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Abstract

We consider the problem of approximating optimal in the Minimum Mean Squared Error
(MMSE) sense nonlinear filters in a discrete time setting, exploiting properties of stochastically
convergent state process approximations. More specifically, we consider a class of nonlinear,
partially observable stochastic systems, comprised by a (possibly nonstationary) hidden stochas-
tic process (the state), observed through another conditionally Gaussian stochastic process (the
observations). Under general assumptions, we show that, given an approximating process which,
for each time step, is stochastically convergent to the state process, an approximate filtering
operator can be defined, which converges to the true optimal nonlinear filter of the state in a
strong and well defined sense. In particular, the convergence is compact in time and uniform in
a completely characterized measurable set of probability measure almost unity, also providing a
purely quantitative justification of Egoroff’s Theorem for the problem at hand. The results pre-
sented in this paper can form a common basis for the analysis and characterization of a number
of heuristic approaches for approximating optimal nonlinear filters, such as approximate grid
based techniques, known to perform well in a variety of applications.

Keywords. Approximate Nonlinear Filtering, Hidden Models, Partially Observable Systems,
Stochastic Processes, C-Weak Convergence, Change of Probability Measures.

1 Introduction

Nonlinear stochastic filtering refers to problems in which a stochastic process, usually called the
state, is partially observed as a result of measuring another stochastic process, usually called the
observations or measurements, and the objective is to estimate the state or some functional of it,
based only on past and present observations. The nonlinearity is due to the general, possibly non
Gaussian nature of the state and observations processes, as well as the fact that, in general, the
state may be partially observed as a nonlinear functional of the observations. Usually, nonlinear
state estimators are designed so as to optimize some performance criterion. Most commonly, this
corresponds to the Minimum Mean Squared Error (MMSE), which is also adopted in this work.

A desirable feature of a nonlinear filter is recursiveness in time, as it greatly reduces compu-
tational complexity and allows for real time estimation as new measurements become available.
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New Jersey, 94 Brett Rd, Piscataway, NJ 08854, USA. e-mail: {d.kalogerias, athinap}@rutgers.edu.
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However, not all nonlinear filters possess this important property [2, 3]. Recursive nonlinear filters
exist for some very special cases, such as those in which the transition model of the state pro-
cess is linear (Gauss-Markov), or when the state is a Markov chain (discrete state space) [4–7].
In the absence of recursive filter representations, practical filtering schemes have been developed,
which typically approximate the desired quantities of interest, either heuristically (e.g., Gaussian
approximations [8,9]) or in some more powerful, rigorous sense (e.g., Markov chain approximations
[10,11]).

In this paper, we follow the latter research direction. Specifically, we consider a partially ob-
servable system in discrete time, comprised by a hidden, almost surely compactly bounded state
process, observed through another, conditionally Gaussian measurement process. The mean and
covariance matrix of the measurements both constitute nonlinear, time varying and state dependent
functions, assumed to be known apriori. Employing a change of measure argument and using the
original measurements, an approximate filtering operator can be defined, by replacing the “true”
state process by an appropriate approximation. Our contribution is summarized in showing that if
the approximation converges to the state either in probability or in the C-weak sense (Section II.C),
the resulting filtering operator converges to the true optimal nonlinear filter in a relatively strong
and well defined sense; the convergence is compact in time and uniform in a measurable set of
probability measure almost unity (Theorem 3). The aforementioned set is completely characterized
in terms of a subset of the parameters of the filtering problem of interest. Consequently, our results
provide a purely quantitative justification of Egoroff’s theorem [12] for the problem at hand, which
concerns the equivalence of almost sure convergence and almost uniform convergence of measurable
functions.

To better motivate the reader, let us describe two problems that fit the scenario described
above and can benefit from the contributions of this paper, namely, those of sequential channel
state estimation and (sequential) spatiotemporal channel prediction [13] (see also [14]). The above
problems arise naturally in novel signal processing applications in the emerging area of distributed,
autonomous, physical layer aware mobile networks [15–17]. Such networks usually consist of coop-
erating mobile sensors, each of them being capable of observing its communication channel (under
a flat fading assumption), relative to a reference point in the space. In most practical scenarios,
the dominant quantities characterizing the wireless links, such as the path loss exponent and the
shadowing power, behave as stochastic processes themselves. For instance, such behavior may be
due to physical changes in the environment and also the inherent randomness of the communication
medium itself. Then, the path loss exponent and the shadowing power can be collectively considered
as the hidden state (suggestively called the channel state) of a partially observable system, where
the channel gains measured at each sensor can be considered as the corresponding observations.
In general, such observations are nonlinear functionals of the state. Assuming additionally that
the channel state is a Markov process, the main results presented herein can essentially provide
strong asymptotic guarantees for approximate sequential nonlinear channel state estimation and
spatiotemporal channel prediction, enabling physical layer aware motion planning and stochastic
control. For more details, the reader is referred to [13].

The idea of replacing the process of interest with some appropriate approximation is borrowed
from [11]. However, [11] deals almost exclusively with continuous time stochastic systems and the
results presented in there do not automatically extend to the discrete time system setting we are
dealing with here. In fact, the continuous time counterparts of the discrete time stochastic processes
considered here are considerably more general than the ones treated in [11]. More specifically,
although some relatively general results are indeed provided for continuous time hidden processes,
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[11] is primarily focused on the standard hidden diffusion case, which constitutes a Markov process
(and aiming to the development of recursive approximate filters), whereas, in our setting, the hidden
process is initially assumed to be arbitrary (as long as it is confined to a compact set). Also, different
from our formulation (see above), in [11], the covariance matrix of the observation process does not
depend on the hidden state; the state affects only the mean of the observations. Further, the modes
of stochastic convergence considered here are different compared to [11] (in fact, they are stronger),
both regarding convergence of approximations and convergence of approximate filters.

The results presented in this paper provide a framework for analyzing a number of heuristic
techniques for numerically approximating optimal nonlinear filters in discrete time, such as approx-
imate grid based recursive approaches, known to perform well in a wide variety of applications
[13, 18, 19]. Additionally, our results do not refer exclusively to recursive nonlinear filters. The
sufficient conditions which we provide for the convergence of approximate filtering operators are
independent of the way a filter is realized (see Section III). This is useful because, as highlighted
in [20], no one prevents one from designing an efficient (approximate) nonlinear filter which is part
recursive and part nonrecursive, or even possibly trying to combine the best of both worlds, and
there are practical filters designed in this fashion [20].

The paper is organized as follows: In Section II, we introduce the system model, along with some
mild technical assumptions on its structure and also present/develop some preliminary technical
results and definitions, which are important for stating and proving our results. In Section III, we
formulate our problem in detail and present our main results (Theorem (3)), along with a simple
instructive example. Section IV is exclusively devoted to proving the results stated in Section III.
Finally, Section V concludes the paper.

Notation: In the following, the state vector will be represented as Xt, its approximations as
X

LS
t , and all other matrices and vectors, either random or not, will be denoted by boldface letters

(to be clear by the context). Real valued random variables and abstract random elements will be
denoted by uppercase letters. Calligraphic letters and formal script letters will denote sets and
σ-algebras, respectively. The operators (·)T , λmin (·), λmax (·) will denote transposition, minimum
and maximum eigenvalue, respectively. For any random element (same for variable, vector) Y ,
σ {Y } will denote the σ-algebra generated by Y . The ℓp norm of a vector x ∈ R

n is ‖x‖p ,

(
∑n

i=1 |xi|
p)

1/p
, for all naturals p ≥ 1. The spectral and Frobenius norms of any matrix X ∈ R

n×n

are ‖X‖2 , max‖x‖2≡1 ‖Xx‖2 and ‖X‖F ,

√∑n,n
i,j=1

∣∣Xij

∣∣2, respectively. Positive definiteness and

semidefiniteness of X will be denoted by X ≻ 0 and X � 0, respectively. For any Euclidean space
R
N×1, IN×N will denote the respective identity operator. Additionally, throughout the paper, we

employ the identifications R+ ≡ [0,∞), R++ ≡ (0,∞), N+ ≡ {1, 2, . . .}, N+
n ≡ {1, 2, . . . , n} and

Nn ≡ {0} ∪ N
+
n , for any positive natural n.

2 Partially Observable System Model & Technical Preliminaries

In this section, we give a detailed description of the partially observable (or hidden) system model of
interest and present our related technical assumptions on its components. Additionally, we present
some essential background on the measure theoretic concept of change of probability measures and
state some definitions and known results regarding specific modes of stochastic convergence, which
will be employed in our subsequent theoretical developments.
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2.1 Hidden Model: Definitions & Technical Assumptions

First, let us set the basic probabilistic framework, as well as precisely define the hidden system
model considered throughout the paper:

• All stochastic processes considered below are fundamentally generated on a common complete
probability space (the base space), defined by a triplet (Ω,F ,P), at each time instant taking
values in a measurable state space, consisting of some Euclidean subspace and the associated
Borel σ-algebra on that subspace. For example, for each t ∈ N, the state process Xt ≡ Xt (ω),

where ω ∈ Ω, takes its values in the measurable state space
(
R
M×1,B

(
R
M×1

))
, where

B

(
R
M×1

)
constitutes the Borel σ-algebra of measurable subsets of RM×1.

• In this work, the evolution mechanism of state processXt is assumed to be arbitrary. However,
in order to avoid unnecessary technical complications, we assume that, for each t ∈ N, the
induced probability measure of Xt is absolutely continuous with respect to the Lebesgue
measure on its respective state space. Then, by the Radon-Nikodym Theorem, it admits a
density, unique up to sets of zero Lebesgue measure. Also, we will generically assume that
for all t ∈ N, Xt ∈ Z almost surely, where Z constitutes a compact strict subset of RM×1.
In what follows, however, in order to lighten the presentation, we will assume that M ≡ 1.
Nevertheless, all stated results hold with the same validity if M > 1 (See also Assumption 2
below).

• The state Xt is partially observed through the observation process

yt , µt (Xt) + σt (Xt) + ξt ∈ R
N×1, ∀t ∈ N, (1)

where, conditioned on Xt and for each t ∈ N, the sequence
{
µt : Z 7→ R

N×1
}
t∈N

is known

apriori, the process σt (Xt) ∼ N (0,Σt (Xt) ≻ 0) constitutes Gaussian noise, with the se-
quence {Σt : Z 7→ DΣ}t∈N, where DΣ is a bounded subset of RN×N , also known apriori, and

ξt
i.i.d.∼ N

(
0, σ2

ξ IN×N

)
.

