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Abstract—A sensor network is considered where at each sensor
a sequence of random variables is observed. At each time step,
a processed version of the observations is transmitted from the
sensors to a common node called the fusion center. At some
unknown point in time the distribution of observations at an
unknown subset of the sensor nodes changes. The objective is to
detect the outlying sequences as quickly as possible, subject to
constraints on the false alarm rate, the cost of observations taken
at each sensor, and the cost of communication between the sensors
and the fusion center. Minimax formulations are proposed for
the above problem and algorithms are proposed that are shown
to be asymptotically optimal for the proposed formulations, as
the false alarm rate goes to zero. It is also shown, via numerical
studies, that the proposed algorithms perform significantly better
than those based on fractional sampling, in which the classical
algorithms from the literature are used and the constraint on the
cost of observations is met by using the outcome of a sequence
of biased coin tosses, independent of the observation process.

Index Terms—Quickest change detection, observation control,
minimax, multi-channel systems, outlying sequence detection,
asymptotic optimality.

I. INTRODUCTION

In many engineering applications a sensor network is often
deployed to observe a phenomenon, and to make statistical
inference in a distributed and collaborative manner in real
time. An application of particular interest is the detection of
the onset of an activity or occurence of an event in/around
the object/phenomenon being monitored. For example, it is of
interest to detect the arrival of an animal/bird to its habitat
or to detect a sudden increase in the stress/strain on the
infrastructure being monitored like bridges or buildings. Other
applications include the detection of a bioterrorist attack, the
detection of the arrival of an intruder in a geographical area,
etc. The detection of such an event in real time can either
be a primary objective of the network, or it could be used as
a trigger to activate more sophisticated and costly monitoring
systems or sensors, e.g., a video monitoring system or a human
inspection. Such detection problems can be modeled under the
framework of quickest change detection.

Parts of this paper have been presented at ICASSP 2013. This research
was supported in part by the National Science Foundation under grant CCF
08-30169, CCF 11-11342 and DMS 12-22498, through the University of
Illinois at Urbana-Champaign. This research was also supported in part by
the U.S. Defense Threat Reduction Agency through subcontract 147755 at
the University of Illinois from prime award HDTRA1-10-1-0086.

The problem of quickest change detection (QCD) is well
studied in the literature; see [1], [2], [3], and [4] for a review of
QCD. In the classical QCD problem there is a single sequence
of random variables or vectors. Before the change the random
vectors have a particular distribution. At some point in time,
called the change point, the distribution of the vectors changes.
The objective is to detect this change in distribution as quickly
as possible, i.e., with minimum possible delay, subject to a
constraint on the false alarm rate; see [5], [6], [7], [8], [9], [10],
[11] and [12]. Depending on the availability of the information
on the distribution of the change point, the QCD problem is
either studied in the Bayesian setting of [8], or in non-Bayesian
or minimax settings of [10] and [11].

In this paper we are interested in the decentralized version of
the problem first studied in [13], and further investigated, for
example, in [14] and [15]; see [4] and the references therein.

In the decentralized QCD model there is a set of sensors
and a central decision maker called the fusion center. At each
sensor a sequence of random variables is observed over time,
and at each time step, a processed version of the observations
is transmitted from each sensor to the fusion center. At
the change point the distribution of the observations at all
the sensor nodes changes. The objective in the decentralized
model is to find a technique to process the observations locally
at each sensor, and to find a fusion technique to be applied at
the fusion center, to detect the change as quickly as possible,
subject to a constraint on the false alarm rate.

In modern sensor networks there is a cost associated with
acquiring observations at each sensor. Also, there is a cost
associated with the communication between the sensors and
the fusion center. That is there is a cost associated with
acquiring data in the system. Thus, the change has to be
detected in a data-efficient way. Moreover, a prior on the
change point is often not available. Also often the change
only affects a subset of the sensor nodes, and the information
on the affected subset and even its size may not be known
a priori. In the QCD literature the latter problem is called a
multi-channel QCD problem.

The QCD problem in a multi-channel setting is studied in
[16], [17] and [18]. However, in these papers neither the cost
of observations at the sensors, nor the cost of communication
between the sensor nodes and the fusion center is taken into
account. In the papers [13], [14], [15], and [18], the cost
of communication is controlled by restricting the amount of
information transmitted to either one bit or few bits, but the
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constraint on the cost of communication is not part of the
problem formulation itself. The QCD problem where the cost
of communication is considered explicitly is studied in [19]
and [20]. However in these papers, the cost of observations at
the sensors is not taken into account. Also the problems are
not considered in a multi-channel setting, i.e., in these papers
the change affects all the sensors at the time of change.

In [21] and [22] we extended the classical QCD formula-
tions studied in [8], [10] and [11] by putting an additional
constraint on the cost of observations used in the detection
process. We proposed problem formulations, for the Bayesian
setting in [21] and for two minimax settings in [22], where
the objective is to minimize some version of the average
delay, subject to constraints on the false alarm rate and a
version of the average number of observations taken before the
change point. For the i.i.d. model we proposed two-threshold
extensions of the classical single-threshold algorithms, and
showed that they are asymptotically optimal for the proposed
formulations. We also showed via simulations that the two-
threshold algorithms we proposed provide a significant gain
in performance as compared to the approach of fractional
sampling, in which the constraint on the observation cost is
met by skipping samples randomly.

