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Abstract

We consider the problem of multiantenna spectrum sensing in Cognitive Radios (CRs) when the
receivers are assumed to be uncalibrated across the antennas. The performance of the Hadamard Ratio
Detector (HRD) is analyzed in such a scenario. Specifically, we first derive the exact distribution of
the HRD statistic under the null hypothesis, which leads to an elaborate but closed-form expression
for the false-alarm probability. Then, we derive a simpler and tight closed-form approximation for
both the false-alarm and detection probabilities by using a moment-based approximation of the HRD
statistical distribution under both hypotheses. Finally, the accuracy of the obtained results is verified by

simulations.
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I. INTRODUCTION

The identification of spectrum holes by Secondary Users Y Stlsstitutes a major requirement
at the physical layer of Cognitive Radio (CR) networks, veh8pectrum Sensing (SS) techniques
are sought to attain a sufficiently reliable detection pboliis over the shortest possible sensing
time. So far, different methods have been proposed for S§21L] The Energy Detector (ED)
is such a popular method to detect an unknown signal in aédithite noise [3], [4]. However,
it requires knowledge of the noise variance to set the datithreshold, which, in practice,
has to be estimated under errors introduced by the detedduite and the environment, e.qg.,
temperature, humidity, device aging, radio interferemte,. It has been shown that to achieve a
desired probability of detection under such unavoidablsenvariance uncertainties, the Signal-
to-Noise Ratio (SNR) must be above a certain threshold [BIR Svall).

An efficient strategy to increase the reliability of SS is &ecooperative sensing, in which
information from multiple spatially distributed SUs is orporated for detecting the Primary
User (PU) [6], as recently addressed in [7]-[11]. [7] stsdaptimization of Cooperative SS
(CSS) with an improved ED in each SU over imperfect reporthgnnels. CSS for a CR mesh
network is considered in [8]. A linear cooperative sensiragrfework based on the combination
of the observed energies by different SUs is proposed infdjL0], [11], the authors propose a
selective-relay based CSS scheme without a dedicatedtirgpohannel, which is able to control

and reduce the interference from SUs to the PU.

Using multiple antennas at the SU receiver is a possibleoagprto tackle noise uncertainty,
to improve the performance of SS by exploiting availableepiations in the spatial domain and
also to avoid a (probably imperfect) reporting channel likat needed for CSS. Nevertheless,
multiantenna SS does present some disadvantages withctesp€SS: i.e., its inability to
counteract the hidden node problem as well as a compasatiuele expensive implementa-
tion. Multiantenna techniques have been addressed in [AP]-{12] a blind SS approach is
adopted in which the empirical characteristic function leé imultiantenna samples is used to
formulate the statistical test. In [13], the authors derilke optimum Neyman-Pearson (NP)
and sub-optimum Generalized Likelihood Ratio Test (GLR&¥ed multiantenna detectors of
an Orthogonal Frequency Division Multiplexing (OFDM) sarwith a cyclic prefix of known

length. The Rao test is applied to derive sub-optimum nmitkiana detectors under the correlated
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receiving antennas model in [14]. Multiantenna SS in freqyeselective channels is addressed
in [15]. In [16]-[19], the authors derive the GLRT detectofspatial rank-one PU signals robust
to noise variance uncertainty. Finally, some GLRT eigamdlased detectors for multiantenna
SS are proposed in [20], [21] for PU signals with spatial réarger than one.

Although all detectors proposed in [12]-[21] are robustagsa uncertainty, their performance
is sensitive to nonuniform per-antenna noise variancesagsaocur due to calibration errors. To
overcome this drawback, various GLRT-based detectorsrioalibrated multiantenna receivers
have been proposed in [22], [23], showing that the corredipgnGLRT detector for an unstruc-
tured signal covariance matrix is given by the Hadamara ratithe sample covariance matrix.
But neither [22] nor [23] have completely investigated tlegfprmance of the Hadamard Ratio
Detector (HRD): although both papers offer a useful asytp&xpression for its false-alarm
probability, those, are not accurate for small sample siklseover, no analytical expression
for the detection probability of the HRD has been derived2®]] [23], which is evaluated only
by Monte Carlo simulations. A nhumber of approximations te thstribution of the HRD have
been reported: in [24], a moment-based beta approximatiadhd HRD distribution under the
null hypothesis is given, which, although approximatelgwate, is not amenable to a physical
and meaningful intuitive interpretation; in [25] the authadopt the asymptotic chi-squared
distribution of the GLRT for both the false-alarm and datattprobabilities of the HRD which
is accurate only for a large sample size.

In this work, we analyze in detail the detection and falseral probabilities of the HRD. We
first derive the exact distribution of the HRD statistic undee null hypothesis by using the
Mellin transform, which leads to an analytical expressionthe complex moments of the test
and its false-alarm probability. Nevertheless, the exaatydical expression involves Meijers G-
function whose numerical evaluation is computationalljndading and its interpretation difficult.
Thus, alternatively, we derive a simple and tight analyteaproximation to the false-alarm
probability by using a moment-based approximation to theDHsRatistical distribution under
the null hypothesis, with affordable computational comjtiefor the accurate determination of
the decision threshold. We also provide an intuitive intetation for the impact of different
parameters on the proposed approximation. Additionaley,olvtain an expression for all integer
moments of the test undéi; and a simple tight analytical approximation to the detectio

probability by using a moment-based approximation to theDHiRatistical distribution, which
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is accurate at all sample sizes. Simulation results vengdbtained exact analytical expression
for the false-alarm probability and show that the propossalydical approximations: (i) closely
match Monte Carlo simulations for the false-alarm and detegrobabilities; (ii) the expres-
sion for the false-alarm probability is more accurate tham asymptotic analytical expression
proposed in [22] and [23] for all values of the sample size.

The rest of the paper is organized as follows: in Section d,de@scribe the system model and
present the HRD. In Section Ill, we derive the exact and ayprate closed-form expressions
for the false-alarm probability. The closed-form approation to the detection probability is
obtained in Section IV. Simulations and related discussiare given in Section V. Finally,
conclusions are drawn in Section VI.

Notation: lightface denotes scalars. Vectors and matiacegeferred to by lower- and upper-
case boldface, respectively, ; andc; stand for the entries of matriA and vectorc, resp..C
and IN denote the sets of all complex and natural numbers, resg.stiperscriptd’ and H
denote the transpose and Hermitian (conjugate transp@&gatons, resp.; is the imaginary
unit, i.e., 72 = —1. The M x M identity matrix isI,;. diag{A} and diag{c;,cs, - ,car}
are diagonal matrices with diagonal entries equal to thdsA @ndcy, cs,- - - , ¢y, resp.. The
real and imaginary parts of are R{c} and 3{c}, resp..E{-} is the statistical expectation.
(c1,co,-+ - ,cq) denote ad-tuple. tr(A), etr(A), |A| and ||A||% denote the tracesxp(tr(A)),
determinant and Frobenius norm of the matAx resp..A > 0 indicates that matrixA is
positive definiteCA (c, P) denotes the circular complex Gaussian distribution witlameand
covariance matri¥. W (M, L, P) denotes the complex Wishart distribution of dimensian
and L degrees of freedom, with covariance matkx O(-) and o(-) denote Landau’s big and

small-o, resp..

