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Abstract—Consider a network consisting of two subnetworks
(communities) connected by some external edges. Given the
network topology, the community detection problem can be cast
as a graph partitioning problem that aims to identify the external
edges as the graph cut that separates these two subnetworks.In
this paper, we consider a general model where two arbitrarily
connected subnetworks are connected by random external edges.
Using random matrix theory and concentration inequalities, we
show that when one performs community detection via spectral
clustering there exists an abrupt phase transition as a function
of the random external edge connection probability. Specifically,
the community detection performance transitions from almost
perfect detectability to low detectability near some critical value
of the random external edge connection probability. We derive
upper and lower bounds on the critical value and show that
the bounds are equal to each other when two subnetwork sizes
are identical. Using simulated and experimental data we show
how these bounds can be empirically estimated to validate the
detection reliability of any discovered communities.

I. I NTRODUCTION

Recently, graph signal processing has been an active re-
search field in data processing and inference [1]–[6]. Com-
munity detection [7] is a typical example of graph signal
processing where the signal is a graph representing connec-
tivity structure and the goal is to identify communities from
the graph. Applications of community detection include data
clustering [8], social and biological network analysis [9], [10],
and network vulnerability assessment [11], [12], among others.
This paper provides fundamental limits affecting community
detectability for spectral clustering methods. These limits are
in the form of a phase transition threshold in the algebraic
connectivity of the network as a function of the random inter-
community edge connection probability.

Consider a network consisting of two node-disjoint sub-
networks (communities) connected by some external edges.
Let n denote the total number of nodes in a network. For
an undirected and unweighted graph, the network topology
can be characterized by its adjacency matrixA, whereA is a
binary symmetricn×n matrix, withAij = 1 if an edge exists
between nodei and nodej, andAij = 0 otherwise. Given
the adjacency matrix of the entire network, the community
detection problem can be cast as a graph partitioning problem
that identifies the external edges as the graph cut that separates
these two subnetworks. It also can be viewed as a clustering
problem when the input data is a binary adjacency matrix (e.g.,
friendship graph) instead of a similarity graph. Note that in
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practice finding such a graph cut is a nontrivial task since the
computational complexity of graph cut algorithms is high for
large dense networks.

Several authors [13]–[16] have proposed to use spectral
clustering [8], [17] for community detection, but the de-
tectability of spectral clustering is poorly understood. Spectral
clustering specifies a graph cut by inspecting the eigenstructure
of a graph. Let1n (0n) denote the all-one (all-zero) vector
of length n and letD = diag(A1n) be a diagonal matrix
with degree information on its main diagonal. Define the
graph Laplacian matrix asL = D − A. Let λi(L) be the
ith smallest eigenvalue ofL. It is well-known thatλ1(L) = 0
sinceL1n = 0n andL is a positive semidefinite (PSD) matrix
[18], [19]. The second smallest eigenvalue,λ2(L), is known
as the algebraic connectivity.λ2(L) > 0 if and only if the
network is a connected graph. The eigenvector associated with
λ2(L), denoted byy, is also called the Fiedler vector [20]. A
mathematical representation of the algebraic connectivity is

λ2(L) = min
‖x‖2=1,1T

nx=0
xTLx. (1)

The spectral clustering method for community detection
[13]–[16] is summarized as follows:
(1) Compute the graph Laplacian matrixL = D−A.
(2) Compute the Fiedler vectory.
(3) Perform K-means clustering ony to cluster the nodes into
two groups.
Note that K-means clustering determines two centroids based
on the Fiedler vectory and then label each node to the
closest cluster according to the Euclidean distances of its
corresponding entry iny to the centroids. The graph cut
is the set of edges between the two identified communities.
For community detection on more than two subnetworks,
we can use successive spectral clustering on the discovered
subnetworks.

In this paper, we establish the existence of an abrupt phase
transition for community detection based on spectral cluster-
ing. At some critical value of random external connection
probability, the network transitions from one admitting almost
perfect detectability to one in which the subnetworks cannot
be identified accurately. We provide upper and lower bounds
on this critical value. The bounds become equal to each other,
yielding an exact expression for the critical value, when these
two subnetwork sizes are identical. This framework can be
generalized to community detection on more than two sub-
networks by aggregating multiple subnetworks into two larger
subnetworks. We show how these bounds can be empirically
estimated from real network data in order to validate that the
detector is operating in a regime where community detection
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is reliable, i.e., below the phase transition threshold.

