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Spectrum-Adapted Tight Graph Wavelet and

Vertex-Frequency Frames
David I Shuman, Christoph Wiesmeyr, Nicki Holighaus, and Pierre Vandergheynst

Abstract

We consider the problem of designing spectral graph filters for the construction of dictionaries of

atoms that can be used to efficiently represent signals residing on weighted graphs. While the filters

used in previous spectral graph wavelet constructions are only adapted to the length of the spectrum,

the filters proposed in this paper are adapted to the distribution of graph Laplacian eigenvalues, and

therefore lead to atoms with better discriminatory power. Our approach is to first characterize a family

of systems of uniformly translated kernels in the graph spectral domain that give rise to tight frames of

atoms generated via generalized translation on the graph. We then warp the uniform translates with a

function that approximates the cumulative spectral density function of the graph Laplacian eigenvalues.

We use this approach to construct computationally efficient, spectrum-adapted, tight vertex-frequency

and graph wavelet frames. We give numerous examples of the resulting spectrum-adapted graph filters,

and also present an illustrative example of vertex-frequency analysis using the proposed construction.

I. INTRODUCTION

One of the main focuses of the emerging field of graph signal processing (see [1] for a recent overview)

is to develop transforms that enable us to efficiently extract information from high-dimensional data

residing on the vertices of weighted graphs. In particular, researchers are designing dictionaries of atoms

adapted to the underlying graph data domain, and representing graph signals as linear combinations of

those atoms in various signal processing tasks. To date, the major thrust has been to design dictionaries
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whose atoms are jointly localized in the vertex domain (the analogue of the time domain for signals

on the real line) and the graph spectral domain (the analogue of the frequency domain). For example,

classical wavelet and time-frequency dictionary designs have been generalized to the graph setting in

different manners (see, e.g., [2], [3], [4] for graph wavelet constructions and [5], [6] for a generalization

of windowed Fourier frames).

The dictionaries we consider in this paper are comprised of atoms constructed by translating smooth

graph spectral filters to be centered at different vertices of the graph (a more precise mathematical

definition of this class of dictionaries is included in Section II). The translation is accomplished by

multiplying each filter by a graph Laplacian eigenvector in the graph Fourier domain, and the smoothness

of the graph spectral filters ensures that the atoms are localized around their center vertices. The first

example of such a dictionary is the spectral graph wavelet frame of [4], where the system of graph spectral

filters consists of a single lowpass kernel and a sequence of dilated bandpass kernels. In [7], [8], Leonardi

and Van De Ville introduce Meyer-like wavelet and scaling kernels that lead to tight spectral graph wavelet

frames. As outlined in [6, Section 6.7.2], benefits of a tight frame include increased numerical stability

when reconstructing a signal from noisy coefficients [9], [10], [11], faster computations (e.g., when

computing proximity operators in convex regularization problems [12]), and the ability to interpret the

spectrogram of a generalized time-frequency frame as an energy density function.

While the structure of the graph under consideration is incorporated into the spectral graph wavelets

of [4] via the graph Laplacian, the spectral graph wavelet and scaling kernels are only adapted to the

maximum graph Laplacian eigenvalue, and not to the specific graph Laplacian spectrum.1 As a result,

for graphs with irregularly spaced graph Laplacian eigenvalues, many spectral graph wavelets may be

highly correlated with the wavelets centered at nearby vertices and scales, and therefore, their coefficients

may not provide as much discriminatory power when analyzing graph signals. We provide more detailed

examples of this phenomenon in Sections V and VII.

On the other hand, the windowed graph Fourier frames of [5], [6] feature atoms that are adapted

to the specific discrete graph Laplacian spectrum via a generalized modulation; however, the extra

adaptation comes at the computational expense of having to compute a full eigendecomposition of the

graph Laplacian, which does not scale well with the number of vertices and edges in the graph. A

Chebyshev polynomial approximation method [4, Section 6], [13] enables the spectral graph wavelets

(and other dictionaries belonging to the family considered in this paper) to be implemented without

1The tight graph wavelet kernels of [8] are also adapted to the maximum degree of the graph. We discuss the relation between
those kernels and the proposed kernels in more detail in Section V, Remark 3.
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performing this full eigendecomposition.

References [14] and [15] use sets of graph signals as training data to learn dictionaries of atoms that

are also constructed by translating smooth graph kernels to different vertices. Since the graph structure is

incorporated into the learning process, the learned kernels are indirectly adapted to the underlying graph

data domain (and its Laplacian spectrum) as well as the training data.

In this paper, we propose a new method to design the sequence of spectral graph kernels so that (i)

they are adapted to the entire graph Laplacian spectrum of the graph under consideration (but not to

training data as in [14], [15]), and (ii) the dictionary resulting from translations of these kernels to all

vertices on the graph is both a tight frame and has a fast implementation via the Chebyshev polynomial

approximation method of [4, Section 6]. Our main idea is to construct the spectral graph kernels as

warped versions of uniformly translated kernels in the graph spectral domain, with the warping function

approximating the cumulative spectral density function of the graph Laplacian in order to adapt the kernels

to the entire spectrum. We use this approach to generate new vertex-frequency frames (generalizations

of time-frequency analysis), as well as new graph wavelet frames.

In addition to the primary contribution of adapting the graph spectral filters to the spectrum of the

specific graph under consideration when generating dictionaries to represent graph signals, the paper

contains two additional contributions that may find application outside the context of graph signal

processing: (i) a new method to generate uniform translates of smooth windows whose squares sum to a

constant function over either the entire real line or a finite interval (Section III); and (ii) an implementation

of a method to approximate the empirical spectral cumulative distribution of a large, sparse matrix based

on classical spectrum slicing theory (Section V-B).

II. NOTATION AND BACKGROUND

We generally follow the notation from [1], with the combinatorial and normalized graph Laplacians de-

noted by Ł and Ł̃, respectively, and their eigenvalue and eigenvector pairs denoted by {(λl, ul)}l=0,1,...,N−1

and {(λ̃l, ũl)}l=0,1,...,N−1, where N is the number of vertices in the graph. We denote the entire discrete

graph Laplacian spectrum {λ0 = 0, λ1, . . . , λN−1 = λmax} by σ(Ł). Given a graph signal fin ∈ RN

and a graph spectral filter (which we also refer to as a kernel) ĝ : σ(Ł)→ R, graph spectral filtering is

defined as multiplication in the graph Fourier domain:

f̂out(λl) := f̂in(λl)ĝ(λl), (1)
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where the graph Fourier transform is f̂in(λl) := 〈fin, ul〉.2 Note that the graph spectral filter ĝ(·) is

often defined as a continuous function on the nonnegative real line and then restricted to σ(Ł). In the

vertex domain (i.e., taking an inverse graph Fourier transform of (1)), graph spectral filtering reads as a

generalized convolution [5]:

fout = fin ∗ g =

N−1∑
l=0

f̂in(λl)ĝ(λl)ul.