[I. PROBLEM FORMULATION

A. System Model

We assume a SU node fitted wifii antennas that senses a given frequency band simulta-
neously accessed by th€ different PUs. LetX; and H, denote, respectively, the hypotheses

of the presence and absence of PUs. The hypothesis testhfgpr for such a scenario can be
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formulated as

n s HQ
v | (1)
Hs+n , H;

with y € CM the received signal vectd] € C**¥ the unknown channel gains matrix between
the K PUs and theM receiving antennas € CX the transmitted signals from the PUs and
n € CM the additive noise vector, assumed zero-mean circular Eon@aussian distributed with
unknown diagonal covariance matdx= diag{c?, 03, ..., 0% }. The per-antenna noise variances
o? are assumed different to reflect potential tolerances irctimeponents of different RF chains.
For the theoretical development, we models a zero-mean circular complex Gaussian random
vector. We adopt a Gaussian model for the PU signal for tHeviiahg reasons. Firstly, [26]-
[28] conclude that OFDM signals are the best physical layerdmate for CR, which is thus
expected of most practical CR systems. In that, a Gaussialelnsaccurate for OFDM signals
with a sufficiently large number of subcarriers. Secondlyder asynchronous sampling, the
actual distribution of the PU signal is unknown; since thesaas assumed Gaussian as well, the
Gaussian Probability Density Function (PDF) for the PU &sldast informative for the detection
problem and also widely used by other researchers [18], [32]-[34]. Thirdly, the Gaussian
model is tractable and yields useful schemes whose reseltalso approximately accurate for
other distributions [14] as attested by simulations inisecY for scenarios featuring modulated
PU signals with actual non-Gaussian distribution.

Without loss of generality, we assume thdtas an identity covariance matrix as any correlation
and scaling of the PUs signals can be incorporated into thera gains matri¥l. Under#, the
PUs signals, i.es and noise vector, i.en are assumed mutually independent. In consequence,
the received signal vectgr has a zero-mean circular complex Gaussian distributien,yi. ~
CN(0,Q), where

HO : Q:E
2
H, : Q=HH" +%
B. Hadamard Ratio Detector
LetY = [y, - ,y.] € C¥*F be a complex matrix containing i.i.d snapshoty, -,y

from model (1). We assume a slow-fading channel in which trenoel gains matri¥ remains
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constant during the sensing time. LRtdenote the sample covariance defined as
R=YY" . (3)

In practice, the SU is ignorant of the number of active PUs, K. Hence, no specific structure
can be assumed for the covariance ma@xunderH; except that it is positive definite. The
corresponding GLRT for such a scenario has been formulat¢2i], [23], and is given by the

Hadamard ratio of the sample covariance matrix

T_ [ rii > 4
- ‘R‘ <Ho U ( )

with n the decision threshold for a given false-alarm probabilkg noted (Introduction), no
accurate analytical expressions for the false-alarm anectien probabilities of the HRD are
available yet. Thus, we address the detailed analyticdbpeance study of the HRD in the

forthcoming sections.

[Il. FALSE-ALARM PROBABILITY

In this section, we derive the exact closed-form expres&iothe false-alarm probability of the
HRD by using the Mellin transform, as well as a simpler andsetbform approximation to the
false-alarm probability of the HRD by using a moment-baggpraximation of the distribution
of T.

A. Exact Expression

For a random variableX, the Mellin Transform of its PDF is expressed as (its— 1)-th
complex moment:Mx(z) = E[X*7!]. Conversely,fx(z) may be recovered with the inverse

Mellin Transform,
1 c+joo

fx(z) = 2—7U Mx(2)x " dz (5)

c—joo

Let us proceed to evaluate the complex moments of the dacsatisticA,

1 L
A:f - HMT =y (6)

i=1"1%12

Lemma 1. Under H,, the random variable]"[f‘i1 r;; IS independent of the decision statisfic

Proof: See appendix A. [ |
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From Lemma 1 and € C, we have,

E{|R|Z}ZE{<AHT1‘,¢> }:E{AZ}E{<HT’LZ> } ) (7)

E{IR["}

e (1) }
Let us consider the denominator of (8): from [35, Theoren2s 3.5 and 3.6], undetiy, r;; is

distributed as;; ~ $07x3,, with x3, a chi-squared random variable witti degrees of freedom

from which

E{A*) =

(8)

and where the random variablé¢s; ;} 2/, are mutually independent for differefis. Thus,

—1ii/2
g

M 2z

i 0; > Lz—1_—r;;/2
= H 72L+ZF(L) /0 T e dri; , 9)
Using the complete Gamma functiofi(z) = [*¢* e " dt,
M z 22 M
o*T(L + z) (F(L+z)) .
E rii] v=[2—r = (2222 |z (10)
(1) §- I o)

Let us now consider the numerator of (8): by [35, Theorem, 3v8]have the following stochastic

product decompositionR| ~ |X| H¢Ai1 V;, with mutually independent; ~ 12 Thus,

2 X2(L—M+i)*

VL Mti=1o-Vi/2
E{|[R[} =T dV;
(RI} ||H22/ T

f VL M+z+i— 1—\/7/2dv
by 0__¢ 11
= IH e vy (1)

which, by using again the complete Gamma function, yields

B{IR} = |2|H T (12

Let us now construcE {A*} in (8): by replacing (10) and (12) in (8), we get,

(@)™ TLEL (L= M+ 2 +4)
(CL+2)" TLLT(L =M +d)
Note, for cross-checking, that [24, Eq. (20)] provides thieger momentsE[(T D)), with

E{A*} = (13)

T0rd) — A, by expressing\ as a product of independent beta-distributed random Jasab
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Applying the inverse Mellin transform in (5) td1,(z) = E{A*"'} in (13), we get,

1 [etice L) MTL-—M+z—1+i
f/\|7‘lo()\|HO) = 2_/ ( ( )) M.Hz_l ]\(4 : ) A )\*Z dZ
) Je—joo (I'(L+2—1)) L, T(L— M +1)
M c+joo M N . .
S (T'(L)) L IL-, FJ(WL M+ z—-1+1) e (14)
Hi:l F<L - M —+ Z) 27T.] c—joo Hi:l F(L +z— 1)
Simplifying the fraction within the integral in (14), we get
r(L)" 1 Y (L — M+ 22— 1+
fapo (A Ho) = (1L)) oy I ) -A*dz . (15)

ML 0L —M+i)2m Jejee [ T(L+2-1)

By using the definition of Meijer’'s G-function [36, Sec 9.3,%032] the exact PDF ok under
H, is obtained as
a1y, AM—1

r(L)M
7 NCY) Gyt a1 A (16)
[[iZ, (L — M +14) bi,...,by—1

f/\|7'lo ()‘|H0) =

wherea; = L —1andb; =L — M — 1 +1.

Remark 1. We observe thaf,;,(A|Ho) only depends on two parameters: the sample size
and the number of antennag, irrespectively of the noise variances. This is a consecgi@f

the power-normalized structure &f = |C| as the determinant of the sample coherence matrix
C = D'RD7}, with D? = diag{R}, which determines that the HRD is a Constant False
Alarm Rate (CFAR) detector.