As a pair, the state Xt and the observations process described by (1) define a very wide family
of partially observable systems. In particular, any Hidden Markov Model (HMM) of any order,
in which the respective Markov state process is almost surely confined in a compact subset of its
respective Euclidean state space, is indeed a member of this family. More specifically, let us rewrite
(1) in the canonical form

yt ≡ µt (Xt) +
√

Ct (Xt)ut ∈ R
N×1, ∀t ∈ N, (2)

where ut ≡ ut (ω) constitutes a standard Gaussian white noise process and, for all x ∈ Z, Ct (x) ,
Σt (x) + σ2

ξ IN×N ∈ DC, with DC bounded. Then, for a possibly nonstationary HMM of order m,
assuming the existence of an explicit functional model for describing the temporal evolution of the
state (being a Markov process of order m), we get the system of standardized stochastic difference
equations

Xt ≡ ft

(
{Xt−i}i∈N+

m
,W t

)
∈ Z

yt ≡ µt (Xt) +
√

Ct (Xt)ut

, ∀t ∈ N, (3)
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where, for each t, ft : Zm ×W a.s.7→ Z (with Zm
, ×m times Z) constitutes a measurable nonlinear

state transition mapping and W t ≡ W t (ω) ∈ W ⊆ R
MW×1, denotes a (discrete time) white noise

process with state space W. For a first order stationary HMM, the above system of equations
reduces to

Xt ≡ f (Xt−1,W t) ∈ Z
yt ≡ µt (Xt) +

√
Ct (Xt)ut

, ∀t ∈ N, (4)

which arguably constitutes the most typical partially observable system model encountered in both
Signal Processing and Control, with plethora of important applications.

Let us also present some more specific assumptions, regarding the nature (boundedness, conti-
nuity and expansiveness) of the aforementioned sequences of functions.

Assumption 1: (Boundedness) For later reference, let

λinf , inf
t∈N

inf
x∈Z

λmin (Ct (x)) , (5)

λsup , sup
t∈N

sup
x∈Z

λmax (Ct (x)) , (6)

µsup , sup
t∈N

sup
x∈Z

‖µt (x)‖2 , (7)

where each quantity of the above is uniformly and finitely bounded for all t ∈ N and for all x ∈ Z.
If x is substituted by the stochastic process Xt (ω), then all the above definitions continue to hold in
the essential sense. For technical reasons related to the bounding-from-above arguments presented
in Section IV, containing the proof of the main result of the paper, it is also assumed that λinf > 1,
a requirement which can always be satisfied by appropriate normalization of the observations.

Assumption 2: (Continuity & Expansiveness) All members of the functional family{
µt : Z 7→ R

N×1
}
t∈N

are uniformly Lipschitz continuous, that is, there exists a bounded constant

Kµ ∈ R+, such that, for all t ∈ N,

‖µt (x)− µt (y)‖2 ≤ Kµ |x− y| , ∀ (x, y) ∈ Z × Z. (8)

Additionally, all members of the functional family
{
Σt : Z 7→ DΣ ⊂ R

N×N
}
t∈N

are elementwise

uniformly Lipschitz continuous, that is, there exists some universal and bounded constant KΣ ∈ R+,
such that, for all t ∈ N and for all (i, j) ∈ N

+
N ×N

+
N ,

∣∣∣Σij
t (x)−Σij

t (y)
∣∣∣ ≤ KΣ |x− y| , ∀ (x, y) ∈ Z × Z. (9)

If x is substituted by the stochastic process Xt (ω), then all the above statements are understood
in the almost sure sense.

Remark 1. As we have already said, for simplicity, we assume that Z ⊂ R, that is, M ≡ 1. In any
other case (when M > 1), we modify the Lipschitz assumptions stated above simply by replacing
|x− y| with ‖x− y‖1, that is, Lipschitz continuity is meant to be with respect to the ℓ1 norm in

the domain of the respective function. If this holds, everything that follows works also in R
M>1,

just with some added complexity in the proofs of the results. Also, because ‖x‖2 ≤ ‖x‖1 for any

x ∈ R
M , the assumed Lipschitz continuity with respect to ℓ1 norm can be replaced by Lipschitz

continuity with respect to the ℓ2 norm, since the latter implies the former, and again everything
holds. Further, if M > 1, convergence in probability and L1 convergence of random vectors are
both defined by replacing absolute values with the ℓ1 norms of the vectors under consideration. �
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2.2 Conditional Expectations, Change of Measure & Filters

Before proceeding with the general formulation of our estimation problem and for later reference,
let us define the complete natural filtrations of the processes Xt and yt as

{Xt}t∈N ,

{
σ
{
{Xi}i∈Nt

}}
t∈N

and (10)

{Yt}t∈N ,

{
σ
{
{yi}i∈Nt

}}
t∈N

, (11)

respectively, and also the complete filtration generated by both Xt and yt as

{Ht}t∈N ,

{
σ
{
{Xi,yi}i∈Nt

}}
t∈N

. (12)

In all the above, σ {Y } denotes the σ-algebra generated by the random variable Y .
In this work, we adopt the MMSE as an optimality criterion. In this case, one would ideally

like to discover a solution to the stochastic optimization problem

inf
X̂t

E

{∥∥∥Xt − X̂t

∥∥∥
2

2

}

subject to E

{
X̂t

∣∣∣Yt

}
≡ X̂t

, ∀t ∈ N, (13)

where the constraint is equivalent to confining the search for possible estimators X̂t to the subset of
interest, that is, containing the ones which constitute Yt-measurable random variables. Of course,
the solution to the program (13) coincides with the conditional expectation [21]

E {Xt|Yt} ≡ X̂t, ∀t ∈ N, (14)

which, in the nonlinear filtering literature, is frequently called a filter. There is also an alternative
and very useful way of reexpressing the filter process X̂t, using the concept of change of probability
measures, which will allow us to stochastically decouple the state and observations of our hidden
system and then let us formulate precisely the approximation problem of interest in this paper.
Change of measure techniques have been extensively used in discrete time nonlinear filtering, mainly
in order to discover recursive representations for various hidden Markov models [3, 6, 7, 22]. In the
following, we provide a brief introduction to these type of techniques (suited to our purposes) which
is also intuitive, simple and technically accessible, including direct proofs of the required results.

Change of Probability Measure in Discrete Time: Demystification & Useful Results

So far, all stochastic processes we have considered are defined on the base space (Ω,F ,P). In
fact, it is the structure of the probability measure P that is responsible for the coupling between
the stochastic processes Xt and yt, being, for each t ∈ N, measurable functions from (Ω,F ) to

(R,B (R)) and
(
R
N ,B

(
R
N
))

, respectively. Intuitively, the measure P constitutes our “reference

measurement tool” for measuring the events contained in the base σ-algebra F , and any random
variable serves as a “medium” or “channel” for observing these events.

As a result, some very natural questions arise from the above discussion. First, one could ask
if and under what conditions it is possible to change the probability measure P, which constitutes
our fixed way of assigning probabilities to events, to another measure P̃ on the same measurable
space (Ω,F ), in a way such that there exists some sort of transformation connecting P and P̃ .
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Second, if we can indeed make the transition from P to P̃ , could we choose the latter probability
measure in a way such that the processes Xt and yt behave according to a prespecified statistical
model? For instance, we could demand that, under P̃, Xt and yt constitute independent stochastic
processes. Third and most important, is it possible to derive an expression for the “original” filter
X̂t ≡ EP {Xt|Yt} under measure P, using only (conditional) expectations under P̃ (denoted as
E
P̃
{·| ·})?
The answers to all three questions stated above are affirmative under very mild assumptions

and the key result in order to prove this assertion is the Radon-Nikodym Theorem [23]. However,
assuming that the induced joint probability measure of the processes of interest is absolutely con-
tinuous with respect to the Lebesgue measure of the appropriate dimension, in the following we
provide an answer to these questions, employing only elementary probability theory, avoiding the
direct use of the Radon-Nikodym Theorem.

Theorem 1. (Conditional Bayes’ Theorem for Densities) Consider the (possibly vector)
stochastic processes Xt (ω) ∈ R

Nt×1 and Yt (ω) ∈ R
Mt×1, both defined on the same measurable space

(Ω,F ), for all t ∈ N. Further, if P and P̃ are two probability measures on (Ω,F ), suppose that:

• Under both P and P̃, the process Xt is integrable.

• Under the base probability measure P (resp. P̃), the induced joint probability measure of(
{Xi}i∈Nt

, {Yi}i∈Nt

)
is absolutely continuous with respect to the Lebesgue measure of the

appropriate dimension, implying the existence of a density ft (resp. f̃t), with

ft :

(
×

i∈Nt

R
Ni×1

)
×
(

×
i∈Nt

R
Mi×1

)
7→ R+. (15)

• For each set of points, it is true that

f̃t (· · · ) ≡ 0 ⇒ ft (· · · ) ≡ 0, (16)

or, equivalently, the support of ft is contained in the support of f̃t.

Also, for all t ∈ N, define the Likelihood Ratio (LR) at t as the {Ht}-adapted, nonnegative stochastic
process1

Λt ,
ft (X0,X1, . . . ,Xt, Y0, Y1, . . . , Yt)

f̃t (X0,X1, . . . ,Xt, Y0, Y1, . . . , Yt)
. (17)

Then, it is true that

X̂t ≡ EP {Xt|Yt} ≡ EP̃ {XtΛt|Yt}
E
P̃
{Λt|Yt}

, (18)

almost everywhere with respect to P.