The dictionaries we consider in this paper are completely characterized by a sequence of graph spectral

filters {ĝm(·)}m=1,2,...,M , and consist of all M ·N atoms of the form

gi,m := Tigm =
√
Nδi ∗ gm =

√
Nĝm(Ł)δi =

√
N

N−1∑
l=0

ĝm(λl)u
∗
l (i)ul. (2)

In (2), δi is the Kronecker delta, and Ti is a generalized translation operator that localizes each atom

gi,m around its center vertex i. The spread of the atom gi,m around its center vertex i is controlled by the

smoothness of the filter ĝm(·) [4], [6]. The spectral graph wavelets [4] satisfy (2), with each bandpass

kernel given by ĝm(λl) = ĝ(tmλl) for a fixed mother kernel ĝ(·) and different dilation factors tm that

are only adapted to the length of the spectrum.

In the remainder of the paper, we suggest different methods to choose the sequence of graph spectral

filters {ĝm(·)}m=1,2,...,M . We want the resulting dictionaries to form tight frames, so before proceeding,

we present a sufficient condition on the spectral graph filters to ensure this property. A proof of the

following lemma is included in the Appendix.

Lemma 1 (Slight generalization of Theorem 5.6 of [4]): Let D := {gi,m}i=1,2,...,N ; m=1,2,...,M be a

dictionary of atoms with gi,m := Tigm, and define

G(λ) :=

M∑
m=1

[
ĝm(λ)

]2
.

If G(λ) > 0 for all λ ∈ σ(Ł), then for all f ∈ RN ,

A‖f‖22 ≤
N∑
i=1

M∑
m=1

|〈f, gi,m〉|2 ≤ B‖f‖22,

where

A = N · min
λ∈σ(Ł)

G(λ) and B = N · max
λ∈σ(Ł)

G(λ).

In particular, if G(λ) is constant on σ(Ł), then D is a tight frame.

2Alternatively, the normalized graph Laplacian eigenvectors can be used as the Fourier basis, with λ̃l replacing λl in (1). We
use the normalized graph Laplacian eigenvectors as the graph Fourier basis in Section VI-C.
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III. UNIFORM TRANSLATES

Our objective in this section is to develop a method to generate a system of filters such that (i) the

filters are translated versions of each other in the graph spectral domain, and (ii) the M ·N dictionary

atoms constructed by applying each generalized translation operator Ti to each filter form a tight frame.

More precisely, given an upper bound, λmax, on the spectrum and a desired number of filters, M , we

want to find a kernel ĝU (·) and constants a and A such that

G(λ) =

M∑
m=1

[
ĝU (λ−ma)

]2
= A, ∀λ ∈ [0, λmax]. (3)

The following theorem and corollaries, proofs of which are included in the appendix, show one method

to construct a parametrized family of kernels satisfying (3).

Theorem 1: Let K ∈ N and ak ∈ R for k ∈ {0, 1, . . . ,K}, and define

q(t) :=

K∑
k=0

ak cos

(
2πk

(
t− 1

2

))
11{0≤t<1}. (4)

Then for any R ∈ N satisfying R > 2K,

∑
m∈Z

∣∣∣q (t− m

R

)∣∣∣2 = Ra2
0 +

R

2

K∑
k=1

a2
k, ∀t ∈ R;

i.e. the squares of a system of regular translates sum up to a constant function.

Corollary 1: Given a desired number of filters, M , let R and K be any integers satisfying 2 < R ≤M

and K < R
2 , and define the kernel

ĥ(y) :=

K∑
k=0

ak cos

(
2πk

(
y − 1

2

))
11{0≤y<1},

where {ak}k=0,1,...,K is a real sequence of coefficients satisfying

K∑
k=0

(−1)kak = 0. (5)

Then

H(y) =

M−R∑
m=1−R

[
ĥ
(
y − m

R

)]2
= Ra2

0 +
R

2

K∑
k=1

a2
k, ∀y ∈

[
0,
M + 1−R

R

]
. (6)

Note that condition (5) is equivalent to requiring the kernel ĥ(·) to be continuous. In the examples in

this paper, we always take the kernel to be a shifted Hann kernel, with K = 1 and a0 = a1 = 1
2 , in

which case the right-hand side of (6) is equal to 3R
8 , where R is a parameter controlling the overlap of
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the shifted kernels. The Blackman window also satisfies (4) and (5), with K = 2, a0 = 0.42, a1 = 0.5,

and a2 = 0.08.

Example 1: In Figure 1, we show three different sets of translated Hann kernels, for different R and

M .

R = 3, M = 3

−1 −0.5 0 0.5 1
0

0.25

0.5

0.75

1

1.25

y

(a)

R = 3, M = 9

−1 −0.5 0 0.5 1 1.5 2 2.5 3
0

0.25

0.5

0.75

1

1.25

y

(b)

R = 5, M = 9

−1 −0.5 0 0.5 1 1.5 2
0

0.25

0.5

0.75

1

1.25

1.5

1.75

2

y

(c)

Fig. 1. Translated versions of the shifted Hann kernel, as described in Corollary 1. The vertical red lines show the bounds[
0, M+1−R

R

]
, and the top black lines show H(y).

Corollary 2: Given an upper bound, γ, on the spectrum and a desired number of filters, M , let R and

K be any integers satisfying 2 < R ≤M and K < R
2 , and for a real sequence {ak}k=0,1,...,K satisfying

(5), define

ĝU (λ) :=

K∑
k=0

ak cos

(
2πk

(
M + 1−R

Rγ
λ+

1

2

))
11{− Rγ

M+1−R≤λ<0}. (7)

Then

G(λ) =

M∑
m=1

[
ĝUm(λ)

]2
= Ra2

0 +
R

2

K∑
k=1

a2
k, ∀λ ∈ [0, γ],

where

ĝUm(λ) := ĝU
(
λ−m γ

M + 1−R

)
. (8)

Proof: Take ĝU (λ) = ĥ
([

λ
γ

][
M+1−R

R

]
+ 1
)

, with ĥ(·) from Corollary 1, and then perform a change

of variable m′ = m−R.

Example 1 (cont.): In Figure 2, we take γ = λmax = 12 and stretch the filters of Figure 1 to fit the

spectrum [0, λmax], for each of the three different pairs of R and M . In each case, G(λ) is a constant,

and therefore, by Lemma 1, the dictionary
{
Tig

U
m

}
i=1,2,...,N ; m=1,2,...,M

is a tight frame.
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7

R = 3, M = 3

0 2 4 6 8 10 12
0

0.25

0.5

0.75

1

1.25

λ

(a)

R = 3, M = 9

0 2 4 6 8 10 12
0

0.25

0.5

0.75

1

1.25

λ

(b)

R = 5, M = 9

0 2 4 6 8 10 12
0

0.25

0.5

0.75

1

1.25

1.5

1.75

2

λ

(c)

Fig. 2. Spectral graph filter banks of uniform translates,
{
ĝUm(λ)

}
m=1,2,...,M

, of a shifted and scaled Hann kernel, ĝU (λ).

