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Abstract—In this paper, we investigate the network power
minimization problem for the multicast cloud radio access
network (Cloud-RAN) with imperfect channel state information
(CSI). The key observation is that network power minimization
can be achieved by adaptively selecting active remote radio
heads (RRHs) via controlling the group-sparsity structureof the
beamforming vector. However, this yields a non-convex combi-
natorial optimization problem, for which we propose a three-
stage robust group sparse beamforming algorithm. In the first
stage, a quadratic variational formulation of the weightedmixed
ℓ1/ℓ2-norm is proposed to induce the group-sparsity structure in
the aggregated beamforming vector, which indicates those RRHs
that can be switched off. A perturbed alternating optimization
algorithm is then proposed to solve the resultant non-convex
group-sparsity inducing optimization problem by exploiting its
convex substructures. In the second stage, we propose aPhaseLift
technique based algorithm to solve the feasibility problemwith
a given active RRH set, which helps determine the active RRHs.
Finally, the semidefinite relaxation (SDR) technique is adopted to
determine the robust multicast beamformers. Simulation results
will demonstrate the convergence of the perturbed alternating
optimization algorithm, as well as, the effectiveness of the
proposed algorithm to minimize the network power consumption
for multicast Cloud-RAN.

Index Terms—Cloud-RAN, multicast beamforming, green com-
munications, group-sparsity, robust optimization, alternating op-
timization, PhaseLift, semidefinite relaxation.

I. I NTRODUCTION

NETWORK densification has been recognized as an ef-
fective way to meet the exponentially growing mobile

data traffic and to accommodate increasingly diversified mo-
bile applications. Cooperative transmission/reception among
multiple base stations is a well-known approach to improve
the spectral efficiency and energy efficiency of dense wireless
networks [1], [2], [3], which is driving the development of
novel collaborative architectures for cellular networks.Cloud
radio access networks (Cloud-RAN) [4], [5], [6] have re-
cently been proposed as a cost-effective and flexible way to
exploit the cooperation gains by moving the baseband units
(BBUs) into a single cloud data center, i.e., forming a BBU
pool with powerful shared computing resources. As a result,
with efficient hardware utilization at the BBU pool, both
the CAPEX (e.g., via low-cost site construction) and OPEX
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(e.g., via centralized cooling) can be reduced significantly.
Furthermore, the conventional base stations are replaced by
the light and low-cost remote radio heads (RRHs) with basic
functionalities of signal transmission and reception, which
are then connected to the BBU pool by high-capacity and
low-latency optical fronthaul links. The capacity of Cloud-
RAN thus can be significantly improved through network
densification and centralized signal processing at the BBU
pool.

However, the new architecture of Cloud-RAN also brings
new design and operating challenges, e.g., high-capacity and
low-latency requirements for the optical fronthaul links [7],
virtualization techniques for resource management in the BBU
pool [4], and massive CSI acquisition for cooperative inter-
ference management [8], [9]. In particular, energy efficiency
is an important aspect for operating such a dense wireless
network, and it is among the major design objectives for 5G
networks [10]. Conventionally, the energy efficiency oriented
design only takes into account the transmit power [11] and the
circuit power [12] at the base stations. Nevertheless, in such
dense collaborative networks as Cloud-RAN, a holistic viewis
needed when measuring network power consumption, which
should also include the power consumption of the additional
optical fronthaul links [5]. Observing that the mobile data
traffic would vary temporally and spatially, it was proposedin
[5] to adaptively switch off some fronthaul links and the corre-
sponding RRHs to minimize the network power consumption,
which is achieved by a new beamforming technique, called
group sparse beamforming.

The effectiveness of group sparse beamforming has been
demonstrated in [5], but with certain limitations in the network
model, e.g., perfect CSI is assumed at the BBU pool, and
only unicast services are considered. In practice, inevitably
there will be uncertainty in the available CSI, originatingfrom
various sources, e.g., limited feedback [13], channel estimation
errors [14], partial CSI acquisition [8], [9] and delay in the
obtained CSI [15], [16]. In terms of transmission services from
the RRHs, it has been well recognized that the physical layer
integration technique [17] can effectively improve the network
performance. In particular, the RRHs should not only transmit
data to individual users [18] (i.e., broadcast/unicast services)
but also integrate additional multicast services [19], where the
RRHs transmit a common message in such a way that all
the MUs in the same group can decode it. Such multigroup
multicast transmission is promising to provide high capacity
services and content-aware applications in next generation
wireless networks. For instance, with physical layer caching
for wireless video delivery [20], it is common that multiple
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users are interested in the same video stream, which creates
multicast groups.

In this paper, we will thus focus on the design of green
Cloud-RAN by jointly minimizing the RRH power consump-
tion and transport link power consumption, considering the
practical scenarios with imperfect CSI and multigroup multi-
cast services. We adopt the robust optimization approach to
address the CSI uncertainty, such that the QoS requirements
are satisfied forany realization of the uncertainty in a prede-
fined set [21]. The unique challenges of the network power
minimization problem arise from both the infinite number of
the non-convex quadratic QoS constraints (due to the robust
design criteria and multicast transmission) and the combina-
torial composite objective function (due to the consideration
of both the relative fronthaul link power consumption and the
RRH transmit power consumption).

A. Related Works

1) Robust Multicast Beamforming: Although the integra-
tion of multicast, individual services and cooperative trans-
mission can significantly improve the capacity of wireless
networks [17], it will bring significant challenges from both the
information theoretic [22] and signal processing perspectives
[19], [23]. In particular, the physical-layer multicast beam-
forming problem is in general NP-hard due to the non-convex
quadratic QoS constraints [19]. Furthermore, to address the
CSI uncertainty, one may either adopt the stochastic optimiza-
tion formulation [24] or the robust optimization formulation
[25]. However, the stochastic optimization formulations often
yield highly intractable problems, e.g., the stochastic coordi-
nated beamforming problem based on the chance constrained
programming [9]. The worst-case based robust optimiza-
tion, on the other hand, has the advantage of computational
tractability [21]. Although the original robust and/or multicast
beamforming design problems may be non-convex due to the
infinite number of non-convex quadratic QoS constraints [26],
the convex optimization based SDR technique [27] with S-
lemma [28] has recently been applied to provide a principled
way to develop polynomial time complexity algorithms to find
an approximate solution [29].

However, we cannot directly apply such SDR technique to
solve the network power minimization problem due to the
non-convex combinatorial composite objective function, which
represents the network power consumption.

2) Group Sparse Beamforming: The convex sparsity-
inducing penalty approach [30] has recently been widely
used to develop polynomial time complexity algorithms for
the mixed combinatorial optimization problems in wireless
networks, e.g., joint base station clustering and transmitbeam-
forming [31], joint antenna [32] or RRH [5] selection and
transmit beamforming. The main idea of this approach is that
the sparsity pattern of the beamforming vector, which can
be induced by minimizing a sparsity penalty function (e.g.,
the mixed ℓ1/ℓ2-norm minimization can induce the group-
sparsity), can provide guidelines for, e.g., antenna selection
[32], where the antennas with smaller beamforming coef-
ficients (measured by theℓ∞-norm) have a higher priority

to be switched off. However, most works only consider the
ideal scenario (e.g., perfect CSI and broadcast services [5]),
which usually yield convex constraints (e.g., second-order
cone constraints [5]).