Remark 2. Note that according to the Hadamard’s inequality we have 1, and thusO <
A < 1, which means the support of the PDF fis A € (0, 1]. This fact is confirmed by (16)

asGhr 1 v_1 (o 7om=l | A) =0 for [A] > 1 according to Meijer’s G-function properties [36].

----- bar—1

Therefore, the exact expression of false-alarm probghsibbtained as?, = P(t > n|Hy) =
P(\ < [Ho), with,

(L) " L an
P = — (L(L)) ,/G%};ﬁﬂ A P (17)
[LZ (L= M +1d) Jo

bla"'7bM—1

The above equation can be simplified by using the integratioperties of Meijer’s G-function [36]
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as,
M
___(r(w)
[0, T(L — M +1i)
y G%;\}’l 1,(11-'-1,...,0,]\/[_1—'—1 1 _G%;\}’l 1,(11-'-1,...,(1]\/1_1—'—1 0
’ by +1,...,bp—1+1,0 | 7 ’ by +1,...,bp-1+1,0

(18)
where the decision threshold, i.@,,can be found by numerically solving farin the equation

above.

B. Tight approximation to the false-alarm probability

The exact expression of the false-alarm probability in (Bthough theoretically interesting,
is difficult to interpret or manipulate. Thus, alternatiyele aim to approximate the distribution
of T with a known distribution by fitting its first few moments. Fartight approximation,
we use the Log-Gamma distribution, motivated by the follmyviwo facts: (a) It is defined
on the same suppoft,oo) asT’; (b) The statisticlog 7" asymptotically follows a chi-squared
distribution [23]; thus, given that the chi-squared dimition is a particular instance of the
Gamma distribution, we adopt Gamma as the approximatirtglaision of log 7", so that7" will
be modeled (asymptotically) by a log-Gamma distribution.

The PDF and Complementary Cumulative Distribution Fumci@CDF) of a Log-Gamma

distribution with the shape parametey and inverse scale parametey are given by

W@y (I N
0= e () 1<t A
Ine
Fr(z) = P(t > z) % , (19b)

where the parameterg, and 5, can be obtained by fitting the two first moments of the Log-

Gamma distribution to the two first moments 6f We continue by introducing Lemma .

Lemma 2. Them'™ moment ofl’ under#,, wherem € N, is equal to,

s = P () )

wherely (L) = m2MO=D T T(L — j +1).
Proof: Setz = —m and A = 1/T in equation (8) or sep = —m in [24, Eq. (20)]. n
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Using Lemma 2 and’(s + 1) = sI'(s), we obtain the mean, second moment and variance of

T underH,,
Ly
prp = E{T1Ho} = ] - (21)
j=1
(L —2) [ T(@L) \M
- 2 _
v = BT = S (7 ) 22
OTmy = Ha2,T2: — (3 (23)

) L—1 [(L-2\"
— : -1
Frmo \ T — 1\ T =1

which, as in (16), are functions of only and M. These expressions let us verify that:
1) prm, > 1 for any L, M, and, asymptoticallylim;_, pir3, = 1 (for finite M), as the
sample correlation matriR tends to the trualiagonal correlation3 underH, so that
T — 1%,
2) The ratio/@pmO /a%m0 goes to infinity atL — oo, as expected when the sample correlations

in T' converge.

Now, by settingryz, anda%WO equal to the mean and variance of the Log-Gamma distribution

respectively, we have from, and 5, in (19a,19b),

prip, = (1 — fo) ™ 0<B<1, (24)
Oy = (1 —260) 7% — (1 — o) 72%,0 < fp < 1/2 (25)

To solve for3, anday, let us defing;(3) and its inverse functiop=(-) (which can be evaluated

numerically),
In(1 — 1
9(5):H ; 0§5§§ (26)
g(B) is convexn and decreasing, mappingjc {0, 3} to g € {3,0}. Hence,
_ ln<:uT|7-lo>
" - g 0
1 2
ho=gp) . P2 i) (28)

2 ln(u%‘HOjLa%mo)
Therefore, asuri3, > 1, we note thatp is related to the concentration of the téStabout

its expected valugizjy,, with 0 < p < % and p increasing for higher concentration so that,
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asymptotically { — oco), we havep — i~. Accordingly, the parametef, determines the
amount of dispersion of the tetabout its expected valyer;,, such that increase ifi, results
in more dispersion of the tegt about its expected value and vice versa. In addition, wispeet
to (27), the parametet, is relevant to the ratio of the mean to dispersiorifoénd, at a fixed
5o, Increase iny, is associated with increase in the mean of the Tést

Finally, the false-alarm probability for the HRD based ois thpproximate distribution of’

and its equivalent decision threshojdare obtained as,
P, = P(t > 77‘7‘[0) ~ FT(T]) . (29)
n=~ F.'(P) . (30)

with £.1(.) the inverse function of’-(z), which can also be obtained numerically. Let us define

an associated measure of dispersion,
In <1 + U%IHO/“QTIH0>

In (N%mo + U:QF|HO>

with af, — 0" as L — oo. Now, more specific expressions fay, and 3, are possible if we

or = 1—-2p (31)

turn to a largek approximation where?> << 1. These largeb approximations let us intuitively

assess the impact éff and L on the false-alarm probability. Let us consider the appration

g(x) ~ 3 — o — ta? ate — 07 (g9(x) — 5 ). Thus, fore2 << 1 wherej, << 1, we may use

Bo =g '(p) =202 — 40, 4 o(0,), and - can be approximated as,

Bo
1 1
— = 41 2 32
B 202 + 1+ 0(ap) (32)
As for small 5, we haveln(%ﬂo) = 5- — 3 +0(b), the following approximation results fary,
1 1
Qg =~ <% — 5) In MT|H0 (33)

The final largeL approximations for, and g, are summarized in table | from the results in
appendix D. Fig. 1 investigates the accuracy of lakgapproximations compared to the true
values and shows a good agreement between them even foratedatues of... Considering
that Fr(n) is an increasing function with respect to parameteysnd 3,, and also considering
the largef approximations ofag and 3, given in table I, we can intuitively investigate the
impact of M and L on the false-alarm probability. Accordingly, for a fixed d&en threshold,
the false-alarm probability decreases by increadimay decreasing//. Equivalently, considering
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TABLE |
LARGE-L APPROXIMATIONS TO THE SHAPE PARAMETER AND INVERSE SCALE PARMETER OF THE APPROXIMATING

LOG-GAMMA PDFUNDER Ho AND H1

Weighting term LargeL approximation
oo $M(M —1)
/Bo_l L _ M;»l
o (ﬁfl—%)(W'Hn\c \)
1 1
— L 1n? P (L — o0)
gt i(M(M—l)—i—QA—i—Lln - ‘2)
— L- 1ln ‘2 , (L = o0)
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Fig. 1. Largef approximations forM = 4 antennas. Top leftag; Bottom left: %ﬁo’l; Top-right: +a;1 at SNRy =
0 dB,SNR2; = —6 dB; Bottom-right: %61‘1 atSNR; = 0 dB,SNR2 = —6 dB.

that Fr(n) is a decreasing function with respectifjpwe could say that for a fixed false-alarm

probability, the decision threshold decreases by incngakior decreasingV/.
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IV. DETECTION PROBABILITY

In general, we can not derive the exact distribution7ofunder #; by using the inverse
Mellin transform because, unlikg,, the random variable}"[j‘i1 ri; 1S not independent of the
decision statistic/’ and thus it does not seem possible to obtain the complex msnoéi”
under?;. But, as forH,, we can derive a tight approximation to the distributioriofinder?,
by approximating the distribution af with a known distribution that fits its first few moments.
As in the previous section, we approximate the distribubdri” under?#; with a Log-Gamma
distribution with the shape parameter and inverse scale parameter by fitting its two first

moments.

