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Abstract—The entropy computation of Gaussian mixture dis- set and start from it to reduce the number of components by
tl’ibutiOﬂS_With a large n_umber Of components has a prohibitive merging, pursing, and expanding based on distance measures
computational complexity. In this paper, we propose a novel g, a5 integral squared error (ISE) and Kullback-Leites) (

approach exploiting the sphere decoding concept to bound . . . . .
and approximate such entropy terms with reduced complexity divergence. However, they are intractable for high dimemsi

and good accuracy. Moreover, we propose an SNR region- Since this approach requires the computation of the distanc
based enhancement of the approximation method to reduce measures among all possible componehisthis paper, we
the complexity even further. Using Monte-Carlo simulatiors, propose a different approximation approach but in primgipl
the proposed methods are numerically demonstrated for the it is also a Gaussian mixture reduction.

computation of the mutual information including the entro .
termpof various channels with finite constellatic?n modulatbpn); On the_ other hand, ther_e have been sev_eral approaches In
such as binary and quadratic amplitude modulation (QAM) COmmMmunications to approximate the mutual information er th
inputs for communication applications. entropy of Gaussian mixture distributions both analytycal
Index Terms—Gaussian mixture distribution, Entropy ap- and _num_erically. Hub_er et ‘?‘ID[]'] proposed an entropy ap-
proximation, Mutual information, Finite input alphabet, S phere proximation of Gaussian mixture random vectors based on
decoding Taylor series expansion, which does not apply to a large
system size. Girnyk et al_][2] analyzed the capacity of adarg
l. INTRODUCTION multiple input and multiple output (MIMO) system with a

i i ) . finite input alphabet based on the matrix replica methods Thi
N general, the computation of Gaussian mixture distriby-

: . DU proach is only applicable to compute the average capacity
tions with a large number of components has a prOh'b't'\ffF an independent and identically distributed (i.i.d.) MIM

computational complexity but a wide range of useful applica, anne| with infinite dimension. Arnold et all1[4] proposed
tion areas including communications [1]-{5], data fusiBf , simylation-based computation of the mutual informatibn o

[8], machine learning [9]/[10], image and pattern recagnit , yine invariant discrete-time channel with memory. Dalswe
[11], [12], and target tracking applications [13]. [14]. rFOand Loeliger [[15] extended the approach to continuous state

msFance, the cc_;mputauon of mutual mfo_rmatlon in communéIoaces and Molkaraie and Loeliger[16] applied it to infor-
cations results in the problem of computing entropy ter Ofi 4o rates computation of two-dimensional channels whos
large system with finite input alphabet which has a prohibiti

. Lo X main application is a magnetic recording. Although this\a
computational complexity since the number of possible iﬂpLihe approximation of the mutual information with a long tloc

grows exponentially with the §ystem Qimgnsion. Moreq\mr, 'Iength, the method is limited to time-invariant frequency-

data fu5|0_n and_ target _tra_ckmg applications, computing thgective fading channels with a relatively short finite irge

full Gaussian mixture distribution of a sampled data set h?@sponse (FIR) length. Zhu et al] [3] proposed a statistical

prohibitive co_mplexny for h_'gh dimensions ora Iarge dagh s computation approach for MIMO channels with a finite alpha-
In data fusion and tracking areas, Gaussian mixture redtb%-t depending on the signal-to-noise ratio (SNR). Evenig th

tion i$ common to rgduce the prpblem size a”?' bonde CoHb'proach offers very low complexity for arbitrarily struotd
putational complexity and requweq memory S'Z? [6]-(BBIiL channels with high dimension, the accuracy at moderate SNR,

K h ) ) distribution f | d”bc'specially important for practical systems, is not acdepta
now the true Gaussian mixture distribution for a sampleg da. |, yhjg paper, our main contribution is to provide a novel
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problems in this paper, it is worth mentioning that the pissgab distributed (i.u.d), i.e.p(d;) = M "¢. Note that for largeV;,
method has many general applications where a reductiontieé computation of[{4) is infeasible due to the exponentiall
the Gaussian mixture is needed. increasing number of input vectors. Since the computation
The rest of this paper is organized as follows. In Sedfibn bf the expectation in[{3) can be easily handled by Monte-
the problem definition including a basic system model 8arlo simulation, the problem at hand is to approximbte (4).
presented. In Sectidnlll, we review the sphere decoding tren general, for a giverg, only a few terms in the sum in
search algorithm. Novel sphere decoder approximationk®n {4) hav a significant contribution. Therefore, finding those
entropy are provided in Sectidn V. In Sectibi V, an SNReomponents which highly contribute is our main approach for
based enhanced approximation algorithm suitable for higfiee approximation in the rest of this paper.
dimension is proposed. In Sectibn] VI, several numerical ex-

amples are discussed for various channels. Finally, ceivelu  |ll. A REVIEW OF SPHEREDECODING TREE SEARCH
remarks are provided in Sectign VII. Our proposed bounds and approximation presented in next
sections are inspired from the sphere decoding (SD) algurit
Il. PROBLEM DEFINITION [17]-[25], which is a well-known maximum likelihood (ML)

The Gaussian mixture distribution is a weighted sum éfanch and bound algorithm in a tree search for MIMO

Gaussian distributions with different mean and/or var@ncdetection, i.e., finding the most likely input vectdy in given
which is mathematically modeled as the received vectoz, and the soft SD algorithm [26] which

N principle can be used for capacity approximation as shown in
(x) = 2": gi(%) ) the following. The motivation is that it can reduce the sharc
g\ = _ Wigi\x), space and, thus, the required computations via an efficgieat t
=1 . . .
) search. Here, we briefly review the SD algorithm.
wherex denotes the complex-valued input vectdy, denotes |y order to construct a search tree, the SD algorithm first

the total number of Gaussian componentsdenotes the non- nerforms QR factorization of the channel matkk Then, the
negative weight factor for theth Gaussian component withgysiem equatiorfi12) is equivalently given by

>, w; = 1, and g;(x) denotes the-th Gaussian component
following a complex Gaussian distribution with meapand v=Rd+w, (5)
covarianceXl;, i.e., gi(x) ~ CN(u;, 3). For N, large, the iy |5 — QR in which Q is a unitary matrix andR is an
computation ofg(x) has a high complexity and thereforeuploer triangular matrixy = Q"z, w = Q"n ~ CA(0, I),
redu_cing the nu_mber.of compone_nts is the main approachamd d = [di,. _’dNP]T' It is worth noting that since any
previous Gaussian mixture reduction problem. invertible linear operation does not change the mutuarinés
In Fh|s paper, we consider the foIIowmg. bgsm systeffign, [27], I(z;d) = I(v;d). Then, a search tree is constructed
equation, which is common for many communication systeMgom the bottom to the top of the equivalent upper-triangula
z=Hd +n, ) channel matrixR. That is, first branches from the root node
are constructed from the last diagonal ternRoforresponding
wherez € CVt*! denotes the received signal vectdr,c to dy, until the last branches to the leaf nodes are constructed
M+<! denotes the input symbol vector where each symrom the first row ofR corresponding tal;. Let r;; denote
bol dj, is taken from a finite constellation setf. C C, the (i, j)-th element ofR. Then, at thek-th depth, the cost
H e CV+*N* denotes an arbitrarily structured channel matrixalue corresponding to the Euclidean distance between the