In [23] we extended the results from [22] to sensor networks
where the change affects all the sensors. However in the
problem formulations in [23], the cost of communication
between the sensors and the fusion center is not taken into
account.

In this paper we extend the results from [22] to a sensor net-
work where the change affects the distribution of observations
at an unknown subset of sensors. We refer to this problem as
the quickest outlying sequence detection problem. We propose
extensions of the minimax problem formulations from [10] and
[11] to sensor networks by introducing additional constraints
on the cost of observations used at each sensors, and the cost
of communication between the sensors and the fusion center.
We propose two algorithms: the DE-Censor-Max algorithm
and the DE-Censor-Sum algorithm. Both the algorithms are
based on the DE-CuSum algorithm we proposed in [22]. The
DE-CuSum algorithm can be used for data-efficient QCD in
a single sequence of observations. In both the algorithms we
propose in this paper, the DE-CuSum algorithm is used locally
at each sensor; thus ensuring data-efficiency at the sensors. In
both the algorithms the local DE-CuSum statistic is transmitted
from the sensors to the fusion center, if the local DE-CuSum
statistic is above a certain threshold; this is censoring. In
the DE-Censor-Max algorithm a change is declared at the
fusion center when the maximum of the transmitted DE-
CuSum statistics across the streams is above a threshold. In
the DE-Censor-Sum algorithm a change is declared at the
fusion center when the sum of the transmitted DE-CuSum
statistics across the streams is above a threshold. We will
provide detailed performance analysis of these algorithms.
The analysis will reveal that the DE-Censor-Max algorithm
is asymptotically optimal for the problems proposed, when
the change affects exactly one stream, as the false alarm rate
goes to zero. Also, using the results in [17], the DE-Censor-
Sum algorithm is uniformly asymptotically optimal, for each

possible post-change scenario, as the false alarm rate goes to
zero. We will also provide numerical results to compare the
performance of the two proposed algorithms as a function of
the number of outlying streams.

II. CENTRALIZED MINIMAX FORMULATIONS FOR
DE-QCD AND THE DE-CUSUM ALGORITHM

Since the formulations and algorithm proposed in this
paper crucially depend on the formulations and the algorithm
proposed in [22], in this section we provide a detailed overview
of the results from [22]. In the following, we use Pn to denote
the underlying probability measure when the change occurs
at time n, n ≤ ∞. We use En to denote the corresponding
expectation. We say p(α) ∼ q(α) or p(α) ≤ q(α)(1 + o(1)),
as α→ 0, to denote p(α)/q(α)→ 1 and limα p(α)/q(α) ≤ 1,
respectively, as α→ 0. We use D(f || g) to represent the K-L
divergence between the p.d.fs f and g. We assume that the
moments of up to third order of all the log likelihood ratios
appearing in this paper are finite and positive.

In [22] we considered data-efficient quickest change de-
tection in a single observation sequence. We considered an
observation sequence {Xn}: {Xn} are i.i.d. with probability
density function (p.d.f.) f0 before the change point γ, and
are i.i.d. with p.d.f. f1 after the change point γ. A decision
maker observes the random variables {Xn} over time and has
to detect this change in distribution as quickly as possible,
subject to constraints on the false alarm rate and the fraction
of time observations are taken before change. We now describe
the type of policies we consider for this problem.

Let Sn be the indicator random variable such that Sn = 1
if Xn is used for decision making, and Sn = 0 otherwise. Let

In =
[
S1, . . . , Sn, X

(S1)
1 , . . . , X(Sn)

n

]
,

represent the information at time n. Here, X(Si)
i represents Xi

if Si = 1, otherwise Xi is absent from the information vector
In. Let τ be a stopping time on the information sequence
{In}, that is, I{τ=n} is a measurable function of In. Here,
IF represents the indicator of the event F . For time n ≥ 1,
based on the information vector In, a decision is made whether
to stop and declare change (τ = n) or to continue taking
observations (τ > n). If the decision is to continue, a decision
is made as to whether to take or skip the observation at time
n + 1. Thus, Sn+1 is a function of the information available
at time n, i.e.,

Sn+1 = φn(In),

where, φn is the control law at time n. The decision on
whether or not to take the first observation is taken without
observing {Xn}. In the absence of a prior information on
the distribution of γ, S1 is typically set to 1, that is the first
observation is always taken. A policy for data-efficient QCD
is

Ψ = {τ, φ0, . . . , φτ−1}.

To capture the cost of observations used before γ, we
proposed a new metric for data-efficiency in minimax settings,
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the Pre-change Duty Cycle (PDC). Here we consider its
variant that we studied in [23]:

PDC(Ψ) = lim sup
γ→∞

1

γ
Eγ

[
γ−1∑
k=1

Sk

]
. (1)

We note that PDC ≤ 1. If in a policy all the samples are
taken, then the PDC for that policy is 1. If every other sample
is skipped, then the PDC for that policy is 0.5.

