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Abstract

We consider the problem of multiantenna spectrum sensing in Cognitive Radios (CRs) when the

receivers are assumed to be uncalibrated across the antennas. The performance of the Hadamard Ratio

Detector (HRD) is analyzed in such a scenario. Specifically, we first derive the exact distribution of

the HRD statistic under the null hypothesis, which leads to an elaborate but closed-form expression

for the false-alarm probability. Then, we derive a simpler and tight closed-form approximation for

both the false-alarm and detection probabilities by using a moment-based approximation of the HRD

statistical distribution under both hypotheses. Finally, the accuracy of the obtained results is verified by

simulations.
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I. INTRODUCTION

The identification of spectrum holes by Secondary Users (SUs) constitutes a major requirement

at the physical layer of Cognitive Radio (CR) networks, where Spectrum Sensing (SS) techniques

are sought to attain a sufficiently reliable detection probability over the shortest possible sensing

time. So far, different methods have been proposed for SS [1], [2]. The Energy Detector (ED)

is such a popular method to detect an unknown signal in additive white noise [3], [4]. However,

it requires knowledge of the noise variance to set the decision threshold, which, in practice,

has to be estimated under errors introduced by the detectiondevice and the environment, e.g.,

temperature, humidity, device aging, radio interference,etc.. It has been shown that to achieve a

desired probability of detection under such unavoidable noise variance uncertainties, the Signal-

to-Noise Ratio (SNR) must be above a certain threshold [5] (SNR wall).

An efficient strategy to increase the reliability of SS is to use cooperative sensing, in which

information from multiple spatially distributed SUs is incorporated for detecting the Primary

User (PU) [6], as recently addressed in [7]–[11]. [7] studies optimization of Cooperative SS

(CSS) with an improved ED in each SU over imperfect reportingchannels. CSS for a CR mesh

network is considered in [8]. A linear cooperative sensing framework based on the combination

of the observed energies by different SUs is proposed in [9].In [10], [11], the authors propose a

selective-relay based CSS scheme without a dedicated reporting channel, which is able to control

and reduce the interference from SUs to the PU.

Using multiple antennas at the SU receiver is a possible approach to tackle noise uncertainty,

to improve the performance of SS by exploiting available observations in the spatial domain and

also to avoid a (probably imperfect) reporting channel likethat needed for CSS. Nevertheless,

multiantenna SS does present some disadvantages with respect to CSS: i.e., its inability to

counteract the hidden node problem as well as a comparatively more expensive implementa-

tion. Multiantenna techniques have been addressed in [12]–[21]. [12] a blind SS approach is

adopted in which the empirical characteristic function of the multiantenna samples is used to

formulate the statistical test. In [13], the authors derivethe optimum Neyman-Pearson (NP)

and sub-optimum Generalized Likelihood Ratio Test (GLRT)-based multiantenna detectors of

an Orthogonal Frequency Division Multiplexing (OFDM) signal with a cyclic prefix of known

length. The Rao test is applied to derive sub-optimum multiantenna detectors under the correlated
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receiving antennas model in [14]. Multiantenna SS in frequency selective channels is addressed

in [15]. In [16]–[19], the authors derive the GLRT detectorsof spatial rank-one PU signals robust

to noise variance uncertainty. Finally, some GLRT eigenvalue-based detectors for multiantenna

SS are proposed in [20], [21] for PU signals with spatial ranklarger than one.

Although all detectors proposed in [12]–[21] are robust to noise uncertainty, their performance

is sensitive to nonuniform per-antenna noise variances as may occur due to calibration errors. To

overcome this drawback, various GLRT-based detectors for uncalibrated multiantenna receivers

have been proposed in [22], [23], showing that the corresponding GLRT detector for an unstruc-

tured signal covariance matrix is given by the Hadamard ratio of the sample covariance matrix.

But neither [22] nor [23] have completely investigated the performance of the Hadamard Ratio

Detector (HRD): although both papers offer a useful asymptotic expression for its false-alarm

probability, those, are not accurate for small sample sizes. Moreover, no analytical expression

for the detection probability of the HRD has been derived in [22], [23], which is evaluated only

by Monte Carlo simulations. A number of approximations to the distribution of the HRD have

been reported: in [24], a moment-based beta approximation to the HRD distribution under the

null hypothesis is given, which, although approximately accurate, is not amenable to a physical

and meaningful intuitive interpretation; in [25] the authors adopt the asymptotic chi-squared

distribution of the GLRT for both the false-alarm and detection probabilities of the HRD which

is accurate only for a large sample size.

In this work, we analyze in detail the detection and false-alarm probabilities of the HRD. We

first derive the exact distribution of the HRD statistic under the null hypothesis by using the

Mellin transform, which leads to an analytical expression for the complex moments of the test

and its false-alarm probability. Nevertheless, the exact analytical expression involves Meijers G-

function whose numerical evaluation is computationally demanding and its interpretation difficult.

Thus, alternatively, we derive a simple and tight analytical approximation to the false-alarm

probability by using a moment-based approximation to the HRD statistical distribution under

the null hypothesis, with affordable computational complexity for the accurate determination of

the decision threshold. We also provide an intuitive interpretation for the impact of different

parameters on the proposed approximation. Additionally, we obtain an expression for all integer

moments of the test underH1 and a simple tight analytical approximation to the detection

probability by using a moment-based approximation to the HRD statistical distribution, which
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is accurate at all sample sizes. Simulation results verify the obtained exact analytical expression

for the false-alarm probability and show that the proposed analytical approximations: (i) closely

match Monte Carlo simulations for the false-alarm and detection probabilities; (ii) the expres-

sion for the false-alarm probability is more accurate than the asymptotic analytical expression

proposed in [22] and [23] for all values of the sample size.

The rest of the paper is organized as follows: in Section II, we describe the system model and

present the HRD. In Section III, we derive the exact and approximate closed-form expressions

for the false-alarm probability. The closed-form approximation to the detection probability is

obtained in Section IV. Simulations and related discussions are given in Section V. Finally,

conclusions are drawn in Section VI.

Notation: lightface denotes scalars. Vectors and matricesare referred to by lower- and upper-

case boldface, respectively.ai,j and ci stand for the entries of matrixA and vectorc, resp..C

and N denote the sets of all complex and natural numbers, resp.. The superscriptsT andH

denote the transpose and Hermitian (conjugate transpose) operations, resp..j is the imaginary

unit, i.e., j2 = −1. The M × M identity matrix is IM . diag{A} and diag{c1, c2, · · · , cM}

are diagonal matrices with diagonal entries equal to those of A and c1, c2, · · · , cM , resp.. The

real and imaginary parts ofc are ℜ{c} and ℑ{c}, resp..E{·} is the statistical expectation.

(c1, c2, · · · , cd) denote ad-tuple. tr(A), etr(A), |A| and ||A||2F denote the trace,exp(tr(A)),

determinant and Frobenius norm of the matrixA, resp..A ≻ 0 indicates that matrixA is

positive definite.CN (c,P) denotes the circular complex Gaussian distribution with meanc and

covariance matrixP. WC(M,L,P) denotes the complex Wishart distribution of dimensionM

andL degrees of freedom, with covariance matrixP. O(·) and o(·) denote Landau’s big and

small-o, resp..

II. PROBLEM FORMULATION

A. System Model

We assume a SU node fitted withM antennas that senses a given frequency band simulta-

neously accessed by theK different PUs. LetH1 andH0 denote, respectively, the hypotheses

of the presence and absence of PUs. The hypothesis testing problem for such a scenario can be
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formulated as

y =





n , H0

Hs+ n , H1

, (1)

with y ∈ CM the received signal vector,H ∈ CM×K the unknown channel gains matrix between

the K PUs and theM receiving antennas,s ∈ C
K the transmitted signals from the PUs and

n ∈ CM the additive noise vector, assumed zero-mean circular complex Gaussian distributed with

unknown diagonal covariance matrixΣ = diag{σ2
1, σ

2
2 , . . . , σ

2
M}. The per-antenna noise variances

σ2
i are assumed different to reflect potential tolerances in thecomponents of different RF chains.

For the theoretical development, we models as a zero-mean circular complex Gaussian random

vector. We adopt a Gaussian model for the PU signal for the following reasons. Firstly, [26]–

[28] conclude that OFDM signals are the best physical layer candidate for CR, which is thus

expected of most practical CR systems. In that, a Gaussian model is accurate for OFDM signals

with a sufficiently large number of subcarriers. Secondly, under asynchronous sampling, the

actual distribution of the PU signal is unknown; since the noise is assumed Gaussian as well, the

Gaussian Probability Density Function (PDF) for the PU is the least informative for the detection

problem and also widely used by other researchers [18], [21], [32]–[34]. Thirdly, the Gaussian

model is tractable and yields useful schemes whose results are also approximately accurate for

other distributions [14] as attested by simulations in section V for scenarios featuring modulated

PU signals with actual non-Gaussian distribution.

