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Abstract—A distributed adaptive algorithm is proposed to solve
a node-specific parameter estimation problem where nodes are
interested in estimating parameters of local interest, parameters
of common interest to a subset of nodes and parameters of global
interest to the whole network. To address the different node-
specific parameter estimation problems, this novel algorithm re-
lies on a diffusion-based implementation of different Least Mean
Squares (LMS) algorithms, each associated with the estimation
of a specific set of local, common or global parameters. Coupled
with the estimation of the different sets of parameters, the
implementation of each LMS algorithm is only undertaken by the
nodes of the network interested in a specific set of local, common
or global parameters. The study of convergence in the mean sense
reveals that the proposed algorithm is asymptotically unbiased.
Moreover, a spatial-temporal energy conservation relation is
provided to evaluate the steady-state performance at each node
in the mean-square sense. Finally, the theoretical results and the
effectiveness of the proposed technique are validated through
computer simulations in the context of cooperative spectrum
sensing in Cognitive Radio networks.

Index Terms—Adaptive distributed networks, diffusion algo-
rithm, cooperation, node-specific parameter estimation.

I. INTRODUCTION

TWO major groups of energy aware and low-complex
distributed strategies for estimation over networks have

been studied in the literature, i.e., consensus strategies and the
algorithms based on incremental or diffusion mode of cooper-
ation. Motivated by the procedure obtained in [1] and [2], the
most recent implementations of the consensus strategy (e.g.,
[3]-[4]) allow the cooperating nodes to reach an agreement
regarding a vector of parameters of interest in a single time-
scale. The second group, which is in the focus of this paper,
consists of a single time-scale distributed algorithms that ob-
tain a linear estimator of a vector of parameters by distributing
a specific stochastic gradient method under an incremental
or a diffusion mode of cooperation. In the incremental mode
(e.g.,[5]-[6]), each node communicates with only one neighbor
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Nikola Bogdanović and Kostas Berberidis are with the Computer Engineer-
ing and Informatics Department and RACTI/RU8, University of Patras, Patras
26500 GREECE (e-mails: {bogdanovic,berberid}@ceid.upatras.gr).

The work was partially supported by the European SmartEN ITN project
(Grant No. 238726) under the Marie Curie ITN FP7 program, by the European
HANDiCAMS project (Grant No. 323944) under the Future and Emerging
Technologies (FET) programme within the Seventh Framework Programme
for Research of the European Commission, and by the University of Patras.

and the data are processed in a cyclic manner throughout the
network. This strategy achieves the centralized-like solution.
However, the determination of a cyclic path that covers all
nodes of the network is an NP hard problem [7] and, in
addition, cyclic trajectories are more sensitive to node failures
and to link failures. Alternatively, better reliability can be
achieved at the expense of increased energy consumption in
the so-called diffusion mode considered, for instance, in [8]-
[10]. Under this strategy, each node interacts with a subset
of neighboring nodes. As a result, unlike incremental-based
strategies, the cooperation is undertaken in a fully ad-hoc
fashion.

In many of the distributed estimation problems, it is con-
sidered that the nodes have the same interest. This scenario
can be viewed as a special case of a more general problem
where the nodes of the network have overlapping but different
estimation interests. Some examples of this kind of networks
can be found in the context of power system state estimation
in smart grids, speech enhancement and active noise con-
trol in wireless acoustic networks and cooperative spectrum
sensing in Cognitive Radio (CR) networks. Perhaps some of
the first works explicitly considering a network with node-
specific estimation interests are [11]-[12]. In these works, for
networks with a fully connected and tree topology, Bertrand
et al. proposed distributed algorithms that allow to estimate
node-specific desired signals sharing a common latent signal
subspace.

In this paper, we consider the estimation scenarios which
can be formulated as Node-Specific Parameter Estimation
(NSPE) problems. Within this category, most of the existing
works are based on consensus implementations. For instance,
the consensus approach presented in [13] is based on opti-
mization techniques that force different nodes to reach an
agreement when estimating parameters of common interest. At
the same time, the consensus-based technique in [13] allows
each node to estimate a vector of parameters that is only of
its own interest. In the case of schemes based on a distributed
implementation of adaptive filtering techniques, NSPE prob-
lems are recently receiving an increasing attention. In [14],
a diffusion-based scheme is used to solve an NSPE problem
where the node-specific estimation interests are expressed as
the multiplication of a node-specific matrix of basis functions
with a vector of global parameters. Since the matrix of basis
functions is known by each node, the problem finally reduces
to the estimation of a vector of global interest. In [15], the
authors use diffusion adaption and scalarization techniques to
obtain a Pareto-optimal solution for the the multi-objective
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cost function that appears in a distributed estimation problem
where each node has a different interest.For a network formed
by non-overlapping clusters of nodes, each with a different
estimation interest, a diffusion-based strategy with an adap-
tive combination rule is proposed in [16]. However, in the
proposed strategy the cooperation is finally limited to nodes
that have exactly the same objectives. For the same network,
Chen et al. have recently derived a diffusion-based algorithm
with spatial regularization that simultaneously provides biased
estimates of the multiple vectors of parameters [17]. Unlike
previous works, the proposed algorithm allows cooperation
among neighboring nodes as long as they have numerically
similar parameter estimation interests. Additionally, in [18] the
authors analyze the performance of the diffusion-based LMS
algorithm derived in [9] when it is run in the NSPE setting
considered in [17].

As far as the authors are concerned, there are no diffusion-
based strategies that provide unbiased solutions of a NSPE
problem where the nodes can have overlapping and arbi-
trarily different estimation interests at the same time. Only
in [19]-[21], the aforementioned NSPE problem is solved by
employing incremental implementations of the Least Mean
Squares (LMS) and Recursive Least Squares (RLS) algo-
rithms. Motivated by this fact, we build on our preliminary
work [22] in order to design a diffusion-based algorithm
that solves a NSPE problem in a network where the nodes
can simultaneously be interested in estimating parameters
of local, common and/or global interest. In particular, we
adopt two peer-to-peer diffusion protocols, Combine-then-
Adapt (CTA) and Adapt-then-Combine (ATC), to allow each
node to estimate its node-specific vector of parameters in real
time under the LMS criterion. Under both CTA and ATC
schemes, each node undertakes a local adaptive filtering task
where its local observations are fused with an estimate of
its parameters of local interest as well as estimates of the
parameters of global and common interest, which have been
exchanged with its neighbors. As a result, the network is
able to adapt in real time to variations of the data statistics
related to parameters of local, common and global interest
in the network. Moreover, as a detailed performance analysis
of the resulting adaptive network shows, the proposed NSPE
techniques are asymptotically unbiased in the mean sense.

The paper is organized as follows. Section II mathematically
describes the considered NSPE problem. In Section III we
derive an ATC and CTA diffusion-based techniques to solve
the NSPE problem of Section II by employing the LMS
algorithm. Next, Section IV is devoted to the theoretical
performance analysis of the proposed techniques. Initially, the
convergence in the mean sense is analyzed to show that the
proposed techniques are asymptotically unbiased. Afterwards,
we provide closed-form expressions for the Mean Square Error
(MSE) and Mean Square Deviation (MSD) achieved by each
node with respect to the estimation of its parameters of local,
common and global interest in the steady state. In Section V,
the theoretical analysis is first verified via generic simulations,
and also simulation results are provided in the context of coop-
erative spectrum sensing in CR networks. Finally, Section VI
summarizes our work and gives a description of the future

research lines.
The following notation is used throughout the paper. We

use boldface letters for random variables and normal fonts for
deterministic quantities. Capital letters refer to matrices and
small letters refer to both vectors and scalars. The notation
(·)H and E{·} stand for the Hermitian transposition and
the expectation operator, respectively. For a set, e.g., X ,
the operator | · | stands for the cardinality. If the set X is
ordered, then X (j) equals the j-th element of X . We use the
weighted norm notation ‖x‖2Σ , xHΣx with a vector x and
a Hermitian positive semi-definite matrix Σ ≥ 0. Moreover,
RA = E{AHA}, RA,B = E{AHB} and rA,b = E{AHb}
for any random matrices A, B and any random vector b.
The notation blockdiag{·} denotes a block-diagonal matrix.
Finally, 0L×M denotes a L×M zero matrix, while 1L stands
for a (L× 1) vector of ones.