n denotes the additive white Gaussian noise vedory~ received vectow and the considered inpdtcan be recursively
CN(0,1), and the transmitted power (equivalently, SNR duexpressed as

to normalized unit noise variance) is givere E[d"d]. Then,

the mutual information between the inpditand the output c(k, dszZ—kﬂ) =c(k -1, dszZ—k+2)
in (2) can be expressed by the differential entropies asvisl] Ny 2
Flonekr1— > Tryd; (6)
I(z;d) = h(z) — h(z|d) = h(z) — h(n) J=Ni—h+2
= _E[IOgQ(fZ(Z))] - 1Og2 (det(ﬂ-el)) ) (3) where & ¢ {17 e Nt}l C(O, d%ZJrl) = 0, di A
where f, (zfl denotes the probability density function (pdf) ofid;, diy1,...,d,]T, andv = [v1,...,vn,]T. Fig.[ illustrates
z, which is a Gaussian mixture distribution given by an example of SD search tree construction for case of 4-
AN quadratic amplitude modulation (QAM) and;, = 3 resulting

in 4% = 64 possibilities.
fa(2) = 3" p(di) fujalaldy), (@) P
=1 .
where M, denotes the number of constellation points ahd A. Depth-First Segrch (OFS) )
denotes the-th input symbol vector among/V possibilites. _ 1he DFS algorithm searches for components with the

For practical communication problems the components @istance less than the sphere radius in both forward and
d; are usually assumed to be independent and unifornﬁ?Ck‘Nard directions among the sub-trees. It first goes tirou
the search tree by a leaf node in the forward direction of

1We drop the subindex when it is clear from the context. k=1,2,...,N; and then it moves backward in the direction



at each depth. This is called-Best SD algorithm[[24],128],
[29]. In this case, if K is sufficiently large, the solution
approaches the optimal ML solution. In contrast, limitihg
reduces the search complexity and thus it provides a fixed
search complexity. This is the main advantage of Kdest
SD algorithm since it is easily implemented in a parallel and
a pipelined fashion. In the viewpoint of findingy-closest
Fig. 1. An example of SD search tree (e.g., 4-QAM a¥id = 3). components in our problem, this approach also can provile th
fixed complexity relying onK even though the components
found at the end are not guaranteed to be Mielosest
components.

IV. SPHEREDECODERAPPROXIMATION

In this section, we exploit the SD algorithm in a different
manner in order to find approximations and bounds on the
entropy of Gaussian mixture distributions. While the aim of
original SD algorithm is to find only the closest input vegtor
we find the N-closest input vectors, which contribute the
most to f(z), through an efficient tree search. We propose
two approaches employing both the DFS and the BFS. The
two approaches give different accuracy and complexityrobnt
methods although the basic principle is the same. The fellow
ing bounds are the approximation. From the simulations, we
() see that the upper bound is usually close to the true curve
(refer to Fig[® (a), Figd7, and Figl 8 (a)).

Fig. 2. Examples of (a) DFS and (b) BFS (e.g., binary input ahd= 3).
The gray arrows denote the search movements. The black/sinile denotes
the visited/non-visited node. The dashed line denotes theed branch.
A. DFS-Based Upper and Lower Bounds
Starting from [[b), the DFS-based algorithm finds input

of Ny, N —1,...,1. Fig.[3 (a) illustrates an example of thesymbol vectors satisfying

DFS.
The DFS algorithm efficiently provides the optimal ML v —Rd|? < ¢, (7

solution corresponding to the closest input symbol veabor f

traditional MIMO detection. Moreover, during the tree s#gr where the sphere radius is set to

if it finds an input symbol vector with shorter distance thie t

sphere radius, the sphere radius can be dynamically updated ¢* = allv - Rdo|?, (8)

which reduces the tree search complexity for the purpose of ) i@
finding only the closest component. However, in this papar, oVhere do denotes the Babai estimat80] and a denotes

purpose of the tree search is finding all components withindaControl parameter which can be used to adjust complexity
given sphere radius. Therefore, we use a fixed sphere rad{§&SUs accuracyf we increase, the accuracy increases since
and do not consider its dynamic update. As a result, after t{¢ S€arch result can include more components due to the
tree search, it is guaranteed to find all input symbol vectd@9er search radius, while the complexity also increasees
with shorter distance than the sphere radius. Denoting tieduires more searches in the tree. It gives the full tezech

number of components within the sphere radiushasthe Whena — oo, i.e., the true distribution. Note that & > 1,
N-closest componerﬁs:an be found during the tree search.the sphere radiug](8) guarantees to find at least one componen
in the tree search because it includes at lelastAfter the SD

i tree search, the following set of ordered symbol vectors are
B. Breadth-First Search (BFS)

found:
The BFS algorithm searches for components in the forward o R
direction only. That is, it searches all nodes at a certaptide DS&S ={ds,da,..., dN]gch}, (9)
and then moves to the next depth. Hig. 2 (b) illustrates an
example of the BFS where D), © D — D), D] = M, NS — D],

In mc_Jst applications of MIMO detection, the BFS algorithnand v — RalHQ <|v-— R&2||2 <. < v - Rd 2.
keeps justK-best components and prune the other branChﬁgsuming i.u.d. inputl, the true pdff(z) can be ex%l}sessed

2We can also fix the number of componemé and update the sphere
radius as often agv components are found. Then, we hade candidates SEquivalently, it is the zero-forcing (ZF) point found dg = Hz where
found during the tree search. Hf = (H'H)'H".



as: In more detail, denote the remaining Euclidean distance

values at leaf nodes for each sub-brancheby;, d)* ") £

.fz(z) = Z p(d)fz\d(z|d) - Z p(d)fv|d(v|d) C(Ntadf[t) _ c(k7d%sz+l) 2 0 Wheredf _ [d“ B '7dj]T'
“Ty dep Since for the pruned branch;> < c(k,dy'_,.,) <
= o e (v -RAP) . (10) e(Nid)") = e(k.dli ) + (N d}" ), replacing(?