Proof of Theorem 1. See the Appendix. �

1
With zero probability of confusion, we use {Yt}t∈N

and {Ht}t∈N
to denote the complete filtrations generated by

Yt and {Xt, Yt}.
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Remark 2. The {Ht}-adapted LR process

Λt ≡ Λt

(
Xt , {Xi}i∈Nt

,Yt , {Yi}i∈Nt

)
, t ∈ N, (19)

as defined in (17), actually coincides with the restriction of the Radon-Nikodym derivative of P
with respect to P̃ to the filtration {Ht}t∈N, that is,

dP (ω)

dP̃ (ω)

∣∣∣∣∣
Ht

≡ Λt (Xt (ω) ,Yt (ω)) , ∀t ∈ N, (20)

a statement which, denoting the collections {xi}i∈Nt
and {yi}i∈Nt

as xt and yt, respectively, is
rigorously equivalent to

P (F) ≡
ˆ

F
Λt (Xt (ω) ,Yt (ω)) dP̃ (ω)

≡
ˆ

B
Λt

(
xt, yt

)
d2tP̃(Xt,Yt)

(
xt, yt

)

≡ P(Xt,Yt)
(B) ≡ P ((Xt,Yt) ∈ B) , (21)

(22)

∀F , {ω ∈ Ω |(Xt (ω) ,Yt (ω)) ∈ B} ∈ Ht and (23)

∀B ∈
(

⊗
i∈Nt

B

(
R
Ni×1

))
⊗
(

⊗
i∈Nt

B

(
R
Mi×1

))
, ∀t ∈ N, (24)

respectively (in the above, “⊗” denotes the product operator for σ-algebras). Of course, the ex-
istence and almost everywhere uniqueness of Λt are guaranteed by the Radon-Nikodym Theorem,
provided that the base measure P is absolutely continuous with respect to P̃ on Ht (P ≪Ht

P̃).

Further, for the case where there exist densities characterizing P and P̃ (as in Theorem 1), de-
manding that P ≪Ht

P̃ is precisely equivalent to demanding that (16) is true and, again through
the Radon-Nikodym Theorem, it can be easily shown that the derivative Λt actually coincides with
the likelihood ratio process defined in (17), almost everywhere. �

Now, let us apply Theorem 1 for the stochastic processes Xt and yt, comprising our partially
observed system, as defined in Section II.A. In this respect, we present the following result.

Theorem 2. (Change of Measure for the Hidden System under Study) Consider the hidden
stochastic system of Section II.A on the usual base space (Ω,F ,P), where Xt ∈ Z and yt ∈ R

N×1,
almost surely ∀t ∈ N, constitute the hidden state process and the observation process, respectively.
Then, there exists an alternative, equivalent to P, base measure P̃ on (Ω,F ), under which:

• The processes Xt and yt are statistically independent.

• Xt constitutes a stochastic process with exactly the same dynamics as under P.

• yt constitutes a Gaussian vector white noise process with zero mean and covariance matrix
equal to the identity.

Additionally, the filter X̂t can be expressed as in (18), where the {Ht}-adapted stochastic process
Λt, t ∈ N is defined as in (25) (top of next page).
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Λt ,
∏

i∈Nt

exp

(
1

2
‖yi‖22 −

1

2
(yi − µi (Xi))

T

(
Σi (Xi) + σ2

ξ IN×N

)−1
(yi − µi (Xi))

)

√
det
(
Σi (Xi) + σ2

ξ IN×N

) ,
∏

i∈Nt

λi

≡

exp


1

2

∑

i∈Nt

‖yi‖22 − (yi − µi (Xi))
T

(
Σi (Xi) + σ2

ξ IN×N

)−1
(yi − µi (Xi))




∏

i∈Nt

√
det
(
Σi (Xi) + σ2

ξIN×N

) ∈ R++ (25)

Proof of Theorem 2. Additionally to the similar identifications made above (see (19)) and for later
reference, let

Yt , {yi}i∈Nt
and yt , {yi}i∈Nt

. (26)

First, we construct the probability measure P̃ , this way showing its existence. To accomplish this,
define, for each t ∈ N, a probability measure P̃Rt

on the measurable space (Rt,B (Rt)), where

Rt ,

(
×

i∈Nt

R

)
×
(

×
i∈Nt

R
N×1

)
, (27)

being absolutely continuous with respect to the Lebesgue measure on (Rt,B (Rt)) and with density
f̃t : R 7→ R+. Since, for each t ∈ N, the processes Xt (ω) and yt (ω) are both, by definition, fixed

and measurable functions from (Ω,Ht) to (Rt,B (Rt)), with
2

Ht ⊆ H∞ , σ

{
⋃

t∈N

Ht

}
⊆ F , (28)

measuring any B ∈ B (Rt) under P̃Rt
can be replaced by measuring the event (preimage)

{ω ∈ Ω| (Xt,Y t) ∈ B} ∈ Ht under another measure, say P̃ , defined collectively for all t ∈ N on
the general measurable space (Ω,H∞) as

P̃ ({ω ∈ Ω| (Xt,Y t) ∈ B}) ≡ P̃ ((Xt,Y t) ∈ B) , P̃Rt
(B) , ∀B ∈ B (Rt) .

That is, the restriction of the probability measure P̃ to the σ-algebra H∞ is induced by the prob-
ability measure P̃R∞

(also see Kolmogorov’s Extension Theorem [3]). Further, in order to define

the alternative base measure P̃ fully on (Ω,F ), we have to extend its behavior on the remaining
events which belong to the potentially finer σ-algebra F but are not included in H∞. However,
since we are interested in change of measure only for the augmented process (Xt,Y t), these events
are irrelevant to us. Therefore, P̃ can be defined arbitrarily on these events, as long as it remains
a valid and consistent probability measure.

2
H∞ constitutes the join, that is, the smallest σ-algebra generated by the union of all Ht,∀t ∈ N.
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Now, to finalize the construction of the restriction of P̃ to Ht,∀t ∈ N, we have to explicitly
specify the density of P̃Rt

, or, equivalently, of the joint density of the random variables (Xt,Y t), f̃t,
for all t ∈ N. According to the statement of Theorem 2, we have to demand that

f̃t
(
xt, yt

)
≡ f̃Yt|Xt

(
yt

∣∣ xt
)
f̃Xt

(xt)

= f̃Yt

(
yt

)
fXt

(xt)

=



∏

i∈Nt

f̃yi
(yi)


 fXt

(xt)

=




∏

i∈Nt

exp

(
−‖yi‖22

2

)

√
(2π)N




fXt
(xt)

≡
exp


−1

2

∑

i∈Nt

‖yi‖22




√
(2π)N(t+1)

fXt
(xt) . (29)

Next, by definition, we know that, under P, the joint density of (Xt,Y t) can be expressed as

ft
(
xt, yt

)
≡ fYt|Xt

(
yt

∣∣ xt
)
fXt

(xt)

≡


∏

i∈Nt

fyi|Xi
(yi|xi)


 fXt

(xt)

=




∏

i∈Nt

exp

(
y
T

i C
−1
i yi

−2

)

√
det (Ci) (2π)

N




fXt
(xt)

≡

exp


∑

i∈Nt

y
T

i C
−1
i yi

−2





∏

i∈Nt

√
det (Ci)



√

(2π)N(t+1)

fXt
(xt) , (30)

where, for all t ∈ N,

yt ≡ yt (xt) , yt − µt (xt) ∈ R
N×1 and (31)

Ct ≡ Ct (xt) ≡ Σt (xt) + σ2
ξ IN×N ∈ DC, (32)

where DC constitutes a bounded subset of R
N×N . From (29) and (30), it is obvious that the

sufficient condition (16) of Theorem 1 is satisfied (actually, in this case, we have an equivalence; as
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a result, the change of measure is an invertible transformation). Applying Theorem 1, (18) must
be true by defining the {Ht}-adapted stochastic process

Λt ≡ Λt (Xt,Y t) ,
ft (Xt,Y t)

f̃t (Xt,Y t)
≡

fYt|Xt
(Yt| Xt)

f̃Yt|Xt
(Yt| Xt)

≡
fYt|Xt

(Y t| Xt)

f̃Yt
(Yt)

≡
exp


∑

i∈Nt

‖yi‖22 − (yi (Xi))
T (Ci (Xi))

−1 yi (Xi)

2




∏

i∈Nt

√
det (Ci (Xi))

, (33)

or, alternatively,

Λt ≡
∏

i∈Nt

λi ,
∏

i∈Nt

exp


∑

i∈Nt

‖yi‖22 − (yi (Xi))
T (Ci (Xi))

−1 yi (Xi)

2




√
det (Ci (Xi))

, (34)

therefore completing the proof. �

2.3 Weak & C-Weak Convergence of (Random) Probability Measures

In the analysis that will take place in Section IV, we will make use of the notions of weak and condi-
tionally weak (C-weak) convergence of sequences of probability measures. Thus, let us define these
notions of stochastic convergence consistently, suited at least for the purposes of our investigation.

Definition 1. (Weak Convergence [24]) Let S be an arbitrary metric space, let S , B (S) be
the associated Borel σ-algebra and consider a sequence of probability measures {πn}n∈N on S . If
π constitutes another “limit” probability measure on S such that

lim
n→∞

πn (A) = π (A) ,

∀A ∈ S such that π (∂A) ≡ 0,
(35)

where ∂A denotes the boundary set of the Borel set A, then we say that the sequence {πn}n∈N
converges to π weakly or in the weak sense and we equivalently write

πn
W−→

n→∞
π. (36)

Of course, weak convergence of probability measures is equivalent to weak convergence or con-
vergence in distribution, in case we are given sequences of (S,S )-valued random variables whose
induced probability measures converge in the aforementioned sense.

Next, we present a definition for conditionally weak convergence of probability measures. To
avoid possibly complicating technicalities, this definition is not presented in full generality. Rather,
it is presented in an appropriately specialized form, which will be used later on, in the analysis that
follows.
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Definition 2. (Conditionally Weak Convergence) Let (Ω,F ,P) be a base probability triplet

and consider the measurable spaces
(
Si,Si , B (Si)

)
, i = {1, 2}, where S1 and S2 constitute a

complete separable metric (Polish) space and an arbitrary metric space, respectively. Also, let
{Xn

1 : Ω → S1}n∈N be a sequence of random variables, let X2 : Ω → S2 be another random variable
and consider the sequence of (regular) induced conditional probability distributions (or measures)
Pn

X
n
1 |X2

: S1 × Ω → [0, 1], such that

Pn
X

n
1 |X2

(A|X2 (ω)) ≡ P (Xn
1 ∈ A|σ {X2}) , (37)

P − a.e., for any Borel set A ∈ S1. If X1 : Ω → S1 constitutes a “limit” random variable, whose
induced conditional measure PX1|X2

: S1 × Ω → [0, 1] is such that

lim
n→∞

Pn
X

n
1 |X2

(A|X2 (ω)) = PX1|X2
(A|X2 (ω)) ,

∀A ∈ S1 such that π (∂A) ≡ 0 and P − a.e.,
(38)

then we say that the sequence
{
Pn

X
n
1 |X2

}
n∈N

converges to PX1|X2
conditionally weakly ( C-weakly)

or in the conditionally weak ( C-weak) sense and we equivalently write

Pn
X

n
1 |X2

( ·|X2)
W−→

n→∞
PX1|X2

( ·|X2) . (39)

Remark 3. Actually, C-weak convergence, as defined above, is strongly related to the more general
concepts of almost sure weak convergence and random probability measures. For instance, the
reader is referred to the related articles [25] and [26]. �

Further, the following lemma characterizes weak convergence of probability measures (and ran-
dom variables) [24].

