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Abstract—The entropy computation of Gaussian mixture dis-
tributions with a large number of components has a prohibitive
computational complexity. In this paper, we propose a novel
approach exploiting the sphere decoding concept to bound
and approximate such entropy terms with reduced complexity
and good accuracy. Moreover, we propose an SNR region-
based enhancement of the approximation method to reduce
the complexity even further. Using Monte-Carlo simulations,
the proposed methods are numerically demonstrated for the
computation of the mutual information including the entropy
term of various channels with finite constellation modulations
such as binary and quadratic amplitude modulation (QAM)
inputs for communication applications.

Index Terms—Gaussian mixture distribution, Entropy ap-
proximation, Mutual information, Finite input alphabet, S phere
decoding

I. I NTRODUCTION

I N general, the computation of Gaussian mixture distribu-
tions with a large number of components has a prohibitive

computational complexity but a wide range of useful applica-
tion areas including communications [1]–[5], data fusion [6]–
[8], machine learning [9], [10], image and pattern recognition
[11], [12], and target tracking applications [13], [14]. For
instance, the computation of mutual information in communi-
cations results in the problem of computing entropy terms ofa
large system with finite input alphabet which has a prohibitive
computational complexity since the number of possible inputs
grows exponentially with the system dimension. Moreover, in
data fusion and target tracking applications, computing the
full Gaussian mixture distribution of a sampled data set has
prohibitive complexity for high dimensions or a large data set.

In data fusion and tracking areas, Gaussian mixture reduc-
tion is common to reduce the problem size and bound the com-
putational complexity and required memory size [6]–[8], [13],
[14]. However, most Gaussian mixture reduction algorithms
know the true Gaussian mixture distribution for a sampled data
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set and start from it to reduce the number of components by
merging, pursing, and expanding based on distance measures
such as integral squared error (ISE) and Kullback-Leibler (KL)
divergence. However, they are intractable for high dimensions
since this approach requires the computation of the distance
measures among all possible components.In this paper, we
propose a different approximation approach but in principle,
it is also a Gaussian mixture reduction.

On the other hand, there have been several approaches in
communications to approximate the mutual information or the
entropy of Gaussian mixture distributions both analytically
and numerically. Huber et al. [1] proposed an entropy ap-
proximation of Gaussian mixture random vectors based on
Taylor series expansion, which does not apply to a large
system size. Girnyk et al. [2] analyzed the capacity of a large
multiple input and multiple output (MIMO) system with a
finite input alphabet based on the matrix replica method. This
approach is only applicable to compute the average capacity
of an independent and identically distributed (i.i.d.) MIMO
channel with infinite dimension. Arnold et al. [4] proposed
a simulation-based computation of the mutual information of
a time-invariant discrete-time channel with memory. Dauwels
and Loeliger [15] extended the approach to continuous state
spaces and Molkaraie and Loeliger [16] applied it to infor-
mation rates computation of two-dimensional channels whose
main application is a magnetic recording. Although this allows
the approximation of the mutual information with a long block
length, the method is limited to time-invariant frequency-
selective fading channels with a relatively short finite impulse
response (FIR) length. Zhu et al. [3] proposed a statistical
computation approach for MIMO channels with a finite alpha-
bet depending on the signal-to-noise ratio (SNR). Even if this
approach offers very low complexity for arbitrarily structured
channels with high dimension, the accuracy at moderate SNR,
especially important for practical systems, is not acceptable.

In this paper, our main contribution is to provide a novel
approximation method with low complexity and good accuracy
on the mutual information of arbitrarily structured channels
with high dimension, which also leads to new upper and
lower bounds. The main idea is to findN -closest Gaussian
components through an efficient tree search algorithm and
approximate the true Gaussian mixture distribution by a re-
duced Gaussian mixture distribution. Based on this approach,
we provide upper and lower bounds computable with reduced
complexity and, further, an approximation with significantly
reduced complexity, which can be computed even for high
dimensional cases. Although we focus on the communication
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problems in this paper, it is worth mentioning that the proposed
method has many general applications where a reduction of
the Gaussian mixture is needed.

The rest of this paper is organized as follows. In Section II,
the problem definition including a basic system model is
presented. In Section III, we review the sphere decoding tree
search algorithm. Novel sphere decoder approximations on the
entropy are provided in Section IV. In Section V, an SNR-
based enhanced approximation algorithm suitable for high
dimension is proposed. In Section VI, several numerical ex-
amples are discussed for various channels. Finally, conclusive
remarks are provided in Section VII.

II. PROBLEM DEFINITION

The Gaussian mixture distribution is a weighted sum of
Gaussian distributions with different mean and/or variance,
which is mathematically modeled as

g(x) =

Ng∑

i=1

ωigi(x), (1)

wherex denotes the complex-valued input vector,Ng denotes
the total number of Gaussian components,ωi denotes the non-
negative weight factor for thei-th Gaussian component with
∑

i ωi = 1, and gi(x) denotes thei-th Gaussian component
following a complex Gaussian distribution with meanµi and
covarianceΣi, i.e., gi(x) ∼ CN (µi,Σi). For Ng large, the
computation ofg(x) has a high complexity and therefore
reducing the number of components is the main approach of
previous Gaussian mixture reduction problem.

In this paper, we consider the following basic system
equation, which is common for many communication systems.

z = Hd+ n, (2)

where z ∈ CNt×1 denotes the received signal vector,d ∈
MNt×1

c denotes the input symbol vector where each sym-
bol dk is taken from a finite constellation setMc ⊂ C,
H ∈ CNt×Nt denotes an arbitrarily structured channel matrix,
n denotes the additive white Gaussian noise vector,n ∼
CN (0, I), and the transmitted power (equivalently, SNR due
to normalized unit noise variance) is givenρ , E[dHd]. Then,
the mutual information between the inputd and the outputz
in (2) can be expressed by the differential entropies as follows:

I(z;d) = h(z)− h(z|d) = h(z)− h(n)

= −E[log2(fz(z))] − log2 (det(πeI)) , (3)

wherefz(z)1 denotes the probability density function (pdf) of
z, which is a Gaussian mixture distribution given by

fz(z) =

MNt
c∑

i=1

p(di)fz|d(z|di), (4)

whereMc denotes the number of constellation points anddi

denotes thei-th input symbol vector amongMNt
c possibilities.

For practical communication problems the components of
di are usually assumed to be independent and uniformly

1We drop the subindex when it is clear from the context.

distributed (i.u.d), i.e.,p(di) = M−Nt
c . Note that for largeNt,

the computation of (4) is infeasible due to the exponentially
increasing number of input vectors. Since the computation
of the expectation in (3) can be easily handled by Monte-
Carlo simulation, the problem at hand is to approximate (4).
In general, for a givenz, only a few terms in the sum in
(4) hav a significant contribution. Therefore, finding those
components which highly contribute is our main approach for
the approximation in the rest of this paper.

III. A R EVIEW OF SPHEREDECODING TREE SEARCH

Our proposed bounds and approximation presented in next
sections are inspired from the sphere decoding (SD) algorithm
[17]–[25], which is a well-known maximum likelihood (ML)
branch and bound algorithm in a tree search for MIMO
detection, i.e., finding the most likely input vectordi in given
the received vectorz, and the soft SD algorithm [26] which
principle can be used for capacity approximation as shown in
the following. The motivation is that it can reduce the search
space and, thus, the required computations via an efficient tree
search. Here, we briefly review the SD algorithm.