For delay and false alarm we considered the metrics used
in [10]: the Worst case Average Detection Delay (WADD)

WADD(Ψ) = sup
γ≥1

ess sup Eγ
[
(τ − γ)+|Iγ−1

]
, (2)

and the False Alarm Rate (FAR)

FAR(Ψ) = 1/E∞ [τ ] . (3)

We considered the following data-efficient minimax formula-
tion.

Problem 2.1:

minimize
Ψ

WADD(Ψ),

subject to FAR(Ψ) ≤ α, (4)
and PDC(Ψ) ≤ β.

Here 0 ≤ α, β ≤ 1 are the given constraints.
We also studied the data-efficient minimax formulation where
instead of WADD, the following Conditional Average Detec-
tion Delay (CADD) metric from [11] is used:

CADD(Ψ) = sup
γ≥1

Eγ [τ − γ|τ ≥ γ] . (5)

Problem 2.2:

minimize
Ψ

CADD(Ψ),

subject to FAR(Ψ) ≤ α, (6)
and PDC(Ψ) ≤ β.

Here 0 ≤ α, β ≤ 1 are given constraints.
We then proposed an algorithm, that we called the DE-

CuSum algorithm, and showed that it is asymptotically optimal
for both the above problems, for each fixed β, as α→ 0. The
DE-CuSum algorithm is defined below.

Algorithm 2.1 (DE-CuSum): Start with W0 = 0 and fix
µ > 0, A > 0 and h ≥ 0. For n ≥ 0 use the following
control:

1) Take the first observation.
2) If an observaton is taken then update the statistic using

Wn+1 = (Wn + log[f1(Xn+1)/f0(Xn+1)])h+,

where (x)h+ = max{x,−h}.
3) If Wn < 0, skip the next observation and update the

statistic using

Wn+1 = min{Wn + µ, 0}.

4) Declare change at

τW = inf {n ≥ 1 : Wn > A} .

If h = 0, the DE-CuSum statistic Wn never becomes negative
and hence reduces to the CuSum statistic [7] and evolves as:
C0 = 0, and for n ≥ 0,

Cn+1 = max{0, Cn + log[f1(Xn+1)/f0(Xn+1)]}.

The evolution of the DE-CuSum algorithm and the CuSum
algorithm for a given sequence of observations is plotted
in Fig. 1. If h = ∞, the DE-CuSum statistic evolves as
follows. Initially the DE-CuSum statistic evolves according to
the CuSum statistic till the statistic Wn goes below 0. Once
the statistic goes below 0, samples are skipped depending
on the undershoot of Wn (this is also the sum of the log
likelihood ratio of the observations) and the design parameter
µ. Specifically, the statistic is incremented by µ at each time
step, and samples are skipped till Wn goes above zero, at
which time it is reset to zero. At this point, fresh observations
are taken and the process is repeated till the statistic crosses the
threshold A, at which time a change is declared. The parameter
µ is a substitute for the Bayesian prior ρ that is used in the DE-
Shiryaev algorithm described in [21], and is chosen to meet
the constraint on the PDC. Thus, the DE-CuSum algorithm is
a sequence of SPRTs ( [24], [25]) intercepted by “sleep” times
controlled by the undershoot and the parameter µ. If h <∞,
the number of consecutive samples skipped is bounded by
h/µ+ 1.

Fig. 1: Typical evolution of the CuSum statistic and the DE-
CuSum statistic evaluated using the same set of observations.
Note that the CuSum statistic is always greater than the DE-
CuSum statistic.

Let τC represent the stopping time for the CuSum algorithm.
It is well known that the CuSum algorithm is asymptotically
optimal for both Problem 2.1 and Problem 2.2, for β = 1,
as α → 0; see [10], [26] and [27]. However, since all the
observations are taken in the CuSum algorithm

PDC(τC) = 1.

Thus, the CuSum algorithm is not asymptotically optimal for
Problem 2.1 and Problem 2.2, if β < 1.

We proved the following optimality result for the DE-
CuSum algorithm in [22]; also see [23]. Let

τ− = inf

{
n ≥ 1 :

n∑
k=1

log
f1(Xk)

f0(Xk)
< 0

}
,
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be the ladder variable. Then Wτ− is the ladder height; see [28]
and [25]. Recall that (x)h+ = max{x,−h}.

Theorem 2.1 ( [22], [23]): Let E1[log[f1(X1)/f0(X1)]]
and E∞[log[f0(X1)/f1(X1)]] be finite and positive. If µ > 0,
h <∞, and A = | logα|, we have

Cn ≥Wn ∀n ≥ 0,

FAR(τW) ≤ FAR(τC) ≤ α,

PDC(τW) =
E∞[τ−]

E∞[τ−] + E∞[d|Wh+
τ− |/µe]

,

CADD(τW) ≤ CADD(τC) +K,

WADD(τW) ≤WADD(τC) +K.