Lemma 1. (Weak Convergence & Expectations) Let S be an arbitrary metric space and let
S , B (S). Suppose we are given a sequence of random variables {Xn}n∈N and a “limit” X, all
(S,S )-valued, but possibly defined on different base probability spaces, with {PX

n}n∈N and PX being
their induced probability measures on S , respectively. Then,

Xn D−→
n→∞

X ⇔ PX
n

W−→
n→∞

PX , (40)

if and only if

E {f (Xn)} ≡
ˆ

S
fdPX

n −→
n→∞

ˆ

S
fdPX ≡ E {f (X)} , (41)

for all bounded, continuous functions f : S → R.

Of course, if we replace weak convergence by C-weak convergence, Lemma 1 continues to hold,
but, in this case, (41) should be understood in the almost everywhere sense (see, for example, [26]).
More specifically, under the generic notation of Definition 2 and under the appropriate assumptions
according to Lemma 1, it will be true that

E {f (Xn
1 )|X2} (ω) −→

n→∞
E {f (X1)|X2} (ω) , (42)

for almost all ω ∈ Ω.
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3 Problem Formulation & Statement of Main Results

In this section, we formulate the problem of interest, that is, in a nutshell, the problem of approxi-
mating a nonlinear MMSE filter by another (asymptotically optimal) filtering operator, defined by
replacing the true process we would like to filter by an appropriate approximation. Although we
do not deal with such a problem here, such an approximation would be chosen in order to yield a
practically realizable approximate filtering scheme. We also present the main result of the paper,
establishing sufficient conditions for convergence of the respective approximate filters, in an indeed
strong sense.

Let us start from the beginning. From Theorem 2, we know that

EP {Xt|Yt} ≡ EP̃ {XtΛt|Yt}
E
P̃
{Λt|Yt}

, ∀t ∈ N, (43)

where the RHS constitutes an alternative representation for the filter on the LHS, which constitutes
the optimal in the MMSE sense estimator of the partially observed process Xt, given the available
observations up to time t. If the numerical evaluation of either of the sides of (43) is difficult
(either we are interested in a recursive realization of the filter or not), one could focus on the
RHS, where the state and the observations constitute independent processes, and, keeping the
same observations, replace Xt by another process XA

t , called the approximation, with resolution or
approximation parameter A ∈ N (for simplicity), also independent of the observations (with respect
to P̃), for which the evaluation of the resulting “filter” might be easier. Under some appropriate,
well defined sense, the approximation to the original process improves as A → ∞. This general idea
of replacing the true state process with an approximation is employed in, for instance, [10,11], and
will be employed here, too.

At this point, a natural question arises: Why are we complicating things with change of measure
arguments and not using XA

t directly in the LHS of (43)? Indeed, using classical results such as the
Dominated Convergence Theorem, one could prove at least pointwise convergence of the respective
filter approximations. The main and most important issue with such an approach is that, in order
for such a filter to be realizable in any way, special attention must be paid to the choice of the
approximation, regarding its stochastic dependence on the observations process. This is due to
the original stochastic coupling between the state and the observations of the hidden system of
interest. However, using change of measure, one can find an alternative representation of the filter
process, where, under another probability measure, the state and observations are stochastically
decoupled (independent). This makes the problem much easier, because the approximation can also
be chosen to be independent of the observations. If we especially restrict our attention to recursive
nonlinear filters, change of measure provides a rather versatile means for discovering recursive filter
realizations. See, for example, the detailed treatment presented in [3].

Thus, concentrating on the RHS of (43), we can define an approximate filtering operator of the
process Xt, also with resolution A ∈ N, as

EA (Xt|Yt) ,
E
P̃

{
XA

t Λ
A

t

∣∣∣Yt

}

E
P̃

{
ΛA

t

∣∣∣Yt

} , ∀t ∈ N. (44)

Observe that the above quantity is not a conditional expectation of XA

t , because X
A

t does not follow
the probability law of the true process of interest, Xt [11]. Of course, the question is if and under
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which sense,

EA (Xt|Yt)
?−→

A→∞
EP {Xt|Yt} , (45)

that is, if and in which sense our chosen approximate filtering operator is asymptotically optimal,
as the resolution of the approximation increases. In other words, we are looking for a class of
approximations, whose members approximate the process Xt well, in the sense that the resulting
approximate filtering operators converge to the true filter as the resolution parameter increases,
that is, as A → ∞, and under some appropriate notion of convergence. In this respect, below we
formulate and prove the following theorem, which constitutes the main result of this paper (recall
the definition of C-weak convergence given in Section II.C). In the following, 1A : R → {0, 1} denotes
the indicator of the set A. Also, for any Borel set A, 1A (·) constitutes a Dirac (atomic) probability
measure. Equivalently, we write 1A (·) ≡ δ(·) (A).

Theorem 3. (Convergence to the Optimal Filter) Pick any natural T < ∞ and suppose either
of the following:

• For all t ∈ NT , the sequence
{
XA

t

}
A∈N

is marginally C-weakly convergent to Xt, given Xt, that

is,

PA

X
A

t |Xt
( ·|Xt)

W−→
A→∞

δXt
(·) , ∀t ∈ NT . (46)

• For all t ∈ NT , the sequence
{
XA

t

}
A∈N

is (marginally) convergent to Xt in probability, that is,

XA

t
P−→

A→∞
Xt, ∀t ∈ NT . (47)

Then, there exists a measurable subset Ω̂T ⊆ Ω with P-measure at least 1−(T + 1)1−CN exp (−CN),
such that

lim
A→∞

sup
t∈NT

sup
ω∈Ω̂T

∣∣∣EA (Xt|Yt)− EP {Xt|Yt}
∣∣∣ (ω) ≡ 0, (48)

for any free, finite constant C ≥ 1. In other words, the convergence of the respective approximate
filtering operators is compact in t ∈ N and, with probability at least 1 − (T + 1)1−CN exp (−CN),
uniform in ω.

Interestingly, as noted in the beginning of this section, the mode of convergence of the resulting
approximate filtering operator is particularly strong. In fact, it is interesting that, for fixed T , the
approximate filter EA (Xt|Yt) converges to EP {Xt|Yt} (uniformly) in a set that approaches the
certain event, exponentially in N . That is, convergence to the optimal filter tends to be in the
uniformly almost everywhere sense, at an exponential rate (in N). Consequently, it is revealed that
the dimensionality of the observations process essentially stabilizes the behavior of the approximate
filter, in a stochastic sense. Along the lines of the discussion presented above, it is clear that
Theorem 3 provides a way of quantitatively justifying Egoroff’s theorem [12], which bridges almost
uniform convergence with almost sure convergence, however in an indeed abstract fashion.

Remark 4. The C-weak convergence condition (46) is a rather strong one. In particular, as we
show later in Lemma 8 (see Section IV), it implies L1 convergence, which means that it also
implies (marginal) convergence in probability (which constitutes the alternative sufficient condition
of Theorem 3). In simple words, (46) resembles a situation where, at any time step, one is given
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or defines an approximation to the original process, in the sense that, conditioned on the original
process at the same time step, the probability of being equal to the latter approaches unity. At
this point, because C-weak convergence is stronger than (and implies) convergence in probability,
one could wonder why we presented both as alternative sufficient conditions for filter convergence
in Theorem 3 (and also in Lemma 10 presented in Section IV). The reason is that, contrary to
convergence in probability, condition (46) provides a nice structural criterion for constructing state
process approximations in a natural way, which is also consistent with our intuition: If, at any time
step, we could observe the value of true state process, then the respective value of the approximation
at that same time step should be “sufficiently close” to the value of the state. Condition (46)
expresses this intuitive idea and provides a version of the required sense of “closeness”. �

In order to demonstrate the applicability of Theorem 3, as well as demystify the C-weak con-
vergence condition (46), let us present a simple but illustrative example. The example refers to
a class of approximate grid based filters, based on the so called marginal approximation [14, 18],
according to which the (compactly restricted) state process is fed into a uniform spatial quantizer
of variable resolution. As we will see, this intuitively reasonable approximation idea constitutes a
simple instance of the condition (95).

More specifically, assume that Xt ∈ [a, b] ≡ Z, ∀t ∈ N, almost surely. Let us discretize Z
uniformly into A subintervals, of identical length, called cells. The l-th cell and its respective center

are denoted as Z l
A and xlA, l ∈ N

+
A . Then, letting XA ,

{
xlA

}
l∈N

+

LS

, the quantizer QA : (Z,B (Z)) 7→
(
XA, 2

XA

)
is defined as the bijective and measurable function which uniquely maps the l-th cell to

the respective reconstruction point xlA, ∀l ∈ N
+
A . That is, QA (x) , xlA if and only if x ∈ Z l

A [14].
Having defined the quantizer QA (·), the Marginal Quantization of the state is defined as [18]

XA

t (ω) , QA (Xt (ω)) ∈ XA, ∀t ∈ N, P − a.s., (49)

where A ∈ N is identified as the approximation parameter. That is, Xt is approximated by its nearest
neighbor on the cell grid. That is, the state is represented by a discrete set of reconstruction points,
each one of them uniquely corresponding to a member of a partition of Z.