Unfortunately, we cannot directly adopt thenon-smooth
weighted mixedℓ1/ℓ2-norm developed in [5] to induce the
group-sparsity for the robust multicast beamforming vector.
This is because the resultant group-sparsity inducing optimiza-
tion problem will be highly intractable, due to the non-smooth
sparsity-inducing objective function and the infinite number of
non-convex quadratic QoS constraints.

Based on above discussion and in contrast to the previous
work [5] on group sparse beamforming with a non-convex
combinatorial composite objective function but convex QoS
constraints in the unicast Cloud-RAN, we need to address the
following coupled challenges in order to solve the network
power minimization problem for multicast green Cloud-RAN
with imperfect CSI:

• An infinite number of non-convex quadratic QoS con-
straints;

• The combinatorial composite objective function.

Thus, to apply the computationally efficient group sparse
beamforming approach [5] to more practical scenarios, unique
challenges arise. We need to redesign the group-sparsity induc-
ing norm, and then deal with the non-convex group-sparsity
inducing optimization problem with an infinite number of non-
convex quadratic QoS constraints. We should also develop
efficient algorithms for non-convex feasibility problems for the
adaptive RRH selection, and for non-convex robust multicast
beamforming design after determining the active RRHs.

B. Contributions

In this paper, we provide a convex relaxation based robust
group sparse beamforming framework for network power
minimization in multicast Cloud-RAN with imperfect CSI.
The major contributions are summarized as follows:

1) A group sparse beamforming formulation is proposed
to minimize the network power consumption for Cloud-
RAN. It will simultaneously control the group-sparsity
structure and the magnitude of the beamforming coef-
ficients, thereby minimizing the relative fronthaul link
power consumption and the transmit power consump-
tion, respectively. The group sparse beamforming mod-
eling framework lays the foundation for developing the
three-stage robust group sparse beamforming algorithm
based on the convex relaxation.

2) In the first stage, a novel quadratic variational formula-
tion of the weighted mixedℓ1/ℓ2-norm is proposed to in-
duce the group-sparsity structure for the robust multicast
beamforming vector, thereby guiding the RRH selection.
The main motivation for such a quadratic form formu-
lation is to make the group-sparsity inducing penalty
function compatible with the quadratic QoS constraints.
Based on the SDR technique, a perturbed alternating op-
timization algorithm with convergence guarantee is then
proposed to solve the resultant non-convex quadratic
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Fig. 1. The architecture of the multicast Cloud-RAN, in which, all the RRHs
are connected to a BBU pool through high-capacity and low-latency optical
fronthaul links. All the MUs in the same dashed circle form a multicast group
and request the same message.

form group-sparsity inducing optimization problem by
exploiting its convex substructures.

3) In the second stage, aPhaseLift approach based algo-
rithm is proposed to solve the non-convex feasibility
problems, based on which the active RRHs can be deter-
mined with a binary search. Finally, the SDR technique
is adopted to solve the non-convex robust multicast
beamforming optimization problem to determine the
transmit beamformers for the active RRHs.

4) Simulation results will demonstrate the effectiveness of
the proposed robust group sparse beamforming algo-
rithm to minimize the network power consumption.

C. Organization

The remainder of the paper is organized as follows. Section
II presents the system model and problem formulation, fol-
lowed by the problem analysis. In Section III, the group sparse
beamforming modeling framework is proposed to formulate
the the network power minimization problem. The semidefinite
programming (SDP) based robust group sparse beamforming
algorithm is developed in Section IV. Simulation results will
be illustrated in Section V. Finally, conclusions and discus-
sions are presented in Section VI.

II. SYSTEM MODEL AND PROBLEM FORMULATION

A. System Model

Consider a multicast Cloud-RAN withL RRHs andK
single-antenna mobile users (MUs), where thel-th RRH is
equipped withNl antennas, as shown in Fig. 1. The centralized
signal processing is performed at the baseband unit (BBU)
pool [4], [5]. DefineS = {1, . . . ,K} as the set of all the MUs
andL = {1, . . . , L} as the set of all the RRHs. We focus on
the downlink transmission, for which the signal processingis
more challenging. Assume that there areM (1 ≤ M ≤ K)
multicast groups, i.e.,{G1, . . . ,GM}, where Gm is the set
of MUs in the multicast groupm with 1 ≤ m ≤ M . Let

M = {1, . . . ,M} be the set of the multicast groups. Each
MU only belongs to a single multicast group, i.e.,Gi∩Gj = ∅
such that∪iGi = S and

∑

i |Gi| = K.
Let vlm ∈ CNl be the transmit beamforming vector from

the l-th RRH to thek-th MU in group Gm. The encoded
transmission information symbol of the multicast groupm is
denoted assm ∈ C with E[|sm|2] = 1. The channel propaga-
tion between MUk and RRH l is denoted ashkl ∈ CNl .
Therefore, the received signalyk,m ∈ C at MU k in the
multicast groupm is given by

yk,m =

L∑

l=1

hH

klvlmsm +
∑

i6=m

L∑

l=1

hH

klvlisi + nk, ∀k ∈ Gm, (1)

wherenk ∼ CN (0, σ2
k) is the additive Gaussian noise at MU

k. We assume thatsm’s and nk ’s are mutually independent
and all the MUs apply single user detection. The signal-to-
interference-plus-noise ratio (SINR) for MUk ∈ Gm is given
by

Γk,m =
|hH

kvm|2
∑

i6=m |hH

kvi|2 + σ2
k

, ∀k ∈ Gm, (2)

wherehk , [hT
k1, . . . ,h

T
kL]

T ∈ C
N with N =

∑L
l=1 Nl,

and vm , [vT
1m,vT

2m, . . . ,vT
Lm]T ∈ C

N is the aggregative
beamforming vector for the multicast groupm from all the
RRHs. The transmit signal at RRHl is given by

xl =

M∑

m=1

vlmsm, ∀l. (3)

Each RRH has its own transmit power constraint, i.e.,

M∑

m=1

‖vlm‖22 ≤ Pl, ∀l, (4)

wherePl > 0 is the maximum transmit power of RRHl.

B. Problem Formulation

1) Imperfect CSI: In practice, the CSI at the BBU pool will
be imperfect, which may originate from a variety of sources.
For instance, in frequency-division duplex (FDD) systems,the
CSI imperfection may originate from downlink training based
channel estimation [14] and uplink limited feedback [13]. It
could also be due to the hardware deficiencies, partial CSI
acquisition [8], [9] and delays in CSI acquisition [15], [16].
In this paper, we adopt the following additive error model
[26], [33], [34] to model the channel imperfection from all
the RRHs to MUk, i.e.,

hk = ĥk + ek, ∀k, (5)

whereĥk is the estimated channel vector andek is the esti-
mation error vector. There are mainly two ways to model the
CSI uncertainty: one is the stochastic modeling based on the
probabilistic description, and the other is the deterministic and
set-based modeling. However, the stochastic CSI uncertainty
modeling will yield probabilistic QoS constraints. The re-
sulting chance constrained programming problems are highly
intractable in general [9]. Therefore, to seek a computationally
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tractable formulation, we further assume that the error vectors
satisfy the following elliptic model [26], [33], [34]:

eHkΘkek ≤ 1, ∀k, (6)

whereΘk ∈ HN×N with Θk � 0 is the shape of the ellipsoid.
This model is motivated by viewing the channel estimation as
the main source of CSI uncertainty [34, Section 4.1].

