covariance matrix. Therefore, these methods are not really beneficial for

the subspace-based parameter estimation algorithms.

Data covariance matrix estimation can be also improved by the means of using forward-

backward averaging (FB) [7] and spatial smoothing-based techniques [8]. The effect of FB is

known to be equivalent to approximately doubling the numberof samples. Thus, the covariance

estimate improves accordingly. The spatial smoothing technique can also be interpreted as

virtually increasing the number of samples at the cost of averaging over sub-arrays of smaller size

compared to the whole array. These approaches can also decorrelate pairs (in case of FB) or more

correlated source signals. In [9], techniques from random matrix theory have been developed

to improve the performance of the MUSIC algorithm. The introduced method considers the

asymptotic situation when both the sample size and the number of array elements tend to infinity

at the same rate. It is then inferred that the improved methodgives a more accurate description
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of the situation when these two quantities are finite and comparable in magnitude. However, the

performance of the introduced method is not satisfactory atthe small sample size scenario [13].

A more promising approach to remedy the performance breakdown at the threshold region was

introduced in [10] and has been further improved in [11] and [12]. These methods are based on

a technique called pseudo-noise resampling which uses synthetically generated pseudo-noise to

perturb the original noise. The pseudo-noise is added to theobserved data, and a new estimate of

the covariance matrix is obtained, which leads to new DOA estimates. This process is repeated

for a number of times, and the final DOAs are determined based on the bank of the DOA

estimates.

In this paper, we tackle the problem of the performance breakdown at the threshold region

by considering the structure of the sample data covariance matrix and the dynamics of the root-

MUSIC algorithm. It is shown in [14] that the performance breakdown problem is associated

with the inter-subspace leakage “whereby a small portion ofthe true signal eigenvector resides

in the sample noise subspace (and vice versa)”. The notion ofleakage comes originally from

the performance assessment strategy based on the first orderapproximation of the estimation

error caused by the perturbed subspace estimate, which happens because of the additive noise

contribution [15]–[18]. This approach directly models theleakage of the noise subspace into

signal subspace and allows to compute the corresponding perturbation matrix between the

components of the subspaces. Here, we formally define thesubspace leakagenotion as a

Frobenius norm of the perturbation matrix, and we present its theoretical derivation. We propose

a two-step method which improves the performance of the root-MUSIC algorithm by modifying

the sample data covariance matrix such that the amount of thesubspace leakage is reduced.

Furthermore, we introduce a phenomenon named asroot-swapwhich occurs in the root-MUSIC

algorithm at the threshold region and degrades the performance of the parameter estimation. A

new method is then proposed to alleviate this problem.

It will be shown that there are undesirable by-products in the sample data covariance matrix

that tend to zero as the number of samples goes to infinity. However, for a limited number of

samples, these terms can have significant values leading to alarge amount of subspace leakage.

One possible approach to remedy the effect of the undesirable components is to consider the

eigenvalue perturbationcaused by these terms. The incorporation of this knowledge into the

estimation method can result in better estimates of the signal and noise subspaces. In this paper,
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we propose a two-step algorithm in order to reduce the effectof the undesirable terms. The

introduced method is based on estimating the parameters at the first step and modifying the

covariance matrix using the estimated parameters at the second step. We will theoretically derive

the subspace leakage at both steps. Then, it will be shown using numerical examples that the

subspace leakage is reduced at the second step leading to better performance.

In the root-MUSIC method, the estimation error of the roots has a variance which is pro-

portional to the variance of noise over the number of samples[19]. Therefore, at the threshold

region, the variance of the estimation error can have a significant value which in turn can result in

a swap between a root corresponding to a signal source with another root which is not associated

with any signal source. We dub this phenomenon as root-swap.Then, a new method is proposed

to remedy this problem. The introduced method considers different combinations of the roots as

the candidates for the signal sources. These candidates arethen evaluated using the stochastic

maximum likelihood (SML) function, and the combination that minimizes the objective function

is picked up for the parameter estimates.

The rest of the paper is organized as follows. The system model is given and the root-

MUSIC algorithm is briefly reviewed in Section II. The two-step and root-swap algorithms are

proposed in Section III. Subspace leakage is defined and theoretically derived in Section IV.

Numerical examples and simulation results are given in Section V. Section VI concludes the

paper. Appendix A gives an approximation for the probability of root-swap, and finally, the

details of the subspace leakage derivation for the two-steproot-MUSIC algorithm are presented

in Appendices B and C.

II. SYSTEM MODEL AND BACKGROUND

An example of a noise-corrupted linear superposition ofK undamped exponentials received by

M (M > K) antennas is the array processing model. Thus, considerK number of narrowband

plane waves impinging on a uniform linear array (ULA) from directionsθ1, θ2, · · · , θK . Without

loss of generality, assume−π/2 ≤ θ1 ≤ θ2 ≤ · · · ≤ θK ≤ π/2. The antenna elements are

separated from each other by a distance ofd ≤ λ/2 whereλ is the wavelength of the plane

wave impinging on the array. The steering vector of the arraya(θ) ∈ CM×1 is then given as

a(θ) ,
[
1, e−j2π(d/λ) sin(θ), · · · , e−j2π(M−1)(d/λ) sin(θ)

]T
(1)
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where (·)T stands for the transposition operator. At time instantt ∈ N, the received vector

x(t) ∈ CM×1 is given by

x(t) =

K∑

i=1

a(θi)si(t) + n(t) (2)

wheresi(t) ∈ C is the amplitude of thei-th wave (source) andn(t) ∈ CM×1 is the noise vector at

time t. By arranging the amplitudes of the sources in the vectors(t) = [s1(t), s2(t), · · · , sK(t)]T ∈
CK×1 and forming the Vandermonde matrixA = [a(θ1), a(θ2), · · · , a(θK)] ∈ CM×K , the

model (2) can be rewritten in matrix-vector form as

x(t) = As(t) + n(t). (3)

We consider the noise vectorn(t) to be independent from the sources and noise vectors at

other time instances and to have the circularly-symmetric complex jointly-Gaussian distribution

NC(0, σ
2
nIM) whereIM is the identity matrix of sizeM . Considering the system model (3), the

data covariance matrixR ∈ CM×M is given by

R , E
{
x(t)xH(t)

}
= ASAH + σ2

nIM (4)

whereS = E
{
s(t)sH(t)

}
∈ CK×K is the source covariance matrix and(·)H andE{·} stand

for the Hermitian transposition and the expectation operators, respectively.

Let λ1 ≤ λ2 ≤ · · · ≤ λM be the eigenvalues ofR arranged in nondecreasing order, and

let g1, g2, · · · , gM−K be the noise eigenvectors associated withλ1, λ2, · · · , λM−K and

e1, e2, · · · , eK be the signal eigenvectors corresponding toλM−K+1, λM−K+2, · · · , λM .

Let also G ∈ CM×(M−K) and E ∈ CM×K be defined asG ,
[
g1, g2, · · · , gM−K

]
and

E , [e1, e2, · · · , eK ]. The range spaces ofG and E represent the true noise and signal

subspaces, respectively.