By construction of marginal state approximations, it can be easily shown that [14]

XA

t (ω)
P−a.s.−→
A→∞

Xt (ω) , (50)

a fact that will be used in the following. Of course, almost sure convergence implies convergence in
probability and, as we will see, C-weak convergence as well. First, let us determine the conditional
probability measure PA

X
A

t |Xt
(dx|Xt). Since knowing Xt uniquely determines the value of XA

t , it

must be true that

PA

X
A

t |Xt
(dx|Xt) ≡ PA

QA(Xt)|Xt
(dx|Xt)

≡ δQ
A
(Xt)

(dx) , P − a.s.. (51)

However, from Lemma 1, we know that weak convergence of measures is equivalent to showing

that the expectations E

{
f
(
XA

t

)∣∣∣Xt

}
converge to E {f (Xt)|Xt} ≡ f (Xt), for all bounded and

continuous f (·), almost everywhere. Indeed,

E

{
f
(
XA

t

)∣∣∣Xt

}
(ω) ≡

ˆ

Z
f (x)PA

X
A

t |Xt
(dx|Xt (ω))

15



≡
ˆ

Z
f (x) δQA(Xt(ω))

(dx)

≡ f (QA (Xt (ω)))
P−a.s.−→
A→∞

f (Xt (ω)) , (52)

due to the continuity of f (·). Consequently, we have shown that

PA

X
A

t |Xt
( ·|Xt) ≡ δQA(Xt)

(·) W−→
A→∞

δXt
(·) , (53)

fulfilling the first requirement of Theorem 3. This very simple example constitutes the basis for con-
structing more complicated and cleverly designed state approximations (for example, using stochas-
tic quantizers). The challenge here is to come up with such approximations exhibiting nice prop-
erties, which would potentially lead to the development of effective approximate recursive or, in
general, sequential filtering schemes, well suited for dynamic inference in complex partially observ-
able stochastic nonlinear systems. As far as grid based approximate recursive filtering is concerned,
a relatively complete discussion of the problem is presented in the recent paper [14], where marginal
state approximations are also treated in full generality.

An important and direct consequence of Theorem 3, also highlighted by the example presented
above, is that, interestingly, the nature of the state process is completely irrelevant when one
is interested in convergence of the respective approximate filters, in the respective sense of the
aforementioned theorem. This fact has the following pleasing and intuitive interpretation: It implies
that if any of the two conditions of Theorem 3 are satisfied, then we should forget about the internal
stochastic structure of the state, and instead focus exclusively on the way the latter is being observed
through time. That is, we do not really care about what we partially observe, but how well we observe
it; and if we observe it well, we can filter it well, too. Essentially, the observations should constitute
a stable functional of the state, of course in some well defined sense. In this work, this notion of
stability is expressed precisely through Assumption 1 and 2, presented earlier in Section II.

Note, however, that the existence of a consistent approximate filter in the sense of Theorem 3
does not automatically imply that this filter will be efficiently implementable; usually, we would like
such a filter to admit a recursive/sequential representation (or possibly a semirecursive one [20]). As
it turns out, this can happen when the chosen state approximation admits a valid semimartingale
type representation (in addition to satisfying one of the sufficient conditions of Theorem 3). For
example, the case where the state is Markovian and the chosen state approximation is of the marginal
type, discussed in the basic example presented above, is treated in detail in [14].

Remark 5. The filter representation (43) coincides with the respective expression employed in im-
portance sampling [19, 27]. Since, under the alternative measure P̃, the observations and state
constitute statistically independent processes, one can directly sample from the (joint) distribution
of the state, fixing the observations to their respective value at each time t (of course, assuming that
a relevant “sampling device” exists). However, note that that due to the assumptions of Theorem
3, related at least to convergence in probability of the corresponding state approximations, the
aforementioned result cannot be used directly in order to show convergence of importance sampling
or related particle filtering techniques, which are directly related to empirical measures. The possi-
ble ways Theorem 3 can be utilized in order to provide asymptotic guarantees for particle filtering
(using additional assumptions) constitutes an interesting open topic for further research. �

The rest of the paper is fully devoted in the detailed proof of Theorem 3.
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4 Proof of Theorem 3

In order to facilitate the presentation, the proof is divided in a number of subsections.

4.1 Two Basic Lemmata, Linear Algebra - Oriented

Parts of the following useful results will be employed several times in the analysis that follows3.

Lemma 2. Consider arbitrary matrices A ∈ C
N1×M1, B ∈ C

N1×M1 , X ∈ C
M2×N2, Y ∈ C

M2×N2 ,
and let ‖·‖

M
be any matrix norm. Then, the following hold:

• If either

– N1 ≡ M1 ≡ 1, or

– N1 ≡ N2 ≡ M1 ≡ M2 and ‖·‖
M

is submultiplicative,

then

‖AX−BY‖
M

≤ ‖A‖
M
‖X−Y‖

M
+ ‖Y‖

M
‖A−B‖

M
. (54)

• If N2 ≡ 1, M1 ≡ M2 and ‖·‖
M

constitutes any subordinate matrix norm to the ℓp vector norm,
‖·‖p, then

‖AX−BY‖p ≤ ‖A‖
M
‖X−Y‖p + ‖Y‖p ‖A−B‖

M
. (55)

Proof of Lemma 2. We prove the result only for the case where N1 ≡ N2 ≡ M1 ≡ M2 and ‖·‖
M

is
submultiplicative. By definition of such a matrix norm,

‖AX−BY‖
M

≡ ‖AX+AY −AY −BY‖
M

≡ ‖A (X−Y) + (A−B)Y‖
M

≤ ‖A (X−Y)‖
M

+ ‖(A−B)Y‖
M

≤ ‖A‖
M
‖(X−Y)‖

M
+ ‖Y‖

M
‖(A−B)‖

M
, (56)

apparently completing the proof. The results for the other two cases considered in Lemma 2 can
be readily shown following similar procedure. �

Lemma 3. Consider the collections of arbitrary, square matrices
{
Ai ∈ C

N×N
}
i∈Nn

and
{
Bi ∈ C

N×N
}
i∈Nn

.

Then, for any submultiplicative matrix norm ‖·‖
M
, it is true that

∥∥∥∥∥

n∏

i=0

Ai −
n∏

i=0

Bi

∥∥∥∥∥
M

≤
n∑

i=0




i−1∏

j=0

∥∥Aj

∥∥
M






n∏

j=i+1

∥∥Bj

∥∥
M


 ‖Ai −Bi‖M . (57)

3
In this paper, Lemma 3 presented in this subsection will be applied only for scalars (and where the metric

considered coincides with the absolute value). However, the general version of the result (considering matrices and
submultiplicative norms) is presented for the sake of generality.
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Proof of Lemma 3. Applying Lemma 2 to the LHS of (57), we get
∥∥∥∥∥

n∏

i=0

Ai −
n∏

i=0

Bi

∥∥∥∥∥
M

≡
∥∥∥∥∥A0

n∏

i=1

Ai −B0

n∏

i=1

Bi

∥∥∥∥∥
M

≤ ‖A0‖M

∥∥∥∥∥

n∏

i=1

Ai −
n∏

i=1

Bi

∥∥∥∥∥
M

+

∥∥∥∥∥

n∏

i=1

Bi

∥∥∥∥∥
M

‖A0 −B0‖M . (58)

The repeated application of Lemma 2 to the quantity multiplying ‖A0‖M on the RHS of the ex-
pression above yields

∥∥∥∥∥

n∏

i=0

Ai −
n∏

i=0

Bi

∥∥∥∥∥
M

≤ ‖A0‖M ‖A1‖M

∥∥∥∥∥

n∏

i=2

Ai −
n∏

i=2

Bi

∥∥∥∥∥
M

+ ‖A0‖M

∥∥∥∥∥

n∏

i=2

Bi

∥∥∥∥∥
M

‖A1 −B1‖M +

∥∥∥∥∥

n∏

i=1

Bi

∥∥∥∥∥
M

‖A0 −B0‖M , (59)

where, the “temporal pattern” is apparent. Indeed, iterating (59) and proceeding inductively, we
end up with the bound

∥∥∥∥∥

n∏

i=0

Ai −
n∏

i=0

Bi

∥∥∥∥∥
M

≤
n∑

i=0




i−1∏

j=0

∥∥Aj

∥∥
M



∥∥∥∥∥∥

n∏

j=i+1

Bj

∥∥∥∥∥∥
M

‖Ai −Bi‖M (60)

and the result readily follows invoking the submultiplicativeness of ‖·‖
M
. �

4.2 Preliminary Results

Here, we present and prove a number of preliminary results, which will help us towards the proof
of an important lemma, which will be the key to showing the validity of Theorem 3.

First, under Assumption 2, stated in Section II.A, the following trivial lemmata hold.

Lemma 4. Each member of the functional family {Σt : Z 7→ DΣ}t∈N is Lipschitz continuous on Z,
in the Euclidean topology induced by the Frobenius norm. That is, ∀t ∈ N,

‖Σt (x)−Σt (y)‖F ≤ (NKΣ) |x− y| , (61)

∀ (x, y) ∈ Z×Z, for the same constant KΣ ∈ R+, as defined in Assumption 2. The same also holds
for the family {Ct : Z 7→ DC}t∈N.
Proof of Lemma 4. By definition of the Frobenius norm,

‖Σt (x)−Σt (y)‖F ≡
√√√√

∑

(i,j)∈N
+

N×N
+

N

(
Σij

t (x)−Σij
t (y)

)2

≤
√ ∑

(i,j)∈N
+

N×N
+

N

K2
Σ |x− y|2

≡
√

N2K2
Σ |x− y|2, ∀t ∈ N (62)

and our first claim follows. The second follows trivially if we recall the definition of each Ct (x). �

18



Lemma 5. For each member of the functional family {Ct : Z 7→ DC}t∈N, it is true that, ∀t ∈ N,

|det (Ct (x))− det (Ct (y))| ≤ (NKDET ) ‖Ct (x)−Ct (y)‖F , (63)

∀ (x, y) ∈ Z × Z, for some bounded constant KDET ≡ KDET (N) ∈ R+, possibly dependent on N
but independent of t.

Proof of Lemma 5. As a consequence of the fact that the determinant of a matrix can be expressed
as a polynomial function in N2 variables (for example, see the Leibniz formula), it must be true
that, ∀t ∈ N,

|det (Ct (x))− det (Ct (y))| ≤ KDET

∑

(i,j)∈N
+

N×N
+

N

∣∣∣Cij
t (x)−Cij

t (y)
∣∣∣

≡ KDET ‖Ct (x)−Ct (y)‖1 , (64)

where the constant KDET depends on maximized (using the fact that the domain DC is bounded)
(N − 1)-fold products of elements of Ct (x) and Ct (y), with respect to x (resp. y) and t. Conse-
quently, although KDET may depend on N , it certainly does not depend on t. Now, since the ℓ1
entrywise norm of an N ×N matrix corresponds to the norm of a vector with N2 elements, we may
further bound the right had side of the expression above by the Frobenius norm of Ct (x)−Ct (y),
yielding

|det (Ct (x))− det (Ct (y))| ≤ NKDET ‖Ct (x)−Ct (y)‖F , (65)

which is what we were set to prove. �

Remark 6. The fact that the constant KDET may be a function of the dimension of the observation
vector, N , does not constitute a significant problem throughout our analysis, simply because N
is always considered a finite and fixed parameter of our problem. However, it is true that the
(functional) way N appears in the various constants in our derived expressions can potentially
affect speed of convergence and, for that reason, it constitutes an important analytical aspect.
Therefore, throughout the analysis presented below, a great effort has been made in order to keep
the dependence of our bounds on N within reasonable limits. �

We also present another useful lemma, related to the expansiveness of each member of the

functional family
{
C−1

t : Z 7→ D
C

−1

}
t∈N

.