2) Network Power Consumption: In Cloud-RAN, it is vital
to minimize the network power consumption, consisting of
RRH transmit power and relative fronthaul network power [5],
in order to design a green wireless network. RRH selection
will be adopted for this purpose. Specifically, letA be the set
of active RRHs, the network power consumption is given by

p(A) =
∑

l∈A

P c
l +

∑

l∈A

M∑

m=1

1

ηl
‖vlm‖22, (7)

whereP c
l ≥ 0 is the relative fronthaul link power consumption

[5] (i.e., the static power saving when both the fronthaul link
and the corresponding RRH are switched off) andηl > 0 is
the drain inefficiency coefficient of the radio frequency power
amplifier. The typical values areP c

l = 5.6W and ηl = 25%
[5], respectively.

Given the QoS thresholdsγ = (γ1, . . . , γK), in this paper,
we aim at minimizing the network power consumption while
guaranteeing the worst-case QoS requirements in the presence
of CSI uncertainty and the per-RRH power constraints, i.e.,we
will consider the following non-convex mixed combinatorial
robust multicast beamforming optimization problem,

P : minimize
v,A,Z

∑

l∈A

P c
l +

∑

l∈A

M∑

m=1

1

ηl
‖vlm‖22 (8)

subject to
M∑

m=1

‖vlm‖22 ≤ Pl, ∀l ∈ A (9)

M∑

m=1

‖vlm‖22 = 0, ∀l ∈ Z (10)

|(ĥk + ek)
Hvm|2

∑

i6=m |(ĥk + ek)Hvi|2 + σ2
k

≥ γk (11)

eHkΘkek ≤ 1, ∀k ∈ Gm,m ∈ M, (12)

whereZ is the set of inactive RRHs such thatA ∪ Z = L
and v = [vlm] is the aggregated beamforming vector from
all the RRHs to all the MUs. The constraints in (10) indicate
that the transmit powers of the inactive RRHs are enforced to
be zero. That is, the beamforming coefficients at the inactive
RRHs are set to be zero simultaneously. Constraints (11) and
(12) indicate that all the QoS requirements in (11) should
be satisfied forall realizations of the errorsek ’s within the
feasible set formed by the constraint (12).

The network power minimization problemP imposes the
following challenges:

1) For a given set of CSI error vectorsek ’s, the corre-
sponding network power minimization problem is highly
intractable, due to the combinatorial composite objective
function (8) and the non-convex quadratic constraints
(10) and (11).

2) There are an infinite number of non-convex quadratic
QoS constraints due to the worst-case design criterion.

To efficiently address the above unique challenges in a
unified fashion, in this paper, we will propose a systematic
convex relaxation approach based on SDP optimization to
solve problemP. In particular, the combinatorial challenge
will be addressed by the sparsity-inducing penalty approach in
Section IV-A, based on the quadratic variational formulation
for the weighted mixedℓ1/ℓ2-norm. The convex optimization
technique based on PhaseLift, SDR and S-lemma will be
adopted to cope with the infinite number of non-convex
quadratic constraints in Sections IV-B and IV-C.

In the next subsection, we will provide a detailed analysis
of problem P. In particular, the connections with the for-
mulations in existing literatures will be discussed, whichwill
reveal the generality of the formulationP for practical design
problems in Cloud-RAN.

C. Problem Analysis

While problemP incorporates most of the practical el-
ements in Cloud-RAN, i.e., imperfect CSI and multigroup
multicast transmission, it raises unique challenges compared
with the existing works. Following is a list of key aspects
of the difficulty of problemP, accompanied with potential
solutions.

• Robust Beamforming Design: Suppose that all the RRHs
are active, i.e.,A = L, with broadcast/unicast transmis-
sion, i.e.,|Gm| = 1, ∀m andM = K. Then problemP

reduces to the conventional worst-case non-convex robust
beamforming design problems [26], [33]. For this special
case, the SDR technique [27] combined with the S-lemma
[28] is proven to be powerful to find good approximation
solutions to such problems.

• Multicast Beamforming Design: Physical-layer multicast
beamforming design problems [19] prove to be non-
convex quadratically constrained problems (QCQP) [28],
even with perfect CSI and all the RRHs active. Again,
the SDR technique can relax this problem to a convex
one, yielding efficient approximation solutions.

• Quadratically Constrained Feasibility Problem: Suppose
that the inactive RRH setZ with |Z| > 0 is fixed, then we
have the quadratic equation constraints (10) in problem
P. PhaseLift [35] is a convex programming technique
to relax the non-convex feasibility problem with such
quadratic equation constraints to a convex one by lifting
the problem to higher dimensions and relaxing the rank-
one constraints by the convex surrogates, i.e., the trace
norms or nuclear norms.

• Non-convex Mixed-integer Nonlinear Programming Opti-
mization Problem: ProblemP can be easily reformulated
as a mixed-integer non-linear programming (MINLP)
problem as shown in [5]. However, the MINLP problem
has exponential complexity [36]. Therefore, such a re-
formulation cannot bring algorithmic design advantages.
One thus has to resort to some global optimization
techniques [37], [38] (e.g, branch-and-bound method)
or greedy algorithms [5]. Instead, the group-sparsity
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inducing penalty approach has recently received enor-
mous attention to seek effective convex relaxation for
the MINLP problems, e.g., for jointly designing transmit
beamformers and selecting bases stations [31], transmit
antennas [32], or RRHs [5]. However, with multicast
transmission and imperfect CSI, we cannot directly adopt
the group-sparsity inducing penalty developed in [5] with
the weighted mixedℓ1/ℓ2-norm, as we have seen that
we need to lift the problemP to higher dimensions
to cope with the non-convexity of the robust multicast
beamforming problem. This requires to develop a new
group-sparsity inducing penalty function, which needs to
be compatible with quadratic forms, as the beamforming
coefficients will be lifted to higher dimensions.

The above discussions show that problemP cannot be
directly solved by existing methods. Thus, we will propose
a new robust group sparse beamforming algorithm in this
paper, to solve the highly intractable problemP. Specifically,
in Section III, we will propose a group sparse beamforming
modeling framework to reformulate the original problemP.
The algorithmic advantages of working with the group sparse
beamforming formulation will be revealed in Section IV,
where a robust group sparse beamforming algorithm will be
developed.