Let N number of snapshots (samples) be available. The basic method for estimating the data

covariance matrix from the samplesx(t) (1 ≤ t ≤ N) is

R̂ ,
1

N

N∑

t=1

x(t)xH(t) (5)

whereR̂ ∈ C
M×M is the sample data covariance matrix. Consider the eigendecomposition of

R̂. Let ĝ1, ĝ2, · · · , ĝM−K be the estimated noise eigenvectors andê1, ê2, · · · , êK be the

estimated signal eigenvectors. Form̂G ∈ CM×(M−K) and Ê ∈ CM×K by placing the estimated
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noise and signal eigenvectors as the columns ofĜ andÊ, respectively. The range spaces ofĜ

and Ê represent the estimations of the noise and signal subspaces, respectively.

Recalling (1) and definingz , ej2π(d/λ) sin(θ), the steering vector can be rewritten asa(z) =
[
1, z−1, · · · , z−(M−1)

]T
. In the root-MUSIC method, the roots of the equationaT (z−1)ĜĜ

H
a(z)=

0 which are located inside the unit circle are considered. These roots are sorted based on their

distance to the unit circle, and the firstK number of the roots which are closer to the unit

circle are picked. The estimates of the DOAs denoted byθ̂1, θ̂2, · · · , θ̂K are then obtained by

multiplying the angles of the selected roots byλ/(2πd) and taking the inverse sinusoid function

of the results.

III. PROPOSEDMETHODS

A. Two-step root-MUSIC algorithm

Let us start by expanding (5) using (3) as follows

R̂=
1

N

N∑

t=1

(As(t) + n(t)) (As(t) + n(t))H

=A

{
1

N

N∑

t=1

s(t)sH(t)

}
AH +

1

N

N∑

t=1

n(t)nH(t)

+A

{
1

N

N∑

t=1

s(t)nH(t)

}
+

{
1

N

N∑

t=1

n(t)sH(t)

}
AH . (6)

Comparing (6) with (4), it can be observed that the expansionof R̂ consists of four terms

while the model forR comprises two summands. The first two terms ofR̂ given by (6) can

be considered as estimates for the two summands ofR, which represent the signal and noise

components, respectively. The last two terms ofR̂ in (6) are undesirable by-products which can

be viewed as estimates for the correlation between the signal and noise vectors. In the system

model under study, we consider the noise vectors to be zero-mean and also independent of the

signal vectors. Therefore, the signal and noise componentsare uncorrelated to each other. As a

result, for a large enough number of samplesN , the last two terms in (6) tend to zero. However,

the number of available samples can be limited in practical applications. In this case, the last

two terms in (6) may have significant values, which causes theestimates of the signal and noise

subspaces to deviate from the true signal and noise subspaces.
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The main idea of our two-step root-MUSIC algorithm is to modify the sample data covariance

matrix at the second step based on the DOA estimates obtainedat the first step. The modified

covariance matrix is obtained by deducting a scaled versionof the estimated undesirable terms

from the sample data covariance matrix.

We derive the steps of the proposed method for a general source covariance matrixS, so

that correlated sources can also be handled by the algorithm. Furthermore, the proposed method

can also be beneficial in the case that the assumption on no correlation between the source and

noise vectors is not fully met. This is achieved by estimating and removing the correlation terms

between the source and noise vectors from the sample data covariance matrix.

The steps of the proposed method are listed in Table I. The algorithm starts by computing the

sample data covariance matrix (5). Then, DOAs are estimatedusing the root-MUSIC algorithm.

The superscript(·)(1) refers to the estimation made at the first step. At the second step, the Van-

dermonde matrix is formed using the available estimates of the DOAs. Then, the amplitudes of

the sources are estimated such that the squared norm of the differences between the observations

and the estimates are minimized. The corresponding problemis formulated as

ŝ(t) = arg min
s

‖x(t)− Âs‖22. (7)

The minimization of (7) is performed using the least squares(LS) technique and the corre-

sponding solution is given as

ŝ(t) =
(
Â

H
Â
)−1

Â
H
x(t). (8)

The noise component is then estimated as the difference between the estimated signal and the

observation made by the array, i.e.,

n̂(t) = x(t)− Âŝ(t). (9)
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After estimating the signal and noise vectors, the third term in (6) can be found as

T , Â

{
1

N

N∑

t=1

ŝ(t)n̂H(t)

}

= Â

{
1

N

N∑

t=1

(
Â

H
Â
)−1

Â
H
x(t)

(
xH(t)− xH(t)Â

(
Â

H
Â
)−1

Â
H
)}

= P̂ A

{
1

N

N∑

t=1

x(t)xH(t)
(
IM − P̂ A

)}

= P̂ AR̂P̂
⊥

A (10)

where

P̂ A , Â
(
Â

H
Â
)−1

Â
H

(11)

is an estimation for the projection matrix of the signal subspace, and

P̂
⊥

A , IM − P̂ A (12)

is an estimation for the projection matrix of the noise subspace. The forth term in (6) is equal to

the Hermitian of the third term, i.e.,TH . Finally, the modified data covariance matrix is obtained

by deducting a scaled version of the estimated terms from theinitial sample data covariance

matrix as follows

R̂
(2)

= R̂− γ
(
T + TH

)
. (13)

The scaling factorγ in (13) is a real number between zero and one. Ideally, the value of γ

would be equal to1 if the estimates of the undesirable terms were perfect. However, estimation

errors are inevitable, and therefore, we have introducedγ to deal with the imperfections. The

scaling factorγ can be considered as a reliability factor which takes a valueclose to1 for an

estimate ofT with small error and a small value if an estimate ofT is erroneous. Given a value

for γ, the modified data covariance matrix̂R
(2)

is computed and the DOAs are estimated again

using the root-MUSIC algorithm.

The value ofγ can be fixed to a predetermined value before running the algorithm, or it can

be obtained based on the observations. Sinceγ is a real number between zero and one, we can

consider different values forγ taken on a grid (e.g.γ = 0, 0.1, 0.2, · · · , 1). For each value of

γ, a set of DOA estimates is obtained based on the modified data covariance matrix. Next, we

determine which value ofγ results in a better estimation. This can be done by choosing aset
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of DOA estimates that has a higher likelihood of being the setof true DOAs. In other words,

we use the maximum likelihood (ML) criterion to evaluate thequality of the estimated DOAs.

Since the system model given in (4) is stochastic, we use the stochastic ML (SML) objective

function given by [20]

FSML(γ) = ln det


P̂

(2)

A R̂P̂
(2)

A +
Tr
{
P̂

⊥(2)

A R̂
}

M −K
P̂

⊥(2)

A


 (14)

where Tr{·} stands for the trace operator,P̂
(2)

A is an estimation of the projection matrix of the

signal subspace obtained from the estimated DOAs based on the modified data covariance matrix

and P̂
⊥(2)

A = IM − P̂
(2)

A . The objective function in (14) is evaluated for each value of γ. Then,

the set of DOA estimates corresponding to the value ofγ that minimizes (14) is chosen as the

output of the algorithm.

B. Root-swap root-MUSIC algorithm

Consider the root-MUSIC polynomialaT (z−1)GGHa(z) which is formed by the noise eigen-

vectors obtained from the eigendecomposition of the data covariance matrixR. This polynomial

hasK number of roots on the unit circle which correspond to the signal sources. Let theseK

roots be denoted byz1, z2, · · · , zK and be referred to as the true signal roots. The polynomial

also has additionalM −K−1 number of roots inside the unit circle. Let these roots be referred

to as the true noise roots and be denoted byzK+1, zK+2, · · · , zM−1.