Without loss of generality, we assume thats has an identity covariance matrix as any correlation

and scaling of the PUs signals can be incorporated into the channel gains matrixH. UnderH1, the

PUs signals, i.e.,s and noise vector, i.e.,n are assumed mutually independent. In consequence,

the received signal vectory has a zero-mean circular complex Gaussian distribution, i.e., y ∼

CN (0,Q), where




H0 : Q = Σ

H1 : Q = HHH +Σ
. (2)

B. Hadamard Ratio Detector

Let Y = [y1, · · · ,yL] ∈ CM×L be a complex matrix containingL i.i.d snapshotsy1, · · · ,yL

from model (1). We assume a slow-fading channel in which the channel gains matrixH remains
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constant during the sensing time. LetR denote the sample covariance defined as

R = YYH . (3)

In practice, the SU is ignorant of the number of active PUs, i.e.,K. Hence, no specific structure

can be assumed for the covariance matrixQ underH1 except that it is positive definite. The

corresponding GLRT for such a scenario has been formulated in [22], [23], and is given by the

Hadamard ratio of the sample covariance matrix

T =

∏M
i=1 ri,i
|R|

RH1
H0

η , (4)

with η the decision threshold for a given false-alarm probability. As noted (Introduction), no

accurate analytical expressions for the false-alarm and detection probabilities of the HRD are

available yet. Thus, we address the detailed analytical performance study of the HRD in the

forthcoming sections.

III. FALSE-ALARM PROBABILITY

In this section, we derive the exact closed-form expressionfor the false-alarm probability of the

HRD by using the Mellin transform, as well as a simpler and closed-form approximation to the

false-alarm probability of the HRD by using a moment-based approximation of the distribution

of T .

A. Exact Expression

For a random variableX, the Mellin Transform of its PDF is expressed as its(z − 1)-th

complex moment:MX(z)
.
= E[Xz−1]. Conversely,fX(x) may be recovered with the inverse

Mellin Transform,

fX(x) =
1

2πj

∫ c+j∞

c−j∞

MX(z)x
−z dz (5)

Let us proceed to evaluate the complex moments of the decision statisticΛ,

Λ
.
=

1

T
=

|R|
∏M

i=1 ri,i
RH0

H1
η , (6)

Lemma 1. UnderH0, the random variable
∏M

i=1 ri,i is independent of the decision statisticT .

Proof: See appendix A.
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From Lemma 1 andz ∈ C, we have,

E {|R|z} = E

{(
Λ

M∏

i=1

ri,i

)z}
= E {Λz}E

{(
M∏

i=1

ri,i

)z}
, (7)

from which

E {Λz} =
E {|R|z}

E
{(∏M

i=1 ri,i

)z} , (8)

Let us consider the denominator of (8): from [35, Theorems 3.2, 3.5 and 3.6], underH0, ri,i is

distributed asri,i ∼ 1
2
σ2
i χ

2
2L, with χ2

2L a chi-squared random variable with2L degrees of freedom

and where the random variables{ri,i}Mi=1 are mutually independent for differenti’s. Thus,

E

{(
M∏

i=1

ri,i

)z}
=

M∏

i=1

σ2z
i

2z

∫ ∞

0

rzi,i
rL−1
i,i e−ri,i/2

2LΓ(L)
dri,i

=

M∏

i=1

σ2z
i

2L+zΓ(L)

∫ ∞

0

rL+z−1
i,i e−ri,i/2 dri,i , (9)

Using the complete Gamma function,Γ(z)
.
=
∫∞

0
tz−1e−t dt,

E

{(
M∏

i=1

ri,i

)z}
=

M∏

i=1

σ2z
i Γ(L+ z)

Γ(L)
=

(
Γ(L+ z)

Γ(L)

)M

|Σ|z . (10)

Let us now consider the numerator of (8): by [35, Theorem 3.8], we have the following stochastic

product decomposition:|R| ∼ |Σ|
∏M

i=1 Vi, with mutually independentVi ∼ 1
2
χ2
2(L−M+i). Thus,

E {|R|z} = |Σ|z
M∏

i=1

1

2z

∫ ∞

0

V z
i

V L−M+i−1
i e−Vi/2

2L−M+iΓ(L−M + i)
dVi

= |Σ|z
M∏

i=1

∫∞

0
V L−M+z+i−1
i e−Vi/2 dVi

2L−M+z+iΓ(L−M + i)
, (11)

which, by using again the complete Gamma function, yields

E {|R|z} = |Σ|z
M∏

i=1

Γ(L−M + z + i)

Γ(L−M + i)
. (12)

Let us now constructE {Λz} in (8): by replacing (10) and (12) in (8), we get,

E {Λz} =
(Γ(L))M

(Γ(L+ z))M
·

∏M
i=1 Γ(L−M + z + i)
∏M

i=1 Γ(L−M + i)
. (13)

Note, for cross-checking, that [24, Eq. (20)] provides theinteger momentsE[(T (ind))n], with

T (ind) = Λ, by expressingΛ as a product of independent beta-distributed random variables.
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Applying the inverse Mellin transform in (5) toMΛ(z) = E {Λz−1} in (13), we get,

fΛ|H0(λ|H0) =
1

2πj

∫ c+j∞

c−j∞

(Γ(L))M

(Γ(L+ z − 1))M
.

∏M
i=1 Γ(L−M + z − 1 + i)
∏M

i=1 Γ(L−M + i)
· λ−z dz

=
(Γ(L))M

∏M
i=1 Γ(L−M + i)

.
1

2πj

∫ c+j∞

c−j∞

∏M
i=1 Γ(L−M + z − 1 + i)
∏M

i=1 Γ(L+ z − 1)
· λ−z dz . (14)

Simplifying the fraction within the integral in (14), we get,

fΛ|H0
(λ|H0) =

(Γ(L))M
∏M

i=1 Γ(L−M + i)
.
1

2πj

∫ c+j∞

c−j∞

∏M−1
i=1 Γ(L−M + z − 1 + i)
∏M−1

i=1 Γ(L+ z − 1)
· λ−z dz . (15)

By using the definition of Meijer’s G-function [36, Sec 9.3, p. 1032] the exact PDF ofΛ under

H0 is obtained as

fΛ|H0(λ|H0) =
(Γ(L))M

∏M
i=1 Γ(L−M + i)

GM−1, 0
M−1,M−1



a1, . . . , aM−1

b1, . . . , bM−1

∣∣∣∣∣∣
λ



 , (16)

whereai = L− 1 andbi = L−M − 1 + i.

Remark 1. We observe thatfΛ|H0
(λ|H0) only depends on two parameters: the sample sizeL

and the number of antennasM , irrespectively of the noise variances. This is a consequence of

the power-normalized structure ofΛ = |C| as the determinant of the sample coherence matrix

C
.
= D−1RD−1, with D2 .

= diag{R}, which determines that the HRD is a Constant False

Alarm Rate (CFAR) detector.

Remark 2. Note that according to the Hadamard’s inequality we haveT ≥ 1, and thus0 <

Λ ≤ 1, which means the support of the PDF ofΛ is λ ∈ (0, 1]. This fact is confirmed by (16)

asGM−1, 0
M−1,M−1

( a1,...,aM−1

b1,...,bM−1

∣∣ λ
)
= 0 for |λ| > 1 according to Meijer’s G-function properties [36].

Therefore, the exact expression of false-alarm probability is obtained asPfa = P (t > η|H0) =

P (λ < 1
η
|H0), with,

Pfa =
(Γ(L))M

∏M
i=1 Γ(L−M + i)

∫ 1
η

0

GM−1, 0
M−1,M−1


a1, . . . , aM−1

b1, . . . , bM−1

∣∣∣∣∣∣
λ


 dλ . (17)

The above equation can be simplified by using the integrationproperties of Meijer’s G-function [36]
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as,

Pfa =
(Γ(L))M

∏M
i=1 Γ(L−M + i)

×


GM−1, 1

M,M


1, a1 + 1, . . . , aM−1 + 1

b1 + 1, . . . , bM−1 + 1, 0

∣∣∣∣∣∣
1

η


−GM−1, 1

M,M


1, a1 + 1, . . . , aM−1 + 1

b1 + 1, . . . , bM−1 + 1, 0

∣∣∣∣∣∣
0




 ,

(18)

where the decision threshold, i.e.,η, can be found by numerically solving forη in the equation

above.

B. Tight approximation to the false-alarm probability

The exact expression of the false-alarm probability in (17), although theoretically interesting,

is difficult to interpret or manipulate. Thus, alternatively, we aim to approximate the distribution

of T with a known distribution by fitting its first few moments. Fora tight approximation,

we use the Log-Gamma distribution, motivated by the following two facts: (a) It is defined

on the same support[1,∞) asT ; (b) The statisticlog T asymptotically follows a chi-squared

distribution [23]; thus, given that the chi-squared distribution is a particular instance of the

Gamma distribution, we adopt Gamma as the approximating distribution of log T , so thatT will

be modeled (asymptotically) by a log-Gamma distribution.