III. A G ROUP SPARSEBEAMFORMING MODELING

FRAMEWORK

In this section, we propose a group sparse beamform-
ing modeling framework to reformulate the network power
minimization problemP by controlling the group-sparsity
structure and the magnitude of the beamforming coefficients
simultaneously. The main advantage of such a modeling
framework is the capability of enabling polynomial time
complexity algorithm design via convex relaxation.

A. Network Power Consumption Modeling

We observe that the network power consumption (7) can
be modeled by a composite function parameterized by the
aggregative beamforming coefficientsv ∈ CNM , which can
be written as a partition

v = [vT
11, . . . ,v

T
1M

︸ ︷︷ ︸

ṽT

1

, . . . ,vT
L1, . . . ,v

T
LM

︸ ︷︷ ︸

ṽT

L

]T , (13)

where all the coefficients in a given vector̃vl =
[vT

l1, . . . ,v
T
lM ]T ∈ CMNl form a beamforming coefficient

group. Specifically, observe that the optimal aggregative beam-
forming vector v in problem P should have the group-
sparsity structure. That is, when the RRHl is switched off, the
corresponding coefficients in the beamforming vectorṽl will
be set to zero simultaneously. Overall there may be multiple
RRHs being switched off and the corresponding beamforming
vectors will be set to zero, yielding a group-sparsity structure
in the beamforming vectorv.

Define the support of the beamforming vectorv as

T (v) = {i|vi 6= 0}, (14)

wherev = [vi] is indexed byi ∈ V with V = {1, . . . ,MN}.
Furthermore, define the setsVl = {M∑l−1

i=1 Ni +

1, . . . ,M
∑l

i=1 Ni}, l = 1, . . . , L, as a partition ofV , such
that ṽl = [vi] is indexed byi ∈ Vl. The network power
consumption in the first term of (7) thus can be defined by the
following combinatorial function with respect to the support
of the beamforming vector, i.e.,

F (T (v)) =
L∑

l=1

P c
l I(T (v) ∩ Vl 6= ∅), (15)

where I(T ∩ Vl 6= ∅) is an indicator function that takes
value 1 if T ∩ Vl 6= ∅ and 0 otherwise. Therefore, the total
relative fronthaul link power consumption can be reduced by
encouraging the group-sparsity structure of the beamforming
vectorv.

Furthermore, the total transmit power consumption in the
second term of (7) can be defined by thecontinuous function
with respect to theℓ2-norms of the beamforming vector, i.e.,

T (v) =

L∑

l=1

M∑

m=1

1

ηl
‖vlm‖22, (16)

which implicates that the transmit powers of the inactive RRHs
are zero, i.e., the corresponding beamforming coefficients
are zero. Therefore, the transmit power consumption can be
minimized by controlling the magnitude of the beamforming
coefficients. As a result, the network power consumption in
(7) can be rewritten as the following combinatorial composite
function parameterized by the beamforming vector coefficients
v, i.e.,

P (v) = F (T (v)) + T (v). (17)

Thus, it requires tosimultaneously control both the combina-
torial functionF and the continuous functionT to minimize
the network power consumption. Such a composite function
in (17) captures the unique property of the network power
consumption that involves two parts (i.e., relative fronthaul
network power consumption and transmit power consumption)
only through the beamforming coefficientsv.

B. Group Sparse Beamforming Modeling

Based on (17), problemP can be reformulated as the
following robust group sparse beamforming problem

Psparse: minimize
v

F (T (v)) + T (v)

subject to

M∑

m=1

‖vlm‖22 ≤ Pl, ∀l ∈ L

|(ĥk + ek)
Hvm|2

∑

i6=m |(ĥk + ek)Hvi|2 + σ2
k

≥ γk

eHkΘkek ≤ 1, ∀k ∈ Gm,m ∈ M, (18)

via optimizing the beamforming coefficientsv. We will show
that the special structure of the objective function inPsparse

yields computationally efficient algorithm design. In particular,
the weighted mixedℓ1/ℓ2-norm will be derived as a convex
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Fig. 2. The proposed three-stage robust group sparse beamforming frame-
work.

surrogate to control both parts in (17) by inducing the group-
sparsity structure for the robust multicast beamforming vector
v, thereby providing guidelines for RRH selection.

IV. A SEMIDEFINITE PROGRAMMING BASED ROBUST

GROUP SPARSEBEAMFORMING ALGORITHM

In this section, we will present the semidefinite program-
ming technique for the robust group sparse beamforming
problemPsparseby lifting the problem to higher dimensions.
The general idea is to relax the combinatorial composite
objective function by the quadratic variational formulation of
the weighted mixedℓ1/ℓ2-norm to induce the group-sparsity
structure for the beamforming vectorv. Unfortunately, the
resultant group sparse inducing optimization problem is still
non-convex. We thus propose a perturbed alternating optimiza-
tion algorithm to find a stationary point to it, thereby providing
the information on determining the priority for the RRHs that
should be switched off. Based on the ordering result, a selec-
tion procedure is then performed to determine active RRH sets,
followed by the robust multicast coordinated beamforming for
the active RRHs in the final stage. The proposed three-stage
robust group sparse beamforming framework is presented in
Fig. 2.

A. Stage One: Group-Sparsity Inducing Penalty Minimization

In this section, we describe a systematic way to address
the combinatorial challenge in problemPsparse by deriving
a convex surrogate to approximate the composite objective
function in problemPsparse. Specifically, we first derive the
tightest convex positively homogeneous lower bound for the
network power consumption function (17) in the following
proposition.

Proposition 1: The tightest convex positively homogeneous
lower bound of the objective function in problemPsparse is
given by

Ω(v) = 2

L∑

l=1

√

P c
l

ηl
‖ṽl‖2, (19)

which is a group-sparsity inducing norm for the aggregative
robust multicast beamformer vectorv.

Proof: Please refer to [5, Appendix A] for the proof.
Based on proposition 1, we propose to minimize the

weighted mixedℓ1/ℓ2-norm to induce the group-sparsity struc-
ture for the aggregative robust multicast beamforming vector

v:

PGSBF : minimize
v

Ω(v)

subject to

M∑

m=1

‖vlm‖22 ≤ Pl, ∀l ∈ L

|(ĥk + ek)
Hvm|2

∑

i6=m |(ĥk + ek)Hvi|2 + σ2
k

≥ γk (20)

eHkΘkek ≤ 1, ∀k ∈ Gm,m ∈ M. (21)

This is, however, a non-convex optimization problem due to
the non-convex worst-case QoS constraints (20) and (21).

To seek computationally efficient algorithms to solve the
non-convex problemPGSBF, we propose to lift the problem
to higher dimensions with optimization variables asQm =
vmvH

m ∈ CN×N , ∀m. To achieve this goal, in Section IV-A1,
a variational formulation is proposed to turn the non-smooth
group-sparsity inducing normΩ(v) into a smooth one with
quadratic forms, thereby extracting the variablesQm’s. We
then “linearize” the non-convex worst-case QoS constraints
with the S-lemma in Section IV-A2. In Section IV-A3, the per-
turbed alternating optimization algorithm is proposed to solve
the resultant non-convex group-sparsity inducing optimization
problem by exploiting its convex substructures.