II. RELATED WORKS

Community detection arises in technological, social, and
biological networks. For social science, the goal is to find
tightly connected subgraphs in a social network [7]. In [10],
Newman proposes a measure called modularity that evaluates
the number of excessive edges of a graph compared with the
corresponding degree-equivalent random graph. More specifi-
cally, define the modularity matrix asB = A − dd

T

2m , where
d = A1n is the degree vector andm is the number of edges in
the graph. The last termdd

T

2m is the expected adjacency matrix
of the degree-equivalent random graph. Similar to spectral
clustering, the community indication vector is obtained by
performing K-means clustering on the largest eigenvector
of B. We will compare the community detection results of
spectral clustering and the modularity method in Sec. V.

The stochastic block model [21] is widely used for com-
munity detection as it parameterizes community detection
problems with a small number of parameters [22], where the
parameters are common edge connection probabilities within
and between each subnetwork. Furthermore, it has been shown
that the stochastic block model can provide a good fit to real-
world community data [22], [23]. Under the stochastic block
model, many authors have observed apparent phase transition
phenomenon on community detectability for different com-
munity detection algorithms when one gradually increases the
number of external edges between communities [24]–[27]. The
detectability of the modularity method is studied in [28] when
the two subnetworks are of equal size and each node pair
in each subnetwork is randomly connected by the same edge
connection probability. The planted clique detection problem
in [29] is a further restriction of the stochastic block model.
In [30], the authors study phase transitions on community
detectability for sparse random networks generated by the
stochastic block model. A universal phase transition threshold
on community detectability for the modularity method under
the stochastic block model is established in [31], where the
asymptotic critical value depends only on the parameters of
the stochastic block model and does not depend on the ratio
of community sizes in the large network limit.

Our model is more general than the stochastic block model
since it does not assume any edge connection models within
the communities. The details are discussed in Sec. III. A
similar model is studied in [32] for interconnected networks.
However, in [32] the subnetworks are of equal size and
the external edges are known (i.e., non-random). The main
contribution of [32] was a study of the eigenstructure of the
overall graph Laplacian matrix with different interconnected
edge strengths as contrasted to community detection. The sim-
ulation results in [33] show that phase transition on community
detectability exists under this general model, yet the critical
phase transition threshold is still poorly understood. Phase
transition results on p-resistance distances of random geomet-
ric graphs are obtained in [34]. The authors of [34] show that
there exist two critical thresholds for the p-resistance. The first
(lower) threshold depends on the global graph topology while

the second (higher) threshold only depends on local graph
connectivity.

III. N ETWORK MODEL AND PHASE TRANSITIONS IN

SPECTRAL COMMUNITY DETECTION

Consider two arbitrarily connected subnetworks with in-
ternal adjacency matricesA1 and A2 and network sizes
n1 and n2, respectively. The external connections between
these two subnetworks are characterized by a binaryn1 × n2

adjacency matrixC. We assume Erdos-Renyi random model
for external edges, where each entry inC is a Bernoulli(p)
random variable. Letn = n1+n2. The overalln×n adjacency
matrix can be represented as

A =

[
A1 C

CT A2

]
. (2)

The network model (2) is very general as it does not impose
restrictive conditions on the forms ofA1 andA2. The two
subnetworks can have arbitrary network structures as long
as each subnetwork is connected. Therefore, the proposed
model (2) fits any stochastic model for community structure
that has constant inter-community connectivity parameters.
For example, (2) is equivalent to a stochastic block model
given stochastic realizations of the subnetwork adjacency
matricesA1 andA2. In the stochastic block model the two
subnetworks are assumed to be generated by Erdos-Renyi
graphs, i.e., the internal connections are governed by constant
subnetwork-wide connection probability between each node
pair. Specifically, the stochastic block model is specified by a
2× 2 connection probability matrix

P =

( subnetwork 1 subnetwork 2

subnetwork 1 p1 p

subnetwork 2 p p2

)
, (3)

where pi is the internal edge connection probability for
subnetwork i. Thus the adjacency matrixAi in (2) can
be interpreted as a connected realization of a Erdos-Renyi
graph with edge connection probabilitypi. The planted clique
detection problem in [29] is a special case of (3) whenp1 = 1
and p2 = p. The analysis below holds for random graph
distributions that are more general than the stochastic block
model. We only need to assume that the connections between
the two arbitrarily connected subnetworks are random with
probability p. Thus, the phase transition results obtained in
Sec. IV hold for the stochastic block model (3), and indeed
for any stochastic model of intra-community connectivity,for
any p1, p2 > 0.