The top black line in each figure shows G(λ). Comparing (b) and (c), we see that for a fixed number of filters M , the overlap
of the filters increases as the parameter R increases.

Remark 1: For any fixed number K of cosine terms in the definition of the kernel ĝU (·) in (7), we

can choose a nonzero coefficient sequence {ak}k=0,1,...,K such that ĝU (·) ∈ C2K−1. This can be seen by

differentiating the kernel to find a linear system of equations for the coefficients [16], [17]. To satisfy

this system of equations, the coefficient sequence must be in the kernel of a K × (K + 1) matrix. Since

this kernel is never trivial, we can always find nonzero coefficient sequences yielding the desired degree

of smoothness.

IV. WARPING

To generate systems of filter banks in the graph spectral domain, we now warp the uniform translates

constructed in the previous section. Specifically, for a given warping function ω : [0, λmax] → R, we

consider filters of the form

ĝm(λ) = ĝUm (ω(λ)) , m = 1, 2, . . . ,M. (9)

The role of the warping function ω(·) is to scale the spectrum, and for different applications, different

scalings of the spectrum can be desirable. In Section IV-A, we use a logarithmic scaling to generate a

tight graph wavelet frame that is only adapted to the length of the spectrum. In Sections V and VI, we

leverage this same warping idea to scale the spectrum according to the distribution of eigenvalues over the

spectrum, in order to generate spectrum-adapted vertex-frequency frames. In Section VII, we compose the

logarithmic and spectrum-based warping functions to generate spectrum-adapted graph wavelet frames. In

all cases, the warping function should be nondecreasing, and it is also desirable for the warping function

to be smooth in order that the warped filters are smooth. As detailed in the following remark, the sum
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of the squared magnitudes of the warped filters defined in (9) is the same as the sum of the squared

magnitudes of the initial system of translates, and therefore the warping method is a good choice for

constructing tight frames.

Remark 2: If ω : [0, λmax]→ [0, γ], then, by Corollary 2 and Lemma 1, {Tigm}i=1,2,...,N ; m=1,2,...,M

is also a tight frame, because

M∑
m=1

|ĝm(λ)|2 =

M∑
m=1

|ĝUm(ω(λ))|2 = Ra2
0 +

R

2

K∑
k=1

a2
k, ∀λ ∈ [0, λmax].

A. Example: Tight Graph Wavelet Frames

Recently, [18] demonstrates that wavelets on the real line can be constructed by warping Gabor systems

with a logarithmic warping function. In the same spirit, we now present a new method to construct tight

wavelet frames in the graph setting by using a logarithmic function to warp systems of uniform translates

in the graph spectral domain.

To construct a set of M − 1 wavelet kernels and one scaling kernel, we proceed as follows. First,

define the warping function ω(x) := log(x).3 Second, as described in Corollary 2, choose 2 < R ≤ M

and K ≤ R
2 and construct a set of uniform translates,

{
ĝUm(·)

}
m=1,2,...,M−1

, with γ = ω(λmax). Finally,

define the M − 1 wavelet kernels as

ĝm(λ) := ĝUm−1

(
ω(λ)

)
, m = 2, 3, . . . ,M, (10)

and the scaling kernel as

ĝ1(λ) :=

√√√√Ra2
0 +

R

2

K∑
k=1

a2
k −

M∑
m=2

|ĝm(λ)|2. (11)

Note that for some values of λ in [0, λmax], ω(λ) /∈ [0, γ]; however, the form of the scaling kernel (11)

and Lemma 1 ensure that {Tigm}i=1,2,...,N ; m=1,2,...,M is still a tight wavelet frame.

Example 2: In Figure 3(c), we show an example of graph wavelet and scaling kernels generated in

the above fashion, using Hann kernels (K = 1 and a0 = a1 = 1
2 ) with λmax = 12, R = 3, and

M = 8. Comparing this system to the corresponding kernels used for the spectral graph wavelet transform

(SGWT) [4] and Meyer-like graph wavelet frame [7], [8], we see that, similar to the Meyer-like kernels,

the log-warped kernels lead to a tight frame and the support of each wavelet kernel is a strict subset of

3We take ω(0) to be −∞ so that ĝm(0) := ĝUm−1

(
−∞

)
= 0. Alternatively, in numerical implementations, we can define

ω(x) := log(x) + ε, where ε is an arbitrarily small constant.
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the spectrum [0, λmax] (analogously to bandlimited wavelets on the real line); however, the overlap and

shape of the wavelet kernels is closer to the spline-based SGWT wavelet kernels.

Spectral Graph
Wavelet Frame [4]

0 2 4 6 8 10 12
0

0.5

1

1.5

2

2.5

3

λ

(a)

Meyer-Like Tight
Graph Wavelet Frame [7], [8]

0 2 4 6 8 10 12
0

0.5

1

1.5

λ

(b)

Log-Warped Tight
Graph Wavelet Frame

0 2 4 6 8 10 12
0

0.5

1

1.5

λ

(c)

Fig. 3. Three different sets of wavelet and scaling kernels in the graph spectral domain. The top black line in each figure is
G(λ).

V. SPECTRUM-ADAPTED FILTERS

While each atom of the form Tigm =
√
Nĝm(Ł)δi generated from the filters in Examples 1 and 2 is

adapted to the particular graph spectrum through the matrix function ĝm(Ł), the filters themselves are

only adapted to the length of the discrete spectrum, and not to the specific locations of the eigenvalues.

As discussed in [6], in order to extract information from signals with oscillations that are localized on

the graph, it is useful to develop atoms that are simultaneously localized in both the vertex domain and

the graph spectral domain. In classical continuous-time or discrete-time time-frequency analysis, we can

form such atoms by modulating and then translating a window, where the modulation is a translation in

the Fourier domain. In the graph setting, however, the Laplacian spectrum is not only finite, but it is not

uniformly distributed. Therefore, as Example 3 below demonstrates, simply shifting filters in the graph

spectral domain is not the ideal way to break the spectrum up into different frequency bands for analysis.

Example 3: In Figure 4, we show three different graphs with N = 64 vertices. In Figure 5, we plot

systems of eight uniform translates of the form (8), with γ = λmax for the three different graphs. The

filters are only adapted to the length of the spectrum, λmax; however, we also show the locations of the

graph Laplacian eigenvalues with “x” marks on the horizontal axis. Throughout the paper, we mark the

eigenvalues locations that are used in the design of the filters in red, and those that are not known or not

used in the design of the filters in black.
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Path Graph

(a)

Sensor Network

(b)

Comet Graph

(c)

Fig. 4. Three different graphs with 64 vertices. The degree of the center vertex in the comet graph in (c) is 30. The non-zero
edge weights in (a) and (c) are all equal to 1. The edge weights in the sensor network in (b) are assigned based on physical
distance via a thresholded Gaussian kernel weighting function (see, e.g., [1, Equation (1)]).