The PDF and Complementary Cumulative Distribution Function (CCDF) of a Log-Gamma

distribution with the shape parameterα0 and inverse scale parameterβ0 are given by

fT (t) =
(ln(t))α0−1

tβ0
α0Γ(α0)

exp

(
−
ln(t)

β0

)
, 1 < t <∞ . (19a)

FT (x) = P (t > x) =
Γ(α0,

lnx
β0

)

Γ(α0)
, (19b)

where the parametersα0 andβ0 can be obtained by fitting the two first moments of the Log-

Gamma distribution to the two first moments ofT . We continue by introducing Lemma .

Lemma 2. Themth moment ofT underH0, wherem ∈ N, is equal to,

E{Tm|H0} =
ΓM(L−m)

ΓM(L)

(
Γ(L)

Γ(L−m)

)M

. (20)

whereΓM(L) = π
1
2
M(M−1)

∏M
j=1 Γ(L− j + 1).

Proof: Setz = −m andΛ = 1/T in equation (8) or setp = −m in [24, Eq. (20)].
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Using Lemma 2 andΓ(s+ 1) = sΓ(s), we obtain the mean, second moment and variance of

T underH0,

µT |H0

.
= E{T |H0} =

M∏

j=1

L− 1

L− j
(21)

µ2,T |H0

.
= E{T 2|H0} =

ΓM(L− 2)

ΓM(L)

(
Γ(L)

Γ(L− 2)

)M

(22)

σ2
T |H0

.
= µ2,T |H1 − µ2

T |H0
(23)

= µ2
T |H0

·

(
L− 1

L−M − 1

(
L− 2

L− 1

)M

− 1

)

which, as in (16), are functions of onlyL andM . These expressions let us verify that:

1) µT |H0
≥ 1 for any L,M , and, asymptotically:limL→∞ µT |H0

= 1 (for finite M), as the

sample correlation matrixR tends to the truediagonal correlationΣ underH0 so that

T → 1+.

2) The ratioµ2
T |H0

/σ2
T |H0

goes to infinity atL→ ∞, as expected when the sample correlations

in T converge.

Now, by settingµT |H0 andσ2
T |H0

equal to the mean and variance of the Log-Gamma distribution,

respectively, we have fromα0 andβ0 in (19a,19b),

µT |H0
= (1− β0)

−α0 , 0 < β0 < 1 , (24)

σ2
T |H0

= (1− 2β0)
−α0 − (1− β0)

−2α0 , 0 < β0 < 1/2 (25)

To solve forβ0 andα0, let us defineg(β) and its inverse functiong−1(·) (which can be evaluated

numerically),

g(β) =
ln(1− β)

ln(1− 2β)
, 0 ≤ β ≤

1

2
(26)

g(β) is convex-∩ and decreasing, mappingβ ∈ {0, 1
2
} to g ∈ {1

2
, 0}. Hence,

α0 =
ln(µT |H0)

− ln(1− β0)
, (27)

β0 = g−1(p) , p
.
=

1

2
·

ln(µ2
T |H0

)

ln(µ2
T |H0

+ σ2
T |H0

)
(28)

Therefore, asµT |H0 ≥ 1, we note thatp is related to the concentration of the testT about

its expected valueµT |H0, with 0 ≤ p ≤ 1
2

and p increasing for higher concentration so that,
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asymptotically (L → ∞), we havep → 1
2

−
. Accordingly, the parameterβ0 determines the

amount of dispersion of the testT about its expected valueµT |H0 such that increase inβ0 results

in more dispersion of the testT about its expected value and vice versa. In addition, with respect

to (27), the parameterα0 is relevant to the ratio of the mean to dispersion ofT and, at a fixed

β0, increase inα0 is associated with increase in the mean of the testT .

Finally, the false-alarm probability for the HRD based on this approximate distribution ofT

and its equivalent decision thresholdη are obtained as,

Pfa = P (t > η|H0) ≈ FT (η) . (29)

η ≈ F−1
T (Pfa) . (30)

with F−1
T (.) the inverse function ofFT (x), which can also be obtained numerically. Let us define

an associated measure of dispersion,

σ2
p

.
= 1− 2p =

ln
(
1 + σ2

T |H0
/µ2

T |H0

)

ln
(
µ2
T |H0

+ σ2
T |H0

) (31)

with σ2
p → 0+ as L → ∞. Now, more specific expressions forα0 and β0 are possible if we

turn to a large-L approximation whereσ2
p << 1. These large-L approximations let us intuitively

assess the impact ofM andL on the false-alarm probability. Let us consider the approximation

g(x) ≃ 1
2
− 1

4
x− 1

4
x2 at x→ 0+ (g(x) → 1

2

−
). Thus, forσ2

p << 1 whereβ0 << 1, we may use

β0 = g−1(p) = 2σ2
p − 4σ4

p + o(σ4
p), and 1

β0
can be approximated as,

1

β0
=

1

2σ2
p

+ 1 + o(σ2
p) (32)

As for smallβ0 we have −1
ln(1−β0)

= 1
β0

− 1
2
+ o(β0), the following approximation results forα0,

α0 ≃

(
1

β0
−

1

2

)
lnµT |H0

(33)

The final large-L approximations forα0 and β0 are summarized in table I from the results in

appendix D. Fig. 1 investigates the accuracy of large-L approximations compared to the true

values and shows a good agreement between them even for moderate values ofL. Considering

thatFT (η) is an increasing function with respect to parametersα0 andβ0, and also considering

the large-L approximations ofα0 and β0 given in table I, we can intuitively investigate the

impact ofM andL on the false-alarm probability. Accordingly, for a fixed decision threshold,

the false-alarm probability decreases by increasingL or decreasingM . Equivalently, considering
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TABLE I

LARGE-L APPROXIMATIONS TO THE SHAPE PARAMETER AND INVERSE SCALE PARAMETER OF THE APPROXIMATING

LOG-GAMMA PDFUNDERH0 AND H1

Weighting term Large-L approximation

α0
1
2
M(M − 1)

β−1
0 L− M+1

3

α1 (β−1
1 − 1

2
)
(

M(M−1)+∆
2L

+ ln 1
|CQ|

)

→ L · 1
4∆

ln2 1
|CQ|2

, (L → ∞)

β−1
1

1
2∆

(

M(M − 1) + 2∆ + L ln 1
|CQ|2

)

+ 1

→ L · 1
2∆

ln 1
|CQ|2

, (L → ∞)

Definitions: D2
Q

.
= diag{Q}, CQ

.
= D−1

Q QD−1
Q ,

∆
.
= ‖CQ − IM‖2F

10
1
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Fig. 1. Large-L approximations forM = 4 antennas. Top left:α0; Bottom left: 1
L
β−1
0 ; Top-right: 1

L
α1 at SNR1 =

0 dB,SNR2 = −6 dB; Bottom-right: 1
L
β−1
1 at SNR1 = 0 dB,SNR2 = −6 dB.

thatFT (η) is a decreasing function with respect toη, we could say that for a fixed false-alarm

probability, the decision threshold decreases by increasing L or decreasingM .
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IV. DETECTION PROBABILITY

In general, we can not derive the exact distribution ofT under H1 by using the inverse

Mellin transform because, unlikeH0, the random variable
∏M

i=1 ri,i is not independent of the

decision statisticT and thus it does not seem possible to obtain the complex moments of T

underH1. But, as forH0, we can derive a tight approximation to the distribution ofT underH1

by approximating the distribution ofT with a known distribution that fits its first few moments.

As in the previous section, we approximate the distributionof T underH1 with a Log-Gamma

distribution with the shape parameterα1 and inverse scale parameterβ1 by fitting its two first

moments.

Theorem 1. Themth moment ofT underH1, wherem ∈ N, is equal to,

E{Tm|H1} =
ΓM(L−m)

ΓM(L) |Q|m

mM∑

k=1

(L−m)kψmM,k , (34)

with ψmM,k is defined as,

ψmM,k =
∑

π∈ImM

mM∏

p=1

qip,iπ(p)
, (35)

where ImM is the subgroup of symmetric group1 SmM on the finite set{1, 2, 3, · · · , mM}

including all the permutationsπ which are permutated to the identity permutation exactly with

(mM − k) permutations and(i1, i2, · · · , imM) = ((1m), (2m), · · · , (Mm))
2.

Proof: See Appendix B.

Remark 3. Note that the coefficientsψmM,k do not depend on the number of samples per antenna

L and that the complexity of computingψmM,k increases ask decreases frommM to 1. Thus for

the case that the number of samples per antennaL is large enough we could use a truncated form

of (34) with the most relevant coefficientsψmM,k, which has lower computational complexity

compared to (34), as,

E{Tm|H1} ≃
ΓM(L−m)

ΓM(L) |Q|m

mM∑

k=b

(L−m)kψmM,k , (36)

1The symmetric groupSn on a finite set ofn symbols is the group whose elements are all the permutationsof then symbols,

and whose group operation is the composition of such permutations.

2The notation(ϕn) is used to denote an-tuple whose elements are allϕ’s.
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with b > 1 such that
∣∣ ΓM(L−m)
ΓM(L)|Q|m

(∑mM
k=1 (L−m)kψmM,k −

∑mM
k=b (L−m)kψmM,k

)∣∣ is negligible.