An estimation for the root-MUSIC polynomial can be formed using the noise eigenvectors

obtained from the sample data covariance matrixR̂. Let us assume that in the estimation of the

noise and signal subspaces, no subspace swap has occurred [4]. The estimated polynomial is

given byaT (z−1)ĜĜ
H
a(z). This polynomial hasM − 1 number of roots inside the unit circle.

Let ẑ1, ẑ2, · · · , ẑK be the roots of the estimated root-MUSIC polynomial which correspond

to z1, z2, · · · , zK . We refer to these roots as the estimated signal roots. Furthermore, let

ẑK+1, ẑK+2, · · · , ẑM−1 be the roots corresponding tozK+1, zK+2, · · · , zM−1. These roots

are referred to as the estimated noise roots.

In the root-MUSIC method, we do not have the knowledge about which of the roots of the

estimated root-MUSIC polynomial correspond to the true signal roots. The conventional rule is
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TABLE I

TWO-STEP ROOT-MUSIC ALGORITHM

Inputs:

M, d, λ, N, K, and

received vectorsx(1), x(2), · · · , x(N)

Outputs:

Estimateŝθ(2)1 , θ̂
(2)
2 , · · · , θ̂

(2)
K

Step 1:

R̂ = 1
N

∑N
t=1 x(t)x

H(t)
{
θ̂
(1)
1 , θ̂

(1)
2 , · · · , θ̂

(1)
K

}
← root-MUSIC

(
R̂, K, d, λ

)

Step 2:

Â =
[
a
(
θ̂
(1)
1

)
, a

(
θ̂
(1)
2

)
, · · · , a

(
θ̂
(1)
K

)]

P̂ A = Â
(
Â

H
Â
)−1

Â
H

P̂
⊥

A = IM − P̂ A

T = P̂ AR̂P̂
⊥

A

Determine γ as the minimizer of (14)

R̂
(2)

= R̂− γ
(
T + TH

)
{
θ̂
(2)
1 , θ̂

(2)
2 , · · · , θ̂

(2)
K

}
← root-MUSIC

(
R̂

(2)
, K, d, λ

)

to selectK number of the estimated roots which are closer to the unit circle as the estimates

for the true signal roots. Then, the DOAs are estimated basedon the angles of these roots.

Due to the finiteness of the available samples, the estimatedroots obtained from the sample

data covariance matrix̂R deviate from their corresponding true roots obtained from the true data

covariance matrixR. Let ri and r̂i represent the magnitudes ofzi and ẑi for 1 ≤ i ≤ M − 1,

respectively. Furthermore, let∆ri , r̂i − ri be the difference between the magnitude of the

i-th estimated root and the magnitude of the corresponding true root. It is shown in [19] that

∆ri (for the signal roots) has a variance which is proportional to σ2
n/N . Therefore,∆ri can

have a significant value for a small number of samples and a large value ofσ2
n (low SNR

region). Consequently, there can be a considerable probability that an estimated signal root takes
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a smaller magnitude than an estimated noise root. We refer tothis phenomenon as a root-swap.

The root-swap probability is approximately found in Appendix A as

P (root-swap) ≈ 1−
K∏

k=1

M−1∏

m=K+1

Q

(
−1 + rm + σk

√
M −K − (3/4)√

σ2
k/4

)
(15)

whereQ (·) is the tail probability of the standard normal distributionandσ2
k/4 is the variance

of ∆rk, and it is proportional toσ2
n/N .

In the case that the root-swap happens, selecting the first closestK roots to the unit circle

results in picking a noise root instead of a signal root. To deal with this problem, we propose an

algorithm that considers different combinations of the roots as candidates for signal roots. The

method is dubbed the root-swap root-MUSIC algorithm.

The root-MUSIC polynomial hasM − 1 number of roots inside the unit circle. Our goal is to

find the roots which have a higher likelihood of being associated with theK sources. Consider

choosingK number of roots out of theM − 1 roots inside the unit circle. There areNc ,

(M − 1)!/ (K!(M −K − 1)!) different possible combinations. LetΓ , {Θ1, Θ2, · · · , ΘNc
}

whereΘi (1 ≤ i ≤ Nc) is a set containing the DOA estimates obtained from thei-th combination

of the roots. Then, the root-swap root-MUSIC method estimates the DOAs as
{
θ̂1, θ̂2, · · · , θ̂K

}
= arg min

Θ∈Γ
FSML (Θ) (16)

whereFSML (Θ) is the SML function given by

FSML(Θ) = ln det


PΘR̂PΘ +

Tr
{
P⊥

ΘR̂
}

M −K
P⊥

Θ


 (17)

andPΘ is the signal projection matrix obtained fromΘ as

PΘ , A(Θ)
(
AH(Θ)A(Θ)

)−1
AH(Θ). (18)

The complexity of the introduced root-swap root-MUSIC method can be reduced by pre-

eliminating some of the roots. Specifically, letp ≤ K roots closest to the unit circle be picked,

and letq number of roots closest to the origin (furthest from the unitcircle) be ignored. Our task

is to chooseK−p number of roots out ofM−p−q−1 roots. Then, there areNr , (M−p−q−
1)!/ ((K − p)!(M −K − q − 1)!) different possible combinations which is significantly smaller

thanNc. The rest of the algorithm is the same as above except for thathere each combination

containsK − p number of roots. Therefore, in order to evaluate the SML function, the fixedp

pre-selected roots are added to each combination.

February 3, 2015 DRAFT



12

IV. SUBSPACE LEAKAGE

The performance breakdown of the subspace based DOA estimation methods in the threshold

region has been associated with the subspace leakage. In this section, we study the subspace

leakage for both steps of the proposed two-step root-MUSIC algorithm.

A. Definition

Recall the matricesG andE which are composed of the true noise and signal eigenvectors

obtained from the eigendecomposition of the data covariance matrixR. Note that the matrix of

the eigenvectorsQR = [G E] ∈ CM×M is a unitary matrix
(
QRQ

H
R = IM

)
, therefore

GGH +EEH = IM (19)

or

P⊥ + P = IM (20)

where,P⊥ , GGH andP , EEH are the true projection matrices of the noise and signal

subspaces.

Ideally, the estimation of each signal eigenvectorêk (1 ≤ k ≤ K) would perfectly fall in

the true signal subspace. In practice, however, the energy of the projection ofêk into the noise

subspace‖P⊥êk‖22 is almost surely nonzero, which can be viewed as the leakage of êk into the

true noise subspace.

We define the subspace leakage as the average value of the energy of the estimated signal

eigenvectors leaked into the true noise subspace, i.e.,

ρ ,
1

K

K∑

k=1

‖P⊥êk‖22. (21)

Note thatP⊥ is the orthogonal projection matrix. Therefore,ρ can be written as

ρ =
1

K

K∑

k=1

êH
k P

⊥êk. (22)

February 3, 2015 DRAFT



13

Using (20) and some algebra, the expression (22) can be simplified to

ρ =
1

K

K∑

k=1

êH
k (IM −P ) êk

= 1− 1

K

K∑

k=1

Tr
{
êkê

H
k P
}

= 1− 1

K
Tr

{(
K∑

k=1

êkê
H
k

)
P

}

= 1− 1

K
Tr
{
P̂P

}
(23)

whereP̂ , ÊÊ
H

is the estimated signal projection matrix.