Lemma 6. Each member of the functional family
{
C−1

t : Z 7→ D
C

−1

}
t∈N

is Lipschitz continuous

on Z, in the Euclidean topology induced by the Frobenius norm. That is, ∀t ∈ N,
∥∥∥C−1

t (x)−C−1
t (y)

∥∥∥
F
≤ KINV |x− y| , (66)

∀ (x, y) ∈ Z × Z, for some bounded constant KINV ≡ KINV (N) ∈ R+, possibly dependent on N
but independent of t.

Proof of Lemma 6. As a consequence of Laplace’s formula for the determinant of a matrix and
invoking Lemma 2, it is true that

∥∥∥C−1
t (x)−C−1

t (y)
∥∥∥
F
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≡
∥∥∥∥
adj (Ct (x))

det (Ct (x))
− adj (Ct (y))

det (Ct (y))

∥∥∥∥
F

≤ ‖adj (Ct (x))− adj (Ct (y))‖F
det (Ct (x))

+ ‖adj (Ct (y))‖F
|det (Ct (x))− det (Ct (y))|
det (Ct (x)) det (Ct (y))

, (67)

where adj (A) denotes the adjugate of the square matrix A. Since Ct (x) (resp. Ct (y)) is a
symmetric and positive definite matrix, so is its adjugate. Employing one more property regarding
the eigenvalues of the adjugate [28] and the fact that λinf > 1, we can write

‖adj (Ct (y))‖F ≤
√
N ‖adj (Ct (y))‖2

≡
√
Nλmax (adj (Ct (y)))

≡
√
N max

i∈N
+

N

∏

j 6=i

λj (Ct (y))

≤
√
N det (Ct (y)) , (68)

and then (67) becomes

∥∥∥C−1
t (x)−C−1

t (y)
∥∥∥
F
≤ ‖adj (Ct (x))− adj (Ct (y))‖F

det (Ct (x))
+

√
N

|det (Ct (x))− det (Ct (y))|
det (Ct (x))

≤ ‖adj (Ct (x))− adj (Ct (y))‖F
λN
inf

+
N3KDETKΣ

λN
inf

|x− y| . (69)

Next, the numerator of the first fraction from the left may be expressed as

‖adj (Ct (x))− adj (Ct (y))‖F ≡
√√√√

∑

(i,j)∈N
+

N×N
+

N

(
adj (Ct (x))

ij − adj (Ct (y))
ij
)2

≡
√√√√

∑

(i,j)∈N
+

N×N
+

N

(
(−1)i+j [Mij (Ct (x))−Mij (Ct (y))

])2

≡
√ ∑

(i,j)∈N
+

N×N
+

N

(
Mij (Ct (x))−Mij (Ct (y))

)2
, (70)

where Mij (Ct (x)) denotes the (i, j)-th minor of Ct (x), which constitutes the determinant of the
(N − 1) × (N − 1) matrix formulated by removing the i-th row and the j-th column of Ct (x).
Consequently, from Lemma 5, there exists a constant Kdet, possibly dependent on N , such that,
∀t ∈ N,

‖adj (Ct (x))− adj (Ct (y))‖F ≤
√ ∑

(i,j)∈N
+

N×N
+

N

N4K2
detK

2
Σ |x− y|2, (71)

or, equivalently,

‖adj (Ct (x))− adj (Ct (y))‖F ≤ N3KdetKΣ |x− y| , (72)
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∀ (x, y) ∈ Z ×Z. Therefore, combining with (69), we get

∥∥∥C−1
t (x)−C−1

t (y)
∥∥∥
F
≤ N3

λN
inf

(KDET +Kdet)KΣ |x− y|

≤
27λ

−3/ log(λinf)
inf(

log
(
λinf

))3 (KDET +Kdet)KΣ |x− y|

, KINV |x− y| , (73)

and the proof is complete. �

Next, we state the following simple probabilistic result, related to the expansiveness of the norm
of the observation vector in a stochastic sense, under both base measures P and P̃ considered
throughout the paper (see Section II.B).

Lemma 7. Consider the random quadratic form

Qt (ω) , ‖yt (ω)‖22 ≡ ‖yt (Xt (ω)) + µt (Xt (ω))‖22 , t ∈ N. (74)

Then, for any fixed t ∈ N and any freely chosen C ≥ 1, there exists a bounded constant γ > 1, such
that the measurable set

Tt ,
{
ω ∈ Ω

∣∣∣∣∣supi∈Nt

Qi (ω) < γCN (1 + log (t+ 1))

}
(75)

satisfies

min
{
P (Tt) , P̃ (Tt)

}
≥ 1− exp (−CN)

(t+ 1)CN−1
, (76)

that is, the sequence of quadratic forms {Qi (ω)}i∈Nt
is uniformly bounded with very high probability

under both base measures P and P̃.

Proof of Lemma 7. First, it is true that

‖yt (ω)‖22 ≡ ‖yt (Xt (ω)) + µt (Xt (ω))‖22
≡ ‖yt (Xt (ω))‖22 + 2yT

t (Xt (ω))µt (Xt (ω)) + ‖µt (Xt (ω))‖22
≤ ‖yt (Xt (ω))‖22 + 2 ‖yt (Xt (ω))‖2 µsup + µ2

sup. (77)

Also, under P, for each t ∈ N, the random variable yt (Xt) constitutes an N -dimensional, condi-
tionally (on Xt) Gaussian random variable with zero mean and covariance matrix Ct (Xt), that
is

yt |Xt ∼ N
(
0,Ct (Xt) ≡ Cyt|Xt

)
. (78)

Then, if Xt is given,
Qt (ω) , ‖yt (Xt (ω))‖22 (79)

can be shown to admit the very useful alternative representation (for instance, see [29], pp. 89 - 90)

Qt ≡
∑

j∈N
+

N

λj (Ct (Xt))U
2
j , ∀t ∈ N, with (80)
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{
Uj

}
j∈N

+

N

i.i.d.∼ N (0, 1) . (81)

From (80), one can readily observe that the statistical dependence of Qt on Xt concentrates only on
the eigenvalues of the covariance matrix Ct (Xt), for which we have already assumed the existence
of a finite supremum explicitly (see Assumption 1). Consequently, conditioning on the process Xt,
we can bound (80) as

Qt ≤ λsup

∑

j∈N
+

N

U2
j , λsupU, with U ∼ χ2 (N) , (82)

almost everywhere and everywhere in time, where the RHS is independent of Xt. Next, from ([30],
p. 1325), we know that for any chi squared random variable U with N degrees of freedom,

P
(
U ≥ N + 2

√
Nu+ 2u

)
≤ exp (−u) , ∀u > 0. (83)

Setting u ≡ CN (1 + log (t+ 1)) for any C ≥ 1 and any t ∈ N,

P
(
U ≥ N + 2N

√
C (1 + log (t+ 1)) + 2CN (1 + log (t+ 1))

)
≤ exp (−CN)

(t+ 1)CN
. (84)

a statement which equivalently means that, with probability at least 1− (t+ 1)−CN exp (−CN),

U < N + 2N
√

C (1 + log (t+ 1)) + 2CN (1 + log (t+ 1)) . (85)

However, because the RHS of the above inequality is upper bounded by 5CN (1 + log (t+ 1)),

P (U < 5CN (1 + log (t+ 1)))

≥ P
(
U < N + 2N

√
C (1 + log (t+ 1)) + 2CN (1 + log (t+ 1))

)
≥ 1− exp (−CN)

(t+ 1)CN
. (86)

Hence, ∀i ∈ Nt,

P
(
Qi ≥ 5λsupCN (1 + log (t+ 1))

∣∣Xi

)
≤ P (U ≥ 5CN (1 + log (t+ 1)))

≤ exp (−CN)

(t+ 1)CN
, (87)

and, thus,

P
(
Qi ≥ 5λsupCN (1 + log (t+ 1))

)
=

ˆ

P
(
Qi ≥ 5λsupCN (1 + log (t+ 1))

∣∣Xi

)
dPXi

≤ exp (−CN)

(t+ 1)CN

ˆ

dPXi
≡ exp (−CN)

(t+ 1)CN
. (88)

However, we would like to produce a bound on the supremum of all the Qi, i ∈ Nt. Indeed, using
the naive union bound,

P


⋃

i∈Nt

{
Qi ≥ 5λsupCN (1 + log (t+ 1))

}

 ≤

∑

i∈Nt

P
(
Qi ≥ λsup5CN (1 + log (t+ 1))

)
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≤ (t+ 1) exp (−CN)

(t+ 1)CN
≡ exp (−CN)

(t+ 1)CN−1

or, equivalently,

P
(
sup
i∈Nt

Qi < 5λsupCN (1 + log (t+ 1))

)
≡ P

({
Qi < 5λsupCN (1 + log (t+ 1)) ,∀i ∈ Nt

})

≡ P


⋂

i∈Nt

{
Qi < 5λsupCN (1 + log (t+ 1))

}



≥ 1− exp (−CN)

(t+ 1)CN−1
, (89)

holding true ∀t ∈ N. Consequently, working in the same fashion as above, it is true that, with at
least the same probability of success,

sup
i∈Nt

Qi (ω) < 5λsupCN (1 + log (t+ 1)) + 2
√

5λsupCN (1 + log (t+ 1))µsup + µ2
sup

< 5λsup

(
1 + 2µsup + µ2

sup

)
CN (1 + log (t+ 1)) (90)

or, setting γ1 , 5λsup

(
1 + µsup

)2
> 1,

sup
i∈Nt

Qi (ω) < γ1CN (1 + log (t+ 1)) . (91)

Now, under the alternative base measure P̃ , yt constitutes a Gaussian vector white noise process
with zero mean and covariance matrix the identity, statistically independent of the process Xt (see
Theorem 2). That is, for each t, the elements of yt are themselves independent to each other. Thus,
for all t ∈ N and for all i ∈ Nt and using similar arguments as the ones made above, it should be
true that

P̃ (Qi < 5CN (1 + log (t+ 1))) ≥ 1− exp (−CN)

(t+ 1)CN
(92)

and taking the union bound, we end up with the inequality

P̃
(
sup
i∈Nt

Qi < 5CN (1 + log (t+ 1))

)
≥ 1− exp (−CN)

(t+ 1)CN−1
. (93)

Defining γ , max {γ1, 5} ≡ γ1, it must be true that, for all t ∈ N,

min

{
P
(
sup
i∈Nt

Qi < γCN (1 + log (t+ 1))

)
, P̃
(
sup
i∈Nt

Qi < γCN (1 + log (t+ 1))

)}

≥ 1− exp (−CN)

(t+ 1)CN−1
, (94)

therefore completing the proof of the lemma. �
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Continuing our presentation of preliminary results towards the proof of Theorem (3) and lever-
aging the power of C-weak convergence and Lemma 1, let us present the following lemma, connecting
C-weak convergence of random variables with convergence in the L1 sense.