Theorem 1. Them'™ moment ofl” under?,, wherem € NN, is equal to,

mM

TlE =) NP ) g (34)

E{T™|H,} = Tu(L) Q" &

with 5 IS defined as,

mM
Ymm g = Z qu'p,iﬁ(p) ) (35)

T€Lmn p=1

where 7,,,,; is the subgroup of symmetric grougs,,,; on the finite set{1,2,3,--- , mM}
including all the permutationg which are permutated to the identity permutation exactlghwi
(mM — k) permutations andiy, io, - -+ ,imar) = (1), (2m), -+, (M,,))2.

Proof: See Appendix B. [ |

Remark 3. Note that the coefficients,, , , do not depend on the number of samples per antenna
L and that the complexity of computing,,,; . increases asé decreases from ./ to 1. Thus for

the case that the number of samples per anténisdarge enough we could use a truncated form
of (34) with the most relevant coefficients,,; , which has lower computational complexity

compared to (34), as,

E{T™|H,} ~ 72 (L = m)"mark (36)

1The symmetric grougs,, on a finite set ofx symbols is the group whose elements are all the permutatibtie » symbols,
and whose group operation is the composition of such petiooga

The notation(¢,) is used to denote a-tuple whose elements are alls.
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with b > 1 such that| g8 (S (L — m)F s — S0 (L — m)* k) | is negligible.

From theorem 1, the mean, second moment and varian¢ewfder?/, are derived as,

L 1) —
prp, = B{T|H, }— ol Z ) ns (37)
k=1
I I 2M
porp, = B{T?[H1} = ME )|Q2|i Z(L — 2) 4haps (38)
k=1
Oy = M2, — M, (39)

Computing the most relevant coefficienis,; , in (37) and (39) according to remark 3
contributes later to gaining insight as to how signal patanseaffect the performance of
the HRD. The remaining coefficients only constitute a refiaetnand are hardly useful for
interpretation. Applying (35) and defining the diagonal rxaiD?, = diag{Q} featuring the
power at each antenna as well as the coherence n@gix D;QDC‘;, the coefficients) ys
andwyas a1 (m = 1) andwapsoar @andyops on—1 (m = 2) are computed in appendix C. Therefore,
settingb = mM — 1 in (36), we get the following second-order approximation ffarge L to

the first two moments of” (see appendix C),

S L—1 1 ICq — L2 1
1 ) I i 10)

j=1

M 2
L—2\ L-1 1 M +2|Co — Ty||2 1
— : 1 - 41
H2.T13 <HL—]‘) L—M—1 |CQ|2( * L—2 To\z (41)

Jj=1

In addition, the second-order approximatiorvﬁcm1 is obtained straightforwardly by substituting
(40) and (41) in (39). So, the two first moments used for fitthgydistribution ofl” are controlled
by |Cy|: the determinant of the coherence matrix untlgr(equal tol under#,), and in a lesser
degree byA = ||Co —1I,,||%: the energy of its off-diagonal terms (equaltamnder,). In fact,

it is shown in [23] that at low-SNRIn |Cq| ~ —3(||Col|3 — M) = —3||Cq — Ly |3, which
makes the approximation to both moments in (40) and (41) bgo® on a single parameter:
A.

Now, settinguiry, and cr%m1 equal to the mean and variance of the Log-Gamma distribution
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we can obtaind; and«; as follows,

ID(MT%)

M- e

1 ln<N2T|H )
Bi=g'p) . p=<- :
2 ln(Mszl + U%\Hl)

with ¢g(5) as in (26). The HRD detection probability based on this axiprate distribution can

(42D)

now be obtained as,

F(Ozl, 12_177)

F(C(l)
It is worth pointing out that the equations (42a) and (42bjehthe same form as (27,28), by

Py = P(t > n|H,) ~ (43)

exchangingH, with #,. Hence, the same institutive interpretations provided dgrand 5,
are also valid fora; and ;. Furthermore, the same expressions (31,32,33) can beitexplo
to obtain the equivalent large-approximations for parameters and é. The corresponding
large-L, approximations are provided in table | based on the resulgppendix D. Note that the
approximations in table | are applicable wh&fg # I,, and L is sufficiently large. Otherwise,
infinitesimals of orderl/L? and higher in (40,41) will start weighing in. Fig. 1 shows ttha
a; and é can be accurately predicted for large valuesloby using the mentioned large-
approximations. Note that in this case, in contrastig both parameters; and i increase
linearly with L. However, as discussed in IlI-B, increase linaccordingly will decrease the
decision threshold which partly counteracts to the impdcinorease iné. Consequently in
overall, increase i, will increase the detection probability through incregsin . Using the
low-SNR approximatein |Cq| ~ —3A, the largeZ approximations ofa; and é in table |
will tend to the values o% and g respectively. Therefore, increase in energy of off-drego
terms ofQ, which is related to the SNR, results to increase in the tieteprobability through
increasinga;. Finally as it can be seen althougdli does not appear in largk-approximations
of ay andé explicitly, however indirectly boost the detection probigpthrough: 1) decreasing

the decision threshold; and 2) increasing the SNR.

V. SIMULATION RESULTS

We provide Monte Carlo simulatiofigo verify the proposed exact and approximate closed-

form expressions for the false-alarm probability and the proposed closed-form approximation
3For each simulated pointt0® Monte Carlo repetitions has been computed.
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False-alarm probability versus decision thresHotddifferent values ofZ and M.

to the detection probability?;. We also compare the closed-form expressionsHgrand Py
with previously reported approximations.

A. False-Alarm Probability versus Threshold

Fig. 2 plots the false-alarm probability versus the thrédHor different values ofM/ and
L in which we compare the derived exact and approximate clom®a expressions for the
false-alarm probability with each other, with the asymigtaiosed-form expressions in [23],
[25] and with the moment-based beta approximation in [24le Per-antenna noise variances
are set at(0,—1,1,0.5,—1,0) dB for M = 6, (0,—1,1,0.5) dB for M = 4, and (0,—1) dB
for M = 2. A great closeness can be observed between the exact arakiapgie closed-form
expressions for the probability of false alarm, although lditter is much less complicated. In
DRAFT

May 4, 2015

1053-587X (c) 2015 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See
http://www.ieee.org/publications_standards/publications/rights/index.html for more information.