B. Analysis of two-step root-MUSIC algorithm

The estimated signal and noise projection matrices obtained from the eigendecomposition of

the sample data covariance matrix̂R are deviated from the true signal and noise projection

matrices. Let∆R , R̂−R be the estimation error of the data covariance matrix, and let

V , R− σ2
nIM = ASAH

=
K∑

k=1

(
λM−K+k − σ2

n

)
eke

H
k . (24)

Denote the pseudo-inverse ofV asV † ∈ CM×M . It is given by

V † =

K∑

k=1

1

λM−K+k − σ2
n

eke
H
k . (25)

Let ρ1 and ρ2 be the subspace leakage due to the error in the estimation of the signal and

noise subspaces obtained from̂R and R̂
(2)

, respectively. Note thatρ1 only depends onR and

∆R, and it is not specific to the proposed two-step root-MUSIC algorithm.

It is shown in Appendix B thatρ1 and its expected value are given by

ρ1 =
1

K
Tr
{
V †∆RP⊥∆RV †

}
(26)

and

E {ρ1} =
σ2

n (M −K)

NK

K∑

k=1

λM−K+k

(λM−K+k − σ2
n)

2 (27)

respectively.
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It can be seen from (27) that the expected value of the subspace leakage is proportional to

σ2
n/N . Therefore, the amount of the subspace leakage can be significant for a small number of

samples or low SNR values. The variance ofρ1 has also been studied in [21], and it has been

shown that Var(ρ1) is in the order of1/N2.

The subspace leakage at the second step of the two-step root-MUSIC algorithm is computed

in Appendix C and is given by

ρ2 =
(
1− 2γ + γ2

)
ρ1 +

2 (γ − γ2)

K
Re
{

Tr
{
V †∆RP⊥dP

}}
+

γ2

K
Tr
{
dPP⊥dP

}
(28)

whereRe {·} stands for the real part operator, anddP is the first order term in the Taylor series

expansion ofP̂ A around the true DOAs. It is also shown in Appendix C that the expected value

of ρ2 for a fixed value ofγ is given by

E {ρ2} =
(
1− 2γ + γ2

)
E {ρ1}

+
2 (γ − γ2) σ2

n

NK
Re





K∑

k=1

a
(1)H
k P⊥ ∂A

∂ωk

(
AHA

)−1
AHV †RV †ak

2j
(
a
(1)H
k P⊥a

(1)
k

)





+
γ2σ2

n

2NK

K∑

k=1

K∑

i=1

Tr

{(
∂A
∂ωk

)H
P⊥ ∂A

∂ωi

(
AHA

)−1
}

(
a
(1)H
k P⊥a

(1)
k

)(
a
(1)H
i P⊥a

(1)
i

)Re
{
aH
i V

†RV †aka
(1)H
k P⊥a

(1)
i

}

(29)

whereωk , 2π(d/λ) sin(θk), ak is a shorthand notation fora(θk), anda(1)
k ∈ CM×1 is defined

as

a
(1)
k ,−

[
0, e−jωk , 2e−j2ωk , · · · , (M − 1)e−j(M−1)ωk

]T
. (30)

It can be seen in (29) that forγ = 0, E {ρ2} reduces toE {ρ1} as expected, and forγ = 1,

the first two terms in (29) are equal to zero.

V. NUMERICAL EXAMPLES AND SIMULATION RESULTS

In this section, the performance of the proposed two-step root-MUSIC and the root-swap

root-MUSIC algorithms is investigated and compared with the performance of the unitary root-

MUSIC method [22] and the improved unitary root-MUSIC algorithm based on pseudo-noise

resampling [12]. We also consider the combination of the proposed methods with the other

methods in order to achieve further performance improvement. Compared to the root-MUSIC
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method, the unitary root-MUSIC algorithm has a lower computational complexity as it uses the

eigendecomposition of a real-valued covariance matrix. Furthermore, the unitary root-MUSIC al-

gorithm has better performance for the case that the sourcesare correlated. The improved unitary

root-MUSIC algorithm based on pseudo-noise resampling increases the estimator complexity, but

it is advantageous in removing the outliers, which results in better performance.

We considerK = 2 sources impinging on an array ofM = 10 antenna elements from

directionsθ1 = 35 ◦ × (π/180) and θ2 = 37 ◦ × (π/180). The interelement spacing is set to

d = λ/2 and the number of snapshots isN = 10. Each source vectors(t) is considered to be

independent from the source vectors at other time instancesand to have the circularly-symmetric

complex jointly-Gaussian distributionNC(0,S). The source covariance matrixS is given by

S = σ2
s


 1 r

r 1




where0 ≤ r ≤ 1 is the correlation coefficient. The SNR is defined as SNR, 10 log10 (σ
2
s/σ

2
n).

The performance of the proposed algorithms is investigatedby considering the subspace

leakage, mean squared error (MSE), probability of source resolution, and conditional mean

squared error (CMSE). Source resolution is defined as the event when both DOAs are estimated

within one degree of their corresponding true values, i.e.,the difference between the true value

of each DOA and its estimated value is less than1 ◦ × (π/180). The CMSE is defined as

the expected value of the estimation error conditioned on successful source resolution, i.e.,

E
{∑K

k=1 ‖θ̂k − θk‖22
∣∣∣ successful source resolution

}
. The reason for using the CMSE is to fur-

ther investigate the accuracy of the algorithms after making successful detection. We estimate the

probability of root-swap, subspace leakage, MSE, probability of source resolution, and CMSE

using the Monte Carlo method with105 number of trials. Two cases are considered in the

simulations: 1) the two sources are uncorrelated, i.e.,r = 0, and 2) the two sources are correlated

with a correlation coefficient ofr = 0.9.

Let us start by investigating the probability of root-swap in the root-MUSIC algorithm for

the case of the uncorrelated sources. The probability of root-swap is estimated using the Monte

Carlo simulations. Its approximate value is also obtained using (15). The corresponding curves are

shown in Fig. 1. It can be seen that at the low SNR region, the chance that a root-swap occurs is

quite significant, which results in the performance breakdown of the root-MUSIC algorithm. This
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Fig. 1. Probability of root-swap and probability of ML failure versus SNR for uncorrelated sources.

problem justifies the need for a method to deal with the root-swap phenomenon. In this paper,

we proposed the root-swap root-MUSIC algorithm which instead of picking the roots closer to

the unit circle, selects the roots based on the SML criterion. In Fig. 1, we thus also draw a

curve which shows the probability that the selected roots bythe ML criterion include a noise

root. This situation is considered as a breakdown, and therefore, the corresponding probability

is called the probability of ML failure. As can be seen, this probability is significantly smaller

than the probability of root-swap. As a result, it is expected that the root-swap root-MUSIC

algorithm outperforms the conventional root-MUSIC method. This will be shown in the rest of

this section.
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The subspace leakage in the two-step root-MUSIC algorithm for the case of the uncorrelated

sources is investigated next. The expected value of the subspace leakage is estimated using

(23) and the Monte Carlo simulations. The approximate valuefor the subspace leakage is also

obtained from the theoretical derivations in (27) and (29).The value ofγ is fixed at0.5. The

results are shown in Fig. 2. The solid lines represent the subspace leakage at the first step,

and the dashed lines depict the subspace leakage at the second step of the proposed two-step

root-MUSIC algorithm. It can be seen that the curves obtained from the simulations are very

close to those obtained from our theoretical derivations athigh SNR values. At the low SNR

region, the curve associated with the theoretical approximation at the second step deviates from

the curve obtained by simulations. The reason is that in the derivations, the first order Taylor

series expansion is used. More accurate results can be obtained by using higher order Taylor

series. However, the computations can become intractable.In Fig. 2, it can be observed from

both theoretical and simulation results that the subspace leakage from the modified covariance

matrix at the second step is significantly smaller than the subspace leakage from the sample

data covariance matrix at the first step. This is achieved by removing the undesirable terms from

the sample data covariance matrix leading to an estimate of the signal projection matrix that is

closer to the true signal projection matrix, which is equivalent to a lower subspace leakage at

the second step.