(7)

In the above equation K is a positive constant that is a function
of µ, h, and the pre- and post-change distributions, but is not
a function of the threshold A. If h =∞, then

PDC(τW) ≤ µ

µ+D(f0 || f1)
. (8)

Thus, for any fixed threshold, the FAR of the DE-CuSum
algorithm is smaller than that of the CuSum algorithm. Thus,
we can use the same threshold A = | logα|, as used for the
CuSum algorithm, to satisfy the FAR constraint of α. From
[10] and [26] it is well known that

inf
τ :FAR(τ)≤α

CADD(τ) ∼ CADD(τC)

∼ | logα|
D(f1 || f0)

, as α→ 0.
(9)

Thus, | logα|
D(f1 || f0) is an asymptotic lower bound on the CADD of

any stopping time satisfying an FAR constraint of α. Because
of the above theorem, the CADD of the DE-CuSum algorithm
also achieves this lower bound, for each fixed µ and h (because
the delays of the two algorithms are within a constant of
each other). Also, since the expression for the PDC is not
a function of A, there exists choice of µ and h such that the
PDC constraint of β can be satisfied independent of the choice
of threshold A. Hence, the DE-CuSum algorithm is asymptotic
optimal, for both Problem 2.1 and Problem 2.2, for each fixed
β, as α→ 0.

To design the DE-CuSum algorithm to achieve a smaller
value of PDC, that is to design the algorithm to drop a larger
fraction of samples before change, one has to select a smaller
value for the parameter µ. We remark that the assumption that
h < ∞ is crucial to the proof of the above theorem. In [22]
we also showed via simulations that the DE-CuSum algorithm
provides a significant gain in performance as compared to the
approach of fractional sampling, where the CuSum algorithm
is used and the PDC constraint is met by skipping samples
randomly, independent of the observation process.

III. PROBLEM FORMULATION FOR OUTLYING SEQUENCE
DETECTION IN SENSOR NETWORKS

We have a sensor network consisting of L sensors and a
central decision maker called the fusion center. The sensors are
indexed by the index ` ∈ {1, · · · , L}. At sensor ` the sequence
{Xn,`}n≥1 is observed, where n is the time index. At γ, the
distribution of {Xn,`} in a subset κ = {k1, k2, · · · , km} ⊂

{1, 2, · · · , L} of the sensor nodes changes, from f0,` to say
f1,`. The random variables {Xn,`} are independent across
indices n and ` conditioned on γ and the affected subset κ.
The distributions f0,` and f1,` are assumed to be known, but
neither the affected subset κ nor its size m is known.

Let Sn,` be the indicator random variable such that

Sn,` =

{
1 if Xn,` is used for decision making at sensor `
0 otherwise.

Let φn,` be the observation control law at sensor `, i.e.,

Sn+1,` = φn,`(In,`),

where In,` =
[
S1,`, . . . , Sn,`, X

(S1,`)
1,` , . . . , X

(Sn,`)
n,`

]
. Here,

X
(Sn,`)
n,` = X1,` if S1,` = 1, otherwise X1,` is absent from

the information vector In,`. Thus, the decision to take or skip
a sample at sensor ` is based on its past information. Let

In = {In,1, · · · , In,L}

be the information available at time n across the sensor
network.

Also let
Yn,` = gn,`(In,`)

be the information transmitted from sensor ` to the fusion
center. If no information is transmitted to the fusion center,
then Yn,` = NULL, which is treated as zero at the fusion
center. Here, gn,` is the transmission control law at sensor `.
Let

Y n = {Yn,1, · · · , Yn,L}

be the information received at the fusion center at time n, and
let τ be a stopping time on the sequence {Y n}.

Let
φn = {φn,1, · · · , φn,L}

denote the observation control law at time n, and let

gn = {gn,1, · · · , gn,L}

denote the transmission control law at time n. For data-
efficient QCD in sensor networks we consider the policy of
type Π defined as

Π = {τ, {φ0, · · · ,φτ−1}, {g1, · · · , gτ}}.

The PDC`, the PDC for sensor `, is defined as

PDC`(Π) = lim sup
γ→∞

1

γ
E∞

[
γ−1∑
k=1

Sk,`

]
. (10)

Thus, PDC` is the fraction of time observations are taken
before change at sensor `.

To capture the cost of communication between each sensor
and the fusion center before change, we propose the Pre-
Change Transmission Cost (PTC) metric. We define

Tn,` =


1 if Yn,` 6= NULL, i.e, some information

is transmitted to the fusion center
0 otherwise.
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The Pre-change Transmission Cost at sensor ` (PTC`) is
defined as

PTC`(Π) = lim sup
γ→∞

1

γ
E∞

[
γ−1∑
k=1

Tk,`

]
. (11)

If in a policy every sample is taken and some information is
transmitted at every time slot at all the sensors, then for that
policy PDC` = PTC` = 1, ∀`. If transmissions happen from
the sensors only in every alternate time slots, then PTC` =
0.5, ∀`.

The objective here is to solve the following extensions of
Problem 2.1 and Problem 2.2:

Problem 3.1:

minimize
Π

WADD(Π),

subject to FAR(Π) ≤ α, (12)
PDC`(Π) ≤ β`, for ` = 1, · · · , L,

and PTC`(Π) ≤ σ`, for ` = 1, · · · , L,

where 0 ≤ α, β`, σ` ≤ 1, for ` = 1, · · · , L, are given
constraints, and

Problem 3.2:

minimize
Π

CADD(Π),

subject to FAR(Π) ≤ α, (13)
PDC`(Π) ≤ β`, for ` = 1, · · · , L,

and PTC`(Π) ≤ σ`, for ` = 1, · · · , L,

where 0 ≤ α, β`, σ` ≤ 1, for ` = 1, · · · , L, are given
constraints.