This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation infor|
10.1109/TSP.2015.2434330, IEEE Transactions on Signal Processing

17

TABLE I

THE ANAD VALUES FOR THE DIFFERENT ANALYTICAL EXPRESSIONS

values of M and L

Related analytical expression M =2 M=2 M=2 M=4 M=4 M=4 M=6 M=6 M=6

L =30 L =50 L =100 L =30 L =50 L =100 L =30 L =50 L =100
exact 6.37 x 107% | 5.09 x 107% | 4.73 x 107° | 553 x 107° | 6.86 x 107 | 6.31 x 107 | 6.35 x 107 | 5.67 x 107 | 6.24 x 10~°
approx. 203 x107% | 1.91x 107 | 1.89 x 107* | 1.94 x 107* | 1.98 x 107* | 1.83 x 107* | 1.75 x 107* | 1.82 x 10™* | 1.93 x 10~*
beta approximation [24] | 4.90 x 107* | 1.63 x 107* | 3.12x 107* | 2.09 x 10™* | 2.27 x 107* | 1.54 x 10™* | 1.95 x 10™* | 3.15 x 10™* | 2.48 x 10™*
asymptotic [25] 4.72x107% | 1.06 x 1073 | 3.52x 107* | 1.24 x 1072 | 4.13x 107 | 9.84 x 107" | 4.96 x 1072 | 7.47 x 107® | 2.16 x 107*
asymptotic [23] 1.11x 1072 | 36x 1073 | 7.81x 107" | 295 x 1072 | 9.53 x 107% | 24 x107% | 1.09 x 107" | 1.68 x 1072 | 4.6 x 1073

addition, it can be seen that the approximate closed-forpnession and the beta approximation
in [24] have roughly the same accuracy, but, the former isemamcurate in comparison with
the previously reported asymptotic closed-form expressim [23] and [25]. We also show,
guantitatively, the accuracy improvement of the exact gmut@imate closed-form expressions
over the previously reported asymptotic closed-form esgimns in [23] and [25] in terms of
the Average Normalized Absolute Difference (ANAD) betweba threshold computed by each
of the analytical expressions and the true value of the himidsobtained from Monte Carlo
simulatiorf. The results are shown in Table.llit can be seen that the accuracy of the exact
and approximate closed-form expressions is not affectel bypd M, while the accuracy of the
asymptotic closed-form expressions in [23] and [25] img®with increasind. and decreasing
M.

B. Detection Probability versus SNR

Fig. 3 shows the probability of missed detection, Fg.= 1 — Py, versus SNR af’, = 0.01,
M =4, K =2 and L = 1000, for three cases in which the PU system uses, respectively:
(a) a 16-PSK modulation; (b) a 16-QAM modulation; (c) a 64/Aodulation. We consider
square-root raised-cosine pulsesOat) roll-off truncated to24 symbols in length. Moreover,
for each (a), (b) or (c), we consider two sampling rates far tbceived signalV,, = 1 and
N, = 2 samples per symbol. The per-antenna noise variances égual, 1,0.5) dB. To test

the expressions for as large a set of instancdd af possible, for each Monte Carlo simulation,

, , 114 (Ptay) =5 (Pra))|
“The ANAD is defined as; >°7_, W where 4 (Pr,) and ns(Pr,) are the thresholds evaluated for the
false-alarm rate of,, by one of the analytical expressions and Monte Carlo sinmuatrespectively.

>The ANAD values in Table Il have been evaluated for theseefalarm rates{(1,2,---,9) x 107%,(1,2,---,9) x
1073,(1,2,---,9) x 1072, (1,2,--- ,9) x 107 *}.

May 4, 2015 DRAFT

1053-587X (c) 2015 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See
http://www.ieee.org/publications_standards/publications/rights/index.html for more information.



This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation infor|
10.1109/TSP.2015.2434330, IEEE Transactions on Signal Processing

18

Probability of missed detection P,
Probability of missed detection P,

o Simulation — l\gszl Y — . — Analytical - NSS=2
Analytical - NSS:1 o Simulation - 1!5:2

— . — Analytical - N =2
ss

Analytical - N =1
Sss

o Simulation - N =2 O Simulation - N =1
SS SS
T T T T T

T L L L L L L L L L L
-9 -8 -7 -6 -5 -4 -3 -2 -1 0 -9 -8 -7 -6 -5 -4 -3 -2 -1 0

SNR (dB) SNR (dB)
(a) (b)

Probability of missed detection P,

Analytical - NSS=1

— . — Analytical - NSS=2

o Simulation - N =2
Ss

©O Simulation - l\észl
T T

T L L L L L
-9 -8 -7 -6 -5 -4 -3 -2 -1 0

SNR (dB)
(c)

Fig. 3. Missed detection probability versus SNR for the HRDPa = 1072, L = 1000, M = 4 and K = 2: (a) 16-PSK
modulation scheme (b) 16-QAM modulation scheme (c) 64-QAbtulation scheme.

we have generated the channel gains matignce by drawing its elements independently from
a Gaussian distribution. Then, this matrix is used unchangeall system realizations within
that Monte Carlo simulation. Additionally, the channel igaiare scaled to achieve the desired

SNR over all Monte Carlo simulations. The SNR is defined as,
SNR = tr(HXZ'HY). (44)

The analytical performance is obtained by using the apprate closed-form expressions for

computing both the threshold and the detection probabfiyreat closeness is observed between
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those approximations and Monte Carlo simulations for théint modulation types in all
values of SNR even when the received signal is sampled,at 2. Note that the performance
degradation atV,, = 2 with respect to/N,, = 1 results from the decrease in the SNR due to
oversampling. Fig. 3 concludes that the proposed closed-form expresdmmfalse-alarm and
detection probabilities are still valid and accurate whea actual distribution of the PU signal
is not Gaussian. This may be related to the fact that the HRDabdgs on the sample covariance
matrix R, whose entries, when the data have finite fourth-order mesn@9]—-[31] and for a
sufficiently large sample siz&, converge to a Gaussian distribution even though the bligtan

of the PU be not, necessarily, Gaussian. So, the Gaussiampssn for the PU is not a
limiting factor in our derivation. Results for different molations have been shown in different
sub-figures due to the closeness of the corresponding cultves known that oversampling
creates temporal correlation between the PU signal samplether, Fig. 3 shows that at low-
rate oversampling for which the detection window spans ntamporal correlation lengths (i.e.
L >> N,,), the proposed analytical expressions for the performafidhe HRD are still valid
and accurate. Obviously, if the oversampling rate wereeimeed further (keeping fixed), the
good agreement between the true performance of the HRD a&ngrtposed expressions might

be penalized.

-

—— Simulation
—-A- Analytical

Probability of detection Py
© © o o o o o o
N w IS o > 3 © ©
T T T T
\
N
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o
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I I I I
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Fig. 4. Detection probability versus the number of antenh&dor the HRD atP:, = 0.01, K = 2 and L = 1000.

60versampling by2 doubles the sampling bandwidth and thus the noise poweoutithractically changing the signal power.

Accordingly, the SNR decreases by 3 dB in c#g = 2 in comparison to cas&/s = 1.

May 4, 2015 DRAFT

1053-587X (c) 2015 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See
http://www.ieee.org/publications_standards/publications/rights/index.html for more information.



This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation infor|
10.1109/TSP.2015.2434330, IEEE Transactions on Signal Processing

20

T T
— Simulation
- ¥ - Analytical

09

o I o

o ~ ®
T T
4

Probability of detection Py

o
@

0.4

1 1‘.5 é 2‘.5 i‘i 35 1‘1 4.‘5 é 5.‘5 6
Number of active PU, K
Fig. 5. Detection probability versus the number of activesBU for the HRD atSNR = —5 dB, M = 6 and L = 1000.