1) Quadratic Variational Formulation of the Weighted
Mixed ℓ1/ℓ2-Norm: In order to extract the variablesQm’s
from the weighted mixedℓ1/ℓ2-norm, we introduce the fol-
lowing lemma to obtain an equivalent expression for the square
normΩ2(v), which has the same capability of inducing group-
sparsity as the non-smooth oneΩ(v) [30] and is widely used
in multiple kernel learning [39].

Lemma 1: [30] Let x = (x1, . . . , xL) ∈ RL
+ and ω =

(ω1, . . . , ωL) ∈ RL
+, then

(
L∑

l=1

ωlxl

)2

= inf
µ∈R

L

+

L∑

l=1

ω2
l x

2
l

µl
, s.t.

L∑

l=1

µl = 1. (22)

Proof: This can be obtained directly through the Cauchy-
Schwarz inequality

L∑

l=1

ωlxl =
L∑

l=1

ωlxl√
µl
· √µl

≤
(

L∑

l=1

ω2
l x

2
l

µl

)1/2( L∑

l=1

µl

)1/2

, (23)

whereωl ≥ 0 and the equality is met when
√
µl is proportional

to (ωlxl)/
√
µl, i.e.,

µl =
ωlxl

∑L
l=1 ωlxl

, (24)

which leads to the conclusion (22).
Based on lemma 1, the square of the weighted mixedℓ1/ℓ2-

norm (19) can be rewritten as

Ω2(v) = inf
µ∈X
R(µ,Q), (25)
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whereX = {µl| µl > 0,
∑L

l=1 µl = 1} is a simplex set and

R(µ,Q) = 4

L∑

l=1

P c
l

ηlµl

(
M∑

m=1

Tr(ClmQm)

)

, (26)

where µ = [µl], Q = [Ql] and Clm ∈ RN×N is a
block diagonal matrix with the identity matrixINl

as thel-
th main diagonal block square matrix and zeros elsewhere.
Therefore, the group-sparsity structure of the beamformerv

can be extracted from the trace ofQm’s, as will be shown
in (36). This procedure is known asthe quadratic variational
formulation of norms [30].

2) Linearize the Non-convex Worst-case QoS Constraints:
DefineGm = (Qm − γk

∑

i6=m Qi), and then the worst-case
QoS constraints (20) and (21) can be rewritten as

min
eH

k
Θkek≤1

(ĥk + ek)
HGm(ĥk + ek) ≥ γkσ

2
k, ∀k ∈ Gm.(27)

As the number of choices ofek ’s in the worst-case QoS
constraint (27) is infinite, there are an infinite number of such
“linearized” QoS constraints. Fortunately, using the S-lemma
[28, Appendix B.2], the worst-case QoS constraints (27) canbe
equivalently written as the following finite number of convex
constraints:

C1 :

[

Gm Gmĥk

ĥH

kGm ĥH

kGmĥk − γkσ
2
k

]

+ λk

[
Θk 0

0H −1

]

� 0, (28)

whereλk ≥ 0 andk ∈ Gm with m ∈M.
Based on the above discussions and utilizing the principle

of SDR technique [27] by dropping the rank-one constraints
for Qk ’s, we propose to solve the following problem to induce
the group-sparsity structure for the beamforming vectorv

PGS : minimize
Q,λ,µ∈X

R(µ,Q)

subject toC1, C2(L), λk ≥ 0,Qm � 0

∀k ∈ Gm,m ∈M, (29)

whereλ = [λk] and C2(A) is the set of linearized per-RRH
transmit power constraints,

C2(A) :
M∑

m=1

Tr(ClmQm) ≤ Pl, l ∈ A. (30)

ProblemPGS is still non-convex, as the objective function
R(µ,Q) is not jointly convex in the variables (µ,Q). Never-
theless, the objective function is biconvex [40], i.e., functionR
is convex with respect toµ for fixedQ and vice versa. In the
next subsection, we thus exploit the convex substructures of
problemPGS to develop a perturbed alternating optimization
algorithm to find an efficient sub-optimal solution.

3) Perturbed Alternating Optimization Algorithm: The gen-
eral idea of the alternating optimization algorithm is that
problemPGS is first optimized with respect to(Q,λ) with
a fixed µ, then the variablesµl’s are chosen to minimize
R(µ,Q) with a fixedQ. However, to avoid singularity when
µl’s approach to zeros during the alternating procedure as
discussed in [39], we instead adopt the perturbed version of
the alternating optimization algorithm [41] to solve problem

PGS. Specifically, define the perturbed objective function of
problemPGS as

Rǫ(µ,Q) = 4

L∑

l=1

P c
l

ηlµl

(
M∑

m=1

Tr(ClmQm + ǫIN )

)

, (31)

where ǫ > 0. Let PGS(ǫ) be the problem by replacing the
objective function in problemPGS with the perturbed function
Rǫ(µ,Q). We thus solve problemPGS(ǫ) via alternatively
solving the following two problems:

• Fixing µ, Optimizing Q and λ: Given µ = µ[i] at the
i-th iteration, we need to solve the following problem

P
[i]
GS(ǫ;µ

[i]) : minimize
Q,λ

Rǫ(µ
[i],Q)

subject toC1, C2(L), λk ≥ 0,Qm � 0

∀k ∈ Gm,m ∈M, (32)

to obtain(Q[i],λ[i]). This is an SDP problem and can be
solved efficiently using the interior-point method [28].

• Fixing Q and λ, Optimizing µ: Given Q = Q[i] at the
i-th iteration, we need to optimizeµ over the simplex set
X , i.e.,

P
[i]
GS(ǫ;Q

[i]) : minimize
µ∈X

Rǫ(µ,Q
[i]), (33)

which has the following optimal solution based on
Lemma 1:

µ
[i]
l =

√

(P c
l /ηl) ·

∑M
m=1 Tr(ClmQ

[i]
m + ǫIN)

∑L
l=1

√

(P c
l /ηl) ·

∑M
m=1Tr(ClmQ

[i]
m + ǫIN )

, (34)

for any l ∈ L.
As the objective function in problemPGS(ǫ) is bounded and

non-increasing at each iteration, the sequence{Rǫ(µ
[i],Q[i])}

generated by this algorithm, clearly, converges monotonically
to a sub-optimal value [40]. Since we will use the solution of
the problemPGS(ǫ) to predicate the group-sparsity pattern for
the beamformerv, we thus are also interested in investigating
the convergence of the sequence{Q[i]} itself generated by
this algorithm whenǫ→ 0. This is presented in the following
Theorem.

Theorem 1: The sequence{µ[i](ǫ),Q[i](ǫ),λ[i](ǫ)} gener-
ated by the perturbed alternating optimization algorithm con-
verges to a stationary point of problemPGS(ǫ). Furthermore,
whenǫ→ 0, we have

lim
ǫց 0

D(Λ(ǫ),Λ0) = 0, (35)

whereΛ0 (45) andΛ(ǫ) (46) denote the set of stationary points
of problemPGS and PGS(ǫ), respectively; andD(A1, A2),
defined in (52), denotes the deviation of the setA1 from the
setA2.