We next consider the performance of the proposed two-step algorithm when applied to the root-

MUSIC [2], unitary root-MUSIC [22], improved unitary root-MUSIC with pseudo-noise resam-

pling [12], root-swap unitary root-MUSIC, and root-swap unitary root-MUSIC with pseudo-noise

resampling methods. The unitary root-MUSIC algorithm takes benefit from the forward-backward

averaging [7] which is approximately equivalent to doubling the number of samples. For the cases

that the pseudo-noise resampling is used,P represents the number of times that the resampling

process has been performed. In the figures, the root-MUSIC, unitary root-MUSIC, and root-

swap unitary root-MUSIC methods are denoted by R-MUSIC, UR-MUSIC, and RSUR-MUSIC,

respectively. The value of the scaling factorγ is obtained by minimizing the SML function as

described in the two-step root-MUSIC method. In the root-swap algorithm, the parametersp

and q are set top = 1 and q = 0, which means the closest root to the unit circle is picked

up and paired with other roots one at a time in order to find the pair of DOA estimates that

minimizes the SML function. In this case, the number of different possible combinations of the
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Fig. 2. Subspace leakage versus SNR for uncorrelated sources. The solid and dashed lines represent the subspace leakageat

the first and second steps of the proposed two-step root-MUSIC algorithm, respectively.

roots isNr = 8. The number of samples used for the pseudo-noise resamplingmethod is set to

P = 50. According to our simulations, using more number of sampleswould not yield in any

considerable improvement in the performance.

The MSE versus SNR performance of the methods tested for the case of the uncorrelated

sources is presented in Fig. 3. The corresponding CRB [23] isalso shown in the figure. For

the R-MUSIC method, the modification of the covariance matrix in the second step of the

introduced two-step method shifts the MSE curve by almost half a dB to the left. For the

UR-MUSIC method the improvement is more significant and is about one dB. For the rest of

the methods, there is no considerable change in the MSE performance. However, as it will be

February 3, 2015 DRAFT



19

6 8 10 12 14 16 18 20 22 24 26 28
−50

−45

−40

−35

−30

−25

−20

−15

−10

−5

0

 

 

R−MUSIC
R−MUSIC, Step 2
UR−MUSIC
UR−MUSIC, Step 2
UR−MUSIC, P = 50
UR−MUSIC, P = 50, Step 2
RSUR−MUSIC
RSUR−MUSIC, Step 2
RSUR−MUSIC, P = 50
RSUR−MUSIC, P = 50, Step 2
CRB

SNR (dB)

M
S

E
(d

B
)

Fig. 3. MSE versus SNR for uncorrelated sources. The solid and dashed lines are based on the first and second steps of the

proposed two-step method, respectively. The methods used in the two-step algorithm are R-MUSIC, UR-MUSIC, and RSUR-

MUSIC methods.P is the number of samples used for the pseudo-noise resampling algorithm.

shown in the next figures, the modification of the covariance matrix has benefits in terms of the

CMSE performance and probability of source resolution for these methods. It can also be seen

from Fig. 3 that the proposed RSUR-MUSIC algorithm performsabout2 dB better than the UR-

MUSIC method, while imposing only a small amount of computational complexity for evaluating

the SML function forNr = 8 different combinations of the roots. The best performance is

achieved by the RSUR-MUSIC algorithm combined with the pseudo-noise resampling method.

Fig. 4 shows probability of source resolution versus SNR forthe uncorrelated sources. For the

R-MUSIC method, the second step of the two-step algorithm improves the performance by1 to
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Fig. 4. Probability of source resolution versus SNR for uncorrelated sources. The solid and dashed lines are based on thefirst

and second steps of the proposed two-step method, respectively. The methods used in the two-step algorithm are R-MUSIC,

UR-MUSIC, and RSUR-MUSIC methods.

2 dB. The rest of the algorithms have almost the same performance with the root-swap based

methods slightly outperforming the other algorithms at lowSNR values. It is observed that the

second step of the two-step algorithm results in about1 dB improvement in the performance.

Finally, Fig. 5 illustrates the performance of the algorithms tested for the uncorrelated sources

in terms of the CMSE. The R-MUSIC method is significantly improved by the two-step method

with an improvement ranging from5 dB at low SNR values to1 dB at high SNR values. The

rest of the algorithms show similar performance, and the application of the two-step method

leads to up to2 dB improvement in the CMSE performance.
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Fig. 5. CMSE versus SNR for uncorrelated sources. The solid and dashed lines are based on the first and second steps

of the proposed two-step method, respectively. The methodsused in the two-step algorithm are R-MUSIC, UR-MUSIC, and

RSUR-MUSIC methods.

The results for the case of the correlated sources withr = 0.9 are depicted in Figs. 6 to

10. Similar observations are made from these figures as thosediscussed for the case of the

uncorrelated sources. Compared to the uncorrelated case, the performance breakdown occurs at

a higher SNR value. This makes the importance of the improvedmethods more significant, as

there is a higher chance that the actual SNR of a system falls in the breakdown region. As

seen from the figures for the correlated sources, the proposed methods prove to be helpful in

dealing with the performance breakdown problem. The gain obtained by the improved methods

is also more significant compared to the case of the uncorrelated sources. For instance, the MSE
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Fig. 6. Probability of root-swap and probability of ML failure versus SNR for correlated sources withr = 0.9.

improvement achieved by the two-step root-MUSIC method forthe uncorrelated sources is about

half a dB, while in the case of the correlated sources, the MSEcurve is shifted by more than

2 dB to the left. Similarly, more significant performance gains are obtained for the probability

of source resolution and also the CMSE.

VI. CONCLUSION

The performance breakdown of the subspace based DOA estimation methods in the threshold

region where the SNR and/or sample size is low has been studied in this paper. The subspace

leakage as the main cause of the performance breakdown was formally defined and theoretically

derived. The two-step algorithm has been proposed in order to reduce the amount of subspace
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Fig. 7. Subspace leakage versus SNR for correlated sources with r = 0.9. The solid and dashed lines represent the subspace

leakage at the first and second steps of the proposed two-stepR-MUSIC algorithm, respectively.

leakage. The introduced method is based on estimating the DOAs at the first step and modifying

the covariance matrix using the estimated DOAs at the secondstep. We have theoretically

derived the subspace leakage at both steps, and have shown that the subspace leakage is reduced

at the second step of the proposed method leading to better performance. The algorithm can

also be extended to the third step by further modifying the covariance matrix based on the

improved estimates obtained at the second step. We have investigated the performance of the

algorithm for further steps through simulations (not included in the paper). However, the achieved

improvement is marginal and does not justify the added complexity. The behavior of the root-

MUSIC algorithm in the threshold region has been also studied, and a phenomenon called
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Fig. 8. MSE versus SNR for correlated sources withr = 0.9. The solid and dashed lines are based on the first and second

steps of the proposed two-step method, respectively. The methods used in the two-step algorithm are R-MUSIC, UR-MUSIC,

and RSUR-MUSIC methods.

root-swap has been observed to contribute to the performance breakdown. Then, an improved

method has been introduced to remedy this problem by considering different combinations of the

roots and picking up the one that minimizes the SML function.The performance improvement

achieved by the proposed methods has also been demonstratedusing numerical examples and

simulation results. We also combined the proposed algorithms with the previously introduced

methods in the literature, which resulted in further improvement in the performance.
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Fig. 9. Probability of source resolution versus SNR for correlated sources withr = 0.9. The solid and dashed lines are based

on the first and second steps of the proposed two-step method,respectively. The methods used in the two-step algorithm are

R-MUSIC, UR-MUSIC, and RSUR-MUSIC methods.