C. Detection Probability versus Number of receiving antsn

Fig. 4 plots the probability of detection versus the numdesrdennas)/, at P, = 0.01 dB,
SNR = —12 dB, K =2 and L = 1000 when the PU system uses a 64-QAM modulation with
square-root raised-cosine pulse$ @b roll-off truncated ta24 symbols in length and the received
signal sampled al,; = 1. The elements oH are generated as in section V-B. The per-antenna
noise variances equé)d, —1,1,0.5,—1,0,0.75,0.25) dB for M =8, (0,—1,1,0.5,—1,0) dB for
M =6, (0,—1,1,0.5) dB for M = 4, and(0, —1) dB for M = 2. As expected, the performance
of the HRD improves whe/ increases. We also note a very good agreement bivéetween

the approximate closed-form expression and Monte Carlalsition.

D. Detection Probability versus Number of Active PUs

Fig. 5 plots the probability of detection versus the numbleaaive PUs, K, at P, = 0.01
dB, SNR = —12 dB, M = 4 and L = 1000 when the PU system uses a DQPSK modulation
with square-root raised-cosine pulse$) &b roll-off truncated to24 symbols in length. The per-
antenna noise variances equ@l—1,1,0.5) dB. The other parameters are those in the previous
section. As can be seen, the performance of the HRD degrddes the number of active PUs
grows. Furthermore, we observe that simulation resultsvarg close to the analytical-based

performance for different values df.
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Fig. 6. The ROC of different detectors & = 4, K = 2 and: ()SNR =0dB, L =30 (b) SNR = —1dB, L = 50 (c)

SNR = -2 dB, L = 100.

E. Comparison Between the Performance of HRD with the Otheteor

In Fig. 6, we compare the detection probability of the HRDhwitther previously reported
detectors in terms of their Receiver Operating Characiesi$ROC), as well as our closed-form
expression for the performance of the HRD with the approkionan [25]. We assumé/ = 4,
K = 2 in all sub-figures, where in different sub-figures we set:{a4)R = 0 dB and L = 30;
(b) SNR =—-1dB andL = 50; (c) SNR = —2 dB and L = 100. The PU signal model and
the other parameter are the same as Section V-D. Specifieadlgompare the GLR Detector-
(GLRD3) [16, Egn. (39)], the Arithmetic to Geometric MeanM&) [20, Eqn. (14)] detector
and the Maximum to Minimum Eigenvalue (MME) [37, Algorithnj detector. Fig. 6 shows
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that the HRD outperforms GLR Detectdy-AMG and MME. This is reasonable, since GLR
Detector3, AMG and MME are sensitive to nonuniform per-antenna noigeawnces, whereas
the HRD is robust to that effect. Furthermore, Fig. 6 shovat thur closed-form expression
for the performance of the HRD is more accurate than the appadion provided in [25] and,
moreover, not affected by. In contrast, the accuracy of the approximation in [25] ighky
dependent onl. and improves with increasing. Fig. 6 reveals the performance degradation
resulting from an inaccurate approximation to the detectind false-alarm probabilities of the
HRD, and also, the impact of the new closed-form expressionshose probabilities on the

performance improvement of the HRD.

VI. CONCLUSION

We have studied the performance of the HRD for multianteqegtsum sensing with uncal-
ibrated receivers. Specifically, we have first derived thacexlistribution of the HRD statistic
under the null hypothesis, which leads to a complicated lusiecl-form expression for the false-
alarm probability. Then, we have derived simpler and tigbsed-form expressions for both the
false-alarm and detection probabilities by using a monbased approximation of the HRD
distribution under both hypotheses. Finally, simulatioe presented to verify the accuracy of

the derived results.

APPENDIX A

PROOF OFLEMMA 1

To prove that the random variabﬁﬁ‘i1 r;; IS independent fronT’, we use Basu’s theorem.

Basu’s theorem. If 1V is complete and sufficient statistic for the family= {F; : £ € E},
then, W is independent from¥, for any ancillary statisticA. By definition, a statisticA is

ancillary iff its distribution does not depend &h
Proof: See [38] [ |
Under hypothesi${,, we have¢ = [0?,--- ,02,]T. Also, the PDF ofY underH, is given
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by,
R
f(Y|HO7017"' 7UM) = ﬂ-ML|E|L (45)
M 1
eXp{Zl 12@ 102 |ylz‘ } exXp {Zz’:l 0_127"”}
7TML|E| o ﬂ_ML|E|L )

where the last equality results from; = Zle ly1.4|*. From the PDF ofY underH,, which
forms an exponential family, the complete and sufficientistia is [r1 1, - - - ,7a/]” - In addition,
underH,, the sample covariance matidX has an uncorrelated complex Wishart distribution of
dimensionM and L degrees of freedom, with covariance matkXx i.e., R ~ W¢(M, L, X).

By definingR 2 £~ :RX " we can rewrite (4) undek, as,

M ~
_ LS >
SR

(46)

whereR. ~ Wc(M, L, 1). Thus, it is clear that the distribution @f under#, does not depend on
€=lo?,---,0%,]". Hence, from Basu’s theorem, the random varialles} , are independent

from T. In consequence, the random vana[)"[éi1 r;; IS also independent fror'.

APPENDIX B

PROOF OFTHEOREM 1

Under H,, the sample covariance matrR is distributed aR ~ W¢(M, L, Q). Thus, the
PDF of the sample covariance matii under? is given by [39],
RI" " etr(-Q'R)

I'u(L) QI .

Consequently, the:'™ moment ofT", wherem € IN, under#; can be computed a&{7™|H,} =

_ Y ra ) IR" M etr(-Q'R) dR
B /M < R ) Mu(L) Q"
rM<L m) OV R T en(-Q 'R
i dR
L)‘Q‘ /R>0 <ET> FM(L—m)|Q|L_m

Tw(L) Q"
FM( m) M T/ "
DI {(H ) } / “o

whereR’ ~ Wq(M, L—m, Q). Thus, to find then'™™ moment ofI" underH,, we should obtain

fR(R> =

(47)

h

the correlation between the random variablgs In that, we use the Characteristic Function (CF)
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of R'. Let ® be alM x M Hermitian matrix; then, the CF of the random variabtes, - - -, 7y s,
2R{rio}, 23{r o b - 2R e} 29 0} TeadS,

$(©) = E {etr (jR/(a)} — Ly — jOQ[ &™) (49)

and the correlation between all the tern}$ is obtained as,

M m
/ "M $(©)
E i =i m m (50)
() b,
Thus, we employ the following Lemma to compute (50).
Lemma 3. Let
oy — e
Du,N(Q) a| zj\f . aeuAl ) (51)
1,1 MM |g_g
with w = [uy, -+ ,up]T € NM andn = 2 «,;. The generating function for all derivatives

D, ~(Q) of ordern is given by the following multivariate homogeneous polyiabwi degree

n,
n 1 d X i1\ M
AX:Q) =3 N* Y (tr[( -Q”) (52)
k=1 Wn,k) [Ticy wil i3 !
=j" Z c(l,n) - ozl aly (53)

li+lg++lpy=n
with 1 = [ly, 1, -, ly)T € NM, d =n—k+1, X = diag{©}’ and whereW(n, k) denotes

the set ofd-tuples(wy, - - - ,wy) that fulfil the following constraints,

Zgzl w; = ka

S iwi=n,

. m >0, (54)