Path Graph

0 0.5 1 1.5 2 2.5 3 3.5
0

0.25

0.5

0.75

1

1.25

λ

(a)

Sensor Network

0 2 4 6 8 10 12
0

0.25

0.5

0.75

1

1.25

λ

(b)

Comet Graph

0 5 10 15 20 25 30
0

0.25

0.5

0.75

1

1.25

λ

(c)

Fig. 5. Systems of uniformly translated filters,
{
ĝUm

}
m=1,2,...,8

, adapted to the length, λmax, of the graph Laplacian spectrum

for three different graphs, each with N = 64 vertices. The locations of the graph Laplacian eigenvalues are marked on the
horizontal axis. Only those shown in red (λ0 and λmax) are used in the design of the filters.

We see that simply shifting filters in the graph spectral domain may lead to a disparity in the number

of graph Laplacian eigenvalues (frequencies) in each frequency band, which is not ideal for information

extraction. As an extreme example, for the comet graph, because ĝU5 (λ) = 0 for all λ ∈ σ(Ł) in Figure

5(c), 〈f, TigU5 〉 = 0 for all i ∈ {1, 2, . . . , N} and every signal f ∈ RN . Therefore, given a fixed number

of filters and knowledge about the locations of the eigenvalues, ĝU5 (·) (shown in magenta) is not a good

choice of a filter, because 〈f, TigU5 〉 provides no additional information about any signal f on this comet

graph.

In the remainder of this section, we present a method to incorporate some knowledge about the

locations of the graph Laplacian eigenvalues into the design of the system of filters, in a manner such that

the resulting analysis coefficients 〈f, Tigm〉 provide more information about the signal f . Our general

November 6, 2013 DRAFT



11

approach is to estimate the density of the graph Laplacian eigenvalues, and then warp the spectrum

accordingly.

In Section V-A, we assume that we know all of the eigenvalues exactly; however, in extremely large

graphs, it is computationally prohibitive to compute this full spectrum, and therefore in Section V-B, we

discuss how to approximate the density of the graph Laplacian eigenvalues in a more efficient manner.

A. Spectrum-Based Warping Functions

The spectral density function (see, e.g., [19, Chapter 6]) or empirical spectral distribution (see, e.g.,

[20, Chapter 2.4]) of the graph Laplacian eigenvalues of a given graph G with N vertices is the probability

measure

pλ(s) :=
1

N

N−1∑
l=0

11{λl=s}.

Similarly, we can define a cumulative spectral density function or empirical spectral cumulative distri-

bution as

Pλ(z) :=
1

N

N−1∑
l=0

11{λl≤z}. (12)

One method to adapt the uniform translates of Example 3 so that the support of each filter includes

a similar number of eigenvalues is, as in (9), to let the filters be of the form ĝm(λ) = ĝUm (ω(λ)), with

the cumulative spectral density function (12) used as the warping function ω(λ). However, for finite

deterministic graphs, doing so results in discontinuous filters, as the cumulative spectral density function

is discontinuous. We prefer smooth filters, because (i) results characterizing the localization of Tigm in

the vertex domain (see, e.g., [6]) depend on smoothness of ĝm(·) in the graph spectral domain; and (ii)

smooth kernels can be better approximated by low-order polynomials, which is relevant for approximate

computational approaches (see, e.g., [4, Section 6]).

Rather, we build a continuous warping function that approximates the cumulative spectral density

function by interpolating the points4 {(
λl,

l

N − 1

)}
l=0,1,...,N−1

. (13)

We consider two interpolation methods: simple linear interpolation and monotonic cubic interpolation

[21].

4By setting the first interpolation point to (0, 0) and the last to (λmax, 1), we ensure that the support, [0, λmax], of the warped
filters is mapped to the full support of the uniform translates. In the case of a repeated eigenvalue λl = λl+1 = . . . = λl+k,
we just include the single point

(
λl+k,

l+k
N−1

)
in the set of interpolation points.
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Path Graph
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Sensor Network
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Fig. 6. (a)-(c) Spectrum-based warping functions, ω(λ), based on full knowledge of the graph Laplacian spectrum, σ(Ł).
(d)-(f) Systems of warped filters, {ĝm}m=1,2,...,8, where ĝm(λ) = ĝUm(ω(λ)), and ω(λ) are the spectrum-adapted warping
functions constructed with monotonic cubic interpolation in (a)-(c). (g)-(i) Systems of warped filters arising from a warping
function generated by interpolating a subset of 8 of the 64 Laplacian eigenvalues. Specifically, we use the interpolation points{(
λ̄l,

l
N̄−1

)}
l=0,1,...,N̄−1

, where N̄ = 8 and σ̄(Ł) =
{
λ̄l
}
l=0,1,...,7

= {λ0, λ9, λ18, λ27, λ36, λ45, λ54, λ63}.

Example 4: In Figure 6(a)-(c), we show the warping functions generated by interpolating the points

(13) with each of these two methods, for each of the graphs in Example 3. We then show the resulting

systems of spectrum-adapted warped filters in Figure 6(d)-(f). We see that the warped filters are narrower

where the eigenvalue density is higher – each end of the spectrum for the path graph, the middle of
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the spectrum for the sensor network, and the very low end of the spectrum for the comet graph. If we

interpolate a subset of the Laplacian eigenvalues, there is not a huge discrepancy in the warping functions,

and the resulting spectrum-adapted filters, shown in Figure 6(g)-(i), are smoother.

Remark 3: Interestingly, in the tight spectral graph wavelet frame construction of [8], Leonardi and

Van De Ville include a warping function of arccos
(

1− λl
dmax

)
in order that the resulting spectral graph

wavelet on a ring graph coincides with the classical Meyer wavelet. When applied to the special case

of a ring graph, our general warping method shown in Example 4 almost exactly yields the warping

function 1
π arccos

(
1− λl

2

)
. However, as shown later in Example 8, the two methods are quite different

in general.

B. Approximation of the Cumulative Spectral Density Function

From Example 4, we see that we do not need to compute all of the Laplacian eigenvalues to generate

a warping function that provides a reasonable approximation of the cumulative spectral density function.

However, we are not aware of a scalable method to draw graph Laplacian eigenvalues according to

the spectral density function of a high-dimensional graph Laplacian. For example, it is known that the

Lanczos approximate eigendecomposition method does not accurately predict the density of the spectrum

[22]. In general, the problem of approximating the spectral density function of a large graph Laplacian

matrix is an open question.