Let 1n1
be the all-one vector of lengthn1 and 1n2

be
the all-one vector of lengthn2, and letD1 = diag(C1n2

)
and D2 = diag

(
CT1n1

)
. The corresponding overall graph

Laplacian matrix can be represented as

L =

[
L1 +D1 −C

−CT L2 +D2

]
, (4)

whereL1 and L2 are the graph Laplacian matrices of sub-
networks 1 and 2, respectively. Letx = [x1 x2]

T , where



x1 ∈ R
n1 and x2 ∈ R

n2 . By (1) we haveλ2(L) =
minx x

TLx subject to the constraintsxT
1 x1 + xT

2 x2 = 1 and
xT
1 1n1

+ xT
2 1n2

= 0. Using Lagrange multipliersµ, ν and
(4), the Fiedler vectory = [y1 y2]

T of L, with y1 ∈ R
n1 and

y1 ∈ R
n2 , satisfiesy = argminx Γ(x), where

Γ(x) = xT
1 (L1 +D1)x1 + xT

2 (L2 +D2)x2 − 2xT
1 Cx2

− µ(xT
1 x1 + xT

2 x2 − 1)− ν(xT
1 1n1

+ xT
2 1n2

). (5)

Differentiating (5) with respect tox1 andx2 respectively, and
substitutingy into the equations, we obtain

2(L1 +D1)y1 − 2Cy2 − 2µy1 − ν1n1
= 0n1

, (6)

2(L2 +D2)y2 − 2CTy1 − 2µy2 − ν1n2
= 0n2

. (7)

Left multiplying (6) by 1T
n1

and left multiplying (7) by1T
n2

,
we have

21T
n1
D1y1 − 21T

n1
Cy2 − 2µ1T

n1
y1 − νn1 = 0, (8)

21T
n2
D2y2 − 21T

n2
CTy1 − 2µ1T

n2
y2 − νn2 = 0. (9)

Since1T
n1
D1 = 1T

n2
CT and1T

n1
C = 1T

n2
D2, adding (8) and

(9) together we obtainν = − 2µ
n
(yT

1 1n1
+ yT

2 1n2
), which is

equivalent to0 since 1T
ny = 0 as y is the Fiedler vector.

Applying ν = 0 and left multiplying (6) byyT
1 and left

multiplying (7) by yT
2 , we have

yT
1 (L1 +D1)y1 − yT

1 Cy2 − µyT
1 y1 = 0, (10)

yT
2 (L2 +D2)y2 − yT

2 C
Ty1 − µyT

2 y2 = 0. (11)

Adding them together and by (1) and (4) we obtainµ = λ2(L).

Let C̄ = p1n1
1T
n2

, a matrix whose elements are the means
of entries inC. Let σi(M) denote theith largest singular
value ofM 1 and writeC = C̄+∆, where∆ = C− C̄. By
Latala’s theorem [35],

E

[
σ1

(
∆√
n1n2

)]
→ 0. (12)

This is proved in Appendix VII-A. Furthermore, by Tala-
grand’s concentration inequality [36],

σ1

(
C√
n1n2

)
a.s.−→ p and σi

(
C√
n1n2

)
a.s.−→ 0 ∀i ≥ 2

(13)

whenn1 → ∞ andn2 → ∞, and
a.s.−→ denotes almost sure

convergence. This is proved in Appendix VII-B. Note that the
convergence rate is maximal whenn1 = n2 becausen1+n2 ≥
2
√
n1n2 and the equality holds ifn1 = n2. The interpretation

is that the convergence rate is governed by the subnetwork with
the smallest size. Throughout this paper we further assume
n1

n2

→ c > 0 as n1, n2 → ∞. This means the subnetwork
sizes grow with comparable rates.

As proved in [37], the singular vectors ofC andC̄ are close
to each other in the sense that the square of inner product of
their left/right singular vectors converges to1 almost surely

1Note that for convenience, we useλi(M1) to denote theith smallest
eigenvalue of a square matrixM1 and useσi(M2) to denote theith largest
singular value of a rectangular matrixM2.

when
√
n1n2p → ∞. Consequently, we have

1

n2
D11n1

=
1

n2
C1n2

a.s.−→ p1n1
; (14)

1

n1
D21n2

=
1

n1
CT1n1

a.s.−→ p1n2
. (15)

Applying (13), (14) and (15) to (8) and (9) and recalling
that ν = 0 and n1

n2

= c > 0, we have

1√
c
p1T

n1
y1 −

√
cp1T

n2
y2 −

1√
n1n2

µ1T
n1
y1

a.s.−→ 0; (16)

√
cp1T

n2
y2 −

1√
c
p1T

n1
y1 −

1√
n1n2

µ1T
n2
y2

a.s.−→ 0. (17)

By the fact that1T
n1
y1 + 1T

n2
y2 = 0, we have

(√
c+

1√
c

)(
p− µ

n

)
1T
n1
y1

a.s.−→ 0; (18)
(√

c+
1√
c

)(
p− µ

n

)
1T
n2
y2

a.s.−→ 0. (19)