From theorem 1, the mean, second moment and variance ofT underH1 are derived as,

µT |H1

.
= E{T |H1} =

ΓM(L− 1)

ΓM(L)|Q|

M∑

k=1

(L− 1)kψM,k, (37)

µ2,T |H1

.
= E{T 2|H1} =

ΓM(L− 2)

ΓM(L)|Q|2

2M∑

k=1

(L− 2)kψ2M,k (38)

σ2
T |H1

.
= µ2,T |H1 − µ2

T |H1
(39)

Computing the most relevant coefficientsψmM,k in (37) and (39) according to remark 3

contributes later to gaining insight as to how signal parameters affect the performance of

the HRD. The remaining coefficients only constitute a refinement and are hardly useful for

interpretation. Applying (35) and defining the diagonal matrix D2
Q

.
= diag{Q} featuring the

power at each antenna as well as the coherence matrixCQ
.
= D−1

Q QD−1
Q , the coefficientsψM,M

andψM,M−1 (m = 1) andψ2M,2M andψ2M,2M−1 (m = 2) are computed in appendix C. Therefore,

settingb = mM − 1 in (36), we get the following second-order approximation for largeL to

the first two moments ofT (see appendix C),

µT |H1
=

(
M∏

j=1

L− 1

L− j

)
·

1

|CQ|

(
1 +

‖CQ − IM‖2F
2(L− 1)

+ o

(
1

L

))
(40)

µ2,T |H1
=

(
M∏

j=1

L− 2

L− j

)2

L− 1

L−M − 1
·

1

|CQ|2

(
1 +

M + 2‖CQ − IM‖2F
L− 2

+ o

(
1

L

))
(41)

In addition, the second-order approximation toσ2
T |H1

is obtained straightforwardly by substituting

(40) and (41) in (39). So, the two first moments used for fittingthe distribution ofT are controlled

by |CQ|: the determinant of the coherence matrix underH1 (equal to1 underH0), and in a lesser

degree by∆
.
= ‖CQ− IM‖2F : the energy of its off-diagonal terms (equal to0 underH0). In fact,

it is shown in [23] that at low-SNR:ln |CQ| ≃ −1
2
(‖CQ‖2F −M) = −1

2
‖CQ − IM‖2F , which

makes the approximation to both moments in (40) and (41) dependent on a single parameter:

∆.

Now, settingµT |H1
andσ2

T |H1
equal to the mean and variance of the Log-Gamma distribution,
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we can obtainβ1 andα1 as follows,

α1 =
ln(µT |H1

)

− ln(1− β1)
, (42a)

β1 = g−1(p) , p
.
=

1

2
·

ln(µ2
T |H1

)

ln(µ2
T |H1

+ σ2
T |H1

)
(42b)

with g(β) as in (26). The HRD detection probability based on this approximate distribution can

now be obtained as,

Pd = P (t > η|H1) ≈
Γ(α1,

ln η
β1

)

Γ(α1)
. (43)

It is worth pointing out that the equations (42a) and (42b) have the same form as (27,28), by

exchangingH0 with H1. Hence, the same institutive interpretations provided forα0 and β0

are also valid forα1 and β1. Furthermore, the same expressions (31,32,33) can be exploited

to obtain the equivalent large-L approximations for parametersα1 and 1
β1

. The corresponding

large-L approximations are provided in table I based on the results in appendix D. Note that the

approximations in table I are applicable whereCQ 6= IM andL is sufficiently large. Otherwise,

infinitesimals of order1/L2 and higher in (40,41) will start weighing in. Fig. 1 shows that

α1 and 1
β1

can be accurately predicted for large values ofL by using the mentioned large-L

approximations. Note that in this case, in contrast toH0, both parametersα1 and 1
β1

increase

linearly with L. However, as discussed in III-B, increase inL accordingly will decrease the

decision threshold which partly counteracts to the impact of increase in 1
β1

. Consequently in

overall, increase inL will increase the detection probability through increasing α1. Using the

low-SNR approximate:ln |CQ| ≃ −1
2
∆, the large-L approximations ofα1 and 1

β1
in table I

will tend to the values ofL∆
4

and L
2
, respectively. Therefore, increase in energy of off-diagonal

terms ofQ, which is related to the SNR, results to increase in the detection probability through

increasingα1. Finally as it can be seen althoughM does not appear in large-L approximations

of α1 and 1
β1

explicitly, however indirectly boost the detection probability through: 1) decreasing

the decision threshold; and 2) increasing the SNR.

V. SIMULATION RESULTS

We provide Monte Carlo simulations3 to verify the proposed exact and approximate closed-

form expressions for the false-alarm probabilityPfa and the proposed closed-form approximation

3For each simulated point106 Monte Carlo repetitions has been computed.

May 4, 2015 DRAFT



1053−587X (c) 2015 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See
http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI
10.1109/TSP.2015.2434330, IEEE Transactions on Signal Processing

16

1 1.05 1.1 1.15 1.2 1.25 1.3
10

−3

10
−2

10
−1

Threshold

P
ro

b
ab

il
it
y

of
fa

ls
e

al
ar

m
P

fa

 

 
Analytical − asymptotic [25]
Analytical − near exact
Analytical − asymptotic [23]
Simulation
Analytical − exact
Analytical − Beta approximation

L = 50

L = 30

L = 100

(a) M = 2

1 1.1 1.2 1.3 1.4 1.5 1.6 1.7 1.8 1.9
10

−3

10
−2

10
−1

Threshold

P
ro

b
ab

il
it
y

of
fa

ls
e

al
ar

m
P

fa

 

 
Analytical − near exact
Analytical − exact
Simulation
Analytical − asymptotic [25]
Analytical − asymptotic [23]
Analytical − Beta approximation

L = 50

L = 100

L = 30

(b) M = 4

1.4 1.6 1.8 2 2.2 2.4 2.6 2.8 3 3.2
10

−3

10
−2

10
−1

Threshold

P
ro

b
ab

il
it
y

of
fa

ls
e

al
ar

m
P

fa

 

 
Simulation
Analytical − asymptotic [25]
Analytical − asymptotic [23]
Analytical − near exact
Analytical − exact
Analytical − Beta approximation

L = 100

L = 50

L = 30

(c) M = 6

Fig. 2. False-alarm probability versus decision thresholdfor different values ofL andM .

to the detection probabilityPd. We also compare the closed-form expressions forPfa andPd

with previously reported approximations.

A. False-Alarm Probability versus Threshold

Fig. 2 plots the false-alarm probability versus the threshold for different values ofM and

L in which we compare the derived exact and approximate closed-form expressions for the

false-alarm probability with each other, with the asymptotic closed-form expressions in [23],

[25] and with the moment-based beta approximation in [24]. The per-antenna noise variances

are set at:(0,−1, 1, 0.5,−1, 0) dB for M = 6, (0,−1, 1, 0.5) dB for M = 4, and (0,−1) dB

for M = 2. A great closeness can be observed between the exact and approximate closed-form

expressions for the probability of false alarm, although the latter is much less complicated. In

DRAFT May 4, 2015



1053-587X (c) 2015 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See
http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI
10.1109/TSP.2015.2434330, IEEE Transactions on Signal Processing

17

TABLE II

THE ANAD VALUES FOR THE DIFFERENT ANALYTICAL EXPRESSIONS

Related analytical expression

values ofM andL

M = 2 M = 2 M = 2 M = 4 M = 4 M = 4 M = 6 M = 6 M = 6

L = 30 L = 50 L = 100 L = 30 L = 50 L = 100 L = 30 L = 50 L = 100

exact 6.37 × 10−6 5.09× 10−6 4.73 × 10−6 5.53 × 10−6 6.86× 10−6 6.31 × 10−6 6.35 × 10−6 5.67× 10−6 6.24 × 10−6

approx. 2.03 × 10−4 1.91× 10−4 1.89 × 10−4 1.94 × 10−4 1.98× 10−4 1.83 × 10−4 1.75 × 10−4 1.82× 10−4 1.93 × 10−4

beta approximation [24] 4.90 × 10−4 1.63× 10−4 3.12 × 10−4 2.09 × 10−4 2.27× 10−4 1.54 × 10−4 1.95 × 10−4 3.15× 10−4 2.48 × 10−4

asymptotic [25] 4.72 × 10−3 1.06× 10−3 3.52 × 10−4 1.24 × 10−2 4.13× 10−3 9.84 × 10−4 4.96 × 10−2 7.47× 10−3 2.16 × 10−3

asymptotic [23] 1.11 × 10−2 3.6× 10−3 7.81 × 10−4 2.95 × 10−2 9.53× 10−3 2.4× 10−3 1.09 × 10−1 1.68× 10−2 4.6× 10−3

addition, it can be seen that the approximate closed-form expression and the beta approximation

in [24] have roughly the same accuracy, but, the former is more accurate in comparison with

the previously reported asymptotic closed-form expressions in [23] and [25]. We also show,

quantitatively, the accuracy improvement of the exact and approximate closed-form expressions

over the previously reported asymptotic closed-form expressions in [23] and [25] in terms of

the Average Normalized Absolute Difference (ANAD) betweenthe threshold computed by each

of the analytical expressions and the true value of the threshold obtained from Monte Carlo

simulation4. The results are shown in Table II5. It can be seen that the accuracy of the exact

and approximate closed-form expressions is not affected byL andM , while the accuracy of the

asymptotic closed-form expressions in [23] and [25] improves with increasingL and decreasing

M .