In order to construct a search tree, the SD algorithm first
performs QR factorization of the channel matrixH. Then, the
system equation (2) is equivalently given by

v = Rd+w, (5)

with H = QR in which Q is a unitary matrix andR is an
upper triangular matrix,v = QHz, w = QHn ∼ CN (0, I),
and d = [d1, . . . , dNt

]T. It is worth noting that since any
invertible linear operation does not change the mutual informa-
tion [27], I(z;d) = I(v;d). Then, a search tree is constructed
from the bottom to the top of the equivalent upper-triangular
channel matrixR. That is, first branches from the root node
are constructed from the last diagonal term ofR corresponding
to dNt

until the last branches to the leaf nodes are constructed
from the first row ofR corresponding tod1. Let rij denote
the (i, j)-th element ofR. Then, at thek-th depth, the cost
value corresponding to the Euclidean distance between the
received vectorv and the considered inputd can be recursively
expressed as

c(k,dNt

Nt−k+1) = c(k − 1,dNt

Nt−k+2)

+
∣
∣
∣vNt−k+1 −

Nt∑

j=Nt−k+2

rk,jdj

∣
∣
∣

2

(6)

where k ∈ {1, . . . , Nt}, c(0,dNt

Nt+1) = 0, d
j
i ,

[di, di+1, . . . , dj ]
T, andv = [v1, . . . , vNt

]T. Fig. 1 illustrates
an example of SD search tree construction for case of 4-
quadratic amplitude modulation (QAM) andNt = 3 resulting
in 43 = 64 possibilities.

A. Depth-First Search (DFS)

The DFS algorithm searches for components with the
distance less than the sphere radius in both forward and
backward directions among the sub-trees. It first goes through
the search tree by a leaf node in the forward direction of
k = 1, 2, . . . , Nt and then it moves backward in the direction
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d1

d2

d3k = 1

k = 2

k = 3

Fig. 1. An example of SD search tree (e.g., 4-QAM andNt = 3).

(a)

(b)

Fig. 2. Examples of (a) DFS and (b) BFS (e.g., binary input andNt = 3).
The gray arrows denote the search movements. The black/white circle denotes
the visited/non-visited node. The dashed line denotes the pruned branch.

of Nt, Nt − 1, . . . , 1. Fig. 2 (a) illustrates an example of the
DFS.

The DFS algorithm efficiently provides the optimal ML
solution corresponding to the closest input symbol vector for
traditional MIMO detection. Moreover, during the tree search,
if it finds an input symbol vector with shorter distance than the
sphere radius, the sphere radius can be dynamically updated
which reduces the tree search complexity for the purpose of
finding only the closest component. However, in this paper, our
purpose of the tree search is finding all components within a
given sphere radius. Therefore, we use a fixed sphere radius
and do not consider its dynamic update. As a result, after the
tree search, it is guaranteed to find all input symbol vectors
with shorter distance than the sphere radius. Denoting the
number of components within the sphere radius asN , the
N -closest components2 can be found during the tree search.

B. Breadth-First Search (BFS)

The BFS algorithm searches for components in the forward
direction only. That is, it searches all nodes at a certain depth
and then moves to the next depth. Fig. 2 (b) illustrates an
example of the BFS.

In most applications of MIMO detection, the BFS algorithm
keeps justK-best components and prune the other branches

2We can also fix the number of componentsN and update the sphere
radius as often asN components are found. Then, we haveN candidates
found during the tree search.

at each depth. This is calledK-Best SD algorithm [24], [28],
[29]. In this case, ifK is sufficiently large, the solution
approaches the optimal ML solution. In contrast, limitingK
reduces the search complexity and thus it provides a fixed
search complexity. This is the main advantage of theK-best
SD algorithm since it is easily implemented in a parallel and
a pipelined fashion. In the viewpoint of findingN -closest
components in our problem, this approach also can provide the
fixed complexity relying onK even though the components
found at the end are not guaranteed to be theN -closest
components.

IV. SPHEREDECODERAPPROXIMATION

In this section, we exploit the SD algorithm in a different
manner in order to find approximations and bounds on the
entropy of Gaussian mixture distributions. While the aim of
original SD algorithm is to find only the closest input vector,
we find the N -closest input vectors, which contribute the
most to f(z), through an efficient tree search. We propose
two approaches employing both the DFS and the BFS. The
two approaches give different accuracy and complexity control
methods although the basic principle is the same. The follow-
ing bounds are the approximation. From the simulations, we
see that the upper bound is usually close to the true curve
(refer to Fig. 6 (a), Fig. 7, and Fig. 8 (a)).

A. DFS-Based Upper and Lower Bounds

Starting from (5), the DFS-based algorithm finds input
symbol vectors satisfying

‖v −Rd‖2 ≤ ζ2, (7)

where the sphere radius is set to

ζ2 = α‖v −Rd0‖2, (8)

where d0 denotes the Babai estimate3 [30] and α denotes
a control parameter which can be used to adjust complexity
versus accuracy.If we increaseα, the accuracy increases since
the search result can include more components due to the
larger search radius, while the complexity also increases since
it requires more searches in the tree. It gives the full tree search
whenα → ∞, i.e., the true distribution. Note that ifα ≥ 1,
the sphere radius (8) guarantees to find at least one component
in the tree search because it includes at leastd0. After the SD
tree search, the following set of ordered symbol vectors are
found:

D(ζ)
DFS = {d̂1, d̂2, . . . , d̂N

(ζ)
DFS

}, (9)

whereD(ζ)
DFS ⊂ D = D(∞)

DFS, |D| = MNt
c , N (ζ)

DFS = |D(ζ)
DFS|,

and ‖v − Rd̂1‖2 ≤ ‖v − Rd̂2‖2 ≤ . . . ≤ ‖v −Rd̂
N

(ζ)
DFS

‖2.

Assuming i.u.d. input̂d, the true pdff(z) can be expressed

3Equivalently, it is the zero-forcing (ZF) point found asd0 = H†z where
H† = (HHH)−1HH.
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as:

fz(z) =
∑

d̂∈D

p(d̂)fz|d(z|d̂) =
∑

d̂∈D

p(d̂)fv|d(v|d̂)

=
1

MNt
c

· 1

πNt

∑

d̂∈D

exp
(

−‖v−Rd̂‖2
)

, (10)

where the second equality is obtained from the fact that
‖v−Rd̂‖2 = ‖z−Hd̂‖2 due to unitaryQ. Therefore,fz(z)
is equal tofv(v). Accordingly, we haveh(z) = h(v) and

I(z;d) = I(v;d). Let T ,
∑

d̂∈D exp
(

−D(d̂)
)

in (10)

whereD(x) , ‖v−Rx‖2. For the ordered input symbol vec-
tors with respect to the distance, i.e.,D = {d̂1, d̂2, . . . , d̂Nt

},
the following relations hold after the SD tree search:

exp(−D(d̂1)) ≥ · · · ≥ exp(−D(d̂
N

(ζ)
DFS

)) ≥ exp(−ζ2)
> exp(−D(d̂

N
(ζ)
DFS+1

)) ≥ · · · ≥ exp(−D(d̂Nt
)). (11)

Thus,T can be expressed in two parts:

T =
∑

d̂∈D
(ζ)
DFS

exp(−D(d̂))

︸ ︷︷ ︸

components found

+
∑

d̂∈D\D
(ζ)
DFS

exp(−D(d̂))

︸ ︷︷ ︸

components pruned

. (12)

The second term for pruned components is upper-bounded

by
∑|D|−N

(ζ)
DFS

k=1 exp(−ζ2). Therefore,T can be bounded as
follows
∑

d̂∈D
(ζ)
DFS

exp
(

−‖v−Rd̂‖2
)

≤ T

<
∑

d̂∈D
(ζ)
DFS

exp
(

−‖v−Rd̂‖2
)

+
(

|D| −N
(ζ)
DFS

)

exp
(
−ζ2

)
.