Consequently, asµ = λ2(L), at least one of the two cases
have to be satisfied:

Case 1:
λ2(L)

n

a.s.−→ p. (20)

Case 2:1T
n1
y1

a.s.−→ 0 and 1T
n2
y2

a.s.−→ 0. (21)

The algebraic connectivity and the Fiedler vectory undergo
a phase transition between Case 1 and Case 2 as a function
of p ∈ [0, 1]. That is, a transition from Case 1 to Case 2
occurs whenp exceeds a certain thresholdp∗. In Case 1, the
asymptotic algebraic connectivity grows linearly withp while
the asymptotic Fiedler vector remains the same (unique up to
its sign). Furthermore, from (10), (11), (13), (20),µ = λ2(L)
and1T

n1
y1 + 1T

n2
y2 = 0, the Fielder vectory in Case 1 has

the following property.

1√
n1n2

yT
1 L1y1 +

p√
n1n2

(1T
n1
y1)

2 −
√
cpyT

1 y1
a.s.−→ 0,

(22)
1√
n1n2

yT
2 L2y2 +

p√
n1n2

(1T
n1
y1)

2 − 1√
c
pyT

2 y2
a.s.−→ 0.

(23)

Adding (22) and (23), we have

1√
n1n2

(
yT
1 L1y1 + yT

2 L2y2

)
+

[
2(1T

n1
y1)

2

√
n1n2

−
(√

cyT
1 y1 +

1√
c
yT
2 y2

)]
p

a.s.−→ 0. (24)

As the parenthesized and bracketed terms in (24) converge to
finite constants for allp in Case 1,

1√
n1n2

(
yT
1 L1y1 + yT

2 L2y2

) a.s.−→ 0; (25)

2(1T
n1
y1)

2

√
n1n2

−
(√

cyT
1 y1 +

1√
c
yT
2 y2

)
a.s.−→ 0. (26)

By the PSD property of the graph Laplacian matrix,
yT
1 L1y1 > 0 andyT

2 L2y2 > 0 if and only if y1 andy2 are not
constant vectors. Therefore (25) impliesy1 andy2 converge



to constant vectors. By the constraintsyT
1 y1 +yT

2 y2 = 1 and
1T
n1
y1 + 1T

n2
y2 = 0, we have

√
nn1

n2
y1

a.s.−→ ±1n1
and

√
nn2

n1
y2

a.s.−→ ∓1n2
. (27)

Consequently, in Case 1y1 andy2 tend to be constant vectors
with opposite signs.

More importantly, these results suggest a phase transition
effect in spectral clustering. By (27) and the constraint that
1T
n1
y1 + 1T

n2
y2 = 0, we know that in Case 1,1T

n1
y1 =

−1T
n2
y2, and the two centroids found by K-means clustering

of step (3) in Sec. I will have opposite signs since
∣∣1T

n1
y1

∣∣ =∣∣1T
n2
y2

∣∣ 6= 0 almost surely. Therefore in Case 1 spectral
clustering can almost correctly identify these two subnetworks
since y1 and y2 are constant vectors with opposite signs.
On the other hand, in Case 2,1T

n1
y1 → 0 and 1T

n2
y2 → 0

almost surely. The entries ofy1 andy2 tend to have opposite
signs within each subnetwork. Therefore, in Case 2 spectral
clustering leads to very poor community detection.

IV. U PPER ANDLOWER BOUNDS AND CRITICAL VALUE

WHEN n1 = n2

In this section we establish upper and lower bounds on
the critical valuep∗ of the phase transition. Following the
derivation in Appendix VII-D, in Case 2 we have, almost
surely,

λ2(L)

n
≤ p

2
+

|n1 − n2|p
2n

+
λ2(L1) + λ2(L2)− |λ2(L1)− λ2(L2)|

2n
, (28)

and

λ2(L)

n
≥ p

2
− |n1 − n2|p

2n

+
λ2(L1) + λ2(L2)− |λ2(L1)− λ2(L2)|

2n
. (29)

Let p∗ be the critical value of the phase transition in Case 1
to Case 2. There is a phase transition on the asymptotic value
of λ2(L)

n
since the slope ofλ2(L)

n
converges to 1 almost surely

whenp ≤ p∗, whereas from (28)λ2(L)
n

− p ≤ (|n1−n2|−n)p
2n +

λ2(L1)+λ2(L2)−|λ2(L1)−λ2(L2)|
2n when p ≥ p∗. Substitutingp∗

into (28), we obtain an asymptotic upper boundpUB on the
critical valuep∗, where

pUB =
λ2(L1) + λ2(L2)− |λ2(L1)− λ2(L2)|

n− |n1 − n2|
. (30)