II. PROBLEM STATEMENT

Let us consider a connected network consisting of N nodes
that are randomly deployed over some geographical region.
Nodes that are able to share information with each other are
said to be neighbors. The neighborhood of any particular node
k, including also node k, is denoted as Nk. Since the network
is connected, as shown in Fig. 1, the neighborhoods are set
so that there is a path between any pair of the nodes in the
network.

At discrete time i, each node k has access to data
{dk,i, Uk,i}, corresponding to time realizations of zero-mean
random processes {dk,i,Uk,i}, with dimensions Lk × 1 and
Lk ×Mk, respectively. These data are related to events that
take place in the monitored area through the subsequent model

dk,i = Uk,iw
o
k + vk,i (1)

where, for each time instant i,
- wok equals the deterministic but unknown vector of di-

mension Mk that gathers all parameters of interest for
node k,

- vk,i denotes the random noise vector with zero mean and
covariance matrix Rvk,i of dimensions Lk × Lk,

- dk,i and Uk,i are zero-mean random variables with
dimensions Lk × 1 and Lk ×Mk, respectively.

Given the previous observation model, by processing data set
{dk,i, Uk,i} the objective of the network consists in estimating
the node-specific vector of parameters {wk}Nk=1 that minimize
the subsequent cost function

Jglob({wk}Nk=1) =

N∑

k=1

E
{
‖dk,i −Uk,iwk‖2

}
. (2)

The vast majority of works dealing with distributed estimation
algorithms in the context of adaptive filtering (e.g., [5]-[9])
considered the case where the nodes’ interests are the same,
i.e. wok = wo for all k ∈ {1, 2, . . . , N}. However, similarly
to [19]-[21], the formulation of this paper goes beyond by
considering that the node-specific interests are different but
overlapping.

As depicted in Fig. 1, each node-specific vector wok might
consist of a sub-vector wo of parameters of global interest to
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the whole network, sub-vectors {ςoj } of parameters of common
interest to subsets of nodes including node k, and a sub-vector
ξok of local parameters for node k. In particular, the global
parameters wo (Mg × 1) might be related to a phenomenon
that can be monitored by all the nodes. In contrast, a set of
parameters of common interest ςoj (Mjc × 1) might be related
to a phenomenon that can be observed by a subset of nodes
in the network. The ordered set of indices k associated with
the connected subset of nodes interested in ςoj is denoted as
Cj . For instance, in Fig. 1, C1 = {1, 2, 3}. Depending on
the areas of influence associated with the events of common
interest, note that a node might be interested in more than one
set of common parameters. As a result, subsets of nodes Cj
and Cj′ , with j 6= j′, might be partially or fully overlapped.
For instance, Figure 1 indicates that node k is interested in
estimating both vectors of common parameters ςoj and ςoj−1,
i.e. Cj−1 ∩ Cj = {k}. Finally, each vector of local parameters
ξok (Mlk × 1) may represent the influence of some local
phenomena that only affects the area monitored by node k.
In this way, considering a scenario where there are J different
subsets of common parameters (see Fig. 1), the observation
model provided in (1) can be rewritten as

dk,i = Ukg,iw
o +

∑

j∈Ik
Ukjc,iς

o
j + Ukl,iξ

o
k + vk,i (3)

where, for k ∈ {1, 2, . . . , N}, j ∈ {1, 2, . . . , J} and i ≥ 1,

- Ik equals an ordered set of indices j associated with the
vectors ςoj that are of interest for sensor k,

- Ukg,i, Ukjc,i and Ukl,i are matrices of dimensions Lk×
Mg , Lk ×Mjc and Lk ×Mkl that might be correlated,
and consist of the columns of Uk,i associated with wo,
ςoj and ξok, respectively.

Thus, according to (2) and (3), our NSPE problem can be
restated as minimizing the following cost

N∑

k=1

E



‖dk,i −Ukg,iw −

∑

j∈Ik
Ukjc,iςj −Ukl,iξk‖2



 (4)

with respect to variables w, {ςj}Jj=1 and {ξk}Nk=1.

III. A SOLUTION OF THE NEW NSPE PROBLEM

In this section, acting as a starting point for the derivation of
the distributed algorithms and allowing us to introduce some
useful notation, we briefly describe the centralized solution
provided in [21] to the NSPE problem stated in the previous
section. Later, via diffusion-based approach we focus on
the derivation of distributed algorithms that approximate the
centralized solution. For the sake of simplicity and without
losing generality, we assume that Mlk = Ml, Mjc = Mc and
Lk = L for all k ∈ {1, 2, . . . , N} and j ∈ {1, 2, . . . , J}.

A. Centralized solution

An inspection of (4) reveals that the solution of the con-
sidered NSPE problem entails the optimization of a scalar
real-valued cost function w.r.t. multiple vector variables, i.e.,
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Fig. 1. A network of N nodes with node-specific parameter estimation
interests.

{w, {ςj}Jj=1, {ξk}Nk=1}. If we gather these variables into the
following augmented vector

w̄ =
[
wT ςT1 ςT2 · · · ςTJ ξT1 ξT2 · · · ξTN

]T
( M̄ × 1 ) (5)

where M̄ = Mg + J ·Mc +N ·Ml, from [21] we know that
our optimization problem can be cast as

̂̄w = argmin
w̃
{Jglob(w̄)}

= argmin
w̄

{
N∑

k=1

E
{
‖dk,i − Ūk,iw̄‖2

}
}

(6)

where Ūk,i is defined in (7) at the top of the following page
with Ma = (k − 1)Ml and Mb = (N − k)Ml and

1{X∈A} =

{
1 if X ⊆ A,
0 otherwise.

(8)

From [23], we know that the resulting solutions ̂̄w are optimal
if the random processes are {dk,i,Uk,i} are jointly wide-sense
stationary are given by the normal equations

(
N∑

k=1

RŪk

)
· ̂̄w =

N∑

k=1

rŪkdk . (9)

Notice that the solution of the previous system of equations
requires the transmission of all sensor observations to the
fusion center and the inversion of a square matrix whose
dimension is proportional to the network size. As a result, for
large networks, the centralized solution in (9) is not scalable
with respect to both computational power and communication
resources, which motivates the derivation of distributed solu-
tions.

B. Diffusion-based NSPE solutions

By relying on in-network processing of the data {dk,i, Uk,i},
the incremental-based algorithms proposed in [19] and [21]
converge to the centralized solution in the mean sense with an
increase of the energy efficiency and an improved scalability.
Attaining more robustness to link or node failures than the
incremental strategies, other alternative mode of cooperation
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Ūk,i =
[
Ukg,i 1{1∈Ik}Uk1c,i 1{2∈Ik}Uk2c,i · · · 1{J∈Ik}UkJc,i 0L×Ma Ukl,i 0L×Mb

]
(7)

to process the data {dk,i, Uk,i} in a distributed fashion is based
on diffusion strategies, e.g., Combine-then-Adapt (CTA) and
Adapt-then-Combine (ATC). In the case where the nodes are
interested in estimating the same vector of global parameters,
the aforementioned strategies are known to well approximate
the centralized solution when all nodes want to estimate the
same vector of parameters [9]. In this work, we extend them
so as to be applicable in the NSPE described in Section II.

First, let us define ψ̄(i)
k as the local estimate of w̄o at time

instant i and node k. Note that ψ̄(i)
k is generally a noisy version

of the optimal augmented vector w̄o. By using a diffusion
mode of cooperation, at each time instant i− 1, each node k
has access to the set of local estimates of its neighbors, i.e.,
Nk. Thus, node k can fuse its local estimate with the local
estimates of its neighbors as follows

φ̄
(i−1)
k = fk

(
{ψ̄(i−1)

` }`∈Nk

)
(10)

where fk is a local combiner function. In this work, we will
focus on linear combiners of the form

φ̄
(i−1)
k =

∑

`∈Nk

C̄k,` ψ̄
(i−1)
` (11)

where

C̄k,` = diag{cwk,`IMg
, cς1k,`IMc

, . . . , cςJk,`IMc

cξ1k,`IMl
, . . . , cξNk,`IMl

}.
(12)

In (12), cwk,` equals the weight coefficient used by node k
when combining the local estimate of the global vector wo

from node `. Similarly, for `,m ∈ {1, . . . , N}, cςjk,` and cξmk,`
denote the combination coefficients employed by node k when
fusing the local estimates of ςoj and ξom, from node ` with its
corresponding local estimates, respectively. Since the contri-
bution of each node to the different estimation tasks might
be different depending on the statistics of its observations as
well as its own estimation interests, note that we allow each
node to have different coefficients when combining the local
estimates of each vector of global, common or local parameters
performed by a neighbor node `.