(13)

Let us definef
DFS

(v) andfDFS(v) by

f
DFS

(v) ,
∑

d̂∈D
(ζ)
DFS

1

(πMc)Nt
exp

(

−‖v−Rd̂‖2
)

, (14)

fDFS(v) , f
DFS

(v) +
|D| −N

(ζ)
DFS

(πMc)Nt
exp

(
−ζ2

)
. (15)

Then, the differential entropy ofz is bounded by

hlo
DFS < h(z) ≤ hup

DFS, (16)

where hlo
DFS = −E

[
log2 fDFS(v)

]
and hup

DFS =

−E
[

log2 fDFS
(v)

]

since f
DFS

(v) ≤ f(z) < fDFS(v)

for all v = QHz.

Enhanced Lower Bound:During the tree search, a pruned
branch including sub-branches has a distance value greater
than ζ2. Let the cost value of the pruned branch at thek-th
depth of the search tree be denoted byc(k,dNt

Nt−k+1) where
dNt

Nt−k+1 = [dNt−k+1, . . . , dNt
]T is the input symbol vector

with length k found in previous and current depth searches.
Then, the pruned branch includesMNt−k

c sub-branches and
the symbol vectors corresponding to the sub-branches can use
c(k,dNt

Nt−k+1) instead ofζ2 for the exp(−ζ2) term in (15).

In more detail, denote the remaining Euclidean distance
values at leaf nodes for each sub-branch byc̄(Nt,d

Nt−k
1 ) ,

c(Nt,d
Nt

1 ) − c(k,dNt

Nt−k+1) ≥ 0 wheredj
i = [di, . . . , dj ]

T.
Since for the pruned branch,ζ2 < c(k,dNt

Nt−k+1) ≤
c(Nt,d

Nt

1 ) = c(k,dNt

Nt−k+1) + c̄(Nt,d
Nt−k
1 ), replacingζ2

by c(k,dNt

Nt−k+1) for all the pruned branches yields a better
lower bound on the entropy.

Let us definef
+

DFS(v) by

f
+

DFS(v) , f
DFS

(v) +
1

(πMc)Nt

∑

d̂∈D\D
(ζ)
DFS

exp(−c̃(d̂)),

(17)

wherec̃(d̂) denotes the cost value ofd̂ at its own pruned depth.
For instance, if̂d is pruned at depthk, c̃(d̂) = c(k, d̂Nt

Nt−k+1).
Then, the differential entropy ofz gets the enhanced lower
bound as

hlo
DFS < hlo+

DFS < h(z). (18)

wherehlo+
DFS = −E

[

log2 f
+

DFS(v)
]

. Substituting the entropy
bounds into (3) results in bounds as follows:

I loDFS < I lo+DFS < I(z;d) ≤ IupDFS. (19)

B. BFS-Based Upper and Lower Bounds

For BFS-based upper and lower bounds, we employ BFS-
basedK-best SD approach. Similarly to the DFS-based al-
gorithm, the BFS-based algorithm finds input symbol vectors
satisfying

‖v −Rd‖2 ≤ ζ2,

but ζ2 is set to a sufficiently large value so that all components
are included within the sphere radius. Differently from the
DFS-based algorithm, the BFS-based algorithm finds theK-
closest components at each depth (i.e., each breadth). In more
detail, it takesK shortest distance components amongMcK
components at eachk-th depth. Note that whenMk

c < K,
all Mk

c components are taken at the depth. After all,K
becomes a control parameter in the BFS-based algorithm to
adjust complexity versus accuracy instead of theα parameter
in the DFS-based algorithm. Note that ifK ≥ MNt−1

c , all
the components are found at the end of the tree search in the
BFS-based algorithm.

After the SD tree search, the following set of ordered
symbol vectors are found:

D(K)
BFS = {d̂1, d̂2, . . . , d̂N

(K)
BFS

}, (20)

whereD(K)
BFS ⊂ D = D(∞)

BFS, |D| = MNt
c , N (K)

BFS = |D(K)
BFS|,

and‖v−Rd̂1‖2 ≤ ‖v−Rd̂2‖2 ≤ . . . ≤ ‖v −Rd̂
N

(K)
BFS

‖2.
In the BFS-based algorithm, the corresponding relation to

(11) does not hold since the components found are not exactly
theN -closest components anymore. However, (12) can be still
equivalently expressed as

T =
∑

d̂∈D
(K)
BFS

exp(−D(d̂))

︸ ︷︷ ︸

components found

+
∑

d̂∈D\D
(K)
BFS

exp(−D(d̂))

︸ ︷︷ ︸

components pruned

. (21)
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Thus,T is lower-bounded by the first term of the right-hand
side of (21). Although we cannot find an upper bound as in
(13), the enhanced lower bound approach on the entropy still
works in this case.

Let us definef
BFS

(v) andf
+

BFS(v) by

f
BFS

(v) ,
∑

d̂∈D
(ζ)
BFS

1

(πMc)Nt
exp

(

−‖v−Rd̂‖2
)

, (22)

f
+

BFS(v) , f
BFS

(v) +
1

(πMc)Nt

∑

d̂∈D\D
(K)
BFS

exp(−c̃(d̂)),

(23)

where c̃(d̂) denotes the cost value of̂d at its own pruned
depth. Then, the differential entropy ofz is bounded by

ĥlo+
BFS < h(z) ≤ ĥup

BFS, (24)

where ĥlo+
BFS = −E

[

log2 f
+

BFS(v)
]

and ĥup
BFS =

−E
[

log2 fBFS
(v)

]

since f
BFS

(v) ≤ f(z) < f
+

BFS(v).
Substituting the entropy bounds into (3) results in bounds as
follows:

I lo+BFS < I(z;d) ≤ IupBFS. (25)

Determination of theK Parameter:The BFS-based bounds
algorithm enables the complexity4 to be fixed as a certain
value by adjustingK parameter, while the DFS-based bounds
algorithm can implicitly control the complexity accordingto
α parameter. Definek0 , max

{
k : Mk−1

c < K
}

. Then, the
complexity of the bounds based on the BFS algorithm in terms
of the number of visited nodes in the tree search is given by

C(K) =

k0∑

k=1

Mk
c +

Nt∑

k=k0+1

McK

=
Mc(1 −Mk0

c )

1−Mc

+ (Nt − k0)McK. (26)

Note that forK → ∞, we haveC(∞) =
∑Nt

k=1 M
k
c =

Mc(1−MNt
c )

1−Mc
, which is the complexity of the true Gaussian

mixture distribution. Finally, for a given complexityC0, the
K parameter is determined by

K(C0) =
⌊

1

Nt − k0

( C0
Mc

− Mk0
c − 1

Mc − 1

)⌋

. (27)

Table I illustrates the notations used in algorithm descrip-
tions in the following. The overall procedure of the proposed
SD approximation algorithm is specified in Algorithm 1.
The DFS-based and BFS-based SD tree search algorithms
used in Algorithm 1 are described as recursive functions in
Algorithm 2 and Algorithm 3, respectively.

4Throughout this paper, the complexity is evaluated in termsof the number
of visited nodes in a tree search, which is common in the literature on the
sphere decoding algorithms [21], [23].