Similarly, by substitutingp∗ into (29), we obtain an asymptotic
lower boundpLB, where

pLB =
λ2(L1) + λ2(L2)− |λ2(L1)− λ2(L2)|

n+ |n1 − n2|
. (31)

Comparing (30) with (31), the gap betweenpUB andpLB is

|n1 − n2|
2n1n2

(λ2(L1) + λ2(L2)− |λ2(L1)− λ2(L2)|) . (32)

Note that whenn1 = n2, the equality in (58) holds and the
gap in (32) vanishes. This means in Case 2 whenn1 = n2,

λ2(L)

n

a.s.−→ p

2
+

λ2(L1) + λ2(L2)− |λ2(L1)− λ2(L2)|
2n

=:
p

2
+ c∗, (33)

where c∗ = λ2(L1)+λ2(L2)−|λ2(L1)−λ2(L2)|
2n , and the critical

value

p∗
a.s.−→ λ2(L1) + λ2(L2)− |λ2(L1)− λ2(L2)|

n
. (34)

The bounds and the critical valuep∗ can be specified for
some special types of graphs.

• Complete graph: when each subnetwork is a complete
graph (i.e., a clique),λj(Li) = ni for all j ≥ 2 [38].
ThereforepUB = 1 and pLB = 1+c−|1−c|

1+c+|1−c| , where n1

n2

→
c > 0. Whenn1 = n2, p∗

a.s.−→ 1. This result coincides
with the intuition that communities that are completely
connected are the most detectable.

• Star graph: when each subnetwork is a star graph,
λ2(Li) = 1 [38]. Since pUB = 0 for all n1, n2 such
that n1

n2

→ c > 0, we havep∗
a.s.−→ 0. This means that

spectral clustering can not correctly identify the network
if each subnetwork is a star graph.

• Stochastic block model:when each subnetwork is gen-
erated by the Erdos-Renyi graph with edge connection
probability pi, λ2

(
Li

ni

)
a.s.−→ pi. This is proved in

Appendix VII-C. ThereforepUB = cp1+p2−|cp1−p2|
1+c−|1−c| and

pLB = cp1+p2−|cp1−p2|
1+c+|1−c| . Whenn1 = n2, the critical value

p∗
a.s.−→ p1+p2−|p1−p2|

2 .

For community detection with multiple (more than two)
subnetworks, we can use successive spectral clustering on
the discovered subnetworks. Assume there areM arbitrarily
connected subnetworks with Bernoulli-type random intercon-
nections between subnetworks. LetI denote a subset of
indices {1, 2, . . . ,M} such thatI and its set complement
−I are nonempty, and the two corresponding aggregated
subnetworks composed of subnetworks indexed byI and
−I are connected respectively. LetLI denote the graph
Laplacian matrix of the connected aggregated subnetwork
from I and let L−I denote the graph Laplacian matrix of
the connected aggregated subnetwork from−I. Let nI and
n−I denote the corresponding aggregated subnetwork size.
Then, following the previous derivations, the asymptotic phase
transition bounds are

pUB = min
I⊂{1,2,...,M}

λ2(LI) + λ2(L−I)− |λ2(LI)− λ2(L−I)|
n− |nI − n−I |

;

(35)

pLB = min
I⊂{1,2,...,M}

λ2(LI) + λ2(L−I)− |λ2(LI)− λ2(L−I)|
n+ |nI − n−I |

.

(36)

That is, the phase transition bounds are determined by the
connected aggregated subnetwork that is the least separable
from other subnetworks.



V. NUMERICAL EXPERIMENTS

A. Validation of phase transition theory on simulated networks

For community detection on simulated networks, the net-
work detectability is defined as the fraction of nodes that
are correctly identified. If the network sizesn1 and n2 are
known a priori, a naive identification strategy is to assign all
nodes to the subnetwork that has larger network size. The
detectability of the naive strategy,max{n1

n
, n2

n
}, is referred

to as the baseline detection performance. Fig. 1 (a) shows
the case that the two subnetworks are generated by Erdos-
Renyi (ER) graphs with the same network sizes and connection
probabilities (i.e., the conventional stochastic block model
setting thatn1 = n2 and p1 = p2). The empirical critical
value isp∗=0.2142. Note that following the derivations for the
stochastic block model in Sec. IV, the empirical value ofp∗

will converge to0.25 as we increasen. The simulation results
verify the phase transition effect thatλ2(L)