The asymptotic lower bound developed in [26] can be
specialized to the sensor network setting considered. Let

∆α = {Π : FAR(Π) ≤ α}.

Theorem 3.1 ( [26]): If the outlying subset post-change is
κ = {k1, k2, · · · , km}, then as α→ 0,

inf
Π∈∆α

CADD(Π) ≥ | logα|∑m
i=1D(f1,ki || f0,ki)

(1 + o(1)). (14)

Since WADD(Π) ≥ CADD(Π), we also have as α→ 0,

inf
Π∈∆α

WADD(Π) ≥ | logα|∑m
i=1D(f1,ki || f0,ki)

(1 + o(1)). (15)

IV. DATA-EFFICIENT ALGORITHMS FOR OUTLYING
SEQUENCE DETECTION IN SENSOR NETWORKS

In this section we propose two algorithms that can be
used to detect the outlying sequences in a data-efficient way
in a sensor network. In both the algorithms the DE-CuSum
algorithm (Algorithm 2.1) is used locally at each sensor. In
the rest of the paper we use Wn,` to denote the DE-CuSum
statistic at sensor `.

A. The DE-Censor-Max Algorithm

In the DE-Censor-Max algorithm, the DE-CuSum algorithm
is used at each sensor `. If the DE-CuSum statistic Wn,` at a
sensor is above a threshold D`, then the statistic is transmitted
to the fusion center. A change is declared at the fusion center,
if the maximum of the transmitted statistics from all the
sensors is larger than another threshold A. Mathematically,
the DE-Censor-Max algorithm is described as follows.

Algorithm 4.1 (DE-Censor-Max: ΠDCM): Start with
W0,` = 0, ∀`. Fix µ` > 0, h` ≥ 0, D` ≥ 0 and A ≥ 0. For
n ≥ 0 use the following control:

1) Use the DE-CuSum algorithm at each sensor `, i.e.,
update the statistics {Wn,`}L`=1 for n ≥ 1 using

Sn+1,` = 1 only if Wn,` ≥ 0

Wn+1,` =

min{Wn,` + µ`, 0} if Sn+1,` = 0(
Wn,` + log

f1,`(Xn+1,`)
f0,`(Xn+1,`)

)h+

if Sn+1,` = 1,

where (x)h+ = max{x,−h}.
2) Transmit

Yn,` = Wn,`I{Wn,`>D`}.

3) At the fusion center stop at

τDCM = inf{n ≥ 1 : max
`∈{1,··· ,L}

Yn,` > A}.

With D` = 0 and h` = 0, ∀`, the DE-CuSum algorithm at
each sensor reduces to the CuSum algorithm, and Yn,` = Wn,`

∀n, `. In this case, the DE-Censor-Max algorithm reduces to
the MAX algorithm proposed in [16].

We will show in the Section V that when exactly one of
the L sensor is affected post-change, then this algorithm is
uniformly asymptotically optimal for both Problem 3.1 and
Problem 3.2 (achieves the lower bound provided in Theo-
rem 3.1 for each κ), for each fixed {β`} and {σ`}, as α→ 0.

B. The DE-Censor-Sum Algorithm

Although the DE-Censor-Max algorithm is asymptotically
optimal, we will show in Section VI that it performs poorly
when the size of the outlying subset is large. To address this
deficiency, we propose the DE-Censor-Sum algorithm.

In the DE-Censor-Sum algorithm, the DE-CuSum algorithm
is used at each sensor. If the DE-CuSum statistic at a sensor
is above a threshold, then the statistic is transmitted to the
fusion center. A change is declared at the fusion center, if the
sum of the transmitted statistics from all the sensors is larger
than another threshold. Mathematically, the DE-Censor-Sum
algorithm is described as follows.

Algorithm 4.2 (DE-Censor-Sum: ΠDCS): Start with W0,` =
0, ∀`. Fix µ` > 0, h` ≥ 0, D` ≥ 0 and A ≥ 0. For n ≥ 0 use
the following control:

1) Use the DE-CuSum algorithm at each sensor `, i.e.,
update the statistics {Wn,`}L`=1 for n ≥ 1 using

Sn+1,` = 1 only if Wn,` ≥ 0

Wn+1,` =

min{Wn,` + µ`, 0} if Sn+1,` = 0(
Wn,` + log

f1,`(Xn+1,`)
f0,`(Xn+1,`)

)h+

if Sn+1,` = 1,
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where (x)h+ = max{x,−h}.
2) Transmit

Yn,` = Wn,`I{Wn,`>D`}.

3) At the fusion center stop at

τDCS = inf{n ≥ 1 :
∑

`∈{1,··· ,L}

Yn,` > A}.

With D` = 0 and h` = 0, ∀`, the DE-CuSum algorithm at
each sensor reduces to the CuSum algorithm, and Yn,` = Wn,`

∀n, `. In this case, the DE-Censor-Sum algorithm reduces to
the Nsum algorithm proposed in [17]. If h` = 0 ∀` and D > 0,
the DE-Censor-Sum algorithm reduces to the Nhard algorithm
proposed in [18]. The DE-Censor-Sum algorithm can easily be
modified to obtain data-efficient extensions of other algorithms
proposed in [18].