N deD by c(k,d%;,ﬁl) for all the pruned branches yields a better

where the second equality is obtained from the fact thigwer bound on the entropy.
|v—Rd|]? = ||z — Hd||? due to unitaryQ. Therefore,f,(z) Let us definefpps(v) by
is equal tofy(v). Accordingly, we haveh(z) = h(v) and  —+ A 1 A
e = + o ~&(d)),
€ DF
whereD(x) £ ||v —Rx||2. For the ordered input symbol vec- ¢ (17)
tors with respect to the distance, i.®,= {d;,ds,...,dn,}, ) L
the following relations hold after the SD tree search: wherec(d) denotes the cost value dfat its own pruned depth.
A . ) For instance, it is pruned at depth, ¢(d) = c(k, d%;kﬂ).
exp(=D(dy)) -+ = eXp(_D(ng}gs)) > exp(—¢*) Then, the differential entropy of gets the enhanced lower

> exp(—D(d >...>exp(—D(dy,)). (11) boundas

Nr(fF)sH)) 1 lo+
Thus,T can be expressed in two parts: hws < hpps < h(z). (18)

. . lo+ _ -+ T
T — Z exp(—D(d)) + Z exp(—D(d)). (12) whereh]?FS =-E {10g2 .fDFS(V)J' Substituting the entropy
L= R o bounds into[(B) results in bounds as follows:
deDRs deD\Dpg

g < IS < I(z;d) < TP, 19
components found components pruned DFs < IpFs < ( ’ )— DFS ( )

The second term for pruned components is upper-boundgdprs-Based Upper and Lower Bounds
‘D‘*Nr()%s 2
by > exp(—¢*). Therefore,T" can be bounded as For BFS-based upper and lower bounds, we employ BFS-

follows basedK-best SD approach. Similarly to the DFS-based al-
Z exp (—HV _ R&||2) <T g;)trgf]yrinr;gthe BFS-based algorithm finds input symbol vectors
aepggs ) )
. [v—Rd|]” <,
< Y e (-Iv-Rd|?) + (D] - Nigs ) exp (~¢2). | -
aep© but¢? is set to a sufficiently large value so that all components

e (13) are included within the sphere radius. Differently from the

B DFS-based algorithm, the BFS-based algorithm findsihe
Let us definef | (v) and fpgpg(v) by closest components at each depth (i.e., each breadth).r& mo
1 . detail, it takesK shortest distance components amaigk’
Fops(V) = Z AL (—Hv - Rd||2) , (14) components at each-th depth. Note that whed/* < K,

dep), all M* components are taken at the depth. After all,
©) becomes a control parameter in the BFS-based algorithm to
Fors(V) 2 f (V) + |D|_7N]13FS exp (_CQ) ) (15) adjust complexity versus accuracy instead of thparameter
—DFS (mM.) in the DFS-based algorithm. Note that & > AMN:—1, all
Then, the differential entropy of is bounded by the components are found at the end of the tree search in the
o up BFS-based algorithm.
hirs < M(z) < hpps, (16) After the SD tree search, the following set of ordered
where hls.s = —E[log, Fops(v)] and h%. = symbol vectors are found:
_E [logQ iDFS(V)} since f_ (V) < f(2) < Fpps(v) Dl = {di da, . d i }, (20)

for all v = QM'z. K oo K K
WhereDéF)SACQD = DEF%.A IDQ| = MM, Ny = |D§31;)s|’
Enhanced Lower BoundDuring the tree search, a pruned'?lnd v —Rdi[|* <[lv-Rdof* <... <|[lv—Rdyu "

. S IBFS .
branch including sub-branches has a distance value greatdf the BFS-based algorithm, the corresponding relation to
than ¢2. Let the cost value of the pruned branch at theh (11) does not hold since the components found are not exactly

depth of the search tree be denoteddbly,dy: , ) where theN-closest components anymore. HoweVer] (12) can be still
dN' 4y = [dN,—kt1,---,dn,]T is the input symbol vector equivalently expressed as

with length & found in pre\_/ious and current depth searches. — Z exp(—D(d)) + Z exp(—D(d)). (21)
Then, the pruned branch includds\:—* sub-branches and

the symbol vectors corresponding to the sub-branches @n us
c(k, d%;kﬂ) instead of¢? for the exp(—¢?) termin ([@5). components found components pruned

dep) dep\D¥KL




Thus, T is lower-bounded by the first term of the right-hand
side of [21). Although we cannot find an upper bound as i

iflgorithm 1: Sphere Decoder Approximation

(3), the enhanced lower bound approach on the entropy stillnput: H, p

works in this case.

Let us definef . (v) and Frops (v) by

deD\DKL

A 1 .
Tues & 3 G e ((Iv-RaP). @) 2
deDBFS .
=z A 1 .
Fors(V) 2 fopsW)+ e 2 ew(-e@),
7

(23)

where ¢(d) denotes the cost value af at its own pruned 8
depth. Then, the differential entropy efis bounded by
9
(24) 10
11

hl prs < M(z) < EE%S’

where A%l = —E [10g27§Fs(V) and hihg =
12

—+
_E [logQ Sops(V)] since fL (V) < f(z) < Teps(v). 1
Substituting the entropy bounds infd (3) results in boursls g
follows:

[E—"

Ik < I(z;d) < Ih. (25) 15

16
Determination of the< Parameter: The BFS-based bounds

algorithm enables the compleﬂtyo be fixed as a certain!’
value by adjustingk’ parameter, while the DFS-based bounds
algorithm can implicitly control the complexity according
o parameter. Defind, £ max {k: M ~! < K}. Then, the
complexity of the bounds based on the BFS algorithm in terd¥s
of the number of visited nodes in the tree search is given by

18

Output: hiP  hlg,, higf

1 [Q R] + qr(H)
/1
for i =1 to N, do

/1 QR factorization
Integration by a Monte-Carl o nethod
/1 Loop for d
Generated”) < ,/p - s wheres ~ U (MNt)
for j=1to N,, do /1 Loop for n
Generaten”) wheren) ~ CA/(0,T)

z(®) « HA® + n()
v(id) ¢ QHz(Ed)

// Babai estimte
d((JJ) - (HHH)*lHHz(i’j)

/1 Call

if DFS then
Seta > 1 and¢? + o v() — RdY |2

[DSDa E] — DFS( {V(iﬂj)v Ra CQ}'{L []v 07 Ov Q)})

a tree search algorithm

else if BFS then
Set K according to[(2]7)
| [Dsp, &) + BFS({v(), R, K},{1,0,0,0})

/1 Conpute pdfs

f(z”)FZdeDSD e exp(= v — Hd|1*)
f( 9) <—f 0d) 4 I(DI |D)§'\,Ii|exp( CQ)

7 +(4,5) <—f(z"7)+8

/_/ Oorrpute ent ropy bounds

hsh —NdN i X logy (£

hlsoD NdN Z Z 1 logy ( f (J)

S SO oy (777)

7 lo+
hsp < — NdN

ZM’H— Z M.K

Algorithm 2: DFS-Based SD Tree Search

1 Function DFS ({v,R,¢2}, {k,d,c,& D)

2 Stored’ <+ d andc’ « ¢

k=ko+1
M. (1 — Mko
25_7]\40)4'( t—ko)MK (26)
Note that for K — oo, we haveC(cc) = SN, MF =
N¢
1\4(17]\121) which is the complexity of the true Gaussiaru

mixture distribution. Finally, for a given complexitg,, the
K parameter is determined by
Mko —1
B Mc -1 >J .