To determine the combination coefficients at each node k,
we can interpret (11) as a weighted least squares estimate of
the augmented vector of parameters w̄o given its local estimate
as well as the local estimates at the neighbour nodes [8]. This
way, by collecting the local estimates of the augmented vector
w̄o at the neighbour nodes

ψ̄Nk
= col

{
{ψ̄(i−1)

` }`∈Nk

}
(13)

and defining

B = col{IM̄ , IM̄ , . . . , IM̄} (nk · M̄ × M̄) (14)

and

C̄k = diag{C̄k,1, C̄k,2, . . . , C̄k,nk
} (15)

with nk = |Nk|, we can formulate the subsequent local
weighted least-squares problem

argmin
φ̄k

{
‖ψ̄Nk

−Bφ̄k‖2C̄k

}
, (16)

whose solution is given by

φ̄
(i−1)
k =

[
BHC̄kB

]−1
BHC̄kψ̄Nk

. (17)

In more detail, focusing on the different sub-vectors that form
φ̄

(i−1)
k , for k,m ∈ {1, 2, . . . , N} and j ∈ {1, 2, . . . , J} the

solution provided in (17) can be rewritten as

φ
(i−1)
k,w =

∑

`∈Nk

cwk,`∑
k′∈Nk

cwk,k′
ψ

(i−1)
`,w (18)

φ
(i−1)
k,ςj

=
∑

`∈Nk

c
ςj
k,`∑

k′∈Nk
c
ςj
k,k′

ψ
(i−1)
`,ςj (19)

and

φ
(i−1)
k,ξm

=
∑

`∈Nk

cξmk,`∑
k′∈Nk

cξmk,k′
ψ

(i−1)
`,ξm (20)

where φ
(i−1)
k,w , φ(i−1)

k,ςj
and φ

(i−1)
k,ξm

denote the subvectors of
combiner φ̄i−1

k associated with the local estimation of wo,
ςoj and ξm at node k and time instant i − 1, respectively.
Analogously, ψ(i−1)

k,w , ψ(i−1)
k,ςj

and ψ(i−1)
k,ξm

denote the sub-vectors
of the local estimate ψ̄i−1

k associated with the local estimation
of wo, ςoj and ξm at node j and time instant i−1, respectively.

At this point, after a suitable redefinition of the combination
coefficients that appear in (18), (19) and (20), we can now
verify that the combination coefficients in (11) and (12) have
to satisfy

cwk,` = 0 if ` /∈ Nk;
∑

`∈Nk

cwk,` = 1 (21)

c
ςj
k,` = 0 if ` /∈ Nk;

∑

`∈Nk

c
ςj
k,` = 1 (22)

and

cξmk,` = 0 if ` /∈ Nk;
∑

`∈Nk

cξmk,` = 1 (23)

for j ∈ {1, 2, . . . , J} and k,m ∈ {1, 2, . . . , N}.

Next, in order to estimate w̄o at each node k in an adaptive
fashion, the corresponding local aggregate estimate φ̄(i−1)

k is
fed into the local LMS-type adaptive algorithm that minimizes
the cost associated with node k in (6). This way, the resulting
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diffusion based strategy can be described as




Combination step:
φ̄

(i−1)
k =

∑
`∈Nk

C̄k,` ψ̄
(i−1)
`

Adaptation step:

ψ̄
(i)
k = φ̄

(i−1)
k − µkŪH

k,i

[
dk,i − Ūk,i φ̄

(i−1)
k

]
(24)

with i ≥ 1, {ψ̄(0)
` }`∈Nk

equal to some initial guess, C̄k,`
defined in (12) and µk > 0 equal to a suitably chosen positive
step-size parameter.

Due to the structure of the augmented regressors Ūk,i

defined in (7), only 2 + |Ik| sub-vectors of ψ̄(i)
k are updated

when a specific node k performs the adaptation step at each
time instant i (see (24)). According to (5) and (7), based on
{dk,i,Uk,i} and the aggregate estimates φ(i−1)

k,w , {φ(i−1)
k,ςj
}j∈Ik

and φ(i−1)
k,ξk

, the updated sub-vectors correspond with the local
estimates of wo, {ςok,j}j∈Ik and ξok at node k and time i,
respectively. Therefore, note that each node only updates the
sub-vectors that are within its interest, which will be now
denoted as ψ(i)

k , {ς(i)k,j}j∈Ik and ξ(i)
k for the sake of simplicity.

The previous fact allows to set the subsequent equalities in the
combination coefficients{

cξmk,` = 0 if k 6= ` or k 6= m

c
ςj
k,` = 0 if j /∈ Ik or j /∈ I`

(25)

First set of equalities together with (23) show that cξkk,k = 1 for
each node k. Hence, the vector of local parameters ξok is only
estimated by node k, which is the only node of the network
performing measurements where ξok is involved. Continuing
the analysis of (25), from the second set of equalities we can
verify that node k only cooperate to estimate the vectors of
common parameters that are within its interests, i.e. {ςoj }j∈Ik .
Then, taking into account (22) we can easily show that

c
ςj
k,` = 0 if ` /∈ Nk ∩ Cj ;

∑

`∈Nk∩Cj
c
ςj
k,` = 1 (26)

As a result, when a node k estimates a specific vector of
common parameters that is within its interest, i.e. ςoj with
j ∈ Ik, it will only cooperate with the subset of neighbour
nodes Nk ∩ Cj , which is composed of the neighbour nodes
whose measurements are dependent on ςoj .

At this point, from (24) together with (21)-(23) and (25),
we can obtain the Combine-then-Adapt (CTA) diffusion-based
LMS algorithm summarized below.

CTA Diffusion-based LMS for NSPE (CTA D-NSPE)

• Start with some initial guesses ψ(0)
k , {ς(0)

j }j∈Ik and ξ(0)
k

at each node k ∈ {1, 2, . . . , N} .
• For the estimation of wo and any ςoj , choose N × N

combination matrices Cw and Cςj whose elements in
each row k, i.e., {cwk,`}N`=1 and {cςjk,`}N`=1, satisfy (21)
and (26), respectively.

• At each time i, for each k ∈ {1, 2, . . . , N}, execute

- Combination step:

φ
(i−1)
k,w =

∑

`∈Nk

cwk,` ψ
(i−1)
` (27)

and

φ
(i−1)
k,ςj

=
∑

`∈Nk∩Cj
c
ςj
k,` ς

(i−1)
`,j (28)

for each j ∈ Ik.
- Adaptation step:


ψ

(i)
k

ς
(i)
k

ξ
(i)
k


 =



φ

(i−1)
k,w

φ
(i−1)
k,ς

ξ
(i−1)
k


+ µk U

H
k,i


dk,i − Uk,i



φ

(i−1)
k,w

φ
(i−1)
k,ς

ξ
(i−1)
k







(29)

with ς
(i)
k = col

{{
ς
(i)
k,j

}
j∈Ik

}
and φ

(i)
k,ς =

col
{{
φ

(i)
k,ςj

}
j∈Ik

}
.

Now, let us consider that each node k firstly performs the
adaptation step and afterwards, it solves its local weighted least
squares problem given in (16). Then, by following a derivation
that is analogous to the one undertaken for the CTA D-NSPE
scheme and that has been omitted for the sake of brevity,
we can obtain the Adapt-then-Combine (ATC) diffusion-based
LMS algorithm. Basically, as it is summarized in the table
shown below, the new NSPE algorithm consists in reversing
the order under which the adaptation and combination steps
are performed for each node k according to the CTA D-NSPE
strategy.

ATC Diffusion-based LMS for NSPE (ATC D-NSPE)

• Start with some initial guesses φ(0)
k,w, {φ(0)

k,ςj
}j∈Ik and ξ(0)

k

at each node k ∈ {1, 2, . . . , N} .
• For the estimation of wo and any ςoj , choose N × N

combination matrices Cw and Cςj whose elements in
each row k, i.e., {cwk,`}N`=1 and {cςjk,`}N`=1, satisfy (21)
and (26), respectively.