Proof: Please refer to Appendix A for details.
The perturbed alternating optimization algorithm is pre-

sented in Algorithm 1.
Based on the solutionsQ⋆

m’s generated by the perturbed
alternating optimization algorithm, in the next subsection, we
will present how to extract the group-sparsity pattern infor-
mation for the beamformerv, thereby providing information
on the RRH ordering, i.e., determine the priority of the RRHs
that should be switched off.
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Algorithm 1: Perturbed Alternating Optimization Algo-
rithm
input : Initialize µ[0] = (1/L, . . . , 1/L); I (the maximum
number of iterations)
Repeat

1) Solve problemP
[i]
GS(ǫ;µ

[i]) (32). If it is feasible,
go to 2); otherwise,stop and returnoutput 2.

2) Calculateµ[i] = (µ
[i]
1 , . . . , µ

[i]
L ) according to (34).

Until convergence or attain the maximum iterations and
returnoutput 1.
output 1: Q⋆

1, . . . ,Q
⋆
M ; output 2: Infeasible.

B. Stage Two: RRH Selection

Given the solutionQ⋆ to the group sparse inducing opti-
mization problemPGS, the group-sparsity structure informa-
tion for the beamformerv can be extracted from the following
relation:

‖ṽl‖ℓ2 =

(
M∑

m=1

Tr(ClmQm)

)1/2

, ∀l. (36)

Based on the (approximated) group-sparsity information in
(36), the following ordering criterion [5] incorporating the key
system parameters is adopted to determine which RRHs should
be switched off, i.e.,

θl =

√
κlηl
P c
l

(
M∑

m=1

Tr(ClmQ⋆
m

)1/2

, ∀l ∈ L, (37)

where κl =
∑K

k=1 ‖ĥkl‖22 is the channel gain for the
estimated channel coefficients between RRHl and all the
MUs. Therefore, the RRH with a smaller parameterθl will
have a higher priority to be switched off. Note that most
previous works applying the idea of sparsity inducing norm
minimization approach directly map the sparsity pattern to
their applications. For instance, in [32], the transmit antenna
with smaller coefficients in the beamforming coefficient group
(measured by theℓ∞-norm) will have a higher priority to be
switched off. In [5], however, we show that the ordering rule
(37), which incorporates the key system parameters, yields
much better performance than the pure sparsity pattern based
selection rule in terms of network power minimization.

In this paper, we adopt a simple RRH selection procedure,
i.e., binary search, due to its low-complexity. Specifically,
based on the ordering rule (37), we sort the coefficients in
the ascending order:θπ1

≤ θπ2
≤ · · · ≤ θπL

to determine the
active RRH set. DenoteJ0 as the maximum number of RRHs
that can be switched off. That is, problemF (A[i]) is feasible
for any i ≤ J0,

F (A[i]) : find v

subject to(9), (10), (11), (12), (38)

whereA[i] ∪Z [i] = L with Z [i] = {π0, π1, . . . , πi} andπ0 =
∅. Likewise, problemF (A[i]) with A[i] = {πi+1, . . . , πL}
is infeasible for anyi > J0. A binary search procedure can
be adopted to determineJ0, which only needs to solve no

more than(1+ ⌈log(1+L)⌉) feasibility problems (38) as will
be presented in Algorithm 2. DenoteA[J0] as the final active
RRH set, we thus need to solve the following transmit power
minimization problem

P(A) : minimize
v

∑

l∈A

(

1

ηl

M∑

m=1

‖vlm‖22 + P c
l

)

subject to(9), (10), (11), (12), (39)

with the fixed active RRH setA = A[J0] to determine
the transmit beamformer coefficients for the active RRHs.
Unfortunately, both problemsF (A) and P(A) are non-
convex and intractable. Thus, in the paper, we resort to the
computationally efficient semidefinite programming technique
to find approximate solutions to feasibility problemF (A) and
optimization problemP(A).

Notice that, with perfect CSI assumptions as in [5], [32],
given the active RRH setA, the size of the corresponding
optimization problemP(A) (e.g., [5, (12)] and [32, (13)])
will be reduced. The key observation is that we only need
to consider the channel links from the active RRHs. However,
with imperfect CSI, we still need to consider the channel links
from all the RRHs due to the lack of the knowledge of the
exact values of the CSI errorsek ’s. As a result, the sizes
of corresponding optimization problemsP(A[i])’s cannot be
reduced with imperfect CSI.

1) PhaseLift to the Non-convex Feasibility Problem: In this
subsection, we use thePhaseLift technique [35] to find approx-
imate solutions to the non-convex feasibility problemF (A).
Specifically, we first lift the problem to higher dimensions such
that the feasibility problemF (A) can be reformulated as

find Q1, . . . ,QM

subject toC1, C2(A), C3(Z), λk ≥ 0,Qm � 0

rank(Qm) = 1, ∀k ∈ Gm,m ∈M, (40)

where

C3(Z) :
M∑

m=1

Tr(ClmQm) = 0, ∀l ∈ Z. (41)

The main idea of the PhaseLift technique is to approximate the
non-convex rank functions in problem (40) using the convex
surrogates, yielding the following convex feasibility problem

PPL(A) : find Q1, . . . ,QM

subject toC1, C2(A), C3(Z), λk ≥ 0,Qm � 0

∀k ∈ Gm,m ∈M, (42)

which is an SDP problem and can be solved using the interior-
point method [28] efficiently. In general, the solution of
problem PPL(A) may not be rank-one. If this happens, to
yield a feasible solution for problemF (A), the Gaussian
randomization procedure [27] will be applied to obtain a
feasible rank-one approximate solution for problemF (A)
from the solution of problemPPL(A).

Remark 1: The PhaseLift technique, serving as one promis-
ing application of the SDR method, was proposed in [35] to
solve the phase retrieval problem [42], which is mathemati-
cally a feasibility problem with multiple quadratic equation
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constraints. Various conditions are presented in [35], [42] for
the phase retrieval problem, under which the corresponding
solution of the PhaseLift relaxation problem yields a rank-one
solution with a high probability. However, for our problem
PPL with additional complicated constraints, it is challenging
to perform such rank-one solution analysis. Thus, in this
paper, we only focus on developing computationally efficient
approximation algorithms based on the SDR technique.

C. Stage Three: SDR to the Robust Multicast Beamforming
Problem

Once we have selected active RRHs, i.e., fix the setA, we
need to finalize the beamforming vector by solving problem
P(A). We lift the non-convex optimization problemP(A)
to higher dimensions and adopt the SDR technique by drop-
ping the rank-one constraints, yielding the following convex
relaxation problem

PSDR(A) : minimize
Q,λ

∑

l∈A

(

1

ηl

M∑

m=1

Tr(ClmQm) + P c
l

)

subject to C1, C2(A), C3(Z), λk ≥ 0,Qm � 0

∀k ∈ Gm,m ∈ M, (43)

which is an SDP problem and can be solved using the interior-
point method [28]. It is important to investigate whether
the solution of problemPSDR(A) yields a rank-one solution
{Q⋆

m}. This is, however, an on-going research topic and some
preliminary results were presented in [26], [29]. In this paper,
if rank(Q⋆

m) = 1, ∀m, we can writeQ⋆
m = v⋆

mv⋆H
m , ∀m and

{v⋆
m} is a feasible (in fact optimal) solution to problemP(A).