APPENDIX A

PROBABILITY OF ROOT-SWAP APPROXIMATION

The root-swap is defined as the event when at least one of the estimated signal rootŝzk

(1 ≤ k ≤ K) has a smaller magnitude than the magnitude of an estimated noise root ẑm

(K +1 ≤ m ≤ M − 1), i.e., r̂k < r̂m. Let us denote the probability of the event thatr̂k < r̂m by

pkm. The complement of this event represents the case when thek-th estimated signal root has

not been swapped with them-th estimated noise root, and its probability is given by1−pkm. Let

us denote the probability of root-swap byP (root-swap). The complement of the root-swap event
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Fig. 10. CMSE versus SNR for the correlated sources withr = 0.9. The solid and dashed lines are based on the first and second

steps of the proposed two-step method, respectively. The methods used in the two-step algorithm are R-MUSIC), UR-MUSIC,

and RSUR-MUSIC methods.

is the event when none of the estimated signal roots has been swapped with an estimated noise

root, and its probability is given by1− P (root-swap). Assuming that the individual root-swap

events are independent from each other, we have

1− P (root-swap) =
K∏

k=1

M−1∏

m=K+1

(1− pkm) . (31)

In the sequel, we derive an approximation forpkm. Noting thatrk = 1 for the true signal
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roots, we have

pkm = P (r̂m > r̂k)

= P (∆rm −∆rk > 1− rm) . (32)

In order to proceed with the computation ofpkm, we consider the distributions of∆rm and

∆rk. It is shown in [19] that∆rk (1 ≤ k ≤ K) follows the−
(
σk/
√
2
)√

χ2 (2(M −K)− 1)

distribution whereχ2 (ℓ) denotes a chi-square distribution withℓ degrees of freedom andσ2
k is

given by

σ2
k =

σ2
n

N
(
a
(1)H
k P⊥a

(1)
k

)
K∑

i=1

λM−K+i

(λM−K+i − σ2
n)

2

∣∣eH
i ak

∣∣2 (33)

whereP⊥ is the true projection matrix of the noise subspace anda
(1)
k is given by (30).

We next consider the distribution of∆rm. In [19], the distribution of∆rk is computed using a

second order Taylor expansion of the estimated root-MUSIC polynomial around the true signal

roots (which are located on the unit circle). The computation of the distribution of∆rm requires

the analysis to be performed around the true noise roots which are located inside the unit circle.

The second order expansions ofa(ẑk) andaT (ẑ−1
k ) around the true signal rootzk are given by

[19]

a(ẑk) ≈ ak + ja
(1)
k ∆ωk + a

(1)
k ∆rk

aT (ẑ−1
k ) ≈ aH

k − ja
(1)H
k ∆ωk − a

(1)H
k ∆rk (34)

where∆ωk is the difference between the angle of thek-th estimated root and the angle of the

corresponding true root. For them-th noise root, letam be defined as

am ,
[
1, e−jωm , · · · , e−j(M−1)ωm

]T
(35)

whereωm is the angle ofzm. Let alsoa(1)
m be defined similar to (30) withωk replaced with

ωm. Then, the second order expansions ofa(ẑm) andaT (ẑ−1
m ) around the true noise rootzm are

given by

a(ẑm)≈R−1
m

(
am + ja(1)

m ∆ωm + a(1)
m

(
∆rm
rm

))

aT (ẑ−1
m )≈

(
aH
m − ja(1)H

m ∆ωm − a(1)H
m

(
∆rm
rm

))
Rm (36)
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whereRm is aM ×M diagonal matrix with its diagonal elements equal to1, rm, · · · , r
(M−1)
m .

Since the Taylor expansion for the steering vectors of the roots on the circle and the expansion

for the roots inside the circle, i.e., (34) and (36) have similar structures, it is reasonable to assume

that∆rk and∆rm/rm also have similar distributions. Then, the variance of∆rm is in the order

of the variance of∆rk multiplied by r2m. Sincerm < 1, the variance of∆rm is smaller than the

variance of∆rk. In order to simplify the computation ofpkm, we ignore the effect of∆rm and

approximatepkm by

pkm ≈ P (−∆rk > 1− rm) . (37)

This is equivalent to using the probabilityP (r̂k < rm) as an approximation forpkm. Since we

have the distribution of∆rk, we can computepkm using (37). WhenM −K ≫ 1, ∆rk follows

approximately a normal distributionN
(
−σk

√
M −K − (3/4), σ2

k/4
)

[19]. Using (37), the

probability pkm can be approximated by

pkm ≈ Q

(
1− rm − σk

√
M −K − (3/4)√
σ2
k/4

)
. (38)

Finally, the approximation of the probability of root-swapP (root-swap) is found by using the

approximation (38), the expression (31), and the fact thatQ(−x) = 1−Q(x) as

P (root-swap) ≈ 1−
K∏

k=1

M−1∏

m=K+1

Q

(
−1 + rm + σk

√
M −K − (3/4)√

σ2
k/4

)
. (39)

It completes the derivation.

APPENDIX B

SUBSPACE LEAKAGE AT THE FIRST STEP

Let us start with the computation ofρ1. Let ∆P , P̂ −P be the estimation error of the signal

projection matrix. Then, using the properties thatP 2 = P and Tr{P } = K, the expression (23)

for the first step of the two-step root-MUSIC algorithm can bewritten as

ρ1 = 1− 1

K
Tr {(P +∆P )P }

= 1− 1

K
(K + Tr {∆PP })

= − 1

K
Tr {∆PP } . (40)
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It is shown in [19] that the series expansion ofP̂ based on∆R is given by

P̂ = P + δP + · · ·+ δnP + · · · (41)

where

δP = P⊥∆RV † + V †∆RP⊥ (42)

and the rest of the terms are related by the following recurrence

δnP = −P ⊥
(
δn−1P

)
∆RV † + P⊥∆R

(
δn−1P

)
V †

−V †∆R
(
δn−1P

)
P⊥ + V †

(
δn−1P

)
∆RP⊥

−
n−1∑

i=1

P
(
δiP

) (
δn−iP

)
P

+
n−1∑

i=1

P⊥
(
δiP

) (
δn−iP

)
P⊥. (43)

The following lemma will be further used.

Lemma 1. The columns ofV † belong to the signal subspace, i.e.,PV † = V †.

Proof: The proof follows by multiplyingP by V † and then substitutingP with EEH and

V † with (25).