B 1 Co
K(Co) = LNt ko <Mc

Table[] illustrates the notations used in algorithm descrip
tions in the following. The overall procedure of the propbsé®
SD approximation algorithm is specified in Algorithid 1
The DFS-based and BFS-based SD tree search algorlthms
used in Algorithm [l are described as recursive functions in
Algorithm[2 and Algorithn B, respectively.

a1

0 ~N o

(27)
9

12

4Throughout this paper, the complexity is evaluated in teofithe number 13 return D(O

of visited nodes in a tree search, which is common in thealitee on the

3 for m < 1 to M, do

d < [d,,;d’'] whered,,, + M(m)
Compute the cost value according to[(6)

if ¢ <(¢? then /1 Valid: Searching
if &= N, then /1 Leaf node
L Dl()cg“s — Dg%s U{d}
else /1l 1Internedi ate node

/1l Go to next depth
DFS( {v,R.C?}, {k+ 1,d,¢,&, Dihs})

else /1 Invalid: Pruning
/1 Update the exponential term
for enhanced | ower bound

| £ E+exp(—c)- MNF

DFS» g

sphere decoding algorithmis_[21]]. [23].



1(2), f(2,d0), fA(z), F(z), FO(2)
1(2), f(z.d), fA(2), [%(2), [(a)

(b)

(©

Fig. 3. An example of three approximations according to SK&an (e.g., 4-PAM): (a) low SNR - single Gaussian approkiona fA(g). (b) medium
SNR — 2-closest components approximation based on the @Dswrarch,fZ (z). (c) high SNR — Babai estimate-based approximatiéfi(z). The red
dashed-dotted lines denote the pdfs of four different Ganssomponentsf(z, d;) = p(d;)f(z|d;), the black line denotes the pdf of the true Gaussian
mixture, f(z), and the blue dashed line with ‘+' marker denotes the apprated pdf. The green circle denotes the drawim Monte Carlo method, for
which f(z) has to be approximated.

TABLE |
NOTATIONS USED IN ALGORITHMS

Algorithm 3: BFS-Based SD Tree Search

d < [d,,;d’'] whered,,, + M(m)
Compute the cost value according to[(b)
Dcand — Dcand U{d}

Ccand — Ccand U{C}

/1 Sort based on the cost val ues

1 Function BFS ({v,R,K},{k,D,C,E})
No]t\e;tion R .DeSpriptithn , 2 SetDeana < 0 andCeana < 0
N, NEmer of eratons Tor generatng 3 K min K Mc T} /1 For K> M
UMN) Uniform distribution on theN;-dimension Cartesian 4 for i =1to K’ do
product of the constellation points st 5 d' « D(i) andc’ + C(7) Il i-th el ement
h3 Monte-Carlo integration approximation for the entropy 6 for m=1to M, do
7
8
9

V. SNR-BASED ALGORITHMIC EXTENSION

The complexity of the previous algorithms may be stiff
too high for a large number of components. In the following
subsection, we propose another approach to further retiece, | [Deort, Csort] < SO t ( Deand, Coand)
complexity significantly. For a given complexity, the apacb |, i 1. — N, then
can be also used to improve the precision by increasing theL pE) . p

BFS sort

/'l Leaf node

) : . 13
number of considered components in the range what it mattérs

The main idea of the extension is to apply different approx €lse
mation methods to partial symbol vectors within differeNtrS
regions and combine them in order to compute the entropy
in the mutual information. To this end, we first partitioné

/1l I nternedi ate node
/'l Take the K-best el enents
K" + min{K, M} Il For K > MF
D ¢ {Dyors V" @andC  {Coor } "
term

the given channel matrix and input symbol vector to three
regions with respect to the SNKi) low SNR (ii)) medium 17
SNR and (iii) high SNR Thereafter, we applpne component

only approximationthe SD upper boundandsingle Gaussian 18
approximation respectively. Finally, we combine them over
the unified symbol vector. Fig.] 3 illustrates a simple £

/1 Update the exponenti al
EE+ e eXp(—c) - MNe—F
/1 Go to next depth
BFS({v,R,K},{k+1,D,C,E})

&

return D}(fgé,

pulse amplitude modulation (PAM) example of three différen
approximation methods suitable for different SNR. In the

figure, each approximated pdf is well-matched with the trughere A € CVa*xNa B ¢ CNexNe andC € CNexNe jn

Gaussian mixture pdf with respect to the drawin Monte which N,

Ny + N+ Ng. Let dlag(R) = [/\1,...,/\Nt].

Carlo method. This is the main motivation of this SNR regioAssuming the diagonal terms R are ordered in increasing
based approximation in this section. order, the following relations hold with respect to two tine
According to the above partitioning, the received signald values,y; and-y;:

model [3) can be rewritten as 5 5 ) )
M< S, SN <A1 S S AN
Y ——

NS A BA CA dA wa low SNR medium SNR
VB = 0 B CB dB —+ wp , ) )
Ve 0 0 C de we S < ANapnpi1 S-S AN, - (29)

high SNR



ConsequentlyA, B, andC in 28) correspond to low SNR, For each of the D$P|-closest vectorsdz € DIP, we have
medium SNR, and high SNR partitions, respectively, after ;o -

reordering the original channel matrix, i.4d, = HII where Vf‘ = Ada+Badp +wa. (35)
IT is the permutation matrix, such that the eigenvalues arkence, for givends, we arrive at
sorted in increasing order. The V-BLAST ZF-DFE channel v = v/, —Badp = Ads + wa, (36)
ordering in [19] provides an eigenvalue ordering methodeNo

that the sorting may not be perfect but it is sufficiently gooWthh follows a Gaussian mixture distribution similar E&}3
for our purpose since the differences are small. Similagly FOr €ach giverds ,,, we approximate the Gaussian mixture
o and K parametersy, and~, are design parameters whichdistribution f(v’; .,) by a single Gaussian distribution with
trade off accuracy versus complexi#t medium SNR, both Same mean and covariance for the low SNR blacks shown
parameters need to be carefully chosen since they can $8ilFig- 3 @.

cause a prohibitive computational complexity. discussion Applying the three different approximations to the three

can be derlved as

A. SNR-Based Enhanced Approximation f(v) = f(ve,ve,va) = f(ve)f(ve, valve)

In this subsection, we propose an SNR-based extension  _ Z
of the SD approximation method. Therefore, we first present
three approximation methods for three difference SNR parti
tion. Then, we provide the approximated pdf combining those
results.

We start from the high SNR patrtition corresponding to the
block C. The effective received signal at high SNR can be
approximated by

p(de) f(velde)f(ve, valve,de)
doeDe

Ve

p(de)f(velde)f(ve, valve, de)
p(de)f(velde)f(ve, valde)
p(de)f(velde)f(valde) f(valve, de)
=p(dc)f(velde):

—
o
=

Q

= Cd¢ + we ~ Cde + we, 30 L.
_ Ver GdetwemCdetwe 0 [ p@e)f(valde. dn)f(valve de.dn)|
whered¢ is the drawnd¢ in the Monte-Carlo method, thus dpeDy
it is known to us for the computation. At high SNR, this (c