For the purposes of this paper, we take a simple approach to this problem. Starting with an upper

bound, λupper, on the Laplacian spectrum, we take Q+1 evenly spaced points on the interval [0, λupper],

and then compute the number of eigenvalues of Ł below each point using the spectrum slicing method

of [23, Section 3.3]. Specifically, for every q ∈ {0, 1, . . . , Q}, we compute a triangular factorization

Ł − qλupper
Q I = Lq∆qL

∗
q , where ∆q is a diagonal matrix and Lq is a lower triangular matrix (not to be

confused with the Laplacian matrix Ł). By a corollary of Sylvester’s law of inertia, the number of negative

eigenvalues of the diagonal matrix ∆q is equal to the number of negative eigenvalues of Ł − qλupper
Q I ,

and therefore equal to the number of eigenvalues of Ł less than qλupper
Q [23, Theorem 3.3.1]. Finally,

to form a smooth warping function that estimates the cumulative spectral density function, we once

again use the monotonic cubic polynomial interpolation routine of [21] with the interpolation points{(
qλupper
Q , µq

N−1

)}
q=0,1,...,Q

, where µq is the number of diagonal elements of ∆q less than zero.5

To perform the triangular factorizations of Ł − qλupper
Q I , we use the MATLAB LDL sparse Cholesky

package, which is written by Timothy Davis and included in the SuiteSparse package [24]. To improve

5We take µ0 = 0 and µQ = N − 1 without actually performing the triangular factorization for these two values of q.
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the computational times slightly, we modify the LDL package so that it performs the symbolic analysis

step only once, since the result is the same for all q. We also include a sparsity preserving permutation

using the MATLAB routine symamd. On a 1.8GHz Intel Core i7 MacBook Air laptop with 4GB of

memory, for very sparse mesh-like graphs with mean degree 3 and the number of vertices N equal to

50k, 200k, 500k, and 1m, the computation of the warping function using this method took approximately

1.5 seconds, 15 seconds, 2 minutes, and 5 minutes, respectively.

VI. FILTERS ADAPTED TO CLASSES OF LARGE RANDOM GRAPHS

In this section, rather than estimating the spectral density function for a deterministic graph, we consider

classes of large random graphs for which the asymptotic (as the number of vertices N goes to infinity)

empirical spectral distribution of the graph Laplacian eigenvalues is known. For a given class of random

graphs, the empirical spectral distribution of a random graph realization with N vertices is a random

measure; however, for certain classes of random graphs, the sequence of random measures for each

possible N actually converges to a deterministic probability measure [20, Chapter 2.4]. We use these

deterministic distributions (or some approximation of them) as the warping functions in (9).

The methods we develop in this section are not only useful when we are considering random graphs

with known empirical spectral distributions; they are also potentially useful when dealing with a large

deterministic graph whose structural properties (e.g., degree distribution, diameter, clustering coefficient)

are similar to those of a particular class of random graphs. Then the empirical spectral distribution of

that class of random graphs may be used as an approximation to the spectral density of the deterministic

graph, in order to construct an appropriate warping function.

A. Graph Laplacian Spectrum of Large Random Regular Graphs

The first class of random graphs we consider is that of random regular graphs. For integers r and N

satisfying 3 ≤ r < N and rN is even, let GN,r be the set of all unweighted graphs with N vertices and

with the degree of every vertex equal to r. A random regular graph is one chosen uniformly at random

from the set GN,r (see, e.g., [25, Chapter 2.4] for more on random regular graphs).

The asymptotic behavior of the empirical spectral distribution of the graph Laplacian eigenvalues of a

large random regular graph is given by the following result, which is commonly referred to as McKay’s

Law.

Theorem 2 (McKay [26]): In the limit as the number of vertices N goes to infinity, the empirical

spectral distribution, pRRλ,N (s) of the graph Laplacian eigenvalues of a large random regular graph with
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degree r converges in probability to the deterministic probability density function

pRRλ,∞(s) := lim
N→∞

pRRλ,N (s) =
r
√

4(r − 1)− (s− r)2

2π (r2 − (s− r)2)
11{r−2

√
r−1≤s≤r+2

√
r−1}, (14)

and the empirical spectral cumulative distribution, PRRλ,N (z), converges in probability to

PRRλ,∞(z) =

∫ z

0
pRRλ,∞(s) ds

=



0, if 0 ≤ z < r − 2
√
r − 1 1

2 + r
2π arcsin

(
z−r

2
√
r−1

)
− r−2

2π arctan

(
(r−2)(z−r)

r
√

4(r−1)−(z−r)2

)
 , if r − 2

√
r − 1 ≤ z < r + 2

√
r − 1

1, if r + 2
√
r − 1 ≤ z

.

Now, given a large but finite random regular graph with N vertices and degree r, we (i) compute an

upper bound λupper on λmax, either via the power method or by using a simple upper bound such as

[27]

λmax ≤ max
i∼j
{di + dj} = 2r for a random regular graph;

(ii) take the warping function to be the empirical spectral cumulative distribution on the interval [0, λupper]:

ωRR(z) := PRRλ,∞(z), z ∈ [0, λupper] ; (15)

and (iii) take the warped filters to be of the form (9), with γ = ωRR(λupper) = 1 for the design of the

uniform translates.6

Example 5: We choose a realization from the class of random regular graphs with N = 3000 vertices

and degree r = 3, and take λupper = 2r = 6. In Figure 7, we compare the normalized histogram of

the graph Laplacian eigenvalues to the expected asymptotic spectral density, pRRλ,∞(s), for large N , and

plot the warping function, ωRR(λ), and warped system of filters. Note that while the warping function

is adapted to the class of random regular graphs with degree 3, the actual graph Laplacian eigenvalues

shown in Figure 7(a) are not used to construct the warping function in Figure 7(b) or the warped filters

in Figure 7(c). Therefore, we can apply the same set of filters to any realization of a random regular

graph of degree 3 with a larger number of vertices N without running into scalability issues.

6Note that for a random regular graph with a finite number of vertices, λmax may be greater than r+2
√
r − 1. Thus, in order

to ensure that ωRR(·) is well-defined on the entire spectrum σ(Ł) of the random graph realization, we need to only restrict the
empirical spectral cumulative distribution to [0, λupper], rather than

[
0, r + 2

√
r − 1

]
.
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Empirical Spectral Distribution
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Fig. 7. Construction of a system of filters adapted to the graph Laplacian spectrum of the class of random regular graphs with
degree r = 3. (a) The normalized histogram of the graph Laplacian eigenvalues of a single realization of a random regular
graph with N = 3000 vertices, compared to the asymptotic empirical spectral distribution pRRλ,∞(s) in (14). (b) The warping
function ωRR(λ) defined in (15). (c) The resulting system of warped filters. The black marks on the horizontal axis represent
the eigenvalues of the single realization. While the filters are not adapted to that specific realization, they are narrower in the
regions of the spectrum where the eigenvalue density is higher.

B. Graph Laplacian Spectrum of Erdős-Rényi Random Graphs

In the Erdős-Rényi G(N, p) random graph model [28], [29, Chapter 5], an edge connects each possible

pair of the N vertices with probability p, with 0 < p < 1; that is, for all i, j ∈ {1, 2, . . . , N} with i 6= j,

Wij = Wji =

1, with probability p

0, with probability 1− p
,

independently of Wi′j′ for (i′, j′) 6= (i, j). The following theorem of Ding and Jiang characterizes the

asymptotic empirical spectral cumulative distribution of the graph Laplacian eigenvalues of Erdős-Rényi

random graphs.