We will provide a detailed performance analysis of the DE-
Censor-Sum algorithm using which the threshold A and the
parameter h` and µ` can be selected. We will use the perfor-
mance analysis to show that, under the additional assumption a
result in [17], the DE-Censor-Sum algorithm is also uniformly
asymptotically optimal for both Problem 3.1 and Problem 3.2
(achieves the lower bound provided in Theorem 3.1 for each
κ), for each fixed {β`} and {σ`}, as α→ 0.

V. ASYMPTOTIC OPTIMALITY OF THE DE-CENSOR-MAX
ALGORITHM

In this section we now show the asymptotic optimality of
the DE-Censor-Max algorithm.

We define the ladder variable [28] corresponding to sensor
`:

τ`− = inf

{
n ≥ 1 :

n∑
k=1

log
f1,`(Xk,`)

f0,`(Xk,`)
< 0

}
,

and note that Wτ`− is the ladder height. Also, let

UD` =

{
# times :

n∑
k=1

log
f1,`(Xk,`)

f0,`(Xk,`)
> D` before it’s < 0

}
.

Thus, UD` is the number of times the random walk∑n
k=1 log

f1,`(Xk,`)
f0,`(Xk,`)

is above D` before hitting 0. We note that
UD` = 0 with a positive probability. We note that UD` is also
the number of times the DE-CuSum statistic Wn,` is above
D` before hitting 0.

Also for x` real define

τW,`(x`, A) = inf{n ≥ 1 : Wn,` > A; with W0,` = x`}.
(16)

Thus, τW,`(x`, A) is the time for the DE-CuSum statistic at
sensor ` to cross the threshold A starting with the initial value
x`. It follows from Lemma 5 in [22] that

E1[τW,`(x`, A)] ≤ E1[τW,`(0, A)] + dh`/µ`e, ∀`. (17)

Theorem 5.1: Let

0 < D(f1,` || f0,`) <∞ and 0 < D(f0,` || f1,`) <∞ ∀`.

Let µ` > 0, h` < ∞, ∀`, D` ≥ 0, and A = log L
α . If the

change occurs in the stream `∗, then we have

FAR(ΠDCM) ≤ α,

PDC`(ΠDCM) =
E∞[τ`−]

E∞[τ`−] + E∞[d|Wh`+
τ`− |/µ`e]

, ∀`,

PTC`(ΠDCM) =
E∞[UD` ]

E∞[τ`−] + E∞[d|Wh`+
τ`− |/µ`e]

, ∀`,

WADD(ΠDCM) ≤ | logα|
D(f1,`∗ || f0,`∗)

(1 + o(1)) as α→ 0.

(18)

If h` =∞, ∀`, then

PDC`(ΠDCM) ≤ µ`
µ` +D(f0,` || f1,`)

∀`. (19)

Proof: The FAR result follows from Theorem 1 of [16]
because the DE-CuSum statistic at each sensor is always
greater than the CuSum statistic computed using the same set
of observations; see Theorem 2.1.

The results on PDC` follows from Theorem 2.1. The idea
behind the proof is to define an on-off renewal process, with
on times distributed according to the time for which the DE-
CuSum statistic Wn,` at sensor ` is above 0, and the off times
distributed according to the sojourn of the DE-CuSum statistic
Wn,` at sensor ` is above 0. The result then follows from the
renewal reward theorem. The results on PTC` follows also
from the renewal reward theorem and the arguments are almost
identical to those provide for PDC`.

The delay result holds because after change the max of
statistics is greater than the statistics in which the change has
taken place. Thus, the delay of the DE-Censor-Max algorithm
is bounded from above by the delay of the DE-CuSum
algorithm when applied to the outlying sensor. Mathematically,
the argument is as follows.

We obtain an upper bound on Eγ [(τDCM − γ)+|Iγ−1] that
is not a function of γ and the conditioning Iγ−1, and that
scales as the lower bound in Theorem 3.1. The theorem is
then established if we then take the essential supremum and
then the supremum over γ.

Let Iγ−1 = iγ−1 be such that Wγ−1,` = x`, x` ∈
[−h`,∞). We first note that for A > max`D`,

Eγ
[
(τDCM − γ)+|Iγ−1 = iγ−1

]
≤ E1 [τW,`∗(x`∗ , A)] , (20)

where τW,`(x`, A) is as defined in (16). Then from (17) we
have

Eγ
[
(τDCM − γ)+|Iγ−1 = iγ−1

]
≤ E1 [τW,`∗(x`∗ , A)] ≤ E1[τW,`∗(0, A)] + dh`∗/µ`∗e.

(21)

The result now follows from the proof of Theorem 2.1 on the
DE-CuSum algorithm because the change is assumed to affect
the sensor `∗ and h`∗ <∞.
Since CADD ≤ WADD, we also have under the same
assumptions as in Theorem 5.1

CADD(ΠDCM) ≤ | logα|
D(f1,`∗ || f0,`∗)

(1 + o(1)), as α→ 0.