• At each time i, for each k ∈ {1, 2, . . . , N}, execute
- Adaptation step:


ψ

(i)
k

ς
(i)
k

ξ
(i)
k


 =



φ

(i−1)
k,w

φ
(i−1)
k,ς

ξ
(i−1)
k


+ µk U

H
k,i


dk,i − Uk,i



φ

(i−1)
k,w

φ
(i−1)
k,ς

ξ
(i−1)
k







(30)

with ς
(i)
k = col

{{
ς
(i)
k,j

}
j∈Ik

}
and φ

(i)
k,ς =

col
{{
φ

(i)
k,ςj

}
j∈Ik

}
.

- Combination step:

φ
(i)
k,w =

∑

`∈Nk

cwk,` ψ
(i)
` (31)
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and

φ
(i)
k,ςj

=
∑

`∈Nk∩Cj
c
ςj
k,` ς

(i)
`,j . (32)

for each j ∈ Ik.

Although the algorithms have been designed for the case
where parameters of local, common and global interest co-
exist, note that the derived algorithms can be simplified
straightforwardly to any other NSPE setting. For instance, the
derived algorithms can be easily simplified to a setting where
there not parameters of global interest or where some of the
nodes do not have parameters of local interest. Nevertheless,
independently of the considered NSPE setting, we can check
that both diffusion-based NSPE algorithms are scalable in
terms of computational burden and energy resources. On the
one hand, regarding the computational complexity, at each
time instant, each node k only needs to update a maximum of
1 + 2 (1 + |Ik|) vectors whose dimensions are independent of
the number of nodes. On the other hand, at each time instant
i, in both algorithms each node k is required to transmit a
maximum of 1 + |Ik| vectors, whose dimensions are again
independent of the number of nodes.

IV. PERFORMANCE ANALYSIS

This section is devoted to the performance analysis of CTA
D-NSPE and ATC D-NSPE algorithms proposed in Section III.
We start by considering a general recursion that includes both
algorithms and that captures the behavior of individual nodes
across the network. We then study the convergence in the mean
of the general model. Finally, we characterize its mean-square
performance in the steady-state in terms of Mean-Square
Deviation (MSD) and Excess Mean-Square Error (EMSE).

A. Network-wide recursion

In this subsection, we derive a general algorithmic form that
includes CTA D-NSPE and ATC D-NSPE as special cases. In
particular, let us write the first combination step as

φ
(i−1)
k,w =

∑

`∈Nk

cwk,` q
(i−1)
`,w (33)

and

φ
(i−1)
k,ςj

=
∑

`∈Nk∩Cj
c
ςj
k,` q

(i−1)
`,ςj (34)

for each j belonging to Ik. Moreover, the adaptation step is
expressed in the following


ψ

(i)
k

ς
(i)
k

ξ
(i)
k


 =



φ

(i−1)
k,w

φ
(i−1)
k,ς

ξ
(i−1)
k


+ µk U

H
k,i


dk,i − Uk,i



φ

(i−1)
k,w

φ
(i−1)
k,ς

ξ
(i−1)
k







(35)

where, with a slight abuse of notation, ς(i)k = col
{{
ς
(i)
k,j

}
j∈Ik

}

and φ(i−1)
k,ς = col

{{
φ

(i−1)
k,ςj

}
j∈Ik

}
. The last step of each itera-

tion of the general algorithmic form is the second combination

step described as

q
(i)
k,w =

∑

`∈Nk

awk,` ψ
(i)
` (36)

and

q
(i)
k,ςj

=
∑

`∈Nk∩Cj
a
ςj
k,` ς

(i)
`,j . (37)

for each j belonging to Ik. In (33), the non-negative real
coefficient cwk,` corresponds to the (k, `)-th entries of the
(N×N) combination matrix Cw, which satisfies Cw1N = 1N .
Moreover, in (34), the non-negative real coefficient cςjk,` corre-
sponds to the (|Cj,k|, |Cj,`|) entry of a (|Cj |×|Cj |) combination
matrix Cςj , which satisfies Cςj1|Cj | = 1|Cj | with

Cj,k = {k′ ∈ Cj : k′ ≤ k}. (38)

and k, ` ∈ Cj for any j ∈ {1, 2, . . . , J}. Similarly, in (36)-
(37) the non-negative real coefficients {awk,`} and {aςjk,`}
correspond to the (k, `)-th and the (|Cj,k|, |Cj,`|)-th entries of
the (N ×N) and (|Cj | × |Cj |) combination matrices Aw and
Aςj , respectively, which satisfy

Aw1N = 1N , Aςj1|Cj | = 1|Cj |

for any j ∈ {1, 2, . . . , J}.
Also, note that if we set Cw = IN , Cςj = I|Cj | for j ∈

{1, 2, . . . , J}, equations (33)-(37) represent ATC D-NSPE. On
the other hand, its CTA counterpart corresponds to selecting
Aw = IN , Aςj = I|Cj | for j ∈ {1, 2, . . . , J}.

Now, let us interpret data as random variables. Associated
with the quantities in the general form in (33)-(37), we
define the weight-error vectors, for k = {1, . . . , N} and
j = {1, . . . , J}, as follows

φ̃
(i)

k,w = wo − φ(i)
k,w, p̃

(i)
k,w = wo −ψ(i)

k , q̃
(i)
k,w = wo − q(i)

k,w

φ̃
(i)

k,ςj = ςoj − φ(i)
k,ςj

, p̃
(i)
k,ςj

= ςoj − ς(i)
k,j , q̃

(i)
k,ςj

= ςoj − q(i)
k,ςj

φ̃
(i)

k,ξk
= ξok − ξ(i)

k , p̃
(i)
k,ξk

= ξok − ξ(i)
k , q̃

(i)
k,ξk

= ξok − ξ(i)
k .

(39)

Next, we collect these quantities across all agents into the
corresponding (

∑N
k=1Mk × 1) block vectors, i.e., network

weight-error vectors,

φ̃i = col

{{
φ̃

(i)

k,w, {φ̃
(i)

k,ςj}j∈Ik , φ̃
(i)

k,ξk
,
}N
k=1

}
(40)

In the same vein, the network vectors p̃i and q̃i are formed, by
stacking the corresponding weight-error vectors. For notational
convenience, hereafter we use

M̆ =

N∑

k=1

Mk .

To proceed, let us introduce the diagonal matrix

M = diag{µ1IM1 , . . . , µNIMN
} (M̆ × M̆), (41)

the block-diagonal matrix

Di = diag{UH
1,iU1,i, . . . ,U

H
N,iUN,i} (M̆ × M̆), (42)
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and the vector

Vi = col{UH
1,iv1,i, . . . ,U

H
N,ivN,i} (M̆ × 1). (43)

Finally, the network-wide behavior can be characterized by
these relations for the block quantities:

φ̃i−1 = C̆ q̃i−1 (44)

p̃i = (I −MDi)φ̃i−1 −MVi (45)

q̃i = Ă p̃i (46)

where the structure of the extended weighting matrices Ă and
B̆ is explained in the following subsection.

Note that equations (44)-(46) can be summarized in the
following equivalent form,

q̃i = Ă (I −MDi) C̆ q̃i−1 − ĂMVi, (47)

which will be used in the Subsections IV-D and IV-E to
perform the mean and the mean-square steady-state analysis,
respectively.

B. Structure of the extended weighting matrices

The extended weighting matrices C̆ and Ă have the same
form, only the weights are different. Therefore, in order to
define them, let us consider, for instance, the Ă matrix,

Ă = col
{
Aw1 , {A

ςj
1 }j∈I1 , Aξ11 , . . . , A

w
N , {A

ςj
N}j∈IN , AξNN

}
,

(48)

where the blocks being stacked are defined in (49)-(52) on
the top of the following page, with Ijk in (51) defined as
Ijk = {j′ ∈ Ik : j′ < j}.

An alternative way to define Ă is the following relation

Ă = P Ăblkd PT (53)

where the block-diagonal matrix is given by

Ăblkd = blockdiag
{
Aw ⊗ IMg

, {Aςj ⊗ IMc
}Jj=1, IN ⊗ IMl

}

(54)

while ⊗ stands for the Kronecker product, and P is the M̆×M̆
permutation matrix that stacks appropriately chosen 1×M̆ row
basis vectors. In particular, a basis vector ek has the unity at
the kth position and zeros elsewhere. For more details how
the P matrix is specified, see Appendix A.