Algorithm 1: Sphere Decoder Approximation
Input : H, ρ
Output : ĥup

SD, ĥ
lo
SD, ĥ

lo+
SD

1 [Q R]← qr(H) // QR factorization
// Integration by a Monte-Carlo method

2 for i = 1 to Nd do // Loop for d

3 Generated(i) ← √ρ · s wheres ∼ U(MNt)
4 for j = 1 to Nn do // Loop for n

5 Generaten(j) wheren(j) ∼ CN (0, I)

6 z(i,j) ← Hd(i) + n(j)

7 v(i,j) ← QHz(i,j)

// Babai estimate

8 d
(j)
0 ← (HHH)−1HHz(i,j)

// Call a tree search algorithm
9 if DFS then

10 Setα ≥ 1 andζ2 ← α‖v(i,j) −Rd
(j)
0 ‖2

11 [DSD, E ]← DFS({v(i,j),R, ζ2},{1, [ ], 0, 0, ∅})

12 else ifBFS then
13 SetK according to (27)
14 [DSD, E ]← BFS({v(i,j),R,K},{1, ∅, ∅, 0})

// Compute pdfs

15 f (i,j) ←∑

d̂∈DSD

1

M
Nt
c

exp(−‖v(i,j) −Hd̂‖2)
16 f

(i,j) ← f (i,j) + |D|−|DSD|
(Mc·π)Nt

exp
(
−ζ2

)

17 f
+(i,j) ← f (i,j) + E

// Compute entropy bounds

18 ĥup
SD ← − 1

NdNn

∑Nd

i=1

∑Nn

j=1 log2

(

f (i,j)
)

19 ĥlo
SD ← − 1

NdNn

∑Nd

i=1

∑Nn

j=1 log2

(

f
(i,j)

)

20 ĥlo+
SD ← − 1

NdNn

∑Nd

i=1

∑Nn

j=1 log2

(

f
+(i,j)

)

Algorithm 2: DFS-Based SD Tree Search

1 Function DFS ({v,R, ζ2}, {k,d, c, E ,D(ζ)
DFS})

2 Stored′ ← d andc′ ← c
3 for m← 1 to Mc do
4 d← [dm;d′] wheredm ←M(m)
5 Compute the cost valuec according to (6)
6 if c ≤ ζ2 then // Valid: Searching
7 if k = Nt then // Leaf node

8 D(ζ)
DFS ← D

(ζ)
DFS

⋃{d}
9 else // Intermediate node

// Go to next depth

10 DFS({v,R, ζ2}, {k + 1,d, c, E ,D(ζ)
DFS})

11 else // Invalid: Pruning
// Update the exponential term
for enhanced lower bound

12 E ← E + exp(−c) ·MNt−k
c

13 return D(ζ)
DFS, E
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Fig. 3. An example of three approximations according to SNR region (e.g., 4-PAM): (a) low SNR – single Gaussian approximation, f̃A(z). (b) medium
SNR – 2-closest components approximation based on the SD tree search,f̃B(z). (c) high SNR – Babai estimate-based approximation,f̃C(z). The red
dashed-dotted lines denote the pdfs of four different Gaussian components,f(z,di) = p(di)f(z|di), the black line denotes the pdf of the true Gaussian
mixture, f(z), and the blue dashed line with ‘+’ marker denotes the approximated pdf. The green circle denotes the drawnz in Monte Carlo method, for
which f(z) has to be approximated.

TABLE I
NOTATIONS USED IN ALGORITHMS

Notation Description
Nd Number of iterations for generatingd
Nn Number of iterations for generatingn

U(MNt ) Uniform distribution on theNt-dimension Cartesian
product of the constellation points setM

ĥ
y
x Monte-Carlo integration approximation for the entropy

V. SNR-BASED ALGORITHMIC EXTENSION

The complexity of the previous algorithms may be still
too high for a large number of components. In the following
subsection, we propose another approach to further reduce the
complexity significantly. For a given complexity, the approach
can be also used to improve the precision by increasing the
number of considered components in the range what it matters.

The main idea of the extension is to apply different approxi-
mation methods to partial symbol vectors within different SNR
regions and combine them in order to compute the entropy
in the mutual information. To this end, we first partition
the given channel matrix and input symbol vector to three
regions with respect to the SNR:(i) low SNR, (ii) medium
SNR, and (iii) high SNR. Thereafter, we applyone component
only approximation, theSD upper bound, andsingle Gaussian
approximation, respectively. Finally, we combine them over
the unified symbol vector. Fig. 3 illustrates a simple 4-
pulse amplitude modulation (PAM) example of three different
approximation methods suitable for different SNR. In the
figure, each approximated pdf is well-matched with the true
Gaussian mixture pdf with respect to the drawnz in Monte
Carlo method. This is the main motivation of this SNR region
based approximation in this section.

According to the above partitioning, the received signal
model (5) can be rewritten as





vA

vB

vC



 =





A BA CA

0 B CB

0 0 C









dA

dB

dC



+





wA

wB

wC



 ,

(28)

Algorithm 3: BFS-Based SD Tree Search

1 Function BFS ({v,R,K}, {k,D, C, E})
2 SetDcand ← ∅ andCcand ← ∅
3 K ′ ← min{K,Mk−1

c } // For K > Mk−1
c

4 for i = 1 to K ′ do
5 d′ ← D(i) andc′ ← C(i) // i-th element
6 for m = 1 to Mc do
7 d← [dm;d′] wheredm ←M(m)
8 Compute the cost valuec according to (6)
9 Dcand ← Dcand

⋃{d}
10 Ccand ← Ccand

⋃{c}

// Sort based on the cost values
11 [Dsort, Csort]← sort(Dcand, Ccand)
12 if k = Nt then // Leaf node

13 D(K)
BFS ← Dsort

14 else // Intermediate node
// Take the K-best elements

15 K ′′ ← min{K,Mk
c } // For K > Mk

c

16 D ← {Dsort}K
′′

1 andC ← {Csort}K
′′

1

// Update the exponential term
17 E ← E +∑

c∈Csort\C
exp(−c) ·MNt−k

c

// Go to next depth
18 BFS({v,R,K}, {k+ 1,D, C, E})
19 return D(K)

BFS, E

whereA ∈ C
NA×NA , B ∈ C

NB×NB , andC ∈ C
NC×NC in

which Nt = NA + NB + NC . Let diag(R) = [λ1, . . . , λNt
].

Assuming the diagonal terms inR are ordered in increasing
order, the following relations hold with respect to two thresh-
old values,γl andγh:

λ2
1 ≤ . . . ≤ λ2

NA
︸ ︷︷ ︸

low SNR

≤ γl < λ2
NA+1 ≤ . . . ≤ λ2

NA+NB
︸ ︷︷ ︸

medium SNR

≤ γh < λ2
NA+NB+1 ≤ . . . ≤ λ2

Nt
︸ ︷︷ ︸

high SNR

. (29)
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Consequently,A, B, andC in (28) correspond to low SNR,
medium SNR, and high SNR partitions, respectively, after
reordering the original channel matrix, i.e.,H̃ = HΠ where
Π is the permutation matrix, such that the eigenvalues are
sorted in increasing order. The V-BLAST ZF-DFE channel
ordering in [19] provides an eigenvalue ordering method. Note
that the sorting may not be perfect but it is sufficiently good
for our purpose since the differences are small. Similarly to
α andK parameters,γl andγh are design parameters which
trade off accuracy versus complexity.At medium SNR, both
parameters need to be carefully chosen since they can still
cause a prohibitive computational complexity.A discussion
on the choice of those parameters is provided in Section V-B.

A. SNR-Based Enhanced Approximation

In this subsection, we propose an SNR-based extension
of the SD approximation method. Therefore, we first present
three approximation methods for three difference SNR parti-
tion. Then, we provide the approximated pdf combining those
results.

We start from the high SNR partition corresponding to the
block C. The effective received signal at high SNR can be
approximated by

vC = CdC +wC ≈ Cd̃C +wC , (30)

whered̃C is the drawndC in the Monte-Carlo method, thus
it is known to us for the computation. At high SNR, this
approximation becomes very good due to negligible noise as
shown in Fig. 3 (c).