(22)
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From Theorem 3.1, the WADD, and hence the CADD
performance of the DE-Censor-Max algorithm is the best one
can do when the change affects the stream `∗, for given
{β`} and {σ`}, as α → 0. Also, the PDC` and the PTC`
performances do not depend on the threshold A, thus the
constraints {β`} and {σ`} can be satisfied independent of the
FAR constraint α. Hence, the DE-Censor-Max algorithm is
asymptotically optimal when the change affects exactly one
stream, for both Problem 3.1 and Problem 3.2, for each given
{β`} and {σ`}, as α→ 0.

A. Performance Analysis of the DE-Censor-Sum Algorithm

In this section we provide the performance analysis of the
DE-Censor-Sum algorithm and comment on its asymptotic
optimality. In Theorem 5.2 to be proved below, the delay
analysis of the DE-Censor-Sum depends on the delay analysis
of the DE-All algorithm that we studied in [23]. We first define
the DE-All algorithm.

In the DE-All algorithm, the DE-CuSum algorithm (see
Algorithm 2.1) is used at each sensor, and a “1” is transmitted
each time the DE-CuSum statistic at any sensor is above a
threshold. A change is declared the first time a “1” is received
at the fusion center from all the sensors at the same time.

Let

d` =
D(f1,` || f0,`)∑L
k=1D(f1,k || f0,k)

.

Algorithm 5.1 (DE−All: ΠAll): Start with W0,` = 0 ∀`.
Fix µ` > 0, h` ≥ 0, and A ≥ 0. For n ≥ 0 use the following
control:

1) Use the DE-CuSum algorithm at each sensor `, i.e.,
update the statistics {Wn,`}L`=1 for n ≥ 1 using

Sn+1,` = 1 only if Wn,` ≥ 0

Wn+1,` =

min{Wn,` + µ`, 0} if Sn+1,` = 0(
Wn,` + log

f1,`(Xn+1,`)
f0,`(Xn+1,`)

)h+

if Sn+1,` = 1,

where (x)h+ = max{x,−h}.
2) Transmit

Yn,` = I{Wn,`>d`A}.

3) At the fusion center stop at

τDE−All = inf{n ≥ 1 : Yn,` = 1 for all ` ∈ {1, · · · , L}}.

We now provide the main result of this section. For that we
define another variable:

τC,`(x`, A) = inf{n ≥ 1 : Cn,` > A; with C0,` = x`}. (23)

Thus, τC,`(x`, A) is the time for the CuSum statistic at sensor
` Cn,`, to cross the threshold A starting with the initial value
x`.

Theorem 5.2: Let

0 < D(f1,` || f0,`) <∞ and 0 < D(f0,` || f1,`) <∞ ∀`.

Let µ` > 0, h` < ∞, ∀`, D` ≥ 0, and A = L log L
α . If the

change affects the subset κ of streams, then we have

FAR(ΠDCS) ≤ α,

PDC`(ΠDCS) =
E∞[τ`−]

E∞[τ`−] + E∞[d|Wh`+
τ`− |/µ`e]

, ∀`

PTC`(ΠDCS) =
E∞[UD` ]

E∞[τ`−] + E∞[d|Wh`+
τ`− |/µ`e]

, ∀`

WADD(ΠDCS)

≤ A∑m
i=1D(f1,ki || f0,ki)

(1 + o(1)) as A→∞.

(24)

If h` =∞, ∀`, then

PDC`(ΠDCS) ≤ µ`
µ` +D(f0,` || f1,`)

∀`. (25)

Proof: The proofs on PDC` and PTC` are identical to
that provided in the Theorem 5.1.

For the FAR note that{
L∑
`=1

Wn,` > A

}
⊂
{

max
`∈{1,··· ,L}

Wn,` >
A

L

}
.

For simplicity we write ΠDCS(A) to represent DE-Censor-Sum
algorithm when the threshold used at the fusion center is A.
Similarly we use ΠDCM(A/L) to represent DE-Censor-Max
algorithm when the threshold used at the fusion center is A/L.
Then the above subset relation implies

FAR(ΠDCS(A)) ≤ FAR(ΠDCM(A/L)).

The FAR result follows because from Theorem 5.1 we have
that

FAR(ΠDCM(A/L)) ≤ α if A/L = logL/α.

For the WADD analysis, let τDCS(κ) denote the DE-Censor-
Sum algorithm applied to only the streams in the affected
subset κ. Further let Iγ−1(κ) denote the information in the
affected streams. Then
Eγ
[
(τDCS − γ)+|Iγ−1 = iγ−1

]
≤ Eγ

[
(τDCS(κ)− γ)+|Iγ−1 = iγ−1

]
= Eγ

[
(τDCS(κ)− γ)+|Iγ−1(κ) = iγ−1(κ)

]
.

(26)

In the above equation the last equality is true because the
observations across the streams are independent conditioned
on the change point. Because of the above inequality, we can
assume that the change affects all the subsets at the same time,
i.e., κ = {1, · · · , L}.

Now note that any fixed A (see Algorithm 5.1)

{Wn,` > d`A, ∀`} ⊂

{∑
`

Wn,` >
∑
`

d`A = A

}
.

Hence, for A sufficiently large and from the proof of Theorem
6.1 in [23], we have

Eγ
[
(τDCS − γ)+|Iγ−1 = iγ−1

]
≤ Eγ

[
(τDE−All − γ)+|Iγ−1 = iγ−1

]
≤ E1

[
max

1≤`≤L
τC,`

]
+ constant.