C. Data assumptions

To proceed, we state the following independence assump-
tions on the data:
A1) vk,i is temporally and spatially white noise whose covari-

ance matrix is Rvk,i and which is independent of Uk′,i′

for all k′ and i′, with k, k′ ∈ {1, 2, . . . , N} and i, i′ > 0;
A2) Uk,i is independent of Uk,i′ , with i, i′ > 0 and i 6= i′

(temporal independence).
A3) Uk,i is independent of Uk′,i, with k, k′ ∈ {1, 2, . . . , N}

and k 6= k′ (spatial independence),

A4) Ukg,i, Ukjc,i and Ukl,i are independent for all k ∈
{1, 2, . . . , N} and j ∈ {1, 2, . . . , J};

In order to evaluate the fourth-order moment of the matrix-
valued regression data in Subsection IV-E, we further assume:
A5) Uk,i (Lk×Mk) has a real matrix variate normal distribu-

tion specified by mean 0Lk×Mk
and positive-semidefinite

matrices Ψk (Mk×Mk) and Ωk (Lk×Lk) (see [24, Chap-
ter 2]). Equivalently, using standard notation for multi-
variate normal distribution, the distribution of Uk,i can be
defined as vec(Uk,i) ∼ NMkLk

(
vec(0Lk×Mk

),Ψk⊗Ωk
)
.

Remark 1: Note that even for the vector-valued regression data,
in order to evaluate the fourth-order moment, the Guassian
assumption is required (e.g. see [8] and [9]). The results
of the fourth-order moment of the matrix-valued regression
data appear to be quite a bit more challenging than those on
its vector counterpart, due to the extra dimension involved.
Therefore, the assumption A5) seems well-justified.

D. Mean stability

By taking the expectation of (47) and using assumptions
(A1-A3), we obtain

Eq̃i = Ă (I −MRU ) C̆ Eq̃i−1, (55)

where

RU = EDi = blockdiag{RU1
, RU2

, . . . , RUN
}, (56)

and

RUk
= EUH

k,iUk,i = blockdiag{RUkg
, RUkjc

, RUkl
}. (57)

The algorithm in (47) is asymptotically unbiased, i.e,
Eq̃i → 0M̆×1 as i → ∞, if the matrix Ă(I −MRU )C̆ is
stable. In order to prove its stability, we will build on the
approaches taken in [25] and [26], by selecting a convenient
matrix norm ‖ · ‖ and exploit its submultiplicativity property,
i.e., ‖AB‖ ≤ ‖A‖‖B‖.

Here, we use the induced block maximum matrix
norm [25], [26], however, defined over a block matrix with
different block sizes. In particular, let x be a M̆ × 1 vector
consisting of N̆ blocks, where N̆ = N +

∑n
k=1 |Ik| + N ,

given as

x = col

{{
x

(w)
k , {x(ςj)

k }j∈Ik , x
(ξ)
k ,
}N
k=1

}
.

The block maximum norm is defined by

‖x‖b,∞ = max
1≤k≤N

{
{‖x(w)

k ‖,
{
‖x(ςj)

k ‖
}
j∈Ik

, ‖x(ξk)
k ‖

}

where ‖ · ‖ denotes the Euclidean norm of its argument. Next,
we define the matrix norm induced from the block maximum
norm, i.e.,

‖A‖b,∞ = max
‖x‖b,∞=1

‖Ax‖b,∞

where A is M̆ × M̆ matrix. As in [25], it can be straightfor-
wardly shown that the block maximum norm has the unitary
invariance property of the Euclidean norm under properly
defined block-wise transformation.
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Awk =
[
awk,1IMg

0Mg×(Mc|I1|+Ml) awk,2IMg
0Mg×(Mc|I2|+Ml) . . . awk,NIMg

0Mg×(Mc|IN |+Ml)

]
(49)

A
ςj
k =

[
A
ςj
k1 A

ςj
k2 . . . A

ςj
kN

]
(50)

A
ςj
k` =

{ [
0Mc×(Mg+Mc|Ij`|) a

ςj
k,`IMc

0Mc×(Mc[|I`|−|Ij`|−1]+Ml)

]
if ` ∈ Cj ,

0Mc×M`
if ` 6∈ Cj

(51)

Aξkk =
[
0Ml×(

∑k−1
`=1 M`+Mg+Mc|Ik|) IMl

0Ml×(
∑N

`=k+1M`)

]
(52)

Next, by evaluating the block maximum norm of (55) and
by applying its submultiplicativity property, we obtain the
following relation

‖Eq̃i‖b,∞ ≤ ‖Ă‖b,∞ ‖I −MRU‖b,∞ ‖C̆‖b,∞ ‖Eq̃i−1‖b,∞.
(58)

Let us now evaluate the block maximum norms of the extended
combination matrices Ă and C̆ given in (53), e.g., ‖Ă‖b,∞,
while the same holds for ‖C̆‖∞. Since Ă is a right stochastic
matrix, we can bound ‖Ă‖∞ as shown in (59) at the top of
the next page. Thus, ‖Ă‖b,∞ < 1, given that Aw, Aςj are
row-stochastic, i.e., Aw1N = 1N and Aςj1|Cj | = 1|Cj |, for
j = {1, . . . , J}.

At this point, we only need to find the conditions that secure

‖I −MRU‖b,∞ < 1.

Under assumption A4, due to the unitary invariance of the
block maximum these conditions correspond to the mean
stability conditions of stand-alone LMS filters and can be
easily realized to be

µk <
2

λmax(RUkg
, RUkjc

, RUkl
)

for each k,

where k = {1, . . . , N} and λmax(X,Y, Z) denotes the max-
imum of the maximum eigenvalues of the Hermitian matrix
arguments X,Y and Z.

The above discussion is summarized in the subsequent
theorem.

Theorem 1. For any initial conditions, under the assumptions
A1-A4 made in Subsection IV-C, if the positive step-size of
each node satisfies µk < 2/λmax(RUkg

, RUkjc
, RUkl

), then
the estimates generated by ATC (or CTA) D-NSPE algorithm
converge in the mean, i.e.,

lim
i→∞

Eq̃i = 0M̆×1, (60)

if the combination matrices related to the estimates of global
and common parameters are row-stochastic.

E. Steady-state performance

At this point, we aim to evaluate the mean-square perfor-
mance of the general diffusion model in (47). In particular,
we will examine the performance in the stady-state in terms
of MSD and EMSE.

To this end, we use the energy conservation argu-
ments [23], [26]. Specifically, after equating the weighted
norm of (47) and taking the expectation under Assumptions
A1-A3, we obtain the subsequent variance relation

E‖q̃i‖2Σ = E‖q̃i−1‖2Σ′ + E
{
VH
i MĂT Σ ĂMVi

}
(61)

where Σ is an arbitrary (M̆ × M̆) Hermitian nonnegative-
definite matrix that we are free to choose, and

Σ′ = E
{
C̆T (I −MDi)

H ĂT Σ Ă (I −MDi) C̆
}
. (62)

To proceed, we have to extract Σ from r.h.s. of (62) and
from the second term on r.h.s. in (61). To do so, we will use
vectorization operator and exploit some useful properties of
the trace operator and Kronecker product, i.e.,

vec(ABC) = (CT ⊗A)vec(B) (63)

and

Tr(AB) = vec(AT )Tvec(B). (64)

Furthermore, in addition to Assumptions A1-A3, here we also
use Assumption A5, stated in Subsection IV-C.