Otherwise, if the rank-one solution is failed to be obtained,
the Gaussian randomization method [27] will be employed to
obtain a feasible rank-one approximate solution to problem
P(A).

Finally, we arrive at the robust group sparse beamforming
algorithm as shown in Algorithm 2.

Remark 2: The proposed robust group sparse beamforming
algorithm consists of three stages. In the first stage, we observe
that the perturbed alternating optimization algorithm converges
in 20 iterations on average in all the simulated settings in
this paper, while it is interesting to analyze the convergence
rate for this algorithm. In the second stage, to find the set
of active RRHs, we only need to solve no more than(1 +
⌈log(1 + L)⌉) convex feasibility problems (42) using the bi-
section method. Finally, we need to solve problem (43) to
determine the transmit beamforming coefficients for the fixed
active RRHs.

V. SIMULATION RESULTS

In this section, we analyze the performance of the proposed
robust group sparse beamforming algorithm. For illustration
purposes, all the estimated channelsĥk ’s are modeled as
spatially uncorrelated Rayleigh fading and the CSI errors are
modeled as the elliptic model (6) withQk = ε−2

k IN , ∀k.
We assume that each multicast group has the same number
of MUs, i.e., |Ω1| = |Ω2| = · · · = |ΩM |. The power
amplifier efficiency coefficients are set to beηl = 25%, ∀l. The

Algorithm 2: Robust Group Sparse Beamforming Algo-
rithm
Step 0: Solve the group-sparsity inducing optimization
problemPGS (29) using Algorithm 1.

1) If it is infeasible,go to End.
2) If it is feasible, obtain the solutionsQ⋆

m’s, calculate
the ordering criterion (37), and sort them in the
ascending order:θπ1

≤ · · · ≤ θπL
, go to Step 1.

Step 1: Initialize Jlow = 0, Jup = L, i = 0.
Step 2: Repeat

1) Seti← ⌊Jlow+Jup

2 ⌋.
2) Solve problemPPL(A[i]) (42): if it is infeasible, set

Jup = i; otherwise, setJlow = i.

Step 3: Until Jup− Jlow = 1, obtainJ0 = Jlow and obtain
the optimal active RRH setA⋆ with A⋆ ∪ J = L and
J = {π1, . . . , πJ0

}.
Step 4: Solve problemPSDR(A⋆) (43), obtain the robust
multicast beamforming coefficients for the active RRHs.
End
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Fig. 3. Convergence of the perturbed alternating optimization algorithm.

perturbed parameterǫ in the perturbed alternating optimization
algorithm is set to be10−3 and the algorithm will stop if either
the difference between the objective values of consecutive
iterations is less than10−3 or it exceeds the predefined
maximum iterations20. Each point of the simulation results
is averaged over 50 randomly generated channel realizations,
except for Fig. 3, where we only report one typical channel
realization.

A. Convergence of the Perturbed Alternating Optimization
Algorithm

Consider a network withL = 10 2-antennas RRHs and 3
multicast groups with 2 single-antenna MUs in each group,
i.e., |Ωm| = 2, ∀m. All error radii εk ’s are set to be0.05.
The convergence of the perturbed alternating optimization
algorithm is demonstrated in Fig. 3 for a typical channel
realization. This figure shows that the proposed alternating
optimization algorithm converges very fast (less 20 iterations)
in the simulated network size.
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Fig. 4. Average network power consumption versus target SINR for scenario
one.

TABLE I
THE AVERAGE NUMBER OF ACTIVE RRHS WITH DIFFERENT

ALGORITHMS FORSCENARIO ONE

Target SINR [dB] 0 2 4 6 8

Coordinated Beamforming 5.00 5.00 5.00 5.00 5.00

ℓ1/ℓ∞-Norm Algorithm 2.00 2.33 2.73 3.30 4.10

Proposed Algorithm 2.00 2.13 2.63 3.13 4.00

Exhaustive Search 2.00 2.07 2.60 3.10 4.00

TABLE II
THE AVERAGE TOTAL TRANSMIT POWER CONSUMPTION WITH

DIFFERENTALGORITHMS FORSCENARIO ONE

Target SINR [dB] 0 2 4 6 8

Coordinated Beamforming 1.56 2.55 4.15 6.72 10.89

ℓ1/ℓ∞-Norm Algorithm 3.88 5.13 7.10 9.63 12.76

Proposed Algorithm 3.28 5.12 6.67 9.32 12.61

Exhaustive Search 3.20 5.18 6.71 9.43 12.54

B. Network Power Minimization

1) Scenario One: We first consider a network withL = 5
2-antenna RRHs andM = 2 multicast groups each has 2
single-antenna MUs, i.e.,|Ωm| = 2, ∀m. The relative fronthaul
links power consumption are set to beP c

l = 5.6W, ∀l.
All error radii εk’s are set to be0.01. Fig. 4 demonstrates
the average network power consumption with different target
SINRs. The corresponding average number of active RRHs
and average total transmit power consumption are showed in
Table I and Table II, respectively.

Specifically, Fig. 4 shows that the proposed robust group
sparse beamforming algorithm achieves near-optimal val-
ues of network power consumption compared with the
ones obtained by the exhaustive search algorithm via solv-
ing a sequence of problems (43). Furthermore, it is ob-
served that the proposed algorithm outperforms the square
of ℓ1/ℓ∞-norm based algorithm with sparsity pattern or-
dering rule in [32] in terms of network power mini-
mization. Specifically, the objective function of the group-
sparsity inducing optimization problem (29) will be replaced
by R =

∑L
l1=1

∑L
l2=1 maxm maxnl1

maxnl2
|Qm(nl1 , nl2)|

0 2 4 6 8

40

60

80

100

Target SINR [dB]

A
ve

ra
ge

N
et

w
or

k
P

ow
er

C
on

su
m

pt
io

n
[W

]

Coordinated Beamforming [11]

ℓ1/ℓ∞-Norm Algorithm [32]

Proposed Algorithm

Fig. 5. Average network power consumption versus target SINR for scenario
two.