n
approachesp when

p ≤ p∗ and λ2(L)
n

approachesp2 + c∗ when p ≥ p∗, where
c∗ = λ2(L1)+λ2(L2)−|λ2(L1)−λ2(L2)|

2n . Moreover, the commu-
nity detection performance transitions from almost perfect
detectability to low detectability atp∗. As derived in (27),
the Fiedler vector componentsy1 andy2 are constant vectors
with opposite signs forp below p∗, and 1T

n1
y1 → 0 and

1T
n2
y2 → 0 above phase transition. Similar results are shown

in Fig. 1 (b), where the two subnetworks are generated by
the Watts-Strogatz small-world network model [39] with the
same average degree and different edge rewiring probabilities.
The empirical critical value of this network isp∗=0.0566. The
low critical value of the Watts-Strogatz small-world network
model can be explained by the fact that given the same number
of nodes and edges, the algebraic connectivity of such a
small-world network increases as the edge rewiring probability
increases [40]. When the edge rewiring probability is equalto
one, the Watts-Strogatz network is equivalent to a Erdos-Renyi
graph.

B. Application to establishing the phase transition for real-
world network data

Based on the phase transition results in Sec. IV, we propose
an empirical method to assess the reliability of discovered
communities. In this method we explicitly estimate the phase
transition boundspUB, pLB and the external edge connection
probability p from the data. Let̂Li be the graph Laplacian
matrix of the identified subnetworki having network size
n̂i. Using (57) and (60), the empirical estimators of these
parameters are

p̂LB =
λ2(L̂1) + λ2(L̂2)−

∣∣∣λ2(L̂1)− λ2(L̂2)
∣∣∣

n+ |n̂1 − n̂2|
; (37)

p̂UB =
λ2(L̂1) + λ2(L̂2)−

∣∣∣λ2(L̂1)− λ2(L̂2)
∣∣∣

n− |n̂1 − n̂2|
; (38)

p̂ = number of identified external edges/n̂1n̂2. (39)

Based on these spectral estimates, the performance of com-
munity detection can be classified into three categories. If
p̂ ≤ p̂LB , the network is in the reliable detection region. If
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Fig. 1. (a) Two identical Erdos-Renyi subnetworks.n1=2000, n2=2000,
p1=0.25 andp2=0.25. The empirical critical valuep∗=0.2142. (b) Two small-
world subnetworks.n1=500 andn2=500. Each subnetwork is generated by
the Watts-Strogatz small-world network model [39] with average degree 100.
The edge rewiring probabilities are 0.2 and 0.8, respectively. The empirical
critical valuep∗=0.0566. The simulation results are averaged over 500 runs
and they validate the phase transition analysis.

p̂LB < p̂ < p̂UB, the network is in the intermediate detection
region. If p̂ ≥ p̂UB, the network is in the unreliable detection
region. The network descriptions and the results of spectral
clustering and the modularity method [10] are summarized in
Table I. Note that no information beyond the network topology
is used to estimate these phase transition parameters. The
community labels in Table I are used to verify the network
detectability.

We illustrate this method on two datasets. The first dataset
is the co-purchasement data between 105 American political
books sold on Amazon [10]. An edge exists between two
books if they are frequently purchased by the same buyer.
Three labels,liberal, conservativeand neutral, are specified
in [10]. We perform community detection by separating the
books into two groups since there are only 13 books with
neutral labels. The graph cuts identified by spectral clustering
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Fig. 2. (a) Co-purchasement of political books on Amazon [10]. Nodes
are political books and edges are co-purchasements. Neglecting the 13 books
with neutral labels, 3 books are misidentified by the modularity method and 2
books are misidentified by spectral clustering. (b) IEEE reliability test system
consisting of 3 subsystems [41]. Nodes are power stations and edges are
power lines. The first cut via spectral clustering perfectlyseparates subgrid
3 from subgrids 1 and 2. Overall, 14 power stations are misidentified by
the modularity method and 8 power stations are misidentifiedby spectral
clustering.

and the modularity method are shown in Fig. 2 (a). Neglecting
the 13 books with neutral labels, 3 books are misidentified
by the modularity method and 2 books are misidentified by
spectral clustering. The empirical estimate (39) of the external
edge connection probability iŝp=0.0073 and the empirical
estimate (37) of the lower bound on the phase transition is
p̂LB=0.0127. The fact that̂p < p̂LB provides evidence that
these communities are in fact detectable, providing reassure
about their validity.