B. Detection Probability versus SNR

Fig. 3 shows the probability of missed detection, i.e.Pm = 1−Pd, versus SNR atPfa = 0.01,

M = 4, K = 2 and L = 1000, for three cases in which the PU system uses, respectively:

(a) a 16-PSK modulation; (b) a 16-QAM modulation; (c) a 64-QAM modulation. We consider

square-root raised-cosine pulses at0.25 roll-off truncated to24 symbols in length. Moreover,

for each (a), (b) or (c), we consider two sampling rates for the received signal:Nss = 1 and

Nss = 2 samples per symbol. The per-antenna noise variances equal(0,−1, 1, 0.5) dB. To test

the expressions for as large a set of instances ofH as possible, for each Monte Carlo simulation,

4The ANAD is defined as1
p

∑p

i=1

|ηA(Pfai
)−ηS(Pfai

)|

ηS(Pfai
)

where ηA(Pfai ) and ηS(Pfai) are the thresholds evaluated for the

false-alarm rate ofPfai by one of the analytical expressions and Monte Carlo simulation, respectively.

5The ANAD values in Table II have been evaluated for these false-alarm rates{(1, 2, · · · , 9) × 10−4, (1, 2, · · · , 9) ×

10−3, (1, 2, · · · , 9)× 10−2, (1, 2, · · · , 9)× 10−1}.
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Fig. 3. Missed detection probability versus SNR for the HRD at Pfa = 10−2, L = 1000, M = 4 andK = 2: (a) 16-PSK

modulation scheme (b) 16-QAM modulation scheme (c) 64-QAM modulation scheme.

we have generated the channel gains matrixH once by drawing its elements independently from

a Gaussian distribution. Then, this matrix is used unchanged in all system realizations within

that Monte Carlo simulation. Additionally, the channel gains are scaled to achieve the desired

SNR over all Monte Carlo simulations. The SNR is defined as,

SNR
.
= tr(HΣ−1HH). (44)

The analytical performance is obtained by using the approximate closed-form expressions for

computing both the threshold and the detection probability. A great closeness is observed between
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those approximations and Monte Carlo simulations for the different modulation types in all

values of SNR even when the received signal is sampled atNss = 2. Note that the performance

degradation atNss = 2 with respect toNss = 1 results from the decrease in the SNR due to

oversampling6. Fig. 3 concludes that the proposed closed-form expressions for false-alarm and

detection probabilities are still valid and accurate when the actual distribution of the PU signal

is not Gaussian. This may be related to the fact that the HRD operates on the sample covariance

matrix R, whose entries, when the data have finite fourth-order moments [29]–[31] and for a

sufficiently large sample sizeL, converge to a Gaussian distribution even though the distribution

of the PU be not, necessarily, Gaussian. So, the Gaussian assumption for the PU is not a

limiting factor in our derivation. Results for different modulations have been shown in different

sub-figures due to the closeness of the corresponding curves. It is known that oversampling

creates temporal correlation between the PU signal samples. Further, Fig. 3 shows that at low-

rate oversampling for which the detection window spans manytemporal correlation lengths (i.e.

L >> Nss), the proposed analytical expressions for the performanceof the HRD are still valid

and accurate. Obviously, if the oversampling rate were increased further (keepingL fixed), the

good agreement between the true performance of the HRD and the proposed expressions might

be penalized.
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Fig. 4. Detection probability versus the number of antennasM for the HRD atPfa = 0.01, K = 2 andL = 1000.

6Oversampling by2 doubles the sampling bandwidth and thus the noise power without practically changing the signal power.

Accordingly, the SNR decreases by 3 dB in caseNss = 2 in comparison to caseNss = 1.
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Fig. 5. Detection probability versus the number of active PUs K for the HRD atSNR = −5 dB, M = 6 andL = 1000.

C. Detection Probability versus Number of receiving antennas

Fig. 4 plots the probability of detection versus the number of antennas,M , atPfa = 0.01 dB,

SNR = −12 dB, K = 2 andL = 1000 when the PU system uses a 64-QAM modulation with

square-root raised-cosine pulses at0.25 roll-off truncated to24 symbols in length and the received

signal sampled atNss = 1. The elements ofH are generated as in section V-B. The per-antenna

noise variances equal(0,−1, 1, 0.5,−1, 0, 0.75, 0.25) dB for M = 8, (0,−1, 1, 0.5,−1, 0) dB for

M = 6, (0,−1, 1, 0.5) dB for M = 4, and(0,−1) dB for M = 2. As expected, the performance

of the HRD improves whenM increases. We also note a very good agreement overM between

the approximate closed-form expression and Monte Carlo simulation.

D. Detection Probability versus Number of Active PUs

Fig. 5 plots the probability of detection versus the number of active PUs,K, at Pfa = 0.01

dB, SNR = −12 dB, M = 4 andL = 1000 when the PU system uses a DQPSK modulation

with square-root raised-cosine pulses at0.25 roll-off truncated to24 symbols in length. The per-

antenna noise variances equal(0,−1, 1, 0.5) dB. The other parameters are those in the previous

section. As can be seen, the performance of the HRD degrades when the number of active PUs

grows. Furthermore, we observe that simulation results arevery close to the analytical-based

performance for different values ofK.
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Fig. 6. The ROC of different detectors atM = 4, K = 2 and: (a)SNR = 0 dB, L = 30 (b) SNR = −1 dB, L = 50 (c)

SNR = −2 dB, L = 100.

E. Comparison Between the Performance of HRD with the Other Detector

In Fig. 6, we compare the detection probability of the HRD with other previously reported

detectors in terms of their Receiver Operating Characteristics (ROC), as well as our closed-form

expression for the performance of the HRD with the approximation in [25]. We assumeM = 4,

K = 2 in all sub-figures, where in different sub-figures we set: (a)SNR = 0 dB andL = 30;

(b) SNR = −1 dB andL = 50; (c) SNR = −2 dB andL = 100. The PU signal model and

the other parameter are the same as Section V-D. Specifically, we compare the GLR Detector-3

(GLRD3) [16, Eqn. (39)], the Arithmetic to Geometric Mean (AMG) [20, Eqn. (14)] detector

and the Maximum to Minimum Eigenvalue (MME) [37, Algorithm 1] detector. Fig. 6 shows
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that the HRD outperforms GLR Detector-3, AMG and MME. This is reasonable, since GLR

Detector-3, AMG and MME are sensitive to nonuniform per-antenna noise variances, whereas

the HRD is robust to that effect. Furthermore, Fig. 6 shows that our closed-form expression

for the performance of the HRD is more accurate than the approximation provided in [25] and,

moreover, not affected byL. In contrast, the accuracy of the approximation in [25] is heavily

dependent onL and improves with increasingL. Fig. 6 reveals the performance degradation

resulting from an inaccurate approximation to the detection and false-alarm probabilities of the

HRD, and also, the impact of the new closed-form expressionsfor those probabilities on the

performance improvement of the HRD.

VI. CONCLUSION

We have studied the performance of the HRD for multiantenna spectrum sensing with uncal-

ibrated receivers. Specifically, we have first derived the exact distribution of the HRD statistic

under the null hypothesis, which leads to a complicated but closed-form expression for the false-

alarm probability. Then, we have derived simpler and tight closed-form expressions for both the

false-alarm and detection probabilities by using a moment-based approximation of the HRD

distribution under both hypotheses. Finally, simulation are presented to verify the accuracy of

the derived results.

APPENDIX A

PROOF OFLEMMA 1

To prove that the random variable
∏M

i=1 ri,i is independent fromT , we use Basu’s theorem.

Basu’s theorem. If W is complete and sufficient statistic for the familyP = {Pξ : ξ ∈ Ξ},

then,W is independent fromA, for any ancillary statisticA. By definition, a statisticA is

ancillary iff its distribution does not depend onξ.

Proof: See [38]

Under hypothesisH0, we haveξ = [σ2
1, · · · , σ

2
M ]T . Also, the PDF ofY underH0 is given
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by,

f(Y|H0, σ
2
1, · · · , σ

2
M) =

exp
{∑L

l=1 y
H
l Σ

−1yl

}

πML |Σ|L
(45)

=
exp

{∑L
l=1

∑M
i=1

1
σ2
i

|yl,i|2
}

πML |Σ|L
=

exp
{∑M

i=1
1
σ2
i

ri,i

}

πML |Σ|L
,

where the last equality results fromri,i =
∑L

l=1 |yl,i|
2. From the PDF ofY underH0, which

forms an exponential family, the complete and sufficient statistic is [r1,1, · · · , rM,M ]T . In addition,

underH0, the sample covariance matrixR has an uncorrelated complex Wishart distribution of

dimensionM andL degrees of freedom, with covariance matrixΣ, i.e., R ∼ WC(M,L,Σ).