In a similar way to Lemma 1, it can also be shown that

V V † = V †V = P . (44)

Using (40), the series expansion ofP̂ in (41), expressions (42) and (43) up to theδ2P term,

and the facts thatPP⊥ = P⊥P = 0 andPP = P , we can writeρ1 as

ρ1 = −
1

K
Tr {−P (δP ) (δP )} . (45)

Then,ρ1 is computed by substituting (42) in (45), usingP⊥P⊥ = P⊥, and Lemma 1 as

ρ1 =
1

K
Tr
{
P
(
P⊥∆RV † + V †∆RP⊥

) (
P⊥∆RV † + V †∆RP⊥

)}

=
1

K
Tr
{
PV †∆RP⊥P⊥∆RV †

}

=
1

K
Tr
{
V †∆RP⊥∆RV †

}
. (46)
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Computation of the expected value of the subspace leakage requires considering the statistical

properties of∆R. We use the following two properties in our derivations [19].

Lemma 2. For all matricesA1, A2 ∈ CM×M , we have

E {∆RA1∆R} = 1

N
Tr {RA1}R (47)

and

E
{

Tr {∆RA1}Tr {∆RA2}
}
=

1

N
Tr {RA1RA2} . (48)

Using (46) and (47), the expected value ofρ1 can be computed as

E {ρ1} =
1

K
Tr
{
V †E

{
∆RP⊥∆R

}
V †
}

=
1

K
Tr

{
V † 1

N
Tr
{
RP⊥

}
RV †

}

=
1

NK
Tr
{
P⊥R

}
Tr
{
V †V †R

}
. (49)

Since the range space of the matrixA is the same as the signal subspace, we haveP⊥A = 0.

As a result, Tr
{
P⊥R

}
can be simplified as

Tr
{
P⊥R

}
= Tr

{
P⊥

(
ASAH + σ2

nIM

)}

= Tr
{
σ2

nP
⊥
}
= σ2

nTr {IM − P }

= σ2
n (M −K) . (50)

Furthermore, using (25) and the fact that the eigenvectors of R are orthonormal, the product

V †V †R can be written as

V †V †R =
K∑

k=1

λM−K+k

(λM−K+k − σ2
n)

2eke
H
k (51)

which results in

Tr
{
V †V †R

}
=

K∑

k=1

λM−K+k

(λM−K+k − σ2
n)

2 . (52)

Finally, E {ρ1} is obtained by substituting (50) and (52) in (49) as

E {ρ1} =
σ2

n (M −K)

NK

K∑

k=1

λM−K+k

(λM−K+k − σ2
n)

2 . (53)
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APPENDIX C

SUBSPACE LEAKAGE AT THE SECOND STEP

The subspace leakage at the second step of the two-step root-MUSIC algorithm can be obtained

through the same steps taken for the computation ofρ1. Referring to (46), the subspace leakage

ρ2 is given by

ρ2 =
1

K
Tr
{
V †∆R(2)P⊥∆R(2)V †

}
(54)

where∆R(2) , R̂
(2) −R is the estimation error of the covariance matrix at the second step of

the algorithm. Using (13), the estimation error∆R(2) is given by

∆R(2) = ∆R− γ
(
T + TH

)
. (55)

Recalling (10), we haveT = P̂ AR̂P̂
⊥

A.

Consider the first order Taylor series expansion ofP̂ A around the true DOAs given by

P̂ A ≈ P A + dP (56)

whereP A , A
(
AHA

)−1
AH is equal to the true signal projection matrix1, i.e.,P A = P , and

dP is given by

dP =
K∑

k=1

∂P A

∂ωk

∆ωk. (57)

Here∆ωk , ω̂k − ωk is the estimation error ofωk with ω̂k , 2π(d/λ) sin(θ̂k).

Note that for any square and invertible matrixB, the partial derivative ofB−1 with respect

to the variableω is given by [24]

∂B−1

∂ω
= −B−1∂B

∂ω
B−1. (58)

Using (58), the partial derivative∂P A/∂ωk can be computed as

∂P A

∂ωk

=
∂A

∂ωk

(
AHA

)−1
AH +A

∂
(
AHA

)−1

∂ωk

AH +A
(
AHA

)−1
(
∂A

∂ωk

)H

=
∂A

∂ωk

(
AHA

)−1
AH −A

(
AHA

)−1

((
∂A

∂ωk

)H

A+AH ∂A

∂ωk

)
(
AHA

)−1
AH

+A
(
AHA

)−1
(
∂A

∂ωk

)H

. (59)

1Note that althoughPA is equal toP , the estimateŝPA and P̂ are obtained in different ways and are not essentially equal

to each other.
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Then, using (20) andP = A
(
AHA

)−1
AH , the partial derivative∂P A/∂ωk is given by

∂P A

∂ωk

= P⊥ ∂A

∂ωk

(
AHA

)−1
AH +A

(
AHA

)−1
(
∂A

∂ωk

)H

P⊥. (60)

The estimation error ofωk, i.e.,∆ωk in (57), can be written based on∆R as [19]

∆ωk =
a
(1)H
k P⊥∆RV †ak − aH

k V
†∆RP⊥a

(1)
k

2j
(
a
(1)H
k P⊥a

(1)
k

) . (61)

The first order Taylor series expansion ofP̂
⊥

A is obtained using (12) and (56) as

P̂
⊥

A ≈ P⊥
A − dP (62)

whereP⊥
A , IM − PA.

The matrixT can be then computed using expressions (10), (56), and (62) with keeping only

the first order terms and noting thatP A = P , P⊥
A = P⊥, andPRP⊥ = 0 as

T = (P A + dP ) (R +∆R)
(
P⊥

A − dP
)

≈ −PRdP + P∆RP⊥ + dPRP⊥. (63)

We can now computeρ2 using expressions (54), (55), and (63) as

ρ2 =
1

K
Tr
{
V †
(
∆R− γ

(
T + TH

))
P⊥

(
∆R− γ

(
T + TH

))
V †
}

=
1

K
Tr
{
V †
(
∆R− γ

(
− PRdP + P∆RP⊥ + dPRP⊥ − dPRP + P⊥∆RP

+P⊥RdP
))
P⊥
(
∆R− γ

(
− PRdP + P∆RP⊥ + dPRP⊥

−dPRP + P⊥∆RP + P⊥RdP
))
V †
}
. (64)

Then, using expressions (57), (60), and the fact thatPP⊥ = P⊥P = V †P⊥ = P⊥V † = 0 to

eliminate the terms that equal zero,ρ2 is computed as

ρ2 =
1

K
Tr
{
V †
(
∆R− γ

(
− PRdP + P∆RP⊥ + dPRP⊥

))

×P⊥
(
∆R− γ

(
− dPRP + P⊥∆RP + P⊥RdP

))
V †
}
. (65)
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Expanding the terms in (65) and using the fact thatPV † = V †P = V † results in the following

expression forρ2

ρ2=
1

K
Tr
{
V †∆RP⊥∆RV † −γ

(
−V †∆RP⊥dPRV † + V †∆RP⊥∆RV †

+V †∆RP⊥RdPV † − V †RdPP⊥∆RV † + V †∆RP⊥∆RV †

+V †dPRP⊥∆RV †
)
+ γ2

(
V †RdPP⊥dPRV † − V †RdPP⊥∆RV †

−V †RdPP⊥RdPV † − V †∆RP⊥dPRV † + V †∆RP⊥∆RV †

+V †∆RP⊥RdPV † − V †dPRP⊥dPRV † + V †dPRP⊥∆RV †

+V †dPRP⊥RdPV †
)}

.