By applying the known component for the high SNR block,
the effective received signal at medium SNR is approximated
by

vB = BdB +CBdC +wB

≈ BdB +CBd̃C +wB. (31)

For givend̃C , we have

v′
B = vB −CBd̃C ≈ BdB +wB. (32)

Similarly as in the previous sections, we apply either the DFS-
based tree search or the BFS-based tree search to (32) instead
of (5). For the DFS-based tree search, the sphere radius is set
to ζ2 = α‖v′

B − Bd0,B‖2 whered0,B is the Babai estimate
corresponding todB. For the BFS-based tree search,ζ2 is set
to a sufficiently large value and theK parameter is chosen
considering the block sizeNB. Afterwards, we can find the
vector setDSD

B = {d̂B,1, d̂B,2, . . . , d̂B,|DSD
B |} where either

DSD
B = D(ζ)

DFS if the DFS-based tree search is used orDSD
B =

D(K)
BFS if the BFS-based tree search is used.
Similarly to the medium SNR case, by applying the Babai

estimate for the high SNR block, the effective received signal
at low SNR is given by

vA = AdA +BAdB +CAdC +wA

≈ AdA +BAdB +CAd̃C +wA. (33)

For givend̃C , we have

v′
A = vA −CAd̃C ≈ AdA +BAdB +wA. (34)

For each of the|DSD
B |-closest vectors,̂dB ∈ DSD

B , we have

v′
A = AdA +BAd̂B +wA. (35)

Hence, for given̂dB, we arrive at

v′′
A = v′

A −BAd̂B = AdA +wA, (36)

which follows a Gaussian mixture distribution similar to (32).
For each given̂dB,m, we approximate the Gaussian mixture
distribution f(v′′

A,m) by a single Gaussian distribution with
same mean and covariance for the low SNR blockA as shown
in Fig. 3 (a).

Applying the three different approximations to the three
SNR partition, the pdf of the unified received symbol vector
can be derived as

f(v) = f(vC ,vB ,vA) = f(vC)f(vB ,vA|vC)

=
∑

d̂C∈DC

p(d̂C)f(vC |d̂C)f(vB ,vA|vC , d̂C)

(a)

≥ p(d̃C)f(vC |d̃C)f(vB ,vA|vC , d̃C)

(b)≈ p(d̃C)f(vC |d̃C)f(vB ,vA|d̃C)

= p(d̃C)f(vC |d̃C)f(vB|d̃C)f(vA|vB, d̃C)

= p(d̃C)f(vC |d̃C)·
[ ∑

d̂B∈DB

p(d̂B)f(vB |d̃C , d̂B)f(vA|vB , d̃C , d̂B)
]

(c)

≥ p(d̃C)f(vC |d̃C)·
[ ∑

d̂B∈DSD
B

p(d̂B)f(vB|d̃C , d̂B)f(vA|vB , d̃C , d̂B)
]

(d)≈ p(d̃C)f(vC |d̃C)·
[ ∑

d̂B∈DSD
B

p(d̂B)f(vB|d̃C , d̂B)f(vA|d̃C , d̂B)
]

= p(d̃C)f(vC |d̃C)
[ ∑

d̂B∈DSD
B

p(d̂B)f(vB |d̃C , d̂B)·

∑

d̂A∈DA

p(d̂A)f(vA|d̃C , d̂B , d̂A)
]

(e)≈ p(d̃C)f(vC |d̃C)·
[ ∑

d̂B∈DSD
B

p(d̂B)f(vB|d̃C , d̂B)fG(vA|d̃C , d̂B)
]

,

(37)

where (a) is the single component-based approximation, (c)is
the SD upper bound, (e) is the single Gaussian approximation,
and (b) and (d) follow from (31) and (33). In (37), each term
is given byp(d̃C) =

1

M
NC
c

, p(d̂B) =
1

M
NB
c

,

f(vC |d̃C) =
1

πNC
exp

(
−‖vC − µC‖2

)
, (38)

f(vB|d̃C , d̂B) =
1

πNB
exp

(
−‖vB − µB‖2

)
, (39)

fG(vA|d̃C , d̂B)

=
1

πNA detKA

exp
(
−(vA − µA)

HK−1
A (vA − µA)

)
, (40)
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Algorithm 4: SNR-Based Enhanced Approximation
Input : H, ρ
Output : ĥSDEA

1 Initialization: Setγl andγh
2 H̃ = HΠ according to [19]// Channel ordering
3 [Q R]← qr(H̃) // QR factorization

// Channel matrix partition
4 Find A, B, C, BA, CA, andCB according to (29)

// Integration by a Monte-Carlo method
5 for i = 1 to Nd do // Loop for d

6 Generated(i) ← √ρ · s wheres ∼ U(MNt)
7 for j = 1 to Nn do // Loop for n

8 Generaten(j) wheren(j) ∼ CN (0, I)

9 z(i,j) ← H̃d(i) + n(j)

10 v(i,j) ← QHz(i,j)

11 Find d
(i)
A , d(i)

B , d(i)
C , v(i,j)

A , v(i,j)
B , andv(i,j)

C

// Babai estimate
12 d0 ← H̃†z(i,j) and findd0,A, d0,B, andd0,C

// (C) High SNR approximation

13 Computef(v(i,j)
C |d0,C) according to (38)

// (B) Medium SNR approximation

14 v
′(i,j)
B ← v

(i,j)
B −CBd

(i)
C

// Call SD tree search algorithm
15 if DFS then
16 Setα ≥ 1 andζ2 ← α‖v′(i,j)

B −Rd
(j)
0,B‖2

17 [DSD
B , E ]← DFS({v′(i,j)

B ,R, ζ2},{1, [ ], 0, 0, ∅})
18 else ifBFS then
19 SetK according to (27)

20 [DSD
B , E ]← BFS({v′(i,j)

B ,R,K},{1, ∅, ∅, 0})
21 Computef(v(i,j)

B |d0,C , d̂B), ∀d̂B ∈ DSD
B ,

according to (39)
// (A) Low SNR approximation

22 Computef(v(i,j)
A |d0,C , d̂B), ∀d̂B ∈ DSD

B ,
according to (40)
// Compute the pdf of v

23 Computef(v(i,j)) according to (37)

// Compute entropy approximation

24 ĥSDEA = − 1
NdNn

∑Nd

i=1

∑Nn

j=1 log2 f(v
(i,j))

where µC = Cd̃C , µB = Bd̂B + CBd̃C ,
µA = BAd̂B + CAd̃C , and KA = ρAAH + I. Note
that this novel approximation can reduce the tree search
complexity from MNt

c to MNB
c where NB is determined

by both γl and γh parameters. Since (a) and (c) give
lower bounds, when (b), (d), and (e) are very accurate
approximations, the final pdf in (37) can be a lower bound
(equivalently, an upper bound on the entropy). However,
in general, it is an approximation due to (b), (d), and (e).
The overall SNR-based enhanced approximation algorithm is
presented in Algorithm 4.

SEB

GB

Itrue

I(z;d)

SNRρc

Fig. 4. The relation among the GB, the SEB, and the true mutualinformation
according to SNR.ρc denotes the SNR corresponding to the intersection of
the GB and the SEB.

B. Discussion onγl and γh Parameters

Since γl and γh parameters determine the size of the
submatrixB, they highly influence the complexity reduction
gain. Basically, if the difference between those parameters
is small, the proposed approximation yields low complexity
with some accuracy losses. On the contrary, as the difference
increases, it converges to the SD upper bound results. The
goal is to set the parameters so that the accuracy losses
are still acceptable. In this subsection, we investigate trends
of accuracy on the mutual information according to those
parameters which will provide us witha guideline how to
determine them.

Even though we focus on the entropy approximation, our
main results are evaluated in terms of the mutual information
in Section VI. Thus, we determine the parameters based on
the mutual information in this subsection. First of all, there
exist two trivial upper bounds on the mutual information: (i)
Gaussian bound(GB) assuming Gaussian input distribution
given byI(z;d) = log2 det

(
I+ ρHHH

)
; (ii) source entropy

bound(SEB) such that the mutual information cannot exceed
the source entropy, i.e.,I(z;d) = H(d)−H(d|z) ≤ H(d) =
log2 M

Nt
c since the entropy is non-negative. Fig. 4 shows a

typical relation among the GB, the SEB, and the true mutual
information according to SNR.