By defining R̃ , Σ− 1
2RΣ− 1

2 we can rewrite (4) underH0 as,

T =

∏M
i=1 r̃ii

|R̃|
RH1

H0
η , (46)

whereR̃ ∼ WC(M,L, I). Thus, it is clear that the distribution ofT underH0 does not depend on

ξ = [σ2
1, · · · , σ

2
M ]T . Hence, from Basu’s theorem, the random variables{ri,i}Mi=1 are independent

from T . In consequence, the random variable
∏M

i=1 ri,i is also independent fromT .

APPENDIX B

PROOF OFTHEOREM 1

UnderH1, the sample covariance matrixR is distributed asR ∼ WC(M,L,Q). Thus, the

PDF of the sample covariance matrixR underH1 is given by [39],

fR(R) =
|R|L−M etr(−Q−1R)

ΓM(L) |Q|L
. (47)

Consequently, themth moment ofT , wherem ∈ N, underH1 can be computed as:E{Tm|H1} =

=

∫

R≻0

(∏M
i=1 ri,i
|R|

)m
|R|L−M etr(−Q−1R)

ΓM(L) |Q|L
dR

=
ΓM(L−m)

ΓM(L) |Q|m

∫

R≻0

(
M∏

i=1

ri,i

)m

|R|L−M−m etr(−Q−1R)

ΓM(L−m) |Q|L−m
dR

=
ΓM(L−m)

ΓM(L) |Q|m
E

{(
M∏

i=1

r
′

i,i

)m}
, (48)

whereR
′
∼ WC(M,L−m,Q). Thus, to find themth moment ofT underH1, we should obtain

the correlation between the random variablesr′mi,i . In that, we use the Characteristic Function (CF)
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of R
′
. LetΘ be aM×M Hermitian matrix; then, the CF of the random variablesr′1,1, · · · , r

′
M,M ,

2ℜ{r′1,2}, 2ℑ{r
′
1,2}, · · · , 2ℜ{r

′
M−1,M}, 2ℑ{r′M−1,M} reads,

φ(Θ) = E
{
etr
(
jR

′

Θ
)}

= |IM − jΘQ|−(L−m) . (49)

and the correlation between all the termsr′mi,i is obtained as,

E

{(
M∏

i=1

r
′

i,i

)m}
= j−mM ∂mMφ(Θ)

∂θm1,1 · · ·∂θ
m
M,M

∣∣∣∣∣
Θ=0

. (50)

Thus, we employ the following Lemma to compute (50).

Lemma 3. Let

Du,N(Q)
.
=

∂n|IM − jΘQ|−N

∂θu1
1,1 · · ·∂θ

uM

M,M

∣∣∣∣∣
Θ=0

, (51)

with u
.
= [u1, · · · , uM ]T ∈ NM and n

.
=
∑M

i=1 ui. The generating function for all derivatives

Du,N(Q) of order n is given by the following multivariate homogeneous polynomial of degree

n,

An(X;Q) = jn
n∑

k=1

Nk
∑

W(n,k)

1
∏d

i=1wi!

d∏

i=1

(
tr[(XQ)i]

i

)mi

(52)

= jn
∑

l1+l2+···+lM=n

c(l, n) · xl11 x
l2
2 · · ·xlMM , (53)

with l
.
= [l1, l2, · · · , lM ]T ∈ NM , d

.
= n − k + 1, X

.
= diag{Θ}7 and whereW(n, k) denotes

the set ofd-tuples(w1, · · · , wd) that fulfil the following constraints,




∑d
i=1wi = k,

∑d
i=1 i · wi = n,

, mi ≥ 0 . (54)

Accordingly, we will have,

Du,N(Q) = jn

(
M∏

i=i

ui!

)
c(u, n) . (55)

Proof:

Stage 1: Let Θ = X +Θ0, whereΘ0 has zeroes along its diagonal and its off-diagonal entries

7For the sake of notational simplicity, the diagonal entriesof X , i.e. xi,i, are referred to byxi.
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equal those ofΘ. To compute the multiple derivative of|IM − jΘQ|−N with respect to the

diagonal entries ofΘ, or equivalently,X, we have,

∂n|IM − jΘQ|−N

∂θu1
1,1 · · ·∂θ

uM

M,M

∣∣∣∣∣
Θ=0

=
∂n|(I− jΘ0Q)− jXQ|−N

∂xu1
1 · · ·∂xuM

M

∣∣∣∣
Θ=0

=
∂n|I− jXQ|−N

∂xu1
1 · · ·∂xuM

M

∣∣∣∣
X=0

. (56)

Now, we can write,

|I− jXQ|−N = exp (−N log |I− jXQ|) . (57)

We should note that|I − jXQ| is generally a complex number. Nonetheless, as we are solely

interested in a neighborhood ofX ∼ 0 for computing the derivatives, we can safely take the

principal branch of the logarithm function. Thus, we can exploit the following power series [40,

pp. 1029],

log |I+Υ| =
∞∑

n=1

(−1)n+1

n
tr[Υn] . (58)

So, settingΥ = −jXQ, τ = tr[Υ] andΥ̃ = τ−1Υ, we get,

|I− jXQ|−N = exp

(
∞∑

n=1

N(−1)ntr[Υ̃n](n− 1)!

n!
τn

)
. (59)

Stage 2: We resort to the following formal power series,

exp

(
∞∑

n=1

ϑn
n!
τn

)
=

∞∑

n=0

Bn(ϑ1, · · · , ϑn)

n!
τn , (60)

whereBn(ϑ1, · · · , ϑn) constitutes the complete Bell polynomials [41]. The complete Bell poly-

nomials are expressed from the partial Bell polynomialsBn,k(ϑ1, · · · , ϑn−k+1) as [41],

Bn(ϑ1, · · · , ϑn) =
n∑

k=1

Bn,k(ϑ1, · · · , ϑn−k+1) , (61)

where,

Bn,k(ϑ1, · · · , ϑn−k+1)
.
=
∑

W(n,k)

n!
∏n−k+1

i=1 wi!

n−k+1∏

i=1

(
ϑi
i!

)wi

(62)

with W(n, k) the set ofd-tuples(w1, · · · , wd) defined in (54).

Stage 3: We apply (60) to (59). From (60) and (59), we set,

ϑi = N(−1)itr[Υ̃i](i− 1)! . (63)
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From (60) and the previous definition of theϑi’s, we have,

|I− jXQ|−N =

∞∑

n=0

Bn(−Ntr[Υ̃], · · · , N(−1)ntr[Υ̃n](n− 1)!)

n!
τn. (64)

From the definition of the complete Bell polynomials in (61) and (62), we have,

|I− jXQ|−N =
∞∑

n=0

n∑

k=1

Bn,k(−Ntr[Υ̃], · · · , N(−1)n−k+1tr[Υ̃n−k+1](n− k)!)

n!
τn

=

∞∑

n=0

n∑

k=1

∑

W(n,k)

Nk(−1)n
∏n−k+1

i=1 wi!

n−k+1∏

i=1

(
tr[Υ̃i]

i

)wi

τn . (65)

According toΥ = τΥ̃, we find,

|I− jXQ|−N =
∞∑

n=0

n∑

k=1

∑

W(n,k)

Nk(−1)n
∏n−k+1

i=1 wi!

n−k+1∏

i=1

(
tr[Υi]

i

)wi

. (66)

Then, by substitutingΥ = −jXQ, we get,

|I− jXQ|−N =
∞∑

n=0

jn
n∑

k=1

Nk
∑

W(n,k)

1
∏n−k+1

i=1 wi!

n−k+1∏

i=1

(
tr[(XQ)i]

i

)wi

=
∞∑

n=0

An(X;Q) . (67)

Due to the constraint
∑n−k+1

i=1 i ·wi = n in the definition ofW(n, k), An(X;Q) is an homoge-

neous polynomial of degreen in the components of the diagonal matrixX, that is,

An(X;Q) = jn
∑

l1+···+lM=n

c(l, n) · xl11 x
l2
2 · · ·xlMM . (68)

Thus, we can say thatAn(X;Q) is the generating function for all derivativesDu,N(Q) of order

n, so that,

Du,N(Q) =
∂n|I− jXQ|−N

∂xu1
1 · · ·∂xuM

M

∣∣∣∣
X=0

=
∂nAn(X;Q)

∂xu1
1 · · ·∂xuM

M

∣∣∣∣
X=0

= jn

(
M∏

i=i

ui!

)
c(u, n) . (69)

Note that we have transformed the computation of the multiple derivative of the inverse of

a multivariate polynomial in (51) to the much less complex computation of the derivative of

a plain multivariate polynomial expressed in terms of traces (Lemma 3). Thus, we can now

use more straightforward methods to compute the multiple derivative in (51), that is, (50). In
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fact, we can obtainc(u, n) by extracting the corresponding coefficients ofxu1
1 · · ·xuM

M from the

multivariate homogeneous polynomialAn(X;Q) and then computeDu,N(Q) by using (55).