Theorem 3 (Ding and Jiang, Theorem 2, [30]): In the limit as the number of vertices N goes to

infinity, with probability one, the shifted and scaled empirical spectral cumulative distribution

P̄ERλ,N (z) :=
1

N

N−1∑
l=0

11{
λl−pN√
pN(1−p)

≤z
} (16)

of the graph Laplacian eigenvalues of a large random Erdős-Rényi graph with edge probability p converges

weakly to the measure µ = µA � µB , the free additive convolution7 of the standard normal distribution

7For more details about free probability theory and the free additive convolution, see [20, Chapter 2.5] or [31].
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with density

dµA :=
1√
2π
e
−x2

2 dx,

and the semi-circular distribution with density

dµB :=
1

2π

√
4− x2 11{−2≤x≤2} dx. (17)

Given a large but finite Erdős-Rényi random graph with N vertices and edge probability p, we can

approximate the empirical spectral cumulative distribution by rearranging (16) to get

PERλ,N (z) :=

√
1

pN(1− p)
µ

((
−∞, z − pN√

pN(1− p)

])
=

√
1

pN(1− p)

∫ z

−∞
dµ

(
s− pN√
pN(1− p)

)
,

(18)

and then proceed as in Section VI-A with ωER(z) := PERλ,N (z) for z ∈ [0, λupper]. We should comment

on a few technical issues. First, as mentioned earlier, for a fixed N , the empirical spectral cumulative

distribution is a random measure, while the sequence of distributions converges to a deterministic measure

asymptotically as N increases. Nonetheless, we are taking the deterministic approximation (18) as the

warping function. Second, in general, computing free convolutions is non-trivial. In Example 6 below,

we use the numerical computational method presented in [32] to compute the density dµ in (18). Third,

the support of the density function of the free convolution of the standard normal distribution and the

semi-circular distribution is the entire real line. Therefore, unlike the case of the random regular graph

above, ωER(0) is not exactly equal to zero; however, for large N , it is quite small (e.g., on the order

of 1
1000 for Example 6 below). Another consequence of the non-compact support of pERλ,N (s) is that we

cannot choose a strict upper bound λupper. Rather, for any given ε > 0, we can choose a λupper such

that the probability that an eigenvalue is bigger than λupper is less than ε.

Example 6: We choose a realization from the class of Erdős-Rényi random graphs with N = 3000

vertices and edge probability p = 0.05, and take λupper = pN+4
√
pN(1− p) = 197.75. In Figure 8, we

compare the normalized histogram of the graph Laplacian eigenvalues to pERλ,N (s) and plot the warping

function and warped system of filters.

C. Normalized Graph Laplacian Spectrum of Erdős-Rényi Random Graphs

As discussed in [1], it may be beneficial to use the normalized graph Laplacian eigenvectors as a graph

spectral filtering basis in some applications. Therefore, we continue to consider Erdős-Rényi random

graphs, and now derive filters adapted to the normalized graph Laplacian spectrum σ(L̃). The asymptotic
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Empirical Spectral Distribution
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Fig. 8. Construction of a system of filters adapted to the graph Laplacian spectrum of the class of Erdős-Rényi random graphs
with N = 3000 vertices and edge probability p = 0.05. (a) The normalized histogram of the graph Laplacian eigenvalues of a
single graph realization from this class, compared to the approximate empirical spectral distribution pERλ,N (s). (b) The warping
function ωER(λ) defined in (18). (c) The resulting system of warped filters. Once again, the filters, although not adapted to that
specific realization, are narrower in the regions of the spectrum where the eigenvalue density is higher.

behavior of the empirical spectral cumulative distribution of these eigenvalues is characterized in the

following theorem.

Theorem 4 (Fan, Lu, and Vu, Theorem 6, [33] and Jiang, Corollary 1.3, [34]): In the limit as the num-

ber of vertices N goes to infinity, with probability one, the shifted and scaled empirical spectral cumulative

distribution

P̄ER
λ̃,N

(z) :=
1

N

N−1∑
l=0

11{√ pN

(1−p)(1−λ̃l)≤z
}

of the normalized graph Laplacian eigenvalues of a large random Erdős-Rényi graph with edge probability

p converges weakly to the semi-circular distribution (17).

We want to take the warping function for a random graph with N vertices to be the (deterministic)

approximate empirical spectral cumulative distribution. Substituting x =
√

pN
1−p(1− s) into (17) yields

pER
λ̃,N

(s) =
1

2π

√
pN

1− p

√
4− pN

1− p
(1− s)2 11{

1−2
√

1−p
pN
≤s≤1+2

√
1−p
pN

}. (19)
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Integrating (19), we find that for large N , the empirical spectral cumulative distribution is approximately

PER
λ̃,N

(z) =

∫ z

0
pER
λ̃,N

(s) ds

=



0, if 0 ≤ z < 1− 2
√

1−p
pN π

√
1−p
pN +

(
z−1

2

)√
4− pn

1−p(1− z)2

−2
√

1−p
pN arcsin

(√
pN
1−p

(
1−z

2

))
 , if 1− 2

√
1−p
pN ≤ z < 1 + 2

√
1−p
pN

1, if 1 + 2
√

1−p
pN ≤ z ≤ 2

,

where we use formulas from [35, Section 2.26, pp. 94-95] to evaluate the integral.

Thus, given a large but finite Erdős-Rényi random graph with N vertices and edge probability p, we

proceed as in Section VI-A, with λ̃upper either computed more precisely or simply set to 2, and

ω̃ER(z) := PER
λ̃,∞(z), z ∈

[
0, λ̃upper

]
. (20)

Example 7: We now consider the same class of Erdős-Rényi random graphs and specific graph

realization as in Example 6, but we adapt the filters to the normalized graph Laplacian spectrum. We

use the trivial upper bound λupper = 2. Figure 9 shows the approximate empirical spectral distribution,

warping function, and resulting system of warped filters.
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Fig. 9. Construction of a system of filters adapted to the normalized graph Laplacian spectrum of the class of Erdős-Rényi
random graphs with N = 3000 vertices and edge probability p = 0.05. (a) The normalized histogram of the normalized graph
Laplacian eigenvalues of a single graph realization from this class, compared to the approximate empirical spectral distribution
pER
λ̃,N

(s) given in (19). (b) The warping function ω̃ER(λ̃) defined in (20). (c) The system of warped filters.
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VII. SPECTRUM-ADAPTED TIGHT GRAPH WAVELET FRAMES

We can now combine the logarithmic warping from Section IV-A with the spectrum-adapted warping

functions from Sections V and VI to generate spectrum-adapted tight wavelet frames. Namely, we take

the warping function to be

ω(λ) := log
(
ω0(λ)

)
, (21)

where ω0(·) is a normalizing constant times some approximation of the empirical spectral cumulative

distribution. Then we can once again generate the wavelet and scaling kernels according to (10) and (11).

Example 8: We consider the same class of Erdős-Rényi random graphs from Example 6, and take

ω0(λ) = λupper · ωER(λ). In Figure 10, we compare the wavelet and scaling kernels generated from the

spectral graph wavelet transform, Meyer-like tight wavelet frames, and log-warped tight wavelet frame

from Section IV-A to the warped filters generated by the composite warping function (21).