Let IupGB, IupSEB, IupSD, andISDEA denote GB, SEB, SD upper
bound, and SD-based enhanced approximation on the mutual
information, respectively. Through numerical observations, the
basic trends of the mutual information according toγl and
γh parameters for given SNR are illustrated in Fig. 5. In the
figures, we draw two mutual information curves fixing one
threshold and varying the other:The thick blue dashed curve
is for fixing γl → 0 (equivalently,γl < λ2

1) and varyingγh
(NA = 0 case, so called ‘BC curve’); The thick red dot-and-
dash curve is for fixingγh →∞ (equivalently,γh > λ2

Nt
) and

varyingγl (NC = 0 case, so called ‘AB curve’).
The properties of the mutual information of the SNR-based

enhanced approximation,ISDEA, on γl andγh are as follows:
a) If γl ≤ γh < λ2

1, ISDEA = IupSEB.
b) If γh > γl ≥ λ2

Nt
, ISDEA = IupGB.

c) If γl < λ2
1 andγh ≥ λ2

Nt
, ISDEA = IupSD.

d) The BC curve monotonically decreases fromIupSEB to IupSD

asγh increases fromλ2
1 to λ2

Nt
.

e) The AB curve can exceedIupGB at low SNR.
The proofs of the properties are provided in Appendix A.
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I
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I
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(b)

Fig. 5. Mutual information according toγl and γh at given SNRρ: (a)
ρ > ρc (i.e., Iup

SEB
< I

up
GB

) case (b)ρ < ρc (i.e., Iup
SEB

> I
up
GB

) case.The
thick blue dashed curve is for fixingγl → 0 and varyingγh (‘BC curve’) and
the thick red dot-and-dash curve is for fixingγh → ∞ and varyingγl (‘AB
curve’). IAB(γl) − I

up
SD

and IBC(γh) − I
up
SD

correspond to approximation
errors.

Based on these properties, we next present a proposal how
to determineγl andγh at given average SNR. Let us define
∆γ , γh − γl. If ∆γ > λ2

Nt
− λ2

1, it results inIupSD by setting
such that Property c can be satisfied. Otherwise, we trade off
accuracy versus complexity. As shown in Fig. 5, there exists
an intersection point of the BC curve and the AB curve. Let
us denote the intersection point onx-axis byγc, then the AB
curve is less erroneous on its left-hand side and so is the
BC curve on its right-hand side ofγc. Hence, the best way
is following the AB curve in the left-hand side and the BC
curve in the right-hand side. We propose to determineγl and
γh proportionally toγc−λ2

1 andλ2
Nt
−γc with the width∆γ,

i.e., γl = γc +
λ2
1−γc

λ2
Nt

−λ2
1
∆γ and γh = γc +

λ2
Nt

−γc

λ2
Nt

−λ2
1
∆γ. If it

is hard to findγc due to computational complexity for high

dimension, it can be determined byγc =
λ2
1+λ2

Nt

2 .
According to SNR region, there are two different cases with

comparison betweenIupGB andIupSEB as shown in Fig. 5 (a) and
(b). In case ofIupSEB > IupGB, the error can make the mutual
information exceedIupGB if the width obtained byIupGB and two
curves (i.e.,∆γGB) is longer than∆γ. In this case, taking the
GB is better than the SD approximation for given∆γ. Thus,
two threshold values are set toγl = λ2

Nt
≤ γh for this case

based on Property b. Actually, since the GB is very close to
the true curve at low SNR, this setting is reasonable. This also
can be done simply by limiting the mutual information of the
enhanced approximation byIupGB.

In general, we can identify three SNR regions. In the low
SNR regime, the Gaussian approximation performs well. In
the high SNR regime, the one component only approximation

performs well. Both do not perform well in the medium
SNR regime where the more complex SD approximation
yields good results. The previous discussion applies to a given
average SNR. If we want to compute the entropy/mutual
information for an average SNR range as depicted in Fig. 4,
then in principle we have to compute the threshold values for
every average SNR value. However, to reduce the complexity
even further, we propose to compute the threshold valuesγl
andγh for the average SNRρc where the source entropy bound
and Gaussian bound intersect and then scale the thresholds for
each average SNR valueρ by ρc

ρ
, i.e.,γl

ρc

ρ
andγh

ρc

ρ
are used

as threshold values.

VI. N UMERICAL EXAMPLES

In this section, we evaluate the proposed SD bounds and
SNR-based enhanced approximations in terms of the mutual
information and the complexity, compared to several bench-
marks, which are briefly introduced in the following subsec-
tion. We consider two kinds of channels for the performance
comparisons: (i)finite impulse response (FIR) filter channel
and (ii) frequency-selective and time-selective fading channel.

A. Benchmarks

1) Statistical Approximation (SA) Method [3]:The SA
method is analogous to a combination of high and low
SNR approximations in the proposed SNR-based enhanced
approximation. That is, it finds the following two pdfs of the
received symbol vector for high and low SNRs, respectively,

fh(z) =
1

MNt
c

exp
(

−‖z−Hd̃‖2
)

, (41)

fl(z) =
1

πNt det(Kz)
exp

(
−zHKz

−1z
)
, (42)

whered̃ denotes the drawnd in the Monte-Carlo expectation
andKz = ρHHH + I. Then, the pdf ofz is approximated by

f(z) ≈ max {fh(z), fl(z)} . (43)

2) BCJR Algorithm Based Computation Method [4]:The
BCJR algorithm based computation method has been invented
to compute information rates for finite-state channels. In this
method, for given finite-state channel, the mutual information
betweenvery longinput and output sequences are defined as

I(z;d) , − 1

n
log2 p(z

n)− h(z|d), (44)

where n is the sequence length andzn = (z1, z2, . . . , zn)
denotes the output sequence. Then, it findsp(zn) based on
the forward sum-product algorithm [31]. By employing a
state sequencesn0 = (s0, s1, . . . , sn) and denoting the input
sequencedn = (d1, d2, . . . , dn), p(zn) can be computed by

p(zn) =
∑

dn

∑

sn0

p(dn, zn, sn0 ). (45)

Defining the state metricµk(sk) , p(sk, z
k) for the k-th

symbol, the computation of (45) is possible by computing the
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state metrics recursively as

µk(sk) =
∑

dk

∑

sk−1

µk−1(sk−1)p(dk, zk, sk|sk−1) (46)

=
∑

dk

∑

s
k−1
0

p(dk, zk, sk0), (47)

for k = 1, 2, . . . , n. After all, (45) is obtained byp(zn) =
∑

sn
µn(sn).

In order to reduce the computational complexity for chan-
nels with a large number of states, (46) can be modified to
yield a lower bound onp(zn) by taking a subset of states at
eachk stage. LetS ′k be a subset of states at thek-th stage
with Q , |S ′k|. The recursion (46) can be modified to

µk(sk) =
∑

dk

∑

sk−1∈S′

k−1

µk−1(sk−1)p(dk, zk, sk|sk−1). (48)

This yields an upper bound onh(z) and thus it is called
reduced-state upper bound (RSUB)in [4]. It is worth noting
that reducing the number of states is a similar approach to
reducing the number of candidate input vectors in the proposed
SD approximation.