Lemma 8. (From C-Weak Convergence to Convergence in L1) Consider the sequence

of discrete time stochastic processes
{
XA

t

}
A∈N

, as well as a “limit” process Xt,t ∈ N, all being
(
R,S , B (R)

)
-valued and all defined on a common base space (Ω,F ,P). Further, suppose that

all members of the collection
{{

XA

t

}
A∈N

,Xt

}

t∈N
are almost surely bounded in Z ≡ [a, b] (with

−∞ < a < b < ∞) and that

PA

X
A

t |Xt
( ·|Xt)

W−→
A→∞

δXt
(·) ≡ 1(·) (Xt) , ∀t ∈ N, (95)

that is, the sequence
{
XA

t

}
A∈N

is marginally C-weakly convergent to Xt, given Xt, for all t. Then,

it is true that
E

{∣∣∣Xt −XA

t

∣∣∣
}

−→
A→∞

0, ∀t ∈ N, (96)

or, equivalently, XA

t
L1−→

A→∞
Xt, for all t.

Proof of Lemma 8. Let all the hypotheses of Lemma 8 hold true. Then, we know that, ∀t ∈ N,

lim
n→∞

PA

X
A

t |Xt
(A|Xt (ω)) = δXt(ω)

(A) , P − a.e., (97)

for all continuity Borel sets A ∈ S . Using the tower property, it is also true that

E

{∣∣∣Xt −XA

t

∣∣∣
}
≡ E

{
E

{∣∣∣Xt −XA

t

∣∣∣
∣∣∣ σ {Xt}

}}
. (98)

Therefore, in order to show that XA

t
L1−→

A→∞
Xt for each t ∈ N, it suffices to show that

E

{∣∣∣Xt −XA

t

∣∣∣
∣∣∣σ {Xt}

}
(ω)

a.s.−→
A→∞

0, ∀t ∈ N. (99)

Then, the Dominated Convergence Theorem would produce the desired result.

Of course, because all members of the collection
{{

XA

t

}
A∈N

,Xt

}

t∈N
are almost surely bounded

in Z, all members of the collection
{{∣∣∣Xt −XA

t

∣∣∣
}
A∈N

}

t∈N
must be bounded almost surely in the

compact set Ẑ , [0, 2δ] ⊂ R, where δ , max {|a| , |b|}.
Let us define the continuous and bounded function

f (x) ,





x, if x ∈ Ẑ
2δ, if x > 2δ

0, if x < 0

. (100)

Then, from Lemma 1 and using conditional probability measures it must be true that for each t ∈ N,
a version of the conditional expectation of interest is explicitly given by

E

{
f
(∣∣∣Xt −XA

t

∣∣∣
)∣∣∣σ {Xt}

}
(ω) ≡

ˆ

f (|Xt (ω)− x|)PA

X
A

t |Xt
(dx |Xt (ω)) −→

A→∞
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−→
A→∞

ˆ

f (|Xt (ω)− x|) δXt(ω)
(dx) ≡ 0, P − a.e., (101)

since, for each ω ∈ Ω, Xt (ω) is constant. Further, by definition of f ,

E

{
f
(∣∣∣Xt −XA

t

∣∣∣
)∣∣∣σ {Xt}

}
(ω) ≡ E

{∣∣∣Xt −XA

t

∣∣∣1(|Xt−X
A

t |)
(
Ẑ
)∣∣∣ σ {Xt}

}
(ω)

≡ E

{∣∣∣Xt −XA

t

∣∣∣
∣∣∣σ {Xt}

}
(ω) , P − a.e., (102)

and for all t ∈ N, which means that

E

{∣∣∣Xt −XA

t

∣∣∣
∣∣∣σ {Xt}

}
(ω)

a.s.−→
A→∞

0, ∀t ∈ N. (103)

Calling dominated convergence proves the result. �

Additionally, the following useful (to us) result is also true. The proof, being elementary, is
omitted.

Lemma 9. (Convergence of the Supremum) Pick any natural T < ∞. If, under any circum-
stances,

E

{∣∣∣Xt −XA

t

∣∣∣
}

−→
A→∞

0, ∀t ∈ NT , (104)

then
sup
t∈NT

E

{∣∣∣Xt −XA

t

∣∣∣
}

−→
A→∞

0. (105)

4.3 The Key Lemma

We are now ready to present our key lemma, which will play an important role in establishing our
main result (Theorem 3) later on. For proving this result, we make use of all the intermediate ones
presented in the previous subsections.

Lemma 10. (Convergence of the Likelihoods) Consider the stochastic process

Λ̂t ,

exp


−1

2

∑

i∈Nt

yT

i (Xi)C
−1
i (Xi)yi (Xi)




∏

i∈Nt

√
det (Ci (Xi))

,
Nt

Dt
, t ∈ N. (106)

Consider also the process Λ̂A

t , N
A

t/D
A

t , defined exactly the same way as Λ̂t, but replacing Xi with the
approximation XA

i , ∀i ∈ Nt. Further, pick any natural T < ∞ and suppose either of the following:

• For all t ∈ NT , the sequence
{
XA

t

}
A∈N

is marginally C-weakly convergent to Xt, given Xt, that

is,

PA

X
A

t |Xt
( ·|Xt)

W−→
A→∞

δXt
(·) , ∀t ∈ NT . (107)
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• For all t ∈ NT , the sequence
{
XA

t

}
A∈N

is marginally convergent to Xt in probability, that is,

XA

t
P−→

A→∞
Xt, ∀t ∈ NT . (108)

Then, there exists a measurable subset Ω̂T ⊆ Ω, such that

lim
A→∞

sup
t∈NT

sup
ω∈Ω̂T

EP̃

{∣∣∣Λ̂t − Λ̂A

t

∣∣∣
∣∣∣Yt

}
(ω) ≡ 0, (109)

where the P,P̃-measures of Ω̂T satisfy

min
{
P
(
Ω̂T

)
, P̃
(
Ω̂T

)}
≥ 1− exp (−CN)

(T + 1)CN−1
, (110)

for any free but finite constant C ≥ 1.

Proof of Lemma 10. From Lemma 2, it is true that

∣∣∣Λ̂t − Λ̂A

t

∣∣∣ ≡
∣∣∣∣∣
Nt

Dt
− N

A

t

D
A

t

∣∣∣∣∣ ≤

∣∣∣Nt −N
A

t

∣∣∣
∣∣∣DA

t

∣∣∣
+ |Nt|

∣∣∣∣
1

Dt
− 1

D
A

t

∣∣∣∣

≤

∣∣∣Nt −N
A

t

∣∣∣
∣∣∣DA

t

∣∣∣
+

∣∣∣∣
1

Dt
− 1

D
A

t

∣∣∣∣ . (111)

We first concentrate on the determinant part (second term) of the RHS of (111). Directly invoking
Lemma 3, it will be true that

∣∣∣∣
1

Dt
− 1

D
A

t

∣∣∣∣

≡

∣∣∣∣∣∣∣∣

t∏

i=0

1√
det (Ci (Xi))

−
t∏

i=0

1√
det
(
Ci

(
XA

i

))

∣∣∣∣∣∣∣∣

≤
t∑

i=0




i−1∏

j=0

1√
det
(
Cj

(
Xj

))







t∏

j=i+1

1√
det
(
Cj

(
XA

j

))




∣∣∣∣
√

det (Ci (Xi))−
√

det
(
Ci

(
XA

i

))∣∣∣∣
√
det (Ci (Xi)) det

(
Ci

(
XA

i

))

=

t∑

i=0




i−1∏

j=0

1√√√√
N∏

n=1

λn

(
Cj

(
Xj

))







t∏

j=i+1

1√√√√
N∏

n=1

λn

(
Cj

(
XA

j

))




∣∣∣∣
√

det (Ci (Xi))−
√
det
(
Ci

(
XA

i

))∣∣∣∣
√√√√

N∏

n=1

λn

(
Cj

(
Xj

))
λn

(
Cj

(
XA

j

))
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≤
t∑

i=0

1

2λ
Ni/2
inf λ

N(t−i)/2
inf

∣∣∣det (Ci (Xi))− det
(
Ci

(
XA

i

))∣∣∣
λN
inf

≡ 1

2
√

λ
N(t+2)
inf

t∑

i=0

∣∣∣det (Ci (Xi))− det
(
Ci

(
XA

i

))∣∣∣ . (112)

From Lemma 5, we can bound the RHS of the above expression as

∣∣∣∣
1

Dt
− 1

D
A

t

∣∣∣∣ ≤
NKDET

2
√

λ
N(t+2)
inf

t∑

i=0

∥∥∥Ci (Xi)−Ci

(
XA

i

)∥∥∥
F

≡ NKDET

2
√

λ
N(t+2)
inf

t∑

i=0

∥∥∥Σi (Xi)−Σi

(
XA

i

)∥∥∥
F
. (113)

And from Lemma 4, (113) becomes

∣∣∣∣
1

Dt
− 1

D
A

t

∣∣∣∣ ≤
N2KDETKΣ

2
√

λ
N(t+2)
inf

t∑

i=0

∣∣∣Xi −XA

i

∣∣∣ . (114)