Hence, we continue by expandingAn(X;Q).

Let us defineΦn,k as,

Φn,k
.
=
∑

W(n,k)

1
∏d

i=1wi!

d∏

i=1

(
tr[(XQ)i]

i

)wi

. (70)

Then, using the property of matrix trace operation,

tr(Ap) =
∑

1,··· ,p ∈ {1,··· ,M}

a1,2a2,3 · · · ap,1 , (71)

in which A is aM ×M matrix, we could expandΦn,k as,

Φn,k =
∑

W(n,k)

1
∏d

i=1wi!




∑

p ∈ {1,··· ,M}

qp,pxp




w1

(72)

×
d∏

i=2




∑

1,··· ,i ∈ {1,··· ,M}

q1,2q2,3 · · · qi,1
i

i∏

p=1

xp




wi

.

A product of sums can be expressed as a sum of products as multiplication distributes over

addition. We could obtain the expansion of (72) by repeatedly replacing subexpressions in (72)

by the equivalent sum of products, continuing until the expression becomes a sum of products

as shown in (73),

According to Lemma 3,c(u, n) equals the coefficient ofxu1
1 · · ·xuM

M in (52). Thus, w.r.t. (73),

c(u, n) can be extracted as (74), withG defined as the set of all multiset permutations of the

multiset (A = {1, · · · ,M}, {f(i) = ui : i ∈ A}) for which A is the underlying set of elements

andf(i) the multiplicity function. The termℵ in (74) can be rewritten as,

n∏

p=1

qp,π(p)
, (75)

with π a permutation of the symmetric groupSn on the set{1, 2, · · · , n} with portrait8 ℓ =

((w1, w2, · · · , wd), (0k−1)) and the set of cyclesD(π) which is implicity defined from (74).

8To eachπ in Sn we associate then-tuple ℓ = (c1, c2, · · · , cn) wherec is the number of cycles of length in π. Such a

n-tuple ℓ is called theportrait of π. Note that different permutations inSn may have an equal portrait.
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Φn,k

=
∑

W(n,k)

1
∏d

i=1wi!




∑

1,··· ,w1 ∈ {1,··· ,M}

w1∏

p=1

qp,pxp




×
d∏

i=2

∑

1,··· ,i.wi
∈ {1,··· ,M}

∏i.wi

p=1 xp

iwi

wi∏

l=1

q(l−1)i+1,(l−1)i+2
q(l−1)i+2,(l−1)i+3

· · · qli,(l−1)i+1

=
∑

W(n,k)

1
∏d

i=1wi!iwi




∑

1,··· ,w1 ∈ {1,··· ,M}

w1∏

p=1

qp,pxp




×




∑

1,··· ,∑d
i=2

i.wi
∈ {1,··· ,M}

∑d
i=2 i.wi∏

p=1

xp

d∏

i=2

wi∏

l=1

q(l−1)i+1,(l−1)i+2
q(l−1)i+2,(l−1)i+3

· · · qli,(l−1)i+1




=
∑

W(n,k)

1
∏d

i=1wi!iwi

∑

1,··· ,n ∈ {1,··· ,M}

n∏

p=1

xp

w1∏

p=1

qp,p

×
d∏

i=2

wi∏

l=1

qw1+(l−1)i+1,w1+(l−1)i+2
qw1+(l−1)i+2,w1+(l−1)i+3

· · · qw1+li,w1+(l−1)i+1
. (73)

c(u, n) =

n∑

k=1

Nk
∑

W(n,k)

1
∏d

i=1wi!iwi

∑

(1,··· ,n)∈G

ℵ︷ ︸︸ ︷
w1∏

p=1

qp,p

d∏

i=2

wi∏

l=1

qw1+(l−1)i+1,w1+(l−1)i+2
qw1+(l−1)i+2,w1+(l−1)i+3

· · · qw1+li,w1+(l−1)i+1
.

(74)

Defining then-tuple (i1, i2, · · · , in)
.
= ((1u1), (2u2), · · · , (MuM

)), it is easy to verify that

∑

(1,··· ,n)∈G

n∏

p=1

qp,π(p)
=

∏d
i=1wi!i

wi

∏M
i=1 ui!

∑

π∈G

n∏

p=1

qip,iπ(p)
. (76)

with G defined as the subgroup of the symmetric groupSn including all permutations with

portrait ℓ = ((w1, w2, · · · , wd), (0k−1)). By substituting (76) in (74),

c(u, n) =
n∑

k=1

Nk

∏M
i=1 ui!

∑

W(n,k)

∑

π∈G

n∏

p=1

qip,iπ(p)
. (77)
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The summations overW(n, k) andπ ∈ G in (77) could be merged into a summation over all

the permutationsπ which have a portraitℓ = ((w1, w2, · · · , wd), (0k−1)) such that thed-tuples

(w1, w2, · · · , wd) fulfil the constraints (54).

Lemma 4. If In is the subgroup ofSn including all the permutationsπ which have a portrait

ℓ = ((w1, w2, · · · , wd), (0k−1)) such that thed-tuples(w1, w2, · · · , wd) fulfil the constraints (54),

then we could equivalently say thatIn is the subgroup ofSn including all the permutationsπ

which are permutated to the identity permutation only with(n− k) permutations.

Proof: It is easy to verify that everyπ ∈ In needs
∑d

i=1(i − 1)wi permutations to be

permutated to the identity permutation. On the other hand, from the constraints (54):
∑d

i=1(i−

1)wi = n− k, and thus, the proof is complete.

Now by using Lemma 4, (77) can be rewritten as,

c(u, n) =
n∑

k=1

Nk

∏M
i=1 ui!

∑

π∈In

n∏

p=1

qip,iπ(p)
, (78)

whereIn is the subgroup ofSn including all the permutationsπ which are permutated to the

identity permutation only with(n− k) permutations. From (55), we have,

Du,N(Q) = jn
n∑

k=1

Nkψn,k , (79)

whereψn,k =
∑

π∈In

∏n
p=1 qip,iπ(p)

. Now, by settingu = m × 1M andN = L−m in (79) and

substituting the result in (50), we have,

E

{(
M∏

i=1

r′i,i

)m}
=

mM∑

k=1

(L−m)kψmM,k (80)

Finally, substituting (80) in (48), yields Theorem 1.

APPENDIX C

APPLICATION OF THEOREM 1

To obtainψM,M , ψ2M,2M , ψM,M−1 andψ2M,2M−1, we express each permutation as a product of

cycles corresponding to the orbits of the permutation. For instance: the permutation(2, 1, 4, 3, 5)

of the set{1, 2, 3, 4, 5} is denoted(12)(34)(5).

1) ψmM,mM : the subgroupImM includes only the identity permutation(i1)(i2) · · · (imM ). As

(i1, i2, · · · , imM ) = ((1m), (2m), · · · , (Mm)) and usingD2
Q = diag[Q], we get:ψmM,mM =

∏M
i=1 q

m
i,i = |D2

Q|
m.
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2) ψM,M−1: the subgroupIM includes the permutations{(ikip)
∏M

j=1,j 6=k,p(ij)}1≤k<p≤M . As

(i1, i2, · · · , iM) = (1, 2, · · · ,M) and usingCQ = D−1
Q QD−1

Q , we get,

ψM,M−1 =
∑

i>k

qk,iqi,k

M∏

j=1,j 6=i,k

qj,j

=

(
M∏

j=1

qj,j

)
∑

i>k

|qi,k|2

qi,iqk,k
= |D2

Q|
1

2

∑

i 6=k

|qi,k|2

qi,iqk,k

=
1

2
|D2

Q| · ‖CQ − IM‖2F (81)

3) ψ2M,2M−1: the subgroupI2M includes the permutations{(ikip)
∏2M

j=1,j 6=k,p(ij)}1≤k<p≤2M .

Since(i1, i2, · · · , i2M) = ((12), (22), · · · , (M2)), we get,

ψ2M,2M−1 =M
M∏

i=1

q2i,i + 4
∑

i>k

qk,iqi,kqi,iqk,k

M∏

j=1,j 6=k,i

q2j,j

=

(
M∏

j=1

q2j,j

)(
M + 4

∑

i>k

|qk,i|2

qi,iqk,k

)

= |D2
Q|

2

(
M + 2

∑

i 6=k

|qk,i|2

qi,iqk,k

)

= |D2
Q|

2(M + 2‖CQ − IM‖2F ) (82)

Hence, substituting the previous coefficients into (34), weget the two (approximate) first mo-

ments in (40) and (41).