)~ -
approximation becomes very good due to negligible noise as > p(de)f(velde):

shown in Fig[B (c). . < s -
By applying the known component for the high SNR block, { Z p(dp)f(vslde,dp)f(valvs, de, dB)}

the effective received signal at medium SNR is approximated dpeDEP
@ - -
by ~ p(dc)f(velde)-
VB :BdB—l—CB(ilc-i-WB [ Z P(aB)f(VB|aC7aB)f(VA|ac7aB)]
~ Bdp + Cpd¢c + wp. (32) dpeDsP
For givend¢, we have = p(ac)f(Vclac)[ Z p(dp)f(vs|de,dp)-
V%:VB—CB(}CR?BCIB—FWB. (32) dpeDgP
Similarly as in the previous sections, we apply either th&DF Z P(&A)f(VA|ac, dg, &A)]
based tree search or the BFS-based tree searEhlto (32)dinstea da€Da
of (§). For the DFS-based tree search, the sphere radius is se (e) 3 3
to ¢2 = vy — Bdy 5||> whered, 5 is the Babai estimate ~ p(dc)f(velde):
corresponding tel . For the BFS-based tree search,is set [ Z p(dp)f(vs|de,dp)fa(valde, &B)}
to a sufficiently large value and thE parameter is chosen dpepsP
considering the block siz&/. Afterwards, we can find the (37)
SD _ 3 . . i
vector setDy” = {dp1,dpa,....dp pgp(} where either (a) is the single component-based approximations (c)

D%D = Df)%s if the DFS-based tree search is used¥f’ =  the Sp upper bound, (e) is the single Gaussian approximation

DYy if the BFS-based tree search is used. and (b) and (d) follow from|131) an(ﬂIB3) IR{37), each term
Similarly to the medium SNR case, by applying the Babad given byp(dc) NC , p(d )=
M.

estimate for the high SNR block, the effective received aign ) MNB ,
at low SNR s given by J(velde) = == exp (<[lve = uel). (38)
™
va=Ads+Badg +Cade +wy - 1
- f(vplde,dp) = —exp (=|lve — psl?), (39)
~Adys+Badp + Cade +wy. (33) wivB

ivend de,d
For givend¢, we have fe(valdc,dp)

~ _ 1 Hyr—1
V;;:VA—CAdCzAdA‘FBAdB‘FWA- (34) = 77TNAd€tKA eXP(_(VA—HA) K, (VA_:U'A))v (40)



Algorithm 4: SNR-Based Enhanced Approximation
Input: H, p
Output: hspra

1 Initialization: Set~; and~;
2 H = HII according to[[1IB) / Channel ordering

3 [Q R] < qr(H)
/] Channel

/1 QR factorization
matrix partition

4 Find A, B, C, B4, C4, andCp according to[(29)

6
7
8
9
10

11

12

13

14

15
16

17
18
19

20

21

22

23

24

/1

Integration by a Monte-Carl o nethod
5 for i =1 to N, do
Generated® <« ,/p - s wheres ~ U(MNt)
for j=1to N, do

/1 Loop for d

/1l Loop for n
Generaten”) wheren?) ~ CA/(0,1)
2069« Fd® 1 n0)
v(id)  QHzli-d)
Findd), ), a9, vi7), (D) andv i)
/1 Babai estimte
dg <+ I:ITZ(i’j) and findd07A, d07B, andd07c
/1 (C) H gh SNR approxinmation
Computef(vg’j)|d0,c) according to[(3B)
/1 (B) Medi um SNR appr oxi mati on
VD D) e
/1 Call SD tree search algorithm
if DFS then
Seta > 1 and(? + a||vgi’j) - Rdé{gHQ
[D5P, €] + DFS({vjy"", R, ¢*},{1,[].0,0,0})
else if BFS then
Set K according to[(2l7)
L [DSP, €] « BES({v/{"" R, K}.{1,0,0,0})

Computef(vii?|dy ¢, dp), vdg € DSP,
according to[(39)

/1 (A) Low SNR approxi nation
Computef(v'i”|dy.c, dp), Vdg € DSP,
according to[(40)

/1 Conpute the pdf of v
Computef(v(*9)) according to[(37)

/_/ Conput e entropy approxi mati on

Ny N,

hspea = — s S 25 logy f(v(D))

where po =
pa = Badp + Cade, and Ky =

Cglc, ps = Bdg + Cgde,

pAA" + 1. Note

Fig. 4. The relation among the GB, the SEB, and the true minf@mation
according to SNRp. denotes the SNR corresponding to the intersection of
the GB and the SEB.

B. Discussion ony, and~;,, Parameters

Since v, and v, parameters determine the size of the
submatrixB, they highly influence the complexity reduction
gain. Basically, if the difference between those pararseter
is small, the proposed approximation yields low complexity
with some accuracy losses. On the contrary, as the differenc
increases, it converges to the SD upper bound results. The
goal is to set the parameters so that the accuracy losses
are still acceptable. In this subsection, we investigatads
of accuracy on the mutual information according to those
parameters which will provide us with guideline how to
determine them.

Even though we focus on the entropy approximation, our
main results are evaluated in terms of the mutual informatio
in Section[V]. Thus, we determine the parameters based on
the mutual information in this subsection. First of all, e
exist two trivial upper bounds on the mutual information: (i
Gaussian boundGB) assuming Gaussian input distribution
given by I(z;d) = log, det (I + pHH"); (i) source entropy
bound(SEB) such that the mutual information cannot exceed
the source entropy, i.el(z;d) = H(d) — H(d|z) < H(d) =
log, Mt since the entropy is non-negative. Fig. 4 shows a
typical relation among the GB, the SEB, and the true mutual
information according to SNR.

Let I5h, IsEy, Ish, andIsppa denote GB, SEB, SD upper
bound, and SD-based enhanced approximation on the mutual
information, respectively. Through numerical observagidhe
basic trends of the mutual information according~toand
~n, parameters for given SNR are illustrated in Fify. 5. In the
figures, we draw two mutual information curves fixing one
threshold and varying the othefhe thick blue dashed curve
is for fixing v, — 0 (equivalently,y, < A\?) and varyingy;,

(N4 = 0 case, so called ‘BC curve’); The thick red dot-and-
dash curve is for fixingy, — oo (equivalently,y;, > )\%,t) and

that this novel approximation can reduce the tree sear¥®¥ing~: (Nc =0 case, so called ‘AB curve’).

complexity from Mt to MN& where Ny is determined

The properties of the mutual information of the SNR-based

by both v, and 7, parameters. Since (a) and (c) gi\,@nhanced approximatiofispra, ON-y; and-y, are as follows:
lower bounds, when (b), (d), and (e) are very accuraté) If v < < Af, Ispea = Ighg.

approximations, the final pdf if(87) can be a lower boundd) If 74 >~ > A%, Ispea = IG5

(equivalently, an upper bound on the entropy). Howeverg) If v <A andv, > A%, Ispea = Ih.

in general, it is an approximation due to (b), (d), and (e).d) The BC curve monotonically decreases fréffi; to Isp
The overall SNR-based enhanced approximation algorithm is as~ increases from\{ to )\?v,-

presented in Algorithri]4.

e) The AB curve can exceel}?, at low SNR.
The proofs of the properties are provided in Apperidix A.