Thus, after defining V = E ViVH
i =

blockdiag
(
{(TrRv,kΩk)Ψk}Nk=1

)
[27], we get

E‖q̃i‖2Σ = E‖q̃i−1‖2Σ′ + Tr
(
ĂMV MĂT Σ

)
. (65)

Next, we introduce σ = vec(Σ). In order to extract Σ from
Σ′, we take the following steps

σ′ = vec(Σ′) = Fσ (66)

where F is a matrix, of dimensions M̆2 × M̆2, given by

F = E

{(
Ă (I −MDi) C̆

)T
⊗
(
C̆T (I −MDi)

T ĂT
)}

= (C̆T ⊗ C̆T )E
{

(I −MDi)
T ĂT ⊗ ((I −MDi)

T ĂT
}

= (C̆T ⊗ C̆T )G (ĂT ⊗ ĂT )
(67)

with

G =E
{

(I −MDi)
T ⊗ (I −MDi)

T
}

=I ⊗ I −RUM⊗ I − I ⊗RUM+ E{DT
iM⊗DT

iM}
(68)

and RU = blockdiag ({Tr(Ωk)Ψk}) (see (56)).
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‖Ăx‖b,∞ = max
1≤k≤N





∥∥∥∥∥
∑

`∈Nk

awk,`x
(w)
`

∥∥∥∥∥ ,





∥∥∥∥∥∥
∑

`∈Nk∩Cj
a
ςj
k,`x

(ςj)
`

∥∥∥∥∥∥




j∈Ik

,
∥∥∥x(ξk)

k

∥∥∥





≤ max
1≤k≤N




∑

`∈Nk

|awk,`|,max
j∈Ik

∑

`∈Nk∩Cj
|aςjk,`|, 1



 ‖x‖b,∞ = ‖x‖b,∞.

(59)

For sufficiently small step sizes, the forth-order moment of
regressors, i.e., the rightmost term in (68), can be discarded.
However, this term can be evaluated as follows

E{DT
iM⊗DT

iM} = S · (M⊗M) (69)

where

S = E{DT
i ⊗DT

i }
= blockdiag

({
E{UH

k,iUk,i ⊗Di}
}N
k=1

) (70)

with

E{UH
k,iUk,i ⊗Di} = K(Mk,M̆)E{Di ⊗UH

k,iUk,i}K(M̆,Mk)

(71)

and K(m,n) denoting the mn×mn commutation matrix that
satisfies

K(m,n)vec(A) = vec(AT )

for any m× n matrix A [28]. In (71), it can be shown that

E{Di ⊗UH
k,iUk,i}

= blockdiag
({
E{UH

`,iU`,i ⊗UH
k,iUk,i}

}N
`=1

)
.

(72)

Moreover, from [27] and [29], we can obtain closed-form
expressions for the the expectations that appear in (71). In
particular, we can check that

E{UH
k,iUk,i ⊗UH

k,iUk,i}
= Tr(Ωk)Tr(Ωk)Ψk ⊗Ψk

+ Tr(ΩkΩk)vec(Ψ)vec(Ψ)T

+ Tr(ΩkΩk)K(Mk,Mk)(Ψk ⊗Ψk)

(73)

and that

E{UH
`,iU`,i ⊗UH

k,iUk,i} = [Tr(Ω`)Ψ`]⊗ [Tr(Ωk)Ψk] (74)

for any k, ` ∈ {1, 2, . . . , N} with k 6= `.

To evaluate the performance measures in the steady state,
i.e., i→∞, by using (64), we first rewrite (65) as

E‖q̃∞‖2σ = E‖q̃∞‖2Fσ +
[
vec(ĂMV TMĂT )

]T
σ. (75)

After rearranging, we obtain the following relation

E‖q̃∞‖2(I−F )σ =
[
vec(ĂMV TMĂT )

]T
· σ. (76)

Now, we can evaluate MSD averaged across the whole network

MSDnet =
1

N
E‖q̃∞‖2I (77)

by selecting σ = (I − F )−1 1
N vec(IM̆ ), we obtain

MSDnet =
1

N

[
vec(ĂMV TMĂT )

]T
(I − F )−1vec(IM̆ ).

(78)

Now, in order to evaluate MSD at each node k, let us first
define the Khatri-Rao matrix product.

Definition 2: Consider matrices A and B of dimensions
m × n and p × q, respectively. Let A = (Aij) be partitioned
with Aij of dimensions mi×nj as the (i, j)-th block submatrix
and let B = (Bij) be partitioned with Bij as the (i, j)-th block
submatrix of dimensions pi × qj (

∑
mi = m,

∑
nj = n,∑

pi = p and
∑
qj = q). The Khatri-Rao matrix product is

defined as

A�B = (Aij ⊗Bij)ij
where Aij ⊗Bij is of dimensions mipi × njqj , while A�B
is of dimensions (

∑
mipi)⊗

∑
njqj), (see [30]).

Based on the previous definition, MSD at node k is

MSDk =
[
vec(ĂMV TMĂT )

]T
(I − F )−1mk, (79)

where

mk = vec (diag(ek)� Y ) (80)

with N × N partitioned matrices Y =
blockdiag(IM1

, . . . , IMN
) and block-diagonal matrix made

of the elements of a 1 × N vector ek with the unity at the
kth position and zeros elsewhere.

On the other hand, MSD related to the estimation of
the global, some specific common or the local vector of
parameter at node k can be evaluated by redefining Y as a
(2N +

∑N
k=1 |Ik|) × (2N +

∑N
k=1 |Ik|) partitioned matrix,

i.e.,

Y = blockdiag(IMg
, I|I1|Mc

, IMl
, . . . , IMg

, I|IN |Mc
, IMl

),
(81)

and by taking 1 × 2N +
∑N
k=1 |Ik| vector ek with the unity

at the appropriate position and zeros elsewhere.

Similarly,

EMSEnet =

[
vec(ĂMV TMĂT )

]T
(I − F )−1vec(RU )

N
.

(82)

Additionally, EMSE at each node k is

EMSEk =
[
vec(ĂMV TMĂT )

]T
(I − F )−1pk, (83)
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Fig. 2. Steady-state EMSE per node for CTA D-NSPE and ATC D-NSPE.

where we select a node k by

pk = vec (diag(ek)�RU ) (84)

where RU is defined as N ×N partitioned matrix as in (56).
Under the independence of Ukg,i, Ukjc,i and Ukl,i, we can
evaluate EMSE performance measure related to the global,
specific common or local parameter at some node k. To do
so, we need to properly redefine the partitions of RU and the
size of vector ek.

V. SIMULATION RESULTS

In this section, we initially discuss some generic simulations
that verify mean-square theoretical results (see Section IV-E).
Afterwards, the effectiveness of the proposed algorithms are
illustrated in the context of cooperative spectrum sensing in
CR networks.

A. Validation of mean-square theoretical results

We assume a network with N = 10 nodes where the
measurements follow the observation model provided in (3)
with Lk = 2 for all k. In the considered setting, two different
vectors of common parameters coexist, i.e., ςo1 and ςo2 . The
vector ςo1 is composed of 3 parameters, while ςo2 consists
of 2 parameters. Moreover, we consider that the area of
influence of ςo1 and ςo2 is formed by C1 ∈ {2, 3, 4, 5, 6} and
C2 ∈ {5, 6, 7, 8}, respectively. As a result, there are nodes that
are interested in estimating zero, one or two different vector
of common parameters. In addition, each node k is interested
in estimating a vector of global parameters and a vector of
local parameters, each one of length equal to Mg = 2 and
Mlk = 3, respectively.

The data observed by each node, i.e., {dk,i, Uk,i}, have been
generated under the assumption of a background noise vk,i
with covariance σ2

vk
I2, where σ2

vk
= σ2

v = 10−3 across the
network. Furthermore, each one of the Lk rows of the regressor

Uk,i = col
{
UTkg,i{UTkjc,i}j∈IkUTkl,i

}T

have been independently drawn from a time-correlated spa-
tially independent Gaussian distribution. In particular, the c-th
row of Uk,i is generated according to a first-order autoregres-
sive (AR) model with correlation function rk,c(i) = σ2

uk
α
|i|
k

where the pair of parameters {σuk
, αk} are randomly chosen

in (0,1) so that the the Signal-to-Noise-Ratio (SNR) at each
node ranges from 10 dB to 20 dB. Hence, Uk,i follows a
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Fig. 3. Steady-state MSD per node for CTA D-NSPE LMS.
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Fig. 4. Steady-state MSD per node for ATC D-NSPE LMS.

real matrix variate normal distribution specified by the mean
matrix 02×Mk

and the positive-semidefinite matrices Ωk = I2
and Ψk = toeplitz{[σ2

uk
σ2
uk
αk . . . σ

2
uk
αMk−1
k ]T }.