3) Hamming Distance 1 (HD1) Based Approximation
Method: For the sake of performance comparison, we pro-
pose an HD1-based approximation method which is a simple
Gaussian mixture reduction including the symbol vectors with
Hamming distance one from a pre-chosen symbol vector. Here,
we use the Babai estimate for the pre-chosen symbol vector.
Hence, based on the Babai estimated0 = [d0,1, . . . , d0,Nt

]T,
the candidate symbol vectors are obtained by

d̂
(j)
i = [d0,1, . . . , d0,i−1, d

(j)
i , d0,i+1, . . . , d0,Nt

]T, (49)

whered(j)i ∈ Mc\{d0,i}, i = 1, . . . , Nt, j = 1, . . . , |Mc|−1.
Consequently, we obtain the set of symbol vectors to be added
up byDHD1 = {d0}

⋃{d̂(j)
i }i,j and thus, the following pdf

is obtained:

fm(z) =
∑

d̂∈DHD1

1

MNt
c

exp
(

−‖z−Hd̂‖2
)

. (50)

Sincefm(z) is good only at medium SNR, by combining high
and low SNR approximations in the SA method, the pdf ofz

can be approximated by

f(z) ≈ max {fh(z), fm(z), fl(z)} . (51)

B. FIR Filter Channel

As first example, we consider a memory-10 FIR filter chan-
nel with i.u.d. binary input used in [4] as the largest memory
case, i.e.,zk =

∑10
l=0 gldk−l + nk, wheregl = 1

1+(i−5)2 . For
convenience in SNR calculation, the sum of squared channel
coefficients is normalized by one. In matrix representation,
this channel can be constructed by a Toeplitz matrix with
Nt = 11 where each row has the same elements but circularly
shifted (i.e., circulant matrix). Unlike real-valued noise was
considered in [4], we consider complex-valued noise.

Fig. 6 (a) shows the mutual information for memory-10 FIR
filter channel with binary input. The GB drawn with Gaussian
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Fig. 6. Memory-10 FIR filter channel with binary input (a) Mutual infor-
mation [bits/symbol] (b) Complexity in terms of the number of visited nodes
during the tree search or states during the trellis search. For Monte-Carlo
expectation, we useNd = 100 andNz = 50, and for the BCJR method, we
setn = 5× 104.

distributed input provides an upper bound. The true curve can
be found by the SD tree search with infinite sphere radius (i.e.,
IupDFS with α→∞). The SA method is the worst and the HD1
method is better than the SA method at medium SNR. The
BCJR method with full trellis and the proposed DFS-based
SD upper bound withα = 1.5 provide the true curve. The
DFS-based SD upper bound withα = 1, the BFS-based SD
upper bounds, and the BCJR-based RSUB withQ = 100 yield
some errors as SNR decreases. For largerα andK parameters,
the SD upper bounds become more accurate.

Fig. 6 (b) shows the complexity in terms of the number
of visited nodes during the tree search or states during the
trellis search. The HD1 method requires to findNt(Mc − 1)
neighbor components. The number of visited nodes in full tree
search for the true curve is given by

∑Nt

k=1 M
k
c . The number of

visited states in the BCJR method with full trellis at theNt-th
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Fig. 7. SD upper bound (Iupx ), lower bound (Ilox ), and enhanced lower bound
(Ilo+x ) for DFS (upper figure) and BFS (lower figure) atSNR = −2.5 dB
in memory-10 FIR filter channel with binary input.

stage5 is given byMc

∑Nt−1
k=0 Mk

c . Unlike the BFS-based SD
upper bound and the BCJR method, the DFS-based SD upper
bounds show variable complexities according to SNR due to
fixed sphere radius, i.e., they result in higher complexity at low
SNR. The complexity of the BFS-based SD upper bound is
given in (26) and that of the BCJR-based RSUB is obtained by
Mc(

∑q0
k=0 M

k
c +

∑Nt−1
k=q0+1 Q) whereq0 , max{k : Mk

c <
Q}. The BFS withK = 50 has lower complexity than the
BCJR-based RSUB withQ = 100, while it is much more
accurate on the mutual information as shown in Fig. 6 (a).
Moreover, the BFS withK = 50 is more accurate than the
DFS with α = 1, while it has much lower complexity when
SNR ≤ 4 dB. Thus, the BFS is useful for low-complexity
with a reasonable accuracy.

Fig. 7 shows trends of the SD bounds according to control
parameters (i.e.,α for DFS andK for BFS) in memory-10 FIR
filter channel with binary input atSNR = −2.5 dB. As the
parameters increases, the bounds converge to the true curve.
Note that for both DFS and BFS cases, the upper bounds are
much tighter than the lower and enhanced lower bounds.

C. Frequency-Selective and Time-Selective Fading Channel
with a Large Memory

As second example, we consider a generalized frequency-
and time-selective fading channel given byH = AG where
A is the diagonal time-selective channel matrix andG is the
frequency-selective circulant matrix as in [32]. This channel
setup is relevant for realistic WCDMA systems [5]. For
A = diag(a1, . . . , aNt

), we assumeai ∼ CN (0, 1)∀i. For
G, we consider a memory-L FIR filter channel, i.e.,zk =
∑L

l=0 gldk−l + nk, wheregl = 2−l, l = 0, . . . , L. Note that
the BCJR method in [4] does not work for these setups due
to time-varying property. Thus, we only take into account the
SA and HD1 methods as benchmarks in this channel.

5For fair comparison, we consider the complexity corresponding to firstNt

symbols for the BCJR method since the SD bounds has the block lengthNt.
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Fig. 8. Frequency-selective and time-selective channel with 4-QAM input,
Nt = 8, and L = Nt − 1 (a) Mutual information [bits/symbol] (b)
Complexity in terms of average number of visited nodes during the tree
search. For Monte-Carlo expectation, we useNd = 50 and Nz = 50.
For the enhanced approximation, we useα = 2, 10 log10 γl = −4 dB,
10 log10 γh = 4 dB at ρc = 0 dB. Note that in the randomly realized
channelH, 10 log10 λ

2
1 = −3.51 dB and10 log10 λ

2
Nt

= −3.89 dB.

Fig. 8 shows the mutual information and complexity for
frequency- and time-selective channel with 4-QAM input,
Nt = 8, andL = Nt − 1. The DFS-based upper bound is
almost the same as the true curve with much lower complexity,
while the BFS-based upper bound has small errors at low SNR
due to lowering the complexity. As investigated in Fig. 7, the
upper bounds are much tighter than the lower bounds. The
DFS-based lower bound has approximately a constant gap
with the upper bound, whereas the BFS-based lower bound
is tight at high SNR but loose at low SNR. The enhanced
approximation approaches the true curve with a small gap but
much lower complexity at low and high SNRs, while the SA
and HD1 methods have large errors at moderate SNR.

Fig. 9 shows the mutual information for frequency- and
time-selective channel with 4-QAM input,Nt = 40, andL =



12

0 2 4 6 8 10 12 14
1

1.2

1.4

1.6

1.8

2

2.2

SNR [dB]

I
(z

;d
)
[b
it
s/

sy
m
]

 

 

GB

SA

HD1

IS D E A

Fig. 9. Mutual information in frequency-selective and time-selective channel
with 4-QAM input,Nt = 40, andL = Nt−1. For Monte-Carlo expectation,
we Nd = 50 andNz = 50. For the enhanced approximation, we useα = 1,
10 log10 γl = 3 dB, 10 log10 γh = 5 dB at ρc = 0 dB.

Nt − 1. Computing the true curve is impossible due to the
huge problem size, i.e.,MNt

c = 440 ≈ 1.2 × 1024. The SD
bounds are also unavailable within reasonable simulation time.
Therefore, we compare the enhanced approximation with the
SA and HD1 methods. Both the SA and HD1 methods almost
reach two trivial upper bounds, i.e., GB and SEB, for this
large size case, while the enhanced approximation still yields
a nice curve below. Note that from the properties given in
Section V-B and Fig. 8, we can conjecture that the true curve
lies below the enhanced approximation. The complexity of
the enhanced approximation is about104 at SNR = 4 dB and
less than102 in the other SNRs, while the complexity of full
tree search for the true curve is4(440 − 1)/3 ≈ 1.6 × 1024.
Compared Fig. 9 to Fig. 8 (a), for a large block size, the
mutual information is decreased in overall but in general, it
will depend on the channel realization.