I(z:d) A Ay performs well. Both do not perform well in the medium
SNR regime where the more complex SD approximation
I, R ey yields good results. The previous discussion applies to@ngi

e AB curve average SNR. If we want to compute the entropy/mutual
BCcurver==i | i 1% (Ne =0) information for an average SNR range as depicted in Fig. 4,
(Na=0); then in principle we have to compute the threshold values for
==t S every average SNR value. However, to reduce the complexity
even further, we propose to compute the threshold values
and~,, for the average SNR. where the source entropy bound
and Gaussian bound intersect and then scale the thresbolds f
@ each average SNR valueby 2, i.e., ;% andy;, 2 are used
I(z;d) A Ay as threshold values.

Ipc(y)

5o R VI. NUMERICAL EXAMPLES
curvermTy Tas(7)

(Na=0) - i V( AB curve In this section, we evaluate the proposed SD bounds and
e, - , S (Ne =0) SNR-based enhanced approximations in terms of the mutual
up j-! e M information and the complexity, compared to several bench-
sb AvaB marks, which are briefly introduced in the following subsec-
tion. We consider two kinds of channels for the performance
comparisons: (iffinite impulse response (FIR) filter channel
(b) and (ii) frequency-selective and time-selective fading channel

up
ISEB

up
Isp

v

XN Ye Yh AR, ol

up
]SEB

v

XMYe Yh AR, ol

Fig. 5. Mutual information according te; and v, at given SNRp: (a)
p > pe (e, ISEL < IER) case (b)p < pe (i.e., IRy > IGh,) case.The
thick blue dashed curve is for fixing — 0 and varyingy;, (‘BC curve’) and A. Benchmarks

the th’ick red dot-andu-gash curve is for fi)l(ti;;g — oo and varyingy; _(‘AB_ 1) Statistical Approximation (SA) Method] [3]:The SA
curve’). Iag(v) — Igp and Isc(vn) — Iy correspond to approximation . K . §
errors. method is analogous to a combination of high and low

SNR approximations in the proposed SNR-based enhanced
Based on these properties, we next present a proposal faproximation. That is, it finds the following two pdfs of the
to determiney, and~; at given average SNR. Let us defingeceived symbol vector for high and low SNRs, respectively,
Ay £, — . If Ay > 2%, — M, it results inI$P by setting

such that Property ¢ can be satisfied. Otherwise, we trade off fn(z) = 3 P (—HZ - H(~i||2) ; (41)

accuracy versus complexity. As shown in Hig. 5, there exists ¢ 1

an intersection point of the BC curve and the AB curve. Let fi(z) = —————exp (—zHKz_lz) , (42)
e det(K,)

us denote the intersection point eraxis by~., then the AB

curve is less erroneous on its left-hand side and so is fered denotes the drawd in the Monte-Carlo expectation
BC curve on its right-hand side of.. Hence, the best way anqK, — JFTH" + I. Then, the pdf ot is approximated by
is following the AB curve in the left-hand side and the BC

curve in the right-hand side. We propose to determinand f(z) = max {fn(2), fi(z)}. (43)

roportionally toy, — A\? and A2, — ~. with the width A~,
n PTOP ol ! Ne = 7 2) BCJR Algorithm Based Computation Methad [4The

. - )\2,76 - )\?\, —Ye .
L€, M =7+ YA Ay andy, =%t X%, % _A'V' If 't. BCJR algorithm based computation method has been invented
is hard to findy. due to computational complexity for highto compute information rates for finite-state channels.his t

2
dimension, it can be determined by = A“;’\Nt, method, for given finite-state channel, the mutual infoiorat

According to SNR region, there are two different cases witbetweenvery longinput and output sequences are defined as
comparison betweefy,; and gk, as shown in Figl5 (a) and 1
(b). In case ofIé‘E”le3 sk, the error can make the mutual I(z;d) = ——logy p(2") — h(z|d), (44)
information exceed Y, if the width obtained byl i}, and two
curves (i.e.Aygp) is longer thanmA~. In this case, taking the T
GB is better than the SD approximation for givan,. Thus, denotes the output sequence. Then, it fipds®) based on
two threshold values are set to — /\?Vt < ~, for this case the forward sum-product algorithm_[31]. By_ employlng a
based on Property b. Actually, since the GB is very close Rat€ sequencej = (so,s1,...,s,) and denoting the input
the true curve at low SNR, this setting is reasonable. Tisis aS€auence” = (di, dz, ..., dy), p(z") can be computed by
can be done simply by limiting the mutual information of the ny noon .
enhanced approximation bi7;. P = Z Zp(d 2 55). (45)

In general, we can identify three SNR regions. In the low
SNR regime, the Gaussian approximation performs well. Defining the state metrigi,(s,) = p(sy, 2¥) for the k-th
the high SNR regime, the one component only approximatisgmbol, the computation of (#5) is possible by computing the

wheren is the sequence length and® = (z1,22,...,2n)

n n
dn sy
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state metrics recursively as 12r
pi(se) = > > ko1 (sk-1)p(di, 2k, sklsk—1)  (46) A N
di Sk—1
:ZZp(dk,zk,sg), (47) E 0.8

dk s§7] {
for k = 1,2,...,n. After all, (48) is obtained by(z") = 2 o0 - < - < - </
an Mn(Sn)- =) ~<- “BCJR (Q = 100)

In order to reduce the computational complexity for chan- § oa ~[> BCJR (Full trellis)

nels with a large number of statef, [(46) can be modified to~ ity =1)
yield a lower bound omp(z") by taking a subset of states at I80g(a = 1.5)
eachk stage. LetS; be a subset of states at theth stage 0.2¢ o ISES(K = 50)
with @ £ |S;|. The recursion[{46) can be modified to

-3
T + Iphg(K = 200)

1 (sk) :Z Z tre—1($k—1)p(d, 25, Sk |Sk—1). (48) -0 -75 -5 -25 OSNﬁs[dBf 75 10 125 15
dr sK-1€S;,_,

This yields an upper bound oh(z) and thus it is called 4500
reduced-state upper bound (RSUIB)[4]. It is worth noting
that reducing the number of states is a similar approach to
reducing the number of candidate input vectors in the pregpos  as00-
SD approximation.

3) Hamming Distance 1 (HD1) Based Approximation
Method: For the sake of performance comparison, we pro-
pose an HD1-based approximation method which is a simpl&,
Gaussian mixture reduction including the symbol vectoith wi g 2000~

True

5
4000+ -0 -HDI1

v
v
v
v
v
%

¥

~<} -BCJR (Q = 100)

~[> -BCJR (Full trellis)
3000+ Inps(a =1)

>

= Ipgs(a=1.5)

><

[}

2500 -
X Ik (K = 50)

+ o IpEg(K = 200)

Hamming distance one from a pre-chosen symbol vector. Heré;, .,/ =~ . ~ =~ & ot
we use the Babai estimate for the pre-chosen symbol vector. R U O e
Hence, based on the Babai estimdie= [dy 1,...,don,]", 10001
the candidate symbol vectors are obtained by T L S RS UG St UL B i

d?) =[do1,---,doi-1, d?),do,iﬂa cdon,]T, (49)
whered”) € M \{doi},i=1,....Np,j=1,...,|Mc|—1.
Consequently, we obtain the set of symbol vectors to be added (b)