When implementing both CTA D-NSPE and ATC D-NSPE,
static uniform combination weights have been assumed, i.e.,
awk,` = 1/|Nk| for all k, ` ∈ {1, 2, . . . , 10}, and a

ςj
k,` =

1/|Nk∩Cj | for all k, ` ∈ Cj and j ∈ {1, 2}. The neighborhood
of each node k has been set so that the network graph as well
as the subsets C1 and C2 are connected. Moreover, in order
to validate the theoretical expressions for non-fully connected
networks and non-fully connected subsets Cj , we have as-
sumed that max

1≤k≤N
{|Nk|} ≤ 4 and that max

1≤k≤N
{|Nk∩Cj |} ≤ 2.

The experimental values in Figs. 2-4 result from averaging
the mean-square measures over 100 independent experiments
where both CTA D-NSPE LMS and ATC D-NSPE LMS are
run for 10 000 iterations. Despite the temporal correlation of
the regressors as well as the correlation among Ukg,i, Ukjc,i

and Ukl,i, which was not assumed for the derivation of the
theoretical results, all figures show a good match between the
simulated curves and the theoretical expressions for the MSD
and EMSE at each node k.
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PU 1

PU 2

SU 4

SU 1

SU 2

SU 3

LI 1

CI 1
LI 2

LI 3LI 4

Fig. 5. An illustrative CR scenario. Each one of the 4 secondary users (SU)
has the scope to estimate the aggregated spectrum transmitted by the primary
users and its interferer(s). Apart from PUs, SU 1 is influenced only by its
local interferer (LI 1) while SU 2, 3 and 4 are influenced by their local as
well as their common interferer (CI 1).

B. Illustrative application

In the following, we will also demonstrate the performance
of the proposed algorithm when used for cooperative spectrum
sensing in CR networks (see [26, Section 2.4] and [31]-[33]).
In brief, there are Q primary users (PU) transmitting and N
secondary users (SU) sensing the power spectrum. In addition
to PUs, for each SU we also assume two types of low-power
interference sources, i.e., local interferer (LI) and common
interferers (CI). The former is affecting only one SU, while
the latter are influencing several SUs. Therefore, the aim for
each SU is to estimate the aggregated spectrum transmitted by
all the PUs as well as the spectrum of its own LI and CI. An
example of such a scenario is given in Fig. 5.

Next, the power spectral density (PSD) of the signal trans-
mitted by the q-th PU, denoted by �t

q(f), can be approximated
by using the subsequent model of X basis functions

�t
q(f) =

XX

x=1

bx(f)w̌o
qx = bT

0 (f)w̌o
q (85)

where b0(f) = [b1(f), . . . , bX(f)]T 2 RX is a vector
of basis functions evaluated at frequency f and w̌o

q =
[w̌o

q1, . . . , w̌
o
qX ]T 2 RX is a vector of weighting coefficients

representing the power transmitted by the q-th PU over each
basis.

Let ptk,i(f) = |Htk(f, i)|2 be the frequency-dependent at-
tenuation coefficient, where Htk(f, i) is the channel frequency
response between the t-th transmitter and k-th receiver [33].
For each time i and frequency f , we define

- pqk,i(f) denoting the attenuation coefficient between the
q-th PU and the k-th SU,

- pIk,i(f) refering to the attenuation coefficient between
the local interferer and the k-th SU,

- pjk,i(f) being the attenuation coefficient between the j-th
common interferer and the k-th SU, where j 2 Ik.

Then, under the assumption of spatial uncorrelation among the
channels, the signal received by the k-th SU at time instant i
can be expressed as

�r
k,i(f) = bT

k,i(f)wo
k + zk,i, (86)

where wo
k = col {w̌o

1, . . . , w̌
o
Q, &oIk(1), . . . , &

o
Ik(|Ik|), ⇠

o
k} 2

R(Q+|Ik|+1)X with ⇠o
k and &oj equal to the vectors of weighting

coefficients representing the power transmitted by the LI
and j-th CI associated with the k-th SU, respectively. Also,
bk,i(f) = pk,i(f) ⌦ b0(f) 2 R(Q+|Ik|+1)X , and

pk,i(f) = [p1k,i, . . . , pqk,i, pIk(1),i, . . . , pIk(|Ik|),i, pIk,i]
T ,
(87)

while zk,i is the measurement and/or model noise. In the above
expression, we dropped the frequency index for compactness
of notation. Also note that, in practice, the attenuation factors
ptk,i cannot be estimated accurately, so we assume access only
to noisy estimates p̂tk,i hereafter.

Considering that, at discrete time i, each node k observes
the received PSD in (86) over L frequency samples {fm}L

m=1,
the subsequent vector linear model is obtained

dk,i = Uk,iw
o
k + vk,i (88)

where vk,i denotes noise with zero mean and covari-
ance matrix Rvk

of dimension L ⇥ L and Uk,i =

[bk,i(f1) . . . bk,i(fL)]
T is of dimension L ⇥ (Q + |Ik| + 1)X

with L > (Q + |Ik| + 1)X .
For the computer simulations presented here, we consider

a scenario where there is only one common interferer whose
PSD can be sensed by nodes in C1 = {2, 4, 7, 9}. Further-
more, we analyze the ATC D-NSPE LMS scheme for several
different combining strategies and degrees of connectivity. In
particular, we consider the ATC D-NSPE LMS algorithms with

a) the same neighborhood size at all the nodes, i.e., |Nk| =
5, while |Nk \ C1| = 3 for all k 2 C1. In this scenario,
we employ the static uniform combination weights, i.e.,
aw

k,` = 1/5 and a&1
k,` = 1/3.

b) the clique topology, i.e., |Nk| = N and |Nk \ C1| =
|C1| for all k 2 C1, with corresponding static uniform
combination weights,

c) the topology set as in a), while the combination weights
are adaptive. Specifically, the weights corresponding to
both global and common parameter estimation processes
are being adapted according to the adaptive combination
mechanism proposed in [16]. For instance, the weights
aw

k,`, for ` 2 Nk, evolve as

aw
k,`(i) =

��2
k,`(i)P

m2Nk
��2

k,m(i)

with

�2
k,`(i) = (1 � ⌫)�2

k,`(i � 1) + ⌫|| (i)
` � �

(i�1)
k,w ||2.

We also compare these schemes with an LMS-based non-
cooperative strategy as well as with the incremental-based
NSPE LMS (I-NSPE LMS), developed in [21], that is used
as a benchmark.

The step-size of the LMS adaptation at each node is set
equal to µk = 0.04 for all the algorithms, expect for the
incremental NSPE where µk is the step-size for estimating
the local parameters only. In the I-NSPE LMS, the step-
sizes for estimating global and common parameters are set
to µI�NSPE

w = µk/N and µI�NSPE
&j

= µk/|Cj |, respectively.

SU 1 

SU 2 

SU 3 

SU 4 

LI 4 
LI 3 

LI 2 

LI 1 

CI 1 

CI 2 

PU 1 

Fig. 5. An illustrative CR scenario. Each one of the 4 secondary users (SU)
aims at estimating the aggregated spectrum transmitted by the Primary User
(PU) and its interferer(s). Apart from the PU and its Local Interferer (LI), each
SU is influenced by one or two Common Interferers (CI). SU 3 is influenced
by CI 1 and CI 2, while SUs 1, 2 and 4 are only influenced by one CI.

B. Illustrative application

In the following, we will also demonstrate the performance
of the proposed algorithm when used for cooperative spectrum
sensing in CR networks (see [26, Section 2.4] and [31]-[33]).
In brief, there are Q primary users (PU) transmitting and N
secondary users (SU) sensing the power spectrum. In addition
to PUs, for each SU we also assume two types of low-power
interference sources, i.e., local interferer (LI) and common
interferers (CI). The former is affecting only one SU, while
the latter are influencing several SUs. Therefore, the aim for
each SU is to estimate the aggregated spectrum transmitted by
all the PUs as well as the spectrum of its own LI and CI. An
example of such a scenario is given in Fig. 5.

Next, the power spectral density (PSD) of the signal trans-
mitted by the q-th PU, denoted by Φtq(f), can be approximated
by using the subsequent model of X basis functions

Φtq(f) =

X∑

x=1

bx(f)w̌oqx = bT0 (f)w̌oq (85)

where b0(f) = [b1(f), . . . , bX(f)]T ∈ RX is a vector
of basis functions evaluated at frequency f and w̌oq =
[w̌oq1, . . . , w̌

o
qX ]T ∈ RX is a vector of weighting coefficients

representing the power transmitted by the q-th PU over each
basis.