(66)

By reordering the terms in (66), the subspace leakageρ2 can be further rewritten as

ρ2=
1

K
Tr
{(

1− 2γ + γ2
)
V †∆RP⊥∆RV † +

(
γ2 − γ

) (
− V †∆RP⊥dPRV †

+V †∆RP⊥RdPV † − V †RdPP⊥∆RV † + V †dPRP⊥∆RV †
)

+γ2
(
V †RdPP⊥dPRV † − V †RdPP⊥RdPV † − V †dPRP⊥dPRV †

+V †dPRP⊥RdPV †
)}

. (67)

The terms multiplied by(γ2 − γ) in (67) can be simplified using expressions (24), (44), and

the fact thatP⊥V = 0 as

−V †∆RP⊥dP
(
V + σ2

nIM

)
V † + V †∆RP⊥

(
V + σ2

nIM

)
dPV †

−V †
(
V + σ2

nIM

)
dPP⊥∆RV † + V †dP

(
V + σ2

nIM

)
P⊥∆RV †

= −V †∆RP⊥dPP − P dPP⊥∆RV †. (68)

In a similar way, the terms multiplied byγ2 in (67) can be simplified to

V †RdPP⊥dP
(
V + σ2

nIM

)
V † − V †RdPP⊥

(
V + σ2

nIM

)
dPV †

−V †dPRP⊥dP
(
V + σ2

nIM

)
V † + V †dPRP⊥

(
V + σ2

nIM

)
dPV †

= V †RdPP⊥dPP − V †dPRP⊥dPP

= V †
(
V + σ2

nIM

)
dPP⊥dPP − V †dP

(
V + σ2

nIM

)
P⊥dPP

= P dPP⊥dPP (69)
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which using the fact thatP⊥dPP⊥ = 0 (see (57) and (60)) can be further simplified to

P dPP⊥dPP =
(
IM − P⊥

)
dPP⊥dP

(
IM −P⊥

)

= dPP⊥dP . (70)

Finally, using expressions (46), (67), (68), (70), and Lemma 1, the subspace leakageρ2 is

computed as

ρ2 =
(
1− 2γ + γ2

)
ρ1 +

2 (γ − γ2)

K
Re
{

Tr
{
V †∆RP⊥dP

}}
+

γ2

K
Tr
{
dPP⊥dP

}
. (71)

Computation of the expected value ofρ2 involves finding the expected value of the two trace

functions in (71). Using expressions (57) and (60), the expected value of the first trace function

in (71) is given by

E
{

Tr
{
V †∆RP⊥dP

}}
= E

{
Tr

{
∆R

K∑

k=1

P⊥ ∂A

∂ωk

(
AHA

)−1
AH∆ωkV

†

}}
. (72)

Then, by substituting (61) in (72), we have

E
{

Tr
{
V †∆RP⊥dP

}}
= E

{
Tr

{
K∑

k=1

∆RP⊥ ∂A

∂ωk

(
AHA

)−1
AHV †

× 1

2j
(
a
(1)H
k P⊥a

(1)
k

)
(
a
(1)H
k P⊥∆RV †ak − aH

k V
†∆RP⊥a

(1)
k

)}}
. (73)

The order of the summation and trace operator in (73) can be swaped. Moreover, the last two

terms can be written using the trace operator as

E
{

Tr
{
V †∆RP⊥dP

}}
= E

{
K∑

k=1

1

2j
(
a
(1)H
k P⊥a

(1)
k

)

×Tr

{
∆RP⊥ ∂A

∂ωk

(
AHA

)−1
AHV †

}(
Tr
{
∆RV †aka

(1)H
k P⊥

}

−Tr
{
∆RP⊥a

(1)
k aH

k V
†
})}

. (74)
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The expression in (74) can be computed using (48) as

E
{

Tr
{
V †∆RP⊥dP

}}
=

1

N

K∑

k=1

1

2j
(
a
(1)H
k P⊥a

(1)
k

)

×
(

Tr

{
RP⊥ ∂A

∂ωk

(
AHA

)−1
AHV †RV †aka

(1)H
k P⊥

}

−Tr

{
RP⊥ ∂A

∂ωk

(
AHA

)−1
AHV †RP⊥a

(1)
k aH

k V
†

})
. (75)

The second trace function in (75) equals zero asV †RP⊥ = 0. Then, expression (75) can be

rewritten as

E
{

Tr
{
V †∆RP⊥dP

}}
=

σ2
n

N

K∑

k=1

a
(1)H
k P⊥ ∂A

∂ωk

(
AHA

)−1
AHV †RV †ak

2j
(
a
(1)H
k P⊥a

(1)
k

) (76)

where we used the equalityP⊥R = σ2
nP

⊥.

In a similar way, using expressions (57) and (60), the expected value of the second trace

function in (71) is given by

E
{

Tr
{
dPP⊥dP

}}
=

E

{
Tr

{
K∑

k=1

K∑

i=1

A
(
AHA

)−1
(
∂A

∂ωk

)H

P⊥ ∂A

∂ωi

(
AHA

)−1
AH∆ωk∆ωi

}}
. (77)

Then, by substituting (61) in (77), we have

E
{

Tr
{
dPP⊥dP

}}
= E

{
Tr

{
K∑

k=1

K∑

i=1

A
(
AHA

)−1
(
∂A

∂ωk

)H

P⊥∂A

∂ωi

(
AHA

)−1
AH

× 1

2j
(
a
(1)H
k P⊥a

(1)
k

) × 1

2j
(
a
(1)H
i P⊥a

(1)
i

)

×
(

Tr
{
∆RV †aka

(1)H
k P⊥

}
− Tr

{
∆RP⊥a

(1)
k aH

k V
†
})

×
(

Tr
{
∆RV †aia

(1)H
i P⊥

}
− Tr

{
∆RP⊥a

(1)
i aH

i V
†
})}}

(78)
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which is computed using (48) and the fact thatP⊥RV † = 0 as

E
{

Tr
{
dPP⊥dP

}}
=

σ2
n

2N

K∑

k=1

K∑

i=1

Tr

{(
∂A
∂ωk

)H
P⊥ ∂A

∂ωi

(
AHA

)−1
}

(
a
(1)H
k P⊥a

(1)
k

)(
a
(1)H
i P⊥a

(1)
i

)

×Re
{
aH
i V

†RV †aka
(1)H
k P⊥a

(1)
i

}
. (79)

Finally, the expected value ofρ2 for a fixed value ofγ is obtained using expressions (71),

(76), and (79) as

E {ρ2} =
(
1− 2γ + γ2

)
E {ρ1}

+
2 (γ − γ2)σ2

n

NK
Re





K∑

k=1

a
(1)H
k P⊥ ∂A

∂ωk

(
AHA

)−1
AHV †RV †ak

2j
(
a
(1)H
k P⊥a

(1)
k

)





+
γ2σ2

n

2NK

K∑

k=1

K∑

i=1

Tr

{(
∂A
∂ωk

)H
P⊥ ∂A

∂ωi

(
AHA

)−1
}

(
a
(1)H
k P⊥a

(1)
k

)(
a
(1)H
i P⊥a

(1)
i

)Re
{
aH
i V

†RV †aka
(1)H
k P⊥a

(1)
i

}
.

(80)

It concludes the derivation.
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