VII. C ONCLUSION

We have proposed novel complexity efficient algorithmic
solutions to approximate the entropy of Gaussian mixture dis-
tributions with a large number of components. The algorithms
allow to trade-off the accuracy versus the complexity and
the approximations are asymptotically tight with unbounded
complexity. The extended approach can even deal with very
high system dimensions with a reasonable accuracy which was
not possible previously. The computation of the entropy for
Gaussian mixture distribution is important for many problems,
e.g. data fusion, machine learning, etc. In particular, it can
be used to approximate the mutual information of a vector-
valued Gaussian channel with finite input alphabets. In contrast
to other methods, the proposed algorithms are applicable to
any linear input output relation. The proposed concepts can
be easily adapted or extended to other application areas.
For future work, the concept and methods developed in this
work can be extended to deal with more general Gaussian
mixture distributions with heterogeneous covariance structures
including improper complex signals.

APPENDIX A
PROOFS OFPROPERTIES ONγl AND γh

a) Property a corresponds to the case ofNC = Nt. Thus, we
show that the mutual information of the Babai estimate-
based approximation withNC = Nt is equivalent to
IupSEB. Instead of (30), the effective received signal be-
comesv ≈ Rd̃ + w. Applying the single component
only approximation, the pdf ofv is given by

f(v) =
exp

(

−‖v−Rd̃‖2
)

(πMc)Nt
≈ exp

(
−‖w‖2

)

(πMc)Nt
.

Then, the mutual information is derived as

I(z;d) ≈ E

[

log2(πMc)
Nt + log2 e

‖w‖2
]

− log2(πe)
Nt

= log2 M
Nt
c + log2 e

E[‖w‖2] − log2 e
Nt = IupSEB

sinceE
[
‖w‖2

]
= Nt andIupSEB = H(d) = log2 M

Nt
c .�

b) Property b corresponds to the case ofNA = Nt. Thus, we
show that the mutual information of the single Gaussian
approximation withNA = Nt is equivalent toIupGB. First
of all, IupGB = log2 det(ρRRH + I) since E

[
vvH

]
=

E

[

(Rd+w) (Rd+w)
H
]

= ρRRH + I. Applying the
single Gaussian approximation, the pdf ofv is

f(v) ≈ exp(−vHK−1
v v)

πN det(Kv)
,

whereKv = ρRRH+I sinceA = R. Hence, the mutual
information is derived as

I(z;d) ≈ E

[

log2 π
Nt + log2 det(Kv)

+ log2 exp
(

(K
− 1

2
v v)HK

− 1
2

v v
) ]

− log2(πe)
Nt

= log2 det(Kv) = IupGB,

sinceKv is Hermitian andK
− 1

2
v v ∼ CN (0, I). �

c) The proof of Property c is straightforward since this
corresponds to the case ofNB = Nt. �

d) SinceNA = 0 andNB + NC = Nt for the BC curve,
f(v) = f(vC)f(vB |vC) from (37), where

f(vC) ≈
exp(−‖wC‖2)

(πMc)NC
,

f(vB|vC) ≈
|DSD

B |
∑

m=1

exp(−‖B(dB − d̂B,m) +wB‖2)
(πMc)NB

,

whered̂B,m is them-th vector inDSD
B . DenotingeB,m ,
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B(dB − d̂B,m), the mutual information is derived as

I(z;d) ≈ E

[

log2(πMc)
NC + log2 e

‖wC‖2

+ log2(πMc)
NB

− log2

|DSD
B |

∑

m=1

e−‖eB,m+wB‖2
]

− log2(πe)
Nt

(α)
= log2 M

Nt
c − E

[

log2

|DSD
B |

∑

m=1

e−‖eB,m+wB‖2
]

+ log2 e
E[‖wC‖2] − log2 e

E[‖wB‖2+‖wC‖2]

= log2 M
Nt
c

︸ ︷︷ ︸

=I
up

SEB

−E
[

log2

|DSD
B |

∑

m=1

e‖wB‖2−‖eB,m+wB‖2

︸ ︷︷ ︸

,X

]

,

(A.1)

where (α) comes fromE[‖w‖2] = E[‖wB‖2+‖wC‖2] =
Nt. If X ≥ 1, the second term of (A.1) becomes non-
positive and therefore,I(z;d) ≤ IupSEB always holds.
If dB ∈ DSD

B , X includes exp(‖wB‖2 − ‖eB,m +
wB‖2) = 1 and thus,X ≥ 1. If dB /∈ DSD

B , all vectors in
DSD

B yields shorter Euclidean distances thandB. That is,
for all d̂B,m ∈ DSD

B , exp(‖wB‖2−‖eB,m+wB‖2) ≥ 1
since ‖wB‖2 ≥ ‖eB,m + wB‖2. As a result,X ≥
|DSD

B | ≥ 1. Therefore,I(z;d) ≤ IupSEB always holds.
If γh < λ2

1 then I(z;d) = IupSEB by Property a. In
addition, if γh ≥ λ2

Nt
thenI(z;d) = IupSD by Property c.

As γh increases fromλ2
1, NB becomes non-zero andX

hasMNB
c exponential terms. For further increasingγh,

if NB increases by one thenX hasMc additional expo-
nential terms. Sinceexp(·) ≥ 0, X gradually increases as
γh increases. Therefore,I(z;d) monotonically decreases
from IupSEB to IupSD asγh increases. �

e) SinceNC = 0 andNA + NB = Nt for the AB curve,
f(v) ≈ ∑|DSD

B |
m=1 p(d̂B,m)f(vB|d̂B,m)f(vA|d̂B,m) in

(37). DenotingeB,m , B(dB − d̂B,m) and vA,m ,

vA − BAd̂B,m = AdA + BA(dB − d̂B,m) + wA, the
pdfs are written byp(d̂B,m) = 1

M
NB
c

,

f(vB|d̂B,m) =
exp(−‖eB,m +wB‖2)

πNB
,

f(vA|d̂B,m) =
exp(−vH

A,mK−1
A vA,m)

πNA det(KA)
,

whereKA = ρAAH + I. Then, the mutual information
is derived as

I(z;d) ≈ −E
[ |DSD

B |
∑

m=1

p(d̂B,m)f(vB |d̂B,m)f(vA|d̂B,m)
]

− log2(πe)
Nt

(β)
= E

[

log2 M
NB
c + log2 π

NA+NB + log2 det(KA)

− log2

|DSD
B |

∑

m=1

e−‖eB,m+wB‖2−v
H

A,mK
−1
A

vA,m

]

− log2 π
Nt − E

[

log2 e
‖w‖2

]

(δ)
= log2 M

NB
c + log2 det(ρAAH + I)− E

[

log2

|DSD
B |

∑

m=1

e‖wB‖2−‖eB,m+wB‖2+‖wA‖2−v
H

A,mK
−1
A

vA,m

︸ ︷︷ ︸

,Y

]

where (β) comes from E[‖w‖2] = Nt, and (δ)
comes from‖w‖2 = ‖wA‖2 + ‖wB‖2. As ρ → 0,
log2 det(ρAAH + I) ≈ 0 and we have

Y ≈
|DSD

B |
∑

m=1

e‖wB‖2−‖eB,m+wB‖2+‖wA‖2−‖wA‖2

= X
(φ)

≥ 1,

where(φ) comes from the proof of Property d. Therefore,
for ρ→ 0, we haveI(z;d) = log2 M

NB
c − E[log2 X ] ≥

log2 M
NB
c − log2

∑|DSD
B |

m=1 eE[‖wB‖2] = log2 M
NB
c −

(log2 |DSD
B | + NB log2 e) ≥ −NB log2 e, which can be

positive, whileIupGB = log2 det(ρRRH+I) ≈ 0 asρ→ 0.
Therefore, the AB curve can exceedIupGB at low SNR.�
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