In Example 3, we saw that a filter whose support does not overlap any Laplacian eigenvalues leads to

atoms with zero norm, which are not helpful in analysis. More generally, it is desirable that the wavelet

atoms are not too correlated with each other. To quantify these correlations, we examine the cumulative

coherence function [36], which, for a given sparsity level k is defined as

µ1(k) := max
|Θ|=k

max
ψ∈D{1,2,...,N·M}\Θ

∑
θ∈Θ

|〈ψ,Dθ〉|
‖ψ‖2‖Dθ‖2

.

In Table I, we compare the cumulative coherences for different graph wavelet constructions. When an

atom has a norm of 0, we list the cumulative coherence as N/A. We also show σ‖gi,m‖, the standard

deviation of the norms of the atoms of each dictionary. The four graphs have N = 256, 500, 64, and

1000 vertices, respectively. We see that in all cases, the spectrum-adapted tight wavelet frame has the

smallest cumulative coherence and standard deviation of the atom norms.

Path Graph Sensor Network Comet Graph Random Erdős-Rényi
µ1(
√
N) µ1(N) σ‖gi,m‖ µ1(

√
N) µ1(N) σ‖gi,m‖ µ1(

√
N) µ1(N) σ‖gi,m‖ µ1(

√
N) µ1(N) σ‖gi,m‖

Spectral Graph 13.3 48.0 0.18 21.7 139.4 0.33 8.0 63.5 0.38 32.0 999.0 0.43
Meyer-Like 15.5 70.1 0.14 21.9 178.8 0.25 N/A N/A 0.28 N/A N/A 0.31
Degree-Adapted Meyer 16.0 130.2 0.18 N/A N/A 0.27 N/A N/A 0.27 N/A N/A 0.31
Log-Warped 13.3 43.7 0.12 21.6 138.1 0.24 N/A N/A 0.28 N/A N/A 0.32
Spectrum-Adapted 12.9 34.0 0.10 21.6 127.0 0.23 8.0 55.2 0.25 31.7 829.5 0.25

TABLE I
COMPARISON OF THE CUMULATIVE COHERENCES OF THE NORMALIZED DICTIONARY ATOMS OF FIVE DIFFERENT GRAPH

WAVELET FRAMES ADAPTED TO FOUR DIFFERENT GRAPHS, FOR SPARSITY LEVELS
√
N (ROUNDED TO THE NEAREST

INTEGER) AND N .
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Fig. 10. Five different sets of wavelet and scaling kernels on the graph Laplacian spectrum for Erdős-Rényi random graphs
with N = 3000 and edge probability p = .05. The spectral graph wavelet transform, Meyer-like tight wavelet frame, and log-
warped tight wavelet frame in (a), (b), and (e) are only adapted to an approximation of the length of the spectrum, λupper . The
Meyer-like tight wavelet frame of (c) is also adapted to the maximum degree via the warping function C arccos

(
1− λ

dmax

)
,

where the constant C = λupper/ arccos
(

1− λupper
dmax

)
ensures that the range of the warping function is [0, λupper]. The tight

frame kernels in (f) are adapted to an approximation of the empirical spectral cumulative distribution via the composite warping
function (21), which is shown in (d). Although not used in the construction of any of the above filters, the eigenvalues of a
single realization from this class of graphs are shown on the horizontal axis of each system of filters. We see that the system
of filters in (f) is the only one of the five concentrated on the area of the spectrum where the eigenvalues are concentrated.

VIII. ILLUSTRATIVE EXAMPLE: SCALABLE VERTEX-FREQUENCY ANALYSIS

In order to extend classical time-frequency analysis to the graph setting, [5], [6] introduce windowed

graph Fourier frames, which consist of atoms of the form gi,k := MkTig, where Ti is the generalized

translation operator of (2) and Mk is a generalized modulation operator. The inner products of these atoms

with a signal comprise the windowed graph Fourier transform (WGFT), and the squared magnitudes of

the WGFT coefficients yield a “graph spectrogram.” The graph spectrogram of a given graph signal can

be viewed as a frequency-lapse video that shows which frequency components are present in which areas
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Fig. 11. (a) The Minnesota road graph segmented into five different clusters. (b) The graph signal defined in (22). (c) The
graph Fourier transform of the signal in (b). (d) A warping function (in red) generated from an approximation of the cumulative
spectral density function of the graph Laplacian eigenvalues of the Minnesota graph. The dashed blue line spans the diagonal
for comparison. (e) A system of warped filters, {ĝm}m=1,2,...,15, where ĝm(λ) = ĝUm(ω(λ)) and ω(·) is the warping function
shown in (d).

of the graph. In Example 9 below, we show how the spectrum-adapted tight frames proposed in Sections

V and VI can also be used to perform vertex-frequency analysis.

Example 9: We form a signal f on the (unweighted) Minnesota road graph [37] by first using spectral

clustering (see, e.g., [38]) to partition the graph into the five clusters shown in Figure 11(a), and then

by summing up eigenvectors in different frequency bands and restricting them to different clusters of the

graph. More specifically, f :=
∑5

j=1 fj/‖fj‖∞, where

fj(i) := 11{vertex i is in cluster j}

N−1∑
l=0

ul(i)11{τ j≤λl≤τ̄j}. (22)

We take the sequence {[τ j , τ̄j ]}j=1,2,...,5 to be [0.06, 0.08], [0.3, 0.5], [3.2, 3.7], [4.6, 5.0], [6.0, 6.6] for the

green, blue, red, magenta, and black clusters, respectively. In Figure 11(c), we plot the graph Fourier

transform of f , and we can see the different frequency components of the signal, but we can not tell that
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the frequency components are localized to different sections of the graph. We then use the method of

Section V-B to approximate the cumulative spectral density function of the graph Laplacian eigenvalues,

and use it as a warping function (shown in Figure 11(d)) to generate the system of 15 spectral graph

filters in Figure 11(e). We then generate a tight frame of vertex-frequency atoms of the form of D in

Lemma 1, and plot the magnitudes of the inner products of the signal f with some of these atoms in

Figure 12. While the structure of f is not apparent from its plot in Figure 11(b), the coefficients in Figure

12 show the varying degree of local smoothness of the signal in different regions of the graph.

|〈f, Tig1〉|

 

 |〈f, Tig2〉|

 

 |〈f, Tig3〉|

 

 |〈f, Tig4〉|

 

 

|〈f, Tig8〉|

 

 |〈f, Tig9〉|

 

 |〈f, Tig10〉|

 

 |〈f, Tig11〉|

 

 

|〈f, Tig12〉|

 

 |〈f, Tig13〉|

 

 |〈f, Tig14〉|

 

 |〈f, Tig15〉|

 

 

Fig. 12. Vertex-frequency analysis of the signal f from Figure 11(b) using atoms generated from the system of warped filters in
Figure 11(e). Each plot contains the N coefficients resulting from a single graph spectral filter. We have omitted the coefficients
arising from the filters indexed by m = 5, 6, 7, 8 since they are nearly zero. This frequency-lapse sequence shows us which
frequency components are present in the signal in which parts of the graph. For example, the lower left portion of the graph has
larger coefficients for those atoms generated by filters indexed by m = 10, 11, corresponding to eigenvectors associated with
eigenvalues roughly between 3 and 4. The black cluster is the most difficult to make out from the coefficients, because some
of the eigenvectors associated with larger eigenvalues are more localized.