TABLE III
THE AVERAGE RELATIVE FRONTHAUL L INKS POWER CONSUMPTION

WITH DIFFERENTALGORITHMS FORSCENARIO TWO

Target SINR [dB] 0 2 4 6 8

Coordinated Beamforming 72.80 72.80 72.80 72.80 72.80

ℓ1/ℓ∞-Norm Algorithm 36.08 43.76 52.36 60.16 69.56

Proposed Algorithm 30.40 38.08 45.56 56.76 70.48

TABLE IV
THE AVERAGE TOTAL TRANSMIT POWER CONSUMPTION WITH

DIFFERENTALGORITHMS FORSCENARIO TWO

Target SINR [dB] 0 2 4 6 8

Coordinated Beamforming 3.02 5.16 8.84 15.05 25.41

ℓ1/ℓ∞-Norm Algorithm 8.54 10.96 14.43 19.87 27.42

Proposed Algorithm 8.03 11.25 16.32 20.03 26.28

with Qm(i, j) being the entry indexed by(i, j) in Qm. Then
the RRH with smaller beamforming coefficients measured by
the ℓ∞-norm will have a higher priority to be switched off.
In particular, Table I shows that the proposed algorithm can
switch off more RRHs than theℓ1/ℓ∞-norm based algorithm,
which is almost the same as the exhaustive search algorithm.
Besides, this table also verifies the group-sparsity assumption
for the aggregative transmit beamformerv, i.e., the beamform-
ing coefficients of the switched off RRHs are set to be zeros
simultaneously. Meanwhile, Table II shows that the proposed
algorithm can achieve higher transmit beamforming gains,
yielding lower total transmit power consumption compared
with theℓ1/ℓ∞-norm based algorithm. The coordinated beam-
forming algorithm [11], which aims at only minimizing the
total transmit power consumption with all the RRHs active,
achieves the highest beamforming gain but with the highest
relative fronthaul links power consumption.

Overall, Fig. 4, Table I and Table II show the effectiveness
of the proposed robust group sparse beamforming algorithm
to minimize the network power consumption.

2) Scenario Two: We then consider a larger-sized network
with L = 8 2-antenna RRHs andM = 5 multicast groups
each has 2 single-antenna MUs, i.e.,|Ωm| = 2, ∀m. The
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relative fronthaul links power consumption are set to be
P c
l = [5.6 + (l − 1)]W, ∀l. All error radii εk’s are set to be

0.05. Due to the high computational cost of the exhaustive
search algorithm, we only simulate theℓ1/ℓ∞-norm based
algorithm and the proposed robust group sparse beamforming
algorithm. Fig. 5, Table III and Table IV show the average
network power consumption, the average relative fronthaul
link power consumption and the average total transmit power
consumption versus SINRs with different algorithms, respec-
tively. From Fig. 5, we see that the proposed robust beam-
forming algorithm achieves lower network power consumption
compared with theℓ1/ℓ∞-norm algorithm and the coordinated
beamforming algorithm. In particular, Table III shows that
proposed algorithm achieves much lower relative fronthaul
links power consumption, thought with a little higher transmit
power consumption at the moderate target SINR regimes.
Compared with theℓ1/ℓ∞-norm algorithm, the performance
gain of the proposed algorithm is more prominent with low
target SINRs.

Overall, all the simulation results illustrate the effectiveness
of the proposed robust group sparse beamforming algorithm
to control both the relative fronthaul power consumption and
the RRH transmit power consumption with different network
configurations.

VI. CONCLUSIONS ANDFUTURE WORKS

This paper described a systematic way to develop com-
putationally efficient algorithms based on the group-sparsity
inducing penalty approach for the highly intractable network
power minimization problem for multicast Cloud-RAN with
imperfect CSI. A novel quadratic variational formulation of
the weighted mixedℓ1/ℓ2-norm was proposed to induce the
group-sparsity structure for the robust multicast beamformer,
thereby guiding the RRH selection. The perturbed alternating
optimization, PhaseLift method, and SDR technique based al-
gorithms were developed to solve the group-sparsity inducing
optimization problem, the feasibility problems in RRH selec-
tion procedure and the transmit beamformer design problem in
the final stage, respectively. Simulation results illustrated the
effectiveness of the proposed robust group sparse beamforming
algorithm to minimize the network power consumption.

Several future directions of interest are listed as follows:

• Although the proposed SDP based robust group sparse
beamforming algorithm has a polynomial time complex-
ity, the computational cost of the interior-point method
will the prohibitive when the dimensions of the SDP
problems are large, such as in dense wireless networks.
One may use the first-order method, e.g., the alternating
direction method of multipliers (ADMM) [43], [44], [45],
[46] to seek modest accuracy solutions within reasonable
time for the large-scale SDP problems [47].

• It is desirable to lay the theoretical foundations for the
tightness of the group-sparsity inducing penalty approach
for finding approximate solutions to the network power
minimization problem as a mixed-integer non-linear opti-
mization problem, and also for the tightness of PhaseLift
method and SDR technique.

• It is interesting to apply the sparsity modeling framework
to more mixed-integer nonlinear optimization problems,
i.e., the joint user scheduling or admission and beamform-
ing problems, which are essentially required to control the
sparsity structure and the magnitude of the beamforming
coefficients.

APPENDIX A
PROOF OFTHEOREM 1

We first consider problemPGS(ǫ) with a fixed ǫ.
Based on [40, Theorem 4.9], we know that the ac-
cumulation point (µ⋆(ǫ),Q⋆(ǫ),λ⋆(ǫ)) of the sequence
{µ[i](ǫ),Q[i](ǫ),λ[i](ǫ)} converges to a stationary point of
problemPGS(ǫ), provided that the optimal solution (34) is
unique withQ = Q⋆(ǫ). This can be easily justified by the
strict convexity ofRǫ(µ,Q) with respect toµ for a fixedQ.

Next, we will prove the relationship (35) betweenΛ0

andΛ(ǫ). For convenience, we define the feasible region of
problemsPGS andPGS(ǫ) asC. Then problemPGS(ǫ) can
be rewritten as

PGS(ǫ) : minimize
x∈C

Rǫ(x), (44)

wherex = (µ,Q,λ). Let Λ0 and Λ(ǫ) denote the sets of
the stationary points (or Karush-Kuhn-Tucker (KKT) pairs)of
problemsPGS andPGS(ǫ) as

Λ0 = {x ∈ C : −∇xR(x) ∈ NC(x)}, (45)

and

Λ(ǫ) = {x ∈ C : −∇xRǫ(x) ∈ NC(x)}, (46)

respectively, whereNC(x) is the normal cone [48] to the
convex setC at x, i.e.,

NC(x) = {v|〈v,y − x〉 ≤ 0, ∀y ∈ C}. (47)

We first prove that

lim sup
ǫց0

Λ(ǫ) ⊂ Λ0. (48)

Assuming that for anyx⋆ ∈ lim supǫց0 Λ(ǫ), there exists
ǫk ց 0 andxk ∈ Λ(ǫk) such thatxk → x⋆. Based on [48,
Proposition 6.6], we have that

lim sup
xk→x⋆

NC(xk) = NC(x
⋆). (49)

Furthermore, we have

−∇xRǫk(xk) ∈ NC(xk), (50)

and

lim
k→+∞

∇xRǫk(xk) = lim
ǫkց0

lim
xk→x⋆

∇xRǫk(xk)

= lim
ǫkց0

∇xRǫk(x
⋆)

=∇xR(x⋆). (51)

Therefore, takingk → +∞ in equation (50), we obtain that
x⋆ ∈ Λ0. We thus complete the proof for (48).
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Define the deviation of a given setA1 from another setA2

as [24]

D(A1, A2) = sup
x1∈A1

(

inf
x2∈A2

‖x1 − x2‖
)

. (52)

Based on the conclusion (48) and [49, Theorem 4], we
complete the proof for the conclusion (35).
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