£16)] ;
up by Dup1 = {do} U{dg7 }i,; and thus, the following pdf rig 6. Memory-10 FIR filter channel with binary input (a) Mt infor-
iS obtained: mation [bits/symbol] (b) Complexity in terms of the numbérvisited nodes
during the tree search or states during the trellis searoh.Meonte-Carlo
— My — Hl2 expectation, we us&/; = 100 and N, = 50, and for the BCJR method, we
fm(z) A Z Mévr €xp ( ||Z Hd” ) ’ (50) setn = 5 x 10%.
deDup1

Sincef,,(z) is good only at medium SNR, by combining high
and low SNR approximations in the SA method, the pdkof

can be approximated by distributed input provides an upper bound. The true curve ca

be found by the SD tree search with infinite sphere radius (i.e
f(z) = max {fn(z), fm(2), fi(2)}. (51) Iphg with o — o0). The SA method is the worst and the HD1
method is better than the SA method at medium SNR. The
- BCJR method with full trellis and the proposed DFS-based
B. FlR_) Filter Channel ) i SD upper bound withw = 1.5 provide the true curve. The

As flrsF example, we consider a memory-10 FIR filter chaipyges_pased SD upper bound with= 1, the BFS-based SD
nel with i.u.d. binary input used in]4] as the largest Memoryhner bounds, and the BCJIR-based RSUB itk 100 yield

. 10 _ 1
case, i-e.2; = 3o gidk—1 + 1k, Whereg, = =53+ FOr  some errors as SNR decreases. For langand K parameters,
convenience in SNR calculation, the sum of squared changgd sp upper bounds become more accurate.

coefficients is normalized by one. In matrix representation

this channel can be constructed by a Toeplitz matrix with Fig. [@ (b) shows the complexity in terms of the number

N; = 11 where each row has the same elements but circulady visited nodes during the tree search or states during the

shifted (i.e., circulant matrix). Unlike real-valued neisvas trellis search. The HD1 method requires to fivgd(M,. — 1)

considered in[[4], we consider complex-valued noise. neighbor components. The number of visited nodes in fudl tre
Fig.[8 (a) shows the mutual information for memory-10 FIRearch for the true curve is given @ff;l MPF. The number of

filter channel with binary input. The GB drawn with Gaussianisited states in the BCJR method with full trellis at tig-th
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DFS
0.5¢

(| ———] R S —

0.3

0.2

0.1

I(z;d) [bits/sym]

I(z;d) [bits/sym]

I(z;d) [bits/sym]

! . . ) -5 -25 0 25 5 7.5 10

Fig. 7. SD upper bound{’?), lower bound {%°), and enhanced lower bound 4
(Ii"*) for DFS (upper figure) and BFS (lower figure) 8NR = —2.5 dB 9r
in memory-10 FIR filter channel with binary input.

8t —— True
stag is given by M, ZkN;gl MPE. Unlike the BFS-based SD ~o- HD1
upper bound and the BCJR method, the DFS-based SD upper e (a=2)
bounds show variable complexities according to SNR due to 4
fixed sphere radius, i.e., they result in higher complexitpa Z
SNR. The complexity of the BFS-based SD upper bound isé< 5
given in [26) and that of the BCJR-based RSUB is obtained byz
M. (>p  MEF+ Zév;;01+l Q) whereqy £ max{k : MF < S
Q@}. The BFS withK = 50 has lower complexity than the 3r
BCJR-based RSUB witlf) = 100, while it is much more ®
accurate on the mutual information as shown in [Elg. 6 (a).
Moreover, the BFS withK" = 50 is more accurate than the 1+
DFS with o = 1, while it has much lower complexity when T----- +eom-- - +o---- Fono-- + =T ho- - +
SNR < 4 dB. Thus, the BFS is useful for low-complexity T T r - BT
with a reasonable accuracy. SNR [dB]
Fig.[@ shows trends of the SD bounds according to control (b)

Parameters (i.eq for .DFS e.de for BFS) in memory-10 FIR Fig. 8. Frequency-selective and time-selective channéi ¥iQAM input
filter channel with binary input a6NR = —2.5 dB. Asthe " = g and 7 = N, — 1 (a) Mutual information [bits/symbol] (b)
parameters increases, the bounds converge to the true. cutseplexity in terms of average number of visited nodes durtine tree
Note that for both DFS and BFS cases, the upper bounds g#fch. For Monte-Carlo expectation, we usg = 50 and N. = 50.

. For the enhanced approximation, we use= 2, 10logyv; = —4 dB,
much tighter than the lower and enhanced lower bounds. 410, "~ "4 4B at p. — 0 dB. Note that in the randomly realized

channelH, 10log;y A7 = —3.51 dB and10log;, Ay, = —3.89 dB.

— 4+ Ijhe (K = 256)

* Ispea

C. Frequency-Selective and Time-Selective Fading Channel _ _ )
with a Large Memory Fig. [@ shows the mutual information and complexity for

) i frequency- and time-selective channel with 4-QAM input,

As second example, we consider a generalized frequengyt- — 8 andL = N, — 1. The DFS-based upper bound is
and time-selective fading channel given By = AG where  5inost the same as the true curve with much lower complexity,
A is the diagonal time-selective channel matrix &ids the \\hile the BFS-based upper bound has small errors at low SNR
frequency-selective circulant matrix as [n_[32]. This cheh g6 15 jowering the complexity. As investigated in Fy. 7e th
setup is relevant for realistic WCDMA systems! [5]. Fo{;nner hounds are much tighter than the lower bounds. The
A = diag(as,...,an,), we assume; ~ CN(0,1)Vi. For prg pased lower bound has approximately a constant gap
G,Lwe consider a memory- FIR_lfllter channel, ..z = yith the upper bound, whereas the BFS-based lower bound
2120 id—1 + ng, whereg, = 27,1 = 0,..., L. Note that g tight at high SNR but loose at low SNR. The enhanced
the BCJR method in[4] does not work for these setups dugoximation approaches the true curve with a small gap but
to time-varying property. Thus, we only take into accoum thy,ch jower complexity at low and high SNRs, while the SA
SA and HD1 methods as benchmarks in this channel. and HD1 methods have large errors at moderate SNR.

SFor fair comparison, we consider the complexity correspntb firstN;, Fig. [© ShOWS the mUt_uaI inform{f‘tion for frequency- and
symbols for the BCJR method since the SD bounds has the ogkHN;.  time-selective channel with 4-QAM inpuly, = 40, andL =
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Fig. 9. Mutual information in frequency-selective and tiselective channel
with 4-QAM input, Ny = 40, andL = N, — 1. For Monte-Carlo expectation,
we Ny = 50 and N, = 50. For the enhanced approximation, we use= 1,
10log;g v = 3 dB, 10log;q v, = 5 dB atp. = 0 dB.