The second dataset considered is the IEEE reliability test
systems (RTS) for power system [41]. The network consists
of 3 interconnected subsystems. Community detection is per-
formed by first partitioning the network into two subnetworks
and then repartitioning the largest subnetwork. The graph cuts
are shown in Fig. 2 (b). Note that the first cut via spectral

clustering perfectly separates subgrid 3 from subgrids 1 and
2. This is consistent with the fact that the empirically estimated
value (39) isp̂=0.0017, which is close to the estimated phase
transition lower bound̂pLB=0.0016 andp̂ < p̂UB. For the
second cut on the subnetwork consisting of subgrids 1 and 2, 8
power stations are misidentified by spectral clustering, which
is consistent with the empirical finding that̂p > p̂UB. The
fact that this second cut discovered communities are above
the phase transition threshold might explain why 14 power
stations are misidentified by the modularity method. These
results suggest that we can use the proposed phase transition
estimates to experimentally validate estimates obtained from
the community detection procedure.

VI. CONCLUSION

In this paper, we establish and quantify a phase transition
threshold for spectral clustering based community detection.
The critical value of this phase transition is a function of the
probability of an edge connecting two subnetworks. Bounds on
the critical valuep∗ are derived and validated by simulation.
The bounds are tight when the two subnetwork sizes are
identical. We use real-world network data to show that these
phase transition bounds can be estimated to validate the
detection reliability of spectral community detection methods.

VII. A PPENDIX

A. Proof of (12)

Since∆ = C− C̄, we have∆ij = 1− p with probability
p and ∆ij = −p with probability 1 − p. Latala’s theorem
[35] states that for any random matrixM with statistically
independent and zero mean entries, there exists a positive
constantc1 such that

E [σ1(M)] ≤ c1


max

i

√∑

j

E
[
M2

ij

]
+max

j

√∑

i

E
[
M2

ij

]

+ 4

√∑

ij

E
[
M4

ij

]

 . (40)

It is clear that E [∆ij ] = 0 and each entry in∆ is
independent. By usingM = ∆√

n1n2

in Latala’s theorem,

since p ∈ [0, 1], we havemaxi

√∑
j E
[
M2

ij

]
= O( 1√

n1

),

maxj

√∑
i E
[
M2

ij

]
= O( 1√
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), and 4

√∑
ij E

[
M4

ij

]
=

O( 1
4
√
n1n2

). ThereforeE
[
σ1

(
∆√
n1n2

)]
→ 0 asn1 → ∞ and

n2 → ∞.

B. Proof of (13)

Talagrand’s concentration inequality is stated as follows. Let
f : Rk 7→ R be a convex and 1-Lipschitz function. Letx ∈
R

k be a random vector and assume that every element ofx

satisfies|xi| ≤ K for all i = 1, 2, . . . , k, with probability one.
Then there exist positive constantsc2 andc3 such that∀ǫ > 0,

Pr(|f(x)− E [f(x)]| ≥ ǫ) ≤ c2 exp

(−c3ǫ
2

K2

)
. (41)



TABLE I
DATA DESCRIPTIONS, SPECTRAL ESTIMATES OF PHASE TRANSITION PARAMETERS, AND NETWORK DETECTABILITY. THESE RESULTS SUGGEST THAT WE

CAN USE THE PHASE TRANSITION ESTIMATES TO EXPERIMENTALLY VALIDATE ESTIMATES OBTAINED FROM THE COMMUNITY DETECTION PROCEDURE.
p̂ ≤ p̂LB , p̂LB < p̂ < p̂UB , AND p̂ ≥ p̂UB CORRESPOND TO THE RELIABLE, INTERMEDIATE, AND UNRELIABLE DETECTION REGIONS, RESPECTIVELY.

Spectral Estimates Network Detectability
Network Class Nodes / Edges p̂LB / p̂UB / p̂ Mod. Spec. Oracle

Political books 2 105 / 441 .0127 / .013 / .0073 .8476 .8571 .8762
IEEE RTS (1st cut) 3 73 / 108 .0016 / .003 / .0017 .9041 1 1
IEEE RTS (2nd cut) 3 73 / 108 .003 / .0047 / .0078 .8082 .8904 1

It is well-known that the largest singular value of a matrixM

can be represented asσ1(M) = maxzT z=1 ||Mz||2 [42] such
that σ1(M) is a convex and 1-Lipschitz function. Therefore
applying Talagrand’s inequality by substitutingM = ∆√

n1n2

and using the facts thatE
[
σ1

(
∆√
n1n2

)]
→ 0 and ∆ij√

n1n2

≤
1√

n1n2

, we have

Pr

(
σ1

(
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n1n2

)
≥ ǫ

)
≤ c2 exp

(
−c3n1n2ǫ

2
)
. (42)

Note that, since for any positive integern1, n2 > 0 n1n2 ≥
n1+n2

2 ,
∑

n1,n2
c2 exp

(
−c3n1n2ǫ

2
)
< ∞. Hence, by Borel-

Cantelli lemma [43],σ1

(
∆√
n1n2

)
a.s.−→ 0 whenn1, n2 → ∞.