Accordingly, we will have,

Dun(Q) = j" (H uﬂ) c(u,n) . (55)

Proof:
Stage 1: Let ® = X + ©g, where®,, has zeroes along its diagonal and its off-diagonal entries

"For the sake of notational simplicity, the diagonal entoésX , i.e. z; ,;, are referred to by:;.
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equal those of®. To compute the multiple derivative df,, — j®Q|~" with respect to the

diagonal entries 0®, or equivalently, X, we have,

"Ly —JOQI | _ 9|1~ j8uQ) —iX Q™"
ooy - - -80%}}74]\/1 o o ozy* -+ 0xy} ©-0
_op-ixe” (56)
Oul - 0n} |x_g
Now, we can write,
1—jXQ™ = exp (—Nlog|l - jXQJ) . (57)

We should note thafl — j X Q| is generally a complex number. Nonetheless, as we are solely
interested in a neighborhood & ~ 0 for computing the derivatives, we can safely take the

principal branch of the logarithm function. Thus, we canlekghe following power series [40,

pp. 1029],
log[T+ Y| = i (_1)n+1tr[T"] (58)
og = 2 0 .
So, settingY = —jXQ, 7 = tr[Y] and Y = 7', we get,
. B > N(=1)"tr[Y" n—1)"
|I—JXQ|N:eXp<Z (=1) [n! I( )T> ) (59)
n=1

Stage 2: We resort to the following formal power series,

ooﬂnn OOBnﬁa"'aﬁn n
exp<zﬁ)zz B (60)

n=0

where B, (94, - - - , 19, constitutes the complete Bell polynomials [41]. The corteRell poly-

nomials are expressed from the partial Bell polynomiajs; (9, - - -, ¥,_x41) as [41],
Bn(ﬁlu o 71971) = Z Bn,k(ﬁh e 719n—k+1) ; (61)
k=1
where,
n' n—k+1 19 w;
B (W, On_pi1) = Z m H (2—') (62)
W(n,k) =1 ? i=1

with W(n, k) the set ofd-tuples(wy, - - - ,wy) defined in (54).
Stage 3: We apply (60) to (59). From (60) and (59), we set,

¥; = N(=1)r[X)(i—1)!. (63)
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From (60) and the previous definition of thig's, we have,

. _ >\ B, (—Ntr[X],--- , N(=1)"r[X"](n — 1)!)
T-iXQI™™ = ; - . (64)

From the definition of the complete Bell polynomials in (6hda62), we have,

1-iXQ| N ZZ By (—Ntr| ] o N(=1) R [Tk ( — ko)) §

T
n!
n=0 k=1
o n Nk(—l)n n—k+1 tr[’fz] Wi .
n=0 k=1 W(n,k) 1 Li=1 it =1

According toY = 7Y, we find,

O (ar\

1-jxQ| ™" = ZZ Z n,m I1 < Z. ) . (66)
=0 k=1 W(n,k) wil

Then, by substitutingl = —j X Q, we get,

T-XQIT =D 3 N 3 e II (wa)w

k=1 W(n,k) i=1

— ZAn<X; Q). (67)

Due to the constrain}_;_, "1 w; = n in the definition ofW(n, k), A,(X; Q) is an homoge-
neous polynomial of degree in the components of the diagonal mat, that is,
AX;Q)=i" Y cllin)-afalaly. (68)
li4+lpy=n
Thus, we can say thad,,(X; Q) is the generating function for all derivativés, (Q) of order
n, SO that,
I—iXQI™| _ 9"AUX;Q)

Dy, n(Q) = =
) u1 UnN ui up
Ox)" -0y |x_o  O7)" - 07" |x0

M
=" (H uﬂ) c(u,n) . (69)

Note that we have transformed the computation of the meltg#rivative of the inverse of
a multivariate polynomial in (51) to the much less complexnpatation of the derivative of
a plain multivariate polynomial expressed in terms of teafeemma 3). Thus, we can now

use more straightforward methods to compute the multipterateve in (51), that is, (50). In
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fact, we can obtair(u,n) by extracting the corresponding coefficientsagf - - - z}}* from the
multivariate homogeneous polynomid, (X; Q) and then computé,, (Q) by using (55).
Hence, we continue by expanding},(X; Q).

Let us define®,, ;. as,

d

S Hdl ,H (tr[(fQ)i])wi _ (70)

Wink) Lli=1 Wit =1

Then, using the property of matrix trace operation,

tr(A?) = Z Ag1,9292,95 °"" Agpogn (71)

J1dp € {17 7M}

in which A is a M x M matrix, we could expan@, ; as,

w1

1
P,k = Z — E By (72)
W(n,k) Hi:l Wi gp € {1, ,M}

wy

d 7
y | I 2 : q]17]2q]2vj?f”'q]i7]1 I |x]
p
. 7
=2 p=1

2,005 € {1,,M}
A product of sums can be expressed as a sum of products aglmation distributes over
addition. We could obtain the expansion of (72) by repegteeiblacing subexpressions in (72)
by the equivalent sum of products, continuing until the egpron becomes a sum of products
as shown in (73),

According to Lemma 3¢(u, n) equals the coefficient af;" - - - 21" in (52). Thus, w.r.t. (73),
c(u,n) can be extracted as (74), with defined as the set of all multiset permutations of the
multiset(A = {1,--- , M}, {f(i) = u; : : € A}) for which A is the underlying set of elements
and f (i) the multiplicity function. The termX in (74) can be rewritten as,

| [ (75)
p=1
with 7 a permutation of the symmetric grouf), on the set{1,2,---,n} with portraif £ =

((wy,ws, -+ ,wyq), (0x—1)) and the set of cycle®(r) which is implicity defined from (74).

8To eachr in S,, we associate the-tuple £ = (c1,c2, - - ,c,) Wherec, is the number of cycles of lengthin 7. Such a

n-tuple £ is called theportrait of 7. Note that different permutations i, may have an equal portrait.
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an,k;
w1
- Z Hd HquJpx]p
W(n,k)

d 1.W; w;

H x]p

X Wi Dy—1yit1:90-1ir2Da—1yir2:90-143 " Dssa—1yi+1
1=2 31,05 w; € -, M} =1

1 =
= = Z H Dp,39Lap

X yw;
W(n,k) szl Ww;:1 Ty Jwy € {17...7M} p=1

11Uz ( 1, 5Jwy c {1 M}p:l

2111]1 w;

d
X E : Ly H H D—1yis190-1i+2Da—nyit200-1yi43 ~ " Dosa—1yi+1

]17"'7]2?:2i_wi € {17"'7M} p= 1 i=2 I=1

1 n w1
= 2w 2 Alallas
) Lli=1 7y

W(n,k 1gn € {1, ,M}p=1 p=1
d w;
X H H q]w1+(l—1)i+17]w1+(l—1)i+2q]wl+(l—1)i+2=]w1+(l—1)i+3 e q]w1+li7]w1+(l—1)i+1 : (73)
=2 [=1
n
1
_ k
k=1 W(n,k) L =180 (51,0 90)€G
N
d w;
H 3p,p H H Doy +1-1)i41901 4 0= Dit2 Doy + = Dit 20wy +1-1)i+3 " Dy +16dwy +(—1)i+1
=2 [=1
(74)

Defining then-tuple (i1, 42, -+ ,in) = ((1uy), (2u,), -+, (My,,)), it is easy to verify that

n d
Z H q]perr(p) - 1“}1'2 Z H sz,z . (76)

(91, ,9n)€G P=1 l u;! meg p=1
with G defined as the subgroup of the symmetric graypincluding all permutations with

portrait £ = ((wy, wa, - -+ ,wgq), (0x_1))- By substituting (76) in (74),

n

c(u,n) = Z H T - Z Zqumw(p) : (77)

k=1 W(n,k) m€G p=1
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The summations oveyV(n, k) andr € G in (77) could be merged into a summation over all
the permutations: which have a portrai€ = ((wq, ws, - - - ,wyq), (0x—1)) such that thel-tuples

(w1, wa, -+ ,wgy) fulfil the constraints (54).