The WGFT may be a more natural generalization of classical time-frequency analysis, but there are

a number of practical advantages of performing vertex-frequency analysis with the method proposed in

this paper rather than with the WGFT. First, the proposed method is considerably more efficient from

a computational standpoint as it does not require the full eigendecomposition of the graph Laplacian.
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Second, because the filters lead to a tight frame of vertex-frequency atoms, the squared magnitudes of

the transform coefficients can indeed be interpreted as an energy density function, which is true with

the classical spectrogram, but not with the spectrogram arising from the WGFT since windowed graph

Fourier frames are not generally tight. Third, by choosing the number of filters to be significantly smaller

than the number of vertices, we reduce the redundancy of the transform.

IX. CONCLUSION

We have presented new methods to generate tight frames of atoms to represent signals residing on

weighted graphs. Our primary approach is to construct spectral graph filters by warping systems of

uniform translates, and then generate the dictionary atoms by translating these filters to each vertex in

the graph. The main benefits of this construction are (i) by choosing the uniform translates from a certain

family (c.f. Theorem 1), we are able to guarantee that the resulting frames are tight; (ii) the resulting

frames are computationally efficient to implement, as they do not require a full eigendecomposition of

the graph Laplacian; and (iii) the warping function enables us to adapt the spectral graph filters to the

specific distribution of Laplacian eigenvalues, rather than just the length of the spectrum, which leads

to dictionary atoms with better ability to discriminate between different graph signals. As examples of

spectrum-adapted graph frames, we used an approximation of the cumulative spectral density function

as the warping function to generate tight vertex-frequency frames, and a composition of that warping

function with a logarithmic warping function to generate tight spectrum-adapted graph wavelet frames.

One line of ongoing work is the investigation of different methods to approximate the cumulative spectral

density function for extremely large graphs.

X. APPENDIX

Proof of Lemma 1:

N∑
i=1

M∑
m=1

|〈f, gi,m〉|2 =

N∑
i=1

M∑
m=1

∣∣∣〈f̂ , T̂igm〉∣∣∣2 (23)

=

N∑
i=1

M∑
m=1

(
N−1∑
l=0

f̂(λl)
√
Nĝm

∗(λl)ul(i)

)(
N−1∑
l′=0

f̂(λl′)
√
Nĝm

∗(λl′)ul′(i)

)∗

= N

N−1∑
l=0

|f̂(λl)|2
M∑
m=1

|ĝm(λl)|2 (24)

= N

N−1∑
l=0

|f̂(λl)|2G(λl),
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where (23) follows from Parseval’s Relation, and (24) follows from the fact that
∑N

i=1 ul(i)u
∗
l′(i) = δl,l′ ,

by the orthonormal nature of the eigenvectors. Applying Parseval’s Relation a second time yields the

desired result.

Proof of Theorem 1: Let t ∈ R be arbitrary. Then

∑
m∈Z

∣∣∣q (t− m

R

)∣∣∣2 =
∑
m∈Z

∣∣∣∣∣
K∑
k=0

ak cos

(
2πk

(
t− m

R
− 1

2

))
11{m

R
≤t<1+m

R
}

∣∣∣∣∣
2

=

bRtc∑
m=bRt−(R−1)c

∣∣∣∣∣
K∑
k=0

ak cos

(
2πk

(
t− m

R
− 1

2

))∣∣∣∣∣
2

=

K∑
k=0

K∑
j=0

akaj

bRtc∑
m=bRt−(R−1)c

cos

(
2πk

(
t− m

R
− 1

2

))
cos

(
2πj
(
t− m

R
− 1

2

))
.

(25)
Defining z := 2πk

(
t− 1

2

)
and y := 2πj

(
t− 1

2

)
, and the inner terms of (25) as

Ak,j :=

bRtc∑
m=bRt−(R−1)c

cos

(
z − 2πkm

R

)
cos

(
y − 2πjm

R

)
, 0 ≤ k, j ≤ K,

and expanding the cosines into complex exponentials, we have

Ak,j =
1

4

bRtc∑
m=bRt−(R−1)c


[
exp

(
iz + 2πikmR

)
+ exp

(
−iz − 2πikmR

)]
·
[
exp

(
iy + 2πi jmR

)
+ exp

(
−iy − 2πi jmR

)]


=
1

4

R−1∑
m=0


[
exp

(
iz + 2πikmR

)
+ exp

(
−iz − 2πikmR

)]
·
[
exp

(
iy + 2πi jmR

)
+ exp

(
−iy − 2πi jmR

)]


=
1

4

R−1∑
m=0

exp

(
iz + 2πi

km

R

)
exp

(
iy + 2πi

jm

R

)
(26)

+
1

4

R−1∑
m=0

exp

(
−iz − 2πi

km

R

)
exp

(
iy + 2πi

jm

R

)
(27)

+
1

4

R−1∑
m=0

exp

(
iz + 2πi

km

R

)
exp

(
−iy − 2πi

jm

R

)
(28)

+
1

4

R−1∑
m=0

exp

(
−iz − 2πi

km

R

)
exp

(
−iy + 2πi

jm

R

)
. (29)
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We now use the fact that if ξ 6= 1 is any Rth root of unity, then

R−1∑
m=0

ξm = 0.

Since K < R/2, k + j < R for all 0 ≤ k, j ≤ K, and therefore

(26) =


R
4 exp(iz + iy), if k = j = 0

0, otherwise
,

(27) = (28) =


R
4 , if k = j

0, otherwise
,

and (29) =


R
4 exp(−iz − iy), if k = j = 0

0, otherwise
.

Since for k = j = 0 we have y = z = 0, we see that

Ak,j =


R, if k = j = 0

R
2 , if k = j 6= 0

0, otherwise

. (30)

Finally, substituting (30) back into (25) yields

∑
m∈Z

∣∣∣q (t− m

R

)∣∣∣2 =

K∑
k=0

K∑
j=0

akajAk,j = Ra2
0 +

R

2

K∑
k=1

a2
k.

Proof of Corollary 1: Letting ĥ(y) = q(y), it follows immediately from Theorem 1 that

∑
m∈Z

[
ĥ
(
y − m

R

)]2
= Ra2

0 +
R

2

K∑
k=1

a2
k, ∀y ∈ R.

Moreover, for y ∈
[
0, M+1−R

R

]
, ĥ
(
y − m

R

)
= 0 if m < 1−R or m > M + 1−R. For m = M + 1−R,

ĥ
(
y − m

R

)
= 0 for all y ∈

[
0, M+1−R

R

)
, and, due to (5), for y = M+1−R

R ,

ĥ
(
y − m

R

)
= ĥ(0) =

K∑
k=0

(−1)kak = 0.
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