N; — 1. Computing the true curve is impossible due to the
huge problem size, i.e)Mt = 4% ~ 1.2 x 10%*. The SD
bounds are also unavailable within reasonable simulatioa. t

APPENDIXA
PROOFS OFPROPERTIES ONy; AND

- a) Property a corresponds to the casé&vef = N,. Thus, we

show that the mutual information of the Babai estimate-
based approximation witiVe = N, is equivalent to
IFs. Instead of [(3D), the effective received signal be-
comesv ~ Rd + w. Applying the single component
only approximation, the pdf of is given by

exp (—llV—RaHQ) _ exp (—[[w]?)
(M) N ~ (M )Ne

V)=

Then, the mutual information is derived as

I(z;d) =~ E [logQ(W]V[c)Nt + log, eHWHZ} — log, (me) ™t

w|? +
= log, Mt +log, CElIwIP] — log, ev SEB

sincek [[|w]]?] = Ny and I§E, = H(d) = log, M+ R

b) Property b corresponds to the caseé\of = N;. Thus, we

Therefore, we compare the enhanced approximation with the' gnow that the mutual information of the single Gaussian

SA and HD1 methods. Both the SA and HD1 methods almost
reach two trivial upper bounds, i.e., GB and SEB, for this
large size case, while the enhanced approximation stiltllyie

a nice curve below. Note that from the properties given in
Sectio V-B and Fig.18, we can conjecture that the true curve
lies below the enhanced approximation. The complexity of
the enhanced approximation is abadt at SNR = 4 dB and
less thanl0? in the other SNRs, while the complexity of full
tree search for the true curve 44 — 1)/3 ~ 1.6 x 10%%.
Compared Fig[19 to Fig.18 (a), for a large block size, the
mutual information is decreased in overall but in genetal, i
will depend on the channel realization.

VII. CONCLUSION

We have proposed novel complexity efficient algorithmic
solutions to approximate the entropy of Gaussian mixtuse di
tributions with a large number of components. The algorghm
allow to trade-off the accuracy versus the complexity and
the approximations are asymptotically tight with unbouwhde
complexity. The extended approach can even deal with very

approximation withNV4 = NN, is equivalent tol/5};. First
of all, I, = log,det(pRR" + I) sinceE [vvM] =
E [(Rd +w) (Rd + W)H:| = pRR" + 1. Applying the
single Gaussian approximation, the pdfwofs

exp(—vlK1v)

TV~ = N qa®y)

whereK, = pRRH+I sinceA = R.. Hence, the mutual
information is derived as

I(z;d) = I[i[log2 7Vt 4+ log, det(Ky)

+ log, exp ((K;%V)HK:%V) } — log, (me)Nt

=log, det(Ky) = I¢h,
sinceK, is Hermitian andK;%v ~ CN(0,1). [

high system dimensions with a reasonable accuracy which wa® The proof of Property c is straightforward since this

not possible previously. The computation of the entropy for
Gaussian mixture distribution is important for many prohde

e.g. data fusion, machine learning, etc. In particular,aih ¢
be used to approximate the mutual information of a vector-
valued Gaussian channel with finite input alphabets. Inresit

to other methods, the proposed algorithms are applicable to
any linear input output relation. The proposed concepts can

be easily adapted or extended to other application areas.

For future work, the concept and methods developed in this
work can be extended to deal with more general Gaussian
mixture distributions with heterogeneous covariancecstmes
including improper complex signals.

corresponds to the case dfg = N;. [ |

d) SinceN4 = 0 and Ng + N¢o = N, for the BC curve,

f(v) = f(ve)f(ve|ve) from (31), where

exp(—|lwc|?)

fve) = (rM.)Ne
IDSD ~
) = exp(—||B(dp — dg,m) + wal?)
f( B| C) ~ 1nz:1 (ﬂ_Mc)NB )

whered s, is them-th vector inD3P. Denotinge.,,, 2



B(dp — &B,m), the mutual information is derived as

I(z;d) = E[logQ(wMC)Nc + log, elwel” 4 log, (7 M,)N®

D]
—logy Y efueB,wwm\z} ~ logy(me) N
m=1
1D
© logy MY~ E[log, 3 ¢lemmtwal’]
m=1
+ log, eBlIWel’] _1og, Eliwal*+lIwel?]
D]
= log, M. —E[logz > e”WBHQ—IIeB,mWBlf},
—_ m=1
_IUP -

SEB
£x
(A1)

where () comes froniE[||w||?] = E[|wg]|?+||wc||?] =
N;. If X > 1, the second term oﬂEll) becomes non-
positive and therefore[,(z; d) < Igf,; always holds.
If dp € DPP, X includesexp(||lwg|® — |les.m +
wgl?) =1 and thus¥ > 1. If dp ¢ DEP, all vectors in
D3P yields shorter Euclidean distances thég. That is,
forall dp,,, € DSP, exp(||lwg||? = les.m +wg|?) > 1
since ||lwg||? leg.m + wg|? As a result, X >
|DEP| > 1. Therefore,I(z;d) < I$E, always holds.
If v, < A} then I(z;d) = Igh, by Property a. In
addition, if v, > A%, thenI(z;d) = IS by Property c.
As 1, increases from\?, Nz becomes non-zero ant
has M N& exponential terms. For further increasing,
if Np increases by one thek has M. additional expo-
nential terms. Sincexp(-) > 0, X gradually increases as
5, INcreases. Thereforé(z-d) monotonically decreases [
from I{Eg to ISE as~y, increases. [ |
SinceNc =0and N4 + Ng = N, for the AB curve,
)~ 0 pden) f(valdsn) f(valds,a) in
@2). DenotmgeBm 2 B(dp — dp om) and v,
N BAdB,m = Ady + BA(dB — dB,m) + wy, the
pdfs are written byp(dp.,,) = —

I\{NB 1

(1]

(2]

(3]

(5]

(6]

(7]

A exp(—|les,m + wal?)

f(veldem) = —Ng : [8]
. exp(—vH K 'Vam) [9]
d m) — - )

f(valdz,m) 7N det(K )

whereK 4 = pAAH + I. Then, the mutual information [10]

is derived as

|DSD| [11]

I( —E{ Z dBm VB|dB m) (VA|dB,m)} [12]
— logz(we)N

8 [13]

5 IE[log2 MNE 4 logy 7N4TNE 1 log, det(K 4)
D5’

— log, Z

—logy 7t — E [logQ eHW”2]

[14]

—lles,m+wal?*~vi Ki'va,m
mE 4

[15]

13

@ logy MN? +log, det(pAAH 1) — E[logQ
IDEP|
Z e||WBHzflleB,erWBHerHwAllzfvi,meVA,m}

m=1

2y

where (3) comes from E[||w|?] N;, and ¢)
comes from|lw|? = |wal® + ||lwg|® As p — 0,
log, det(pAAH +1) ~ 0 and we have

IDE|
NS Z elwsll?—lles m+wal?+llwall®~llwall® _

m=1

(#)
X > 1,

where(¢) comes from the proof of Property d. Therefore,
for p — 0, we haveI(z d) log, MNE — E[log, X] >

log, MN5 — log, Z‘ 5| CEllwsl?] = log, MNe —
(log, |DS | + Nplog, e) > —Npglog, e, which can be
positive, whilel%, = log, det(pRRH+I) ~ 0 asp — 0.
Therefore, the AB curve can exceéd, at low SNR.l
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