Lemma 4. If Z, is the subgroup o&,, including all the permutationg which have a portrait
£ = ((wy,ws, - ,wy), (0k_1)) such that thel-tuples(w;, w,, - - - , wy) fulfil the constraints (54),
then we could equivalently say th@j is the subgroup of,, including all the permutations

which are permutated to the identity permutation only with— k) permutations.

Proof: It is easy to verify that everyr € 7, needsZ‘j:l(z' — 1)w; permutations to be
permutated to the identity permutation. On the other harmh fthe constraints (54)2?11(1' —
1)w; = n — k, and thus, the proof is complete. [ |

Now by using Lemma 4, (77) can be rewritten as,

n

k n
c(u,n) = Z HML Z H%‘p,im) ; (78)

A
k=1 Lli=1 Wit rc7, p=1

whereZ, is the subgroup of5, including all the permutations which are permutated to the

identity permutation only with(n — k) permutations. From (55), we have,
Dun(Q) =5" > N¥ips , (79)
k=1
wherev,, x = > 7 [[h-1 Gipin,y- NOW, by settingu = m x 1), and N = L —m in (79) and
substituting the result in (50), we have,

o (1) =S v @0

=1 k=1
Finally, substituting (80) in (48), yields Theorem 1.

APPENDIX C

APPLICATION OF THEOREM 1
To obtainy s ar, Yanr2ne, Yarm—1 @andapans2n—1, We express each permutation as a product of
cycles corresponding to the orbits of the permutation. Retaince: the permutatidg, 1,4, 3, 5)
of the set{1,2,3,4,5} is denoted(12)(34)(5).
1) Ymarmar: the subgrou?,,,, includes only the identity permutatiof; ) (iz2) - - - (imar). AS
(11,02, yimm) = (), (2m), - -+, (My,)) @nd usingDg, = diag[Q], we get:imarmu =
Hi\g qu = |D2Q|m
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2) arn—1: the subgroupZy, includes the permutation§(ixi,) [T5L, ;.. (i) hi<kep<ar- AS
(i1, 09, in) = (1,2,---, M) and usingCq = D,'QD,,', we get,

M
Yuv—1 = ZQk,iq@‘,k H j.j

>k j=1,j#,k
|QZ k;| |QZ k;|
= q _
(H JJ) ZQ@ZQkk ‘ Zq”q.kk
= —|D |- 11Cq — Tull7 (81)

3) Yonron—1: the subgroupZ,,, includes the permutation§(ixi,) H?fld#’p(ij)}lgkpgm.
Since(il,’ig, BRI ’LQM) = ((12) (22) s (Mz)) we get

¢2M2M 1—MH(]ZZ+4ZQkZQZkQZquk H qj,]

1>k j=1,j#k,i
2 |ka
(1) (03 8
(-1 ik i i4k K
— D 2 M+2 |le
| | ( ZQ@ZQkk
= [Dg*(M +2||Cq — Lu||%) (82)

Hence, substituting the previous coefficients into (34),geé the two (approximate) first mo-
ments in (40) and (41).

APPENDIX D

SOME LARGE-L APPROXIMATIONS UNDERHy AND H;4

We start developingﬂTW1 in (40) up to1/L% From (40), letA = ||[Cy — Iy||% andy; =

2
|cg\2 <1+ IR ) be defined, witha;; = 1A anda;, = ¢u,m—2 (nOt calculated in

(L-1)?
this paper), so thal N2T|H1 = A+ 1Invy, whered = 1HN2T|HO (see (21)). So, using the small-
approximationin(1 + z) ~ z — 32° on A = 2 Zj‘il In 1:%2,
M .
-1 j2—1
Z > (83)
: ]:1
Thus, usingy_), j = XU and Yo | j2 = MAEDEUHD fwe have, after some algebra,
MM —1) M(M—1)2M +5)
A= . 84

L + 612 84)
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Using the second-order approximationltd1 + x), we also get, up to terms ih/(L — 1)

I 2 I ok 20 4 B Al = (144 ) and k= (1424 ), we
finally obtain, up tol/L?,

M(M —1) 2M +5 1
In 142 ~ 1 In ——
BT, L ( R ) HCoP
2011 2a11 + 2a19 + a%l
+ i + 2 . (85)

We approach now the second moment in (41) up/to®. Definingy, = ‘C ol (1 + 725 + T “22) )

with as; = M + 2A and ag = aaronm—2 (NOt calculated in this paper), we hal€u, iy, =
B + C + Inv,, where we define3 = 2 ZM In L2 with,

M M .9
B ~ Qzl%jL;jL_f _ (M—l)(J\Lf—2) 2

1 (M(M+1)(2M +1)

55( 6 ‘4M)v (86)

and where we defin€ = In

M  M?*+2M (M +1)3-1
~ — . 87
¢ L + 212 * 3L3 (87)

Back to,, for computing the approximation ta ;:, 3, we also need to defin® = M In %

so that,
MM LM
De=T "~ (88)

Therefore, we get the following approximation,

In pio 712, — In ,uQTmO ~ C+D

MM —1) | M(M = 1)(M +4)
~ o o . (89)

Picking up for the second moment und#é: we have:lnvy, ~ In |C coE + 72+ (“22)2

2
%(am +(a22) ) .As%g%(l—i—z—"—ﬁ) and(L 27 L2 (1—|— + ) we finally obtain,
up to1/L%* Invyy ~ In

2a21+a22+2 a21

+ =L + ————2>%. Therefore, after some algebra, we have,

I pio 730, — thZTml = (B+C)—A+Inyp—Iny
A M2+ (2M + 3)A + IA? 4 (ag — 2a12)

~ — + I3 )
L
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We obtain now the final largé-results undef, and #:
Hypothesisty: from (32) and (31):3- =~ § (1 + &7p) + 1. Thus,

M(M-1) 1 4 2M+45
ﬁi = ng MO-D ( +2<A64L+4>) = L= M?:Ll' (%0)
0 L2 <1+ 3L )
From (33):qp ~ 1 <LO — %) A. Thus, using (90)n ~ (L — 2M5) MMZL (7 4 2M45) ' gng,
for large L,
1
SR, : . B+C+In~3)/2
HypothesisH;: using (32) and (31) undéi; with terms up t(}i, we have.ﬁ—l1 ~ 7Ai(B+C)jn()V/1M2)+
1. After some algebra,
1
5 2A '
Using (33) underH; with terms up to%,
1/1 1\ /MM-1)+A 1
~— = —= In—— ). 93
w=g (5 -2) (T i) ©9
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