APPENDIX D

SOME LARGE-L APPROXIMATIONS UNDERH0 AND H1

We start developingµ2
T |H1

in (40) up to1/L2. From (40), let∆
.
= ‖CQ − IM‖2F and γ1

.
=

1
|CQ|2

(
1 + a11

L−1
+ a12

(L−1)2

)2
be defined, witha11 = 1

2
∆ and a12 = ψM,M−2 (not calculated in

this paper), so thatlnµ2
T |H1

= A + ln γ1, whereA
.
= lnµ2

T |H0
(see (21)). So, using the small-x

approximationln(1 + x) ≃ x− 1
2
x2 on A = 2

∑M
j=1 ln

1−1/L
1−j/L

,

A ≃ 2
M∑

j=1

j − 1

L
+

M∑

j=1

j2 − 1

L2
. (83)

Thus, using
∑M

j=1 j =
M(M+1)

2
and

∑M
j=1 j

2 = M(M+1)(2M+1)
6

, we have, after some algebra,

A =
M(M − 1)

L
+
M(M − 1)(2M + 5)

6L2
. (84)
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Using the second-order approximation toln(1 + x), we also get, up to terms in1/(L − 1)2:

ln γ1 ≃ ln 1
|CQ|2

+ 2a11
L−1

+ 2a12+a11
(L−1)2

. As 1
L−1

≃ 1
L

(
1 + 1

L
+ 1

L2

)
and 1

(L−1)2
≃ 1

L2

(
1 + 2

L
+ 3

L2

)
, we

finally obtain, up to1/L2,

lnµ2
T |H1

≃
M(M − 1)

L

(
1 +

2M + 5

6L

)
+ ln

1

|CQ|2

+
2a11
L

+
2a11 + 2a12 + a211

L2
. (85)

We approach now the second moment in (41) up to1/L2. Definingγ2
.
= 1

|CQ|2

(
1 + a21

L−2
+ a22

(L−2)2

)
,

with a21 = M + 2∆ and a22 = ψ2M,2M−2 (not calculated in this paper), we havelnµ2,T |H1
=

B + C + ln γ2, where we defineB .
= 2

∑M
j=1 ln

L−2
L−j

, with,

B ≃ 2

M∑

j=1

j − 2

L
+

M∑

j=1

j2 − 4

L2
=

(M − 1)(M − 2)− 2

L

+
1

L2

(
M(M + 1)(2M + 1)

6
− 4M

)
, (86)

and where we defineC
.
= ln L−1

L−M−1
, with,

C ≃
M

L
+
M2 + 2M

2L2
+

(M + 1)3 − 1

3L3
. (87)

Back toH0, for computing the approximation tolnµ2,T |H0
we also need to defineD .

=M ln L−2
L−1

,

so that,

D ≃ −
M

L
−

3
2
M

L2
−

7
3
M

L3
. (88)

Therefore, we get the following approximation,

lnµ2,T |H0
− lnµ2

T |H0
≃ C +D

≃
M(M − 1)

2L2
+
M(M − 1)(M + 4)

3L3
. (89)

Picking up for the second moment underH1: we have: ln γ2 ≃ ln 1
|CQ|2

+ a21
L−2

+ a22
(L−2)2

+

1
2

(
a21
L−2

+ a22
(L−2)2

)2
. As 1

L−2
≃ 1

L

(
1 + 2

L
+ 4

L2

)
and 1

(L−2)2
≃ 1

L2

(
1 + 4

L
+ 12

L2

)
, we finally obtain,

up to 1/L2: ln γ2 ≃ ln 1
|CQ|2

+ a21
L

+
2a21+a22+

1
2
a221

L2 . Therefore, after some algebra, we have,

lnµ2,T |H1
− lnµ2

T |H1
= (B + C)−A + ln γ2 − ln γ1

≃
∆

L
+
M2 + (2M + 3)∆ + 7

4
∆2 + (a22 − 2a12)

L2
.
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We obtain now the final large-L results underH0 andH1:

HypothesisH0: from (32) and (31): 1
β0

≃ 1
2

(
1 + A

C+D

)
+ 1. Thus,

1

β0
≃

3

2
+

M(M−1)
L

(
1 + 2M+5

6L

)

M(M−1)
L2

(
1 + 2(M+4)

3L

) ≃ L−
M + 1

3
. (90)

From (33):α0 ≃ 1
2

(
1
β0

− 1
2

)
A. Thus, using (90):α0 ≃

(
L− 2M+5

6

) M(M−1)
2L

(
1 + 2M+5

6L

)
, and,

for largeL,

α0 ≃
1

2
M(M − 1). (91)

HypothesisH1: using (32) and (31) underH1 with terms up to1
L

, we have:1
β1

≃ (B+C+ln γ2)/2
−A+(B+C)−ln(γ1/γ2)

+

1. After some algebra,

1

β1
≃
M(M − 1) + 2∆ + L ln 1

|CQ|2

2∆
+ 1. (92)

Using (33) underH1 with terms up to1
L

,

α1 ≃
1

2

(
1

β1
−

1

2

)(
M(M − 1) + ∆

L
+ ln

1

|CQ|2

)
. (93)
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[22] R. López-Valcarce, G. Vazquez-Vilar, and J. Sala, “Multiantenna spectrum sensing for cognitive radio: overcoming noise

uncertainty,” inProc. 2nd Int. Workshop on Cognitive Inform. Process. (CIP), Elba, 2010, pp. 310-315.

[23] A. Leshem and A. Van der Veen, “Multichannel detection and spatial signature estimation with uncalibrated receivers,” in

Proc. 11th IEEE Signal Process. Workshop on Statistical Signal Process., Singapore, 2001, pp. 190-193.

[24] A. Mariani, A. Giorgetti and M. Chiani, ”Test of Independence for Cooperative Spectrum Sensing with Uncalibrated

Receivers,”Globecom 2012 . Cognitive Radio and Networks Symposium, 2012.

[25] J. K. Tugnait, ”On Multiple Antenna Spectrum Sensing Under Noise Variance Uncertainty and Flat Fading,”IEEE

Transactions on Signal Processing, Vol. 60, No. 4, page(s): 1823 – 1832, April 2012.

[26] T. Weiss and F. Jondral, “Spectrum poolingAn innovative strategy for the enhancement of spectrum efficiency,”IEEE

Commun. Mag., vol. 42, no. 3, pp. S8-14, Mar. 2004.

[27] T. Weiss, J. Hillenbrand, A. Krohn, and F.K. Jondral, “Mutual interference in OFDM-based spectrum pooling systems,”

in Proc. IEEE Vehicular Technology Conf., Milan, 2004, pp. 1873-1877.

[28] H. Tang, “Some physical layer issues of wideband cognitive radio systems,”in Proc. IEEE Int. Symp. New Frontiers

Dynamic Spectrum Access Networks, Baltimore, 2005, pp. 151-159.

May 4, 2015 DRAFT



1053-587X (c) 2015 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See
http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI
10.1109/TSP.2015.2434330, IEEE Transactions on Signal Processing

34

[29] H. Neudecker and A. Wesselman, ”The asymptotic variance matrix of the sample correlation matrix,” Linear Algebra

Applicat., vol. 127, pp. 589-599, 1990.

[30] M. Browne and A. Shapiro, ”The asymptotic covariance matrix of sample correlation coefficients under general conditions,”

Linear Algebra Applicat., vol. 82, pp. 169-176, Oct. 1986.

[31] T. Kollo and K. Ruul, ”Approximations to the distribution of the sample correlation matrix,” J. Multivar. Anal., vol. 85,

no. 2, pp. 318-334, May 2003.

[32] G. Vazquez-Vilar, R. L´pez-Valcarce, and J. Sala, “Multiantenna spectrum sensing exploiting spectral a priori information,”

IEEE Trans. Wireless Commun., vol. 23, no. 2, pp. 4345-4355, Dec. 2005.

[33] J. Sala, G. Vazquez-Vilar, and R. Lopez-Valcarce, ”Multiantenna GLR detection of rank-one signals with known power

spectrum in white noise with unknown spatial correlation,”IEEE Trans. Signal Process., vol. 60, no. 6, pp. 3065-3078,

Jun. 2012.

[34] D. Ramı́rez, J. Vı́a, I. Santamarı́a, and L. L. Scharf, “Locally Most Powerful Invariant Tests for Correlation and Sphericity

of Gaussian Vectors,”IEEE Trans. Inf. Theory, vol. 59, no. 4, pp. 2128-2141, Apr. 2013.

[35] H. H. Andersen, M. Hjbjerre, D. Srensen, and P. S. Eriksen, Linear and Graphical Models for the Multivariate Complex

Normal Distribution, vol. 101. New York: Springer-Verlag, 1995.

[36] I. Ryzhik, A. Jeffrey, and D. Zwillinger,Table of Integrals, Series and Products.Waltham, Massachusetts: Academic Press,

2007.

[37] Y. Zeng and Y.-C. Liang, “Maximum-minimum eigenvalue detection for cognitive radio,” inProc. IEEE Int. Symp. Personal,

Indoor and Mobile Radio Commun. (PIMRC), Athens, 2007, pp. 1-5.

[38] M. Ghosh, “Basus theorem with applications: a personalistic review,” Sankhy ā: The Indian J. Stat., Ser. A, vol. 64, no. 3,
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