Finally, a standard matrix perturbation theory result [42]
is |σi(C̄ + ∆) − σi(C̄)| ≤ σ1(∆) for all i, and as

σ1

(
∆√
n1n2

)
a.s.−→ 0, we have

σ1

(
C√
n1n2

)
= σ1

(
C̄+∆√
n1n2

)
a.s.−→ σ1

(
C̄√
n1n2
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= p;

(43)

σi

(
C√
n1n2

)
a.s.−→ 0 ∀i ≥ 2 (44)

whenn1 → ∞ andn2 → ∞.

C. Proof ofλ2

(
Li

ni

)
a.s.−→ pi for the stochastic block model

Consider a network with adjacency matrixA and sizen
generated by the Erdos-Renyi graph with edge connection
probability q. Each entry ofA is an i.i.d Bernoulli random
variable with connection probabilityq. Write the graph Lapla-
cian matrix asL = D − A = D̄ − Ā + ∆D − ∆A,
where∆D = D − D̄, ∆A = A − Ā, Ā = q1n1

T
n and

D̄ = diag(nq, . . . , nq). Following the arguments in Appendix
VII-A and VII-B, since∆Aij = 1− q with probabilityq and
∆Aij = −q with probability 1 − q, σ1

(
∆A

n

) a.s.−→ 0 when
n → ∞. Let Bs,q be a binomial random variable which is
the sum ofs i.i.d Bernoulli random variables with success
probability q. We have∆Dij = Bn,q − nq if i = j and
∆Dij = 0 otherwise. By Bernstein’s concentration inequality
[43], for any ǫ > 0, there exists a positive constantc4 such
that
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Since∆D is a diagonal matrix,σ1

(
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n

)
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Using the union bound, for anyǫ > 0,
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Since
∑

n n exp
(
−c4nǫ

2
)

< ∞, applying Borel-
Cantelli lemma gives σ1

(
∆D

n

) a.s.−→ 0. Using the
standard matrix perturbation theory result [42],∣∣∣σi
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for all i, and σi

(
L

n

)
= λi

(
L

n

)
since L is a PSD square

matrix. Finally, sinceD̄− Ā is the graph Laplacian matrix of
a complete graph with edge weightq, we haveλ2

(
L

n

) a.s.−→ q.

D. Proof of upper and lower bounds onp∗

From (1) and (4) we know that

λ2(L) = yT
1 (L1 +D1)y1 + yT

2 (L2 +D2)y2 − 2yT
1 Cy2

(48)

subject to1T
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by the fact thatσ1
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a.s.−→ 0 in Appendix VII-B

and C̄ = p1n1
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. Furthermore, by the facts thatD1 =
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1

n2
yT
1 D1y1

a.s.−→ pyT
1 y1;

1

n1
yT
1 D2y1

a.s.−→ pyT
2 y2. (50)



Therefore in Case 2 we have

λ2(L)

n

a.s.−→

min
x∈S

{
1

n

(
xT
1 L1x1 + xT

2 L2x2 + n2px
T
1 x1 + n1px

T
2 x2

)}
,

(51)

where
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{
x = [x1 x2]
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and define
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SinceS1,S2 ⊆ S, we have, almost surely,

λ2(L)

n
≤ min {µ1(L), µ2(L)}
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where we use the facts thatmin{a, b} = a+b−|a−b|
2 and |a−

b| ≥ |a| − |b|. Note that the equality in (56) holds ifn1 = n2.
Let p∗ be the critical value for phase transition from Case 1
to Case 2. There is a phase transition on the asymptotic value
of λ2(L)

n
since the slope ofλ2(L)

n
converges to 1 almost surely

whenp ≤ p∗, whereas from (56)λ2(L)
n

− p ≤ (|n1−n2|−n)p
2n +

λ2(L1)+λ2(L2)−|λ2(L1)−λ2(L2)|
2n when p ≥ p∗. From (20), we

obtain an asymptotic upper boundpUB on the critical valuep∗

by substitutingp∗ into (56).

pUB =
λ2(L1) + λ2(L2)− |λ2(L1)− λ2(L2)|

n− |n1 − n2|
. (57)

For the lower bound, with (51) we have that in Case 2,
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Substitutingp∗ to (59), we obtain an asymptotic lower bound
pLB on the critical valuep∗.

pLB =
λ2(L1) + λ2(L2)− |λ2(L1)− λ2(L2)|

n+ |n1 − n2|
. (60)
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