(27)
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The proof of the theorem is now complete because we can
now take ess sup and then sup over γ on the left-hand side.
Then, from [14] it follows that E1 [max1≤`≤L τC,`] grows in
the order A∑L

`=1D(f1,` || f0,`)
. This when applied to the affected

subset κ gives us the desired result on the WADD from (26).

Note that the above theorem does not imply the asymptotic
optimality of the DE-Censor-Sum algorithm, mainly due to the
fact that the choice of the threshold is conservative. It only
gives a delay bound of L times that of the lower bound in
Theorem 3.1. However, if the threshold can be set to be of the
order log 1/α to satisfy the FAR constraint, then the above
theorem establishes the uniform asymptotic optimality of
the DE-Censor-Sum algorithm for each possible post-change
distribution. It is shown in [17] that such a result is indeed
true, and therefore under the conditions of Theorem 5.2 above,
the DE-Censor-Sum algorithm is uniformly asymptotically
optimal, for each possible κ, for each fixed {β`} and {σ`}, as
α→ 0.

VI. NUMERICAL RESULTS

We first compare the performance of the DE-Censor-Sum al-
gorithm, the DE-Censor-Max algorithm and the Oracle CuSum
algorithm as a function of the number of affected stream. The
Oracle CuSum algorithm uses all of the sensor observations,
and it knows the indices of the outlying sequences. We plot
the CADD versus the number of affected stream comparison
in Fig. 2 for the parameters: FAR = 10−3, L = 100,
f0,` = f0 = N (0, 1), ∀`, f1,` = f1 = N (0.5, 1), ∀`, and
for the {PDC`} and {PTC`} constraints of β` = σ` = 0.5,
∀`. We also set the local thresholds D` = 0, ∀`. In the figure

0 5 10 15 20 25 30 35 40 45 500

20

40

60

80

100

L=100, f
0
=N(0, 1), f

1
=N(0.5,1), FAR=10−3, PDC

l
=PTC

l
=0.5, D

l
=0

 

 

DE−Censor−Max
DE−Censor−Sum
Oracle CuSum

CADD

m (number of affected sensors)

Fig. 2: Comparison of DE-Censor-Sum algorithm, the DE-
Censor-Max algorithm and the Oracle CuSum algorithm as a
function of the number of outlying streams.

we see that the DE-Censor-Max scheme outperforms the DE-
Censor-Sum scheme when the number of affected streams is
small. This is because the former is optimal when the number
of affected stream is exactly one. However, when the number
of affected streams is large, the DE-Censor-Sum algorithm
outperforms the DE-Censor-Max algorithm. We note that this
is consistent with the observations made in [17] regarding the
comparison between the MAX and SUM algorithms.

In Fig. 3 we compare the CADD vs FAR performance of
the DE-Censor-Sum algorithm with the fractional sampling
scheme for L = 10, f0,` = f0 = N (0, 1), ∀`, f1,` = f1 =
N (0.2, 1), ∀`, and for the {PDC`} and {PTC`} constraints of
β` = σ` = 0.5, ∀`. We consider the post-change scenario when
m = 7. We restrict our numerical study to the comparison of
the CADD performance. Similar comparison can be obtained
for the WADD as well.

In the fractional sampling scheme, the CuSum algorithm is
used at each sensor, and samples are skipped based on the
outcome of a sequence of fair coin tosses, independent of the
observation process. If an observation is taken at a sensor,
the CuSum statistic is transmitted to the fusion center. Thus,
achieving the constraints on the {PDC`} and {PTC`}, ∀`. At
the fusion center a change is declared the first time the sum of
the CuSum statistics from all the sensors crosses a threshold.
At the fusion center, in the absence of any transmission from
a sensor, its CuSum statistics from the last time instant is used
to compute the sum. For the DE-Censor-Sum algorithm, we
set D` = 0, {h` = h = 10}, ∀`, and use the approximation
(19) to select µ`. This ensures that the {PDC`} and {PTC`}
constraints are satisfied for the DE-Censor-Sum algorithm. In
the figure we see that the DE-Censor-Sum algorithm provides
a significant gain in performance as compared to the approach
of fractional sampling.
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140
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FractionalSample
DE−Censor−Sum
Oracle CuSum

CADD

|log(FAR)|

Fig. 3: Comparison of the DE-Censor-Sum algorithm with the
fractional sampling scheme.

VII. CONCLUSIONS

In this paper we proposed two data-efficient algorithms, the
DE-Censor-Max algorithm and the DE-Censor-Sum algorithm,
for quickest outlying sequence detection inn sensor networks
when the subset of affected sensors post-change is unknown to
the decision maker. We provided a detailed performance anal-
ysis of these algorithms and compared their performance as a
function of the number of affected sensors. We showed that the
DE-Censor-Max algorithm is asymptotically optimal for the
proposed formulations if exactly one sensor is affected post-
change. Also, if the threshold can be appropriately selected,
then the DE-Censor-Sum algorithm is asymptotically optimal,
for every possible post-change scenario. We also showed via
simulations that the DE-Censor-Max algorithm performs better
if the number of affected sensors is small. Moreoever, our
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algorithms for observation control provide significant benefit
over the approach of fractional sampling.
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