Let ptk,i(f) = |Htk(f, i)|2 be the frequency-dependent at-
tenuation coefficient, where Htk(f, i) is the channel frequency
response between the t-th transmitter and k-th receiver [33].
For each time i and frequency f , we define

- pqk,i(f) denoting the attenuation coefficient between the
q-th PU and the k-th SU,

- pIk,i(f) refering to the attenuation coefficient between
the local interferer and the k-th SU,

- pjk,i(f) being the attenuation coefficient between the j-th
common interferer and the k-th SU, where j ∈ Ik.

Then, under the assumption of spatial uncorrelation among the
channels, the signal received by the k-th SU at time instant i
can be expressed as

Φrk,i(f) = bTk,i(f)wok + zk,i, (86)

where wok = col {w̌o1, . . . , w̌oQ, ςoIk(1), . . . , ς
o
Ik(|Ik|), ξ

o
k} ∈

R(Q+|Ik|+1)X with ξok and ςoj equal to the vectors of weighting
coefficients representing the power transmitted by the LI
and j-th CI associated with the k-th SU, respectively. Also,
bk,i(f) = pk,i(f)⊗ b0(f) ∈ R(Q+|Ik|+1)X , and

pk,i(f) = [p1k,i, . . . , pqk,i, pIk(1),i, . . . , pIk(|Ik|),i, pIk,i]
T ,
(87)

while zk,i is the measurement and/or model noise. In the above
expression, we dropped the frequency index for compactness
of notation. Also note that, in practice, the attenuation factors
ptk,i cannot be estimated accurately, so we assume access only
to noisy estimates p̂tk,i hereafter.

Considering that, at discrete time i, each node k observes
the received PSD in (86) over L frequency samples {fm}Lm=1,
the subsequent vector linear model is obtained

dk,i = Uk,iw
o
k + vk,i (88)

where vk,i denotes noise with zero mean and covari-
ance matrix Rvk of dimension L × L and Uk,i =

[bk,i(f1) . . . bk,i(fL)]
T is of dimension L× (Q+ |Ik|+ 1)X

with L > (Q+ |Ik|+ 1)X .
For the computer simulations presented here, we consider

a scenario where there is only one common interferer whose
PSD can be sensed by nodes in C1 = {2, 4, 7, 9}. Further-
more, we analyze the ATC D-NSPE LMS scheme for several
different combining strategies and degrees of connectivity. In
particular, we consider the ATC D-NSPE LMS algorithms with

a) the same neighborhood size at all the nodes, i.e., |Nk| =
5, while |Nk ∩ C1| = 3 for all k ∈ C1. In this scenario,
we employ the static uniform combination weights, i.e.,
awk,` = 1/5 and aς1k,` = 1/3.

b) the clique topology, i.e., |Nk| = N and |Nk ∩ C1| =
|C1| for all k ∈ C1, with corresponding static uniform
combination weights,

c) the topology set as in a), while the combination weights
are adaptive. Specifically, the weights corresponding to
both global and common parameter estimation processes
are being adapted according to the adaptive combination
mechanism proposed in [16]. For instance, the weights
awk,`, for ` ∈ Nk, evolve as

awk,`(i) =
γ−2
k,`(i)∑

m∈Nk
γ−2
k,m(i)

with

γ2
k,`(i) = (1− ν)γ2

k,`(i− 1) + ν||ψ(i)
` − φ

(i−1)
k,w ||2.

We also compare these schemes with an LMS-based non-
cooperative strategy as well as with the incremental-based
NSPE LMS (I-NSPE LMS), developed in [21], that is used
as a benchmark.

The step-size of the LMS adaptation at each node is set
equal to µk = 0.04 for all the algorithms, expect for the
incremental NSPE where µk is the step-size for estimating
the local parameters only. In the I-NSPE LMS, the step-
sizes for estimating global and common parameters are set
to µI−NSPEw = µk/N and µI−NSPEςj = µk/|Cj |, respectively.
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Fig. 6. Learning behavior of network MSD with respect to the parameters
of global interest (a), common interest (b) and for the parameters of local
interest (c).

Accordingly, we obtain a fair comparison among the strategies.
Figure 6 depicts the learning behavior of the two schemes

in terms of the network MSD associated with the estimation
of wo, ςo1 and ξok. Each network MSD is the result of averaging
the local MSDs associated with the estimation of wo and
ξok at each node, except for the network MSD associated
with the estimation of ςo1 , which is averaged over the nodes
belonging to the set C1. To generate each plot, we have
averaged the results over 100 independent experiments where
we assumed Q = 2 PUs, N = 10 SUs and X = 16 Gaussian
basis functions, of amplitude normalized to one and standard
deviation σb = 0.05. Furthermore, we have considered that
each SU scans L = 80 channels over the normalized frequency
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Fig. 7. The mean error trajectories of some vector coefficients related to the
global (upper left), common (upper right) and local parameters (bottom) at
randomly selected nodes.

axis between 0 and 1, whereas the noise zk,i in (86) is zero-
mean Gaussian with standard deviation varying between 0.04
and 0.16 for different k.

Each attenuation coefficient follows p̂tk,i(f) = ptk,i(f) +
ntk, where ntk denotes a zero-mean Gaussian variable with
standard deviation in the range between 0.3 and 1.25, while
ptk,i(f) is related to the frequency response of the channel
modeled as a static 3-tap FIR filter. Each tap is assumed to be
a zero-mean complex Gaussian random variable with variance
σ2
h = 0.25. Under this setting, we observe that all the proposed

D-NSPE schemes outperform the non-cooperative one, espe-
cially when estimating wo and ςo1 . Note that D-NSPE a) and
b) well-approximate the centralized-like performance of the
incremental strategy. Finally, due to the fact that the adaptive
combiners integrate some additional knowledge regarding the
quality of the estimates at the different nodes, D-NSPE c)
outperforms all other schemes including the incremental.

Finally, to illustrate the asymptotic unbiasedness of the
proposed technique, in Fig. 7 we plot its mean weight behavior
under the previously described setting. The figure indicates the
mean weight evolution of some vector coefficients related to
the global, common and local parameters at randomly selected
nodes, whereas the optimal values from (9) are indicated by
the black lines. As expected by Theorem 1, D-NSPE LMS has
estimated the optimum weight vectors without bias.

VI. CONCLUSIONS AND FUTURE WORK

We have addressed a novel NSPE problem where the
estimation interests of the nodes consist of a set of local
parameters, network-wide global parameters as well as com-
mon parameters to a subset of nodes. To do so, we have
proposed two distributed adaptive schemes where a local
LMS is run at each node in order to estimate each set of
local parameters. Coupled among themselves and with all
these local estimation processes, the parameters of global
and common interests are estimated by LMS-based schemes
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implemented under a diffusion mode of cooperation. After
obtaining conditions under which the proposed strategies are
asymptotically unbiased, the mean-square steady-state perfor-
mance has been evaluated. All the theoretical results have been
validated through generic computer simulations. Moreover, the
performance of the proposed algorithms have been illustrated
in the context of cooperative spectrum sensing in Cognitive
Radio networks.

APPENDIX A

Here, we aim to specify the structure of the permutation
matrix P in (53). To this end, first note that there are N
blocks, each corresponding to a specific node, i.e., P =
col{E1, . . . , EN}, where the kth block Ek, of dimensions
Mk × M̆ , takes the following form

Ek = col{efg(k,1), . . . , efg(k,Mg), efc(k,Ik(1),1),

. . . , efc(k,Ik(1),Mc), . . . , efc(k,Ik(1),Mc),

. . . , efc(k,Ik(|Ik|),1), . . . , efc(k,Ik(|Ik|),Mc),

efl(k,1), . . . , efl(k,Ml)}

(89)

with the three counter functions, specifying the position of the
unity in the basis vectors e(·), defined by

fg(k, c) = (k − 1) ·Mg + c , (90)

fc(k, j, c) = N ·Mg +

j−1∑

j′=1

|Cj′ | ·Mc + (|Cj,k| − 1) ·Mc + c

(91)

and

fl(k, c) = N ·Mg +

J∑

j=1

|Cj | ·Mc + (k − 1) ·Ml + c (92)

with Cj,k given in (38).
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