We now turn our attention to the “difference of exponentials” part (first term) of the RHS of
(111). First, we know that

t∏

i=0

det
(
Ci

(
XA

i

))
≥

t∏

i=0

N∏

j=1

λinf ≡ λ
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inf , (115)

yielding the inequality ∣∣∣Nt −N
A

t
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∣∣∣
≤

∣∣∣Nt −N
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, (116)

where λinf > 1 (see Assumption 1). Next, making use of the inequality [11]

|exp (α)− exp (β)| ≤ |α− β| (exp (α) + exp (β)) , (117)

∀ (α, β) ∈ R
2, the absolute difference on the numerator of (116) can be upper bounded as
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Concentrating on each member of the series above in the last line of (118) and calling Lemma 2, it
is true that
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]
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2
. (119)

Calling Lemma 2 again for the term multiplying the quantity ‖yi (Xi)‖2 in the RHS of the above
expression, we arrive at the inequalities
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or, equivalently,
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Now, recalling Assumption 2, the definition of yi (Xi) (resp. for XA

i ) and invoking Lemma 6, it
must be true that
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Using the above inequality, the RHS of (116) can be further bounded from above as
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Therefore, we can bound the RHS of (111) as
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i

∣∣∣ . (124)

Taking conditional expectations on both sides of (124), observing that the quantity supi∈Nt
Θ(yi)

constitutes a {Yt}-adapted process and recalling that under the base measure P̃ (see Theorem 2),
the processes yt and Xt (resp. X

A

t ) are statistically independent, we can write

E
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}
, (125)

P̃ − a.e., and, because P ≪Ht
P̃, P − a.e. as well. From the last inequality, we can readily observe

that in order to be able to talk about any kind of uniform convergence regarding the RHS, it is
vital to ensure that the random variable supi∈Nt

Θ(yi) is bounded from above. However, because
the support of ‖yi‖2 is infinite, it is impossible to bound supi∈Nt

Θ(yi) in the almost sure sense.

Nevertheless, Lemma 7 immediately implies that there exists a measurable subset Ω̂τ ⊆ Ω with

min
{
P
(
Ω̂τ

)
, P̃
(
Ω̂τ

)}
≥ 1− exp (−CN)

(τ + 1)CN−1
(126)

such that, for all ω ∈ Ω̂τ ,

sup
i∈Nτ

‖yi (ω)‖22 ≡ sup
i∈Nτ

‖yi‖22 < γCN (1 + log (1 + τ)) , (127)

for some fixed constant γ > 1, for any C ≥ 1 and for any fixed τ ∈ N. Choosing τ ≡ T < ∞, it is
true that
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where γ̃ ,
√
γ + µsup. Therefore, it will be true that
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, (129)

for all t ∈ NT , with probability at least

1− exp (−CN)

(T + 1)CN−1
,
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under either P or P̃. Further,
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Then, with the same probability of success,

EP̃

{∣∣∣Λ̂t − Λ̂A

t

∣∣∣
∣∣∣Yt

}

≤


KoCN (1 + log (1 + T )) (t+ 1)√

λ
N(t+1)
inf

+
KDETKΣN

2 (t+ 1)

2
√

λ
N(t+2)
inf


 sup

τ∈Nt

E
P̃

{∣∣∣Xτ −XA

τ

∣∣∣
}

≤


KoCN (1 + log (1 + T )) (T + 1)

λ
N/2
inf

+
KDETKΣN

2 (T + 1)

2λN
inf

)
sup
τ∈Nt

E
P̃

{∣∣∣Xτ −XA

τ

∣∣∣
}

, KG (T ) sup
τ∈Nt

EP̃

{∣∣∣Xτ −XA

τ

∣∣∣
}
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where KG (T ) ≡ O (T log (T )). Alternatively, upper bounding the functions comprised by the
quantities t,N, λinf in the second and third lines of the expressions above as (note that, obviously,
t+ 1 ≥ 1,∀t ∈ R+)

N (t+ 1)√
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and (132)
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respectively, we can also define
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))2 , (134)

where, in this case, KG (T ) ≡ O (log (T )). Note, however, that although its dependence on T is
logarithmic, KG (T ) may still be large due to the inability to compensate for the size of Ko. In any
case, for all ω ∈ Ω̂T ,

EP̃

{∣∣∣Λ̂t − Λ̂A

t

∣∣∣
∣∣∣Yt

}
(ω) ≤ KG (T ) sup

τ∈Nt

EP̃

{∣∣∣Xτ −XA

τ

∣∣∣
}
, ∀t ∈ NT , (135)

Therefore, we get
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and further taking the supremum over t ∈ NT on both sides, it must be true that
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Finally, if either
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X
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and given that since the members of
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are almost surely bounded in Z, the aforementioned

sequence is also uniformly integrable for all t ∈ N, it must be true that (see Lemma 8)
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Then, Lemma 9 implies that
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which in turn implies the existence of the limit on the LHS of (137). QED. �

4.4 Finishing the Proof of Theorem 3

Considering the absolute difference of the RHSs of (44) and (43), it is true that (see Lemma 2)
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due to the fact that the increasing stochastic process
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is {Yt}-adapted. Then, we can write
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Let us first focus on the difference on the numerator of the second ratio of the RHS of (144).
Recalling that δ ≡ max {|a| , |b|}, we can then write
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On the other hand, for the denominator for (144), it is true that
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since the process
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)2
is {Yt}-adapted. Now, from Lemma 7, we know that
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where the last inequality holds with probability at least 1 − (T + 1)1−CN exp (−CN), under both
base measures P and P̃ , for any finite constant C ≥ 1. Therefore, it can be trivially shown that
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implying that
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where Ω̂T coincides with the event

{
ω ∈ Ω

∣∣∣∣∣supi∈Nt

‖yi‖22 < γCN (1 + log (T + 1)) ,∀t ∈ NT

}

with P,P̃-measure at least 1 − (T + 1)1−CN exp (−CN). Of course, the existence of Ω̂T follows
from Lemma 7. Putting it altogether, (144) becomes (recall that the base measures P and P̃ are
equivalent)

∣∣∣EP {Xt|Yt} − EA (Xt|Yt)
∣∣∣ ≤

2δE
P̃

{∣∣∣Λ̂t − Λ̂A

t

∣∣∣
∣∣∣Yt

}
+ E

P̃

{∣∣∣Xt −XA

t

∣∣∣
}

inf
A∈N

E
P̃

{
Λ̂A

t

∣∣∣Yt

} , P, P̃ − a.e., (150)

where δ ≡ max {|a| , |b|}. Taking the supremum both with respect to ω ∈ Ω̂T and t ∈ NT on both
sides, we get
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with

min
{
P
(
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)
, P̃
(
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)}
≥ 1− exp (−CN)

(T + 1)CN−1
. (152)

Finally, calling Lemma 10 and Lemma 9, and since the denominators of the fractions appearing in
(151) are nonzero, its RHS tends to zero as A → ∞, under the respective hypotheses. Consequently,
the LHS will also converge, therefore completing the proof of the Theorem 3. �

5 Conclusion

In this paper, we have provided sufficient conditions for convergence of approximate, asymptotically
optimal nonlinear filtering operators, for a general class of hidden stochastic processes, observed in
a conditionally Gaussian noisy environment. In particular, employing a common change of measure
argument, we have shown that using the same measurements, but replacing the “true” state by an
approximation process, which converges to the former either in probability or in the C-weak sense,
one can define an approximate filtering operator, which converges to the optimal filter compactly in
time and uniformly in an event occurring with probability nearly 1, at the same time constituting
a purely quantitative justification of Egoroff’s theorem for the problem of interest. The results
presented in this paper essentially provide a framework for analyzing the convergence properties of
various classes of approximate nonlinear filters (either recursive or nonrecursive), such as existing
grid based approaches, which are known to perform well in various applications.
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Appendix: Proof of Theorem 1

The proof is astonishingly simple. Let the hypotheses of the statement of Theorem 1 hold true. To
avoid useless notational congestion, let us also make the identifications

Xt , {Xi}i∈Nt
and Yt , {Yi}i∈Nt

. (153)

Now, by definition of the conditional expectation operator and since we have assumed the existence
of densities, it is true that

X̂t ≡ EP {Xt|Y0, Y1, . . . , Yt}

=

ˆ

xtfXt|Yt
(xt| Yt) dxt

=

ˆ

xtf(Xt,Yt)
(xt,Yt) dxt

fYt
(Yt)

≡

ˆ

xtft (x0, x1, . . . xt,Yt)

t∏

i=0

dxi

ˆ

ft (x0, x1, . . . xt,Yt)

t∏

i=0

dxi

≡

ˆ

xtλtf̃t

(
{xi}i∈Nt

,Yt

) t∏

i=0

dxi

ˆ

λtf̃t

(
{xi}i∈Nt

,Yt

) t∏

i=0

dxi

, (154)

where

λt ,
ft (x0, x1, . . . xt, Y0 (ω) , Y1 (ω) , . . . , Yt (ω))

f̃t (x0, x1, . . . xt, Y0 (ω) , Y1 (ω) , . . . , Yt (ω))

≡ λt

(
{xi}i∈Nt

,Yt (ω)
)
∈ R+, ∀ω ∈ Ω, (155)

constitutes a “half ordinary function - half random variable” likelihood ratio and where the condi-
tion (16) ensures its boundedness. Of course, although the likelihood ratio can be indeterminate
when both densities are zero, the respective points do not contribute in the computation of the
relevant integrals presented above, because these belong to measurable sets corresponding to events
of measure zero. From (154) and by definition of the conditional density of {Xi}i∈Nt

given {Yi}i∈Nt
,

we immediately get

X̂t ≡ EP {Xt|Yt}

≡

ˆ

xtλtf̃Xt|Yt

(
{xi}i∈Nt

∣∣∣Yt

) t∏

i=0

dxi

ˆ

λtf̃Xt|Yt

(
{xi}i∈Nt

∣∣∣Yt

) t∏

i=0

dxi
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=
EP̃ {XtΛt|Y0, Y1, . . . , Yt}
EP̃ {Λt|Y0, Y1, . . . , Yt}

≡ EP̃ {XtΛt|Yt}
E
P̃
{Λt|Yt}

, (156)

which constitutes what we were initially set to show. �
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