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Abstract—Consider a network consisting of two subnetworks practice finding such a graph cut is a nontrivial task sinee th

(communities) connected by some external edges. Given thecomputational complexity of graph cut algorithms is high fo
network topology, the community detection problem can be cst large dense networks.

as a graph partitioning problem that aims to identify the external
edges as the graph cut that separates these two subnetworks. Several authors [13]=[16] have proposed to use spectral
this paper, we consider a general model where two arbitrary  clustering [8], [17] for community detection, but the de-
connected subnetworks are connected by random external eds.  tectability of spectral clustering is poorly understoode&tral
Using random matrix theory and concentration inequalities we clustering specifies a graph cut by inspecting the eigectstre:

show that when one performs community detection via spectia
clustering there exists an abrupt phase transition as a furtion of a graph. Letl, (0,) denote the all-one (all-zero) vector

of the random external edge connection probability. Speciially, Of lengthn and letD = diag/A1,) be a diagonal matrix
the community detection performance transitions from almest with degree information on its main diagonal. Define the

perfect detectability to low detectability near some critcal value graph Laplacian matrix af, = D — A. Let Xi(L) be the
of the random external edge connection probability. We dere i smallest eigenvalue dt. It is well-known that\; (L) = 0

upper and lower bounds on the critical value and show that . _ . .. e .
the bounds are equal to each other when two subnetwork sizes sinceL1, = 0, andL is a positive semidefinite (PSD) matrix

are identical. Using simulated and experimental data we sho [18], [19]. The second smallest eigenvalug(L), is known
how these bounds can be empirically estimated to validate ¢ as the algebraic connectivityy(L) > 0 if and only if the

detection reliability of any discovered communities. network is a connected graph. The eigenvector associated wi
A2(L), denoted byy, is also called the Fiedler vectdr[20]. A
mathematical representation of the algebraic connegtisit
Xo(L) = min xTLx. Q)

|x]|2=1,1Tx=0

I. INTRODUCTION

Recently, graph signal processing has been an active re-
search field in data processing and infereride [1]-[6]. Com-
munity detection[[7] is a typical example of graph signal The spectral clustering method for community detection
processing where the signal is a graph representing connlgl—[16] is summarized as follows:
tivity structure and the goal is to identify communitiesrfro (1) Compute the graph Laplacian matiix=D — A.
the graph. Applications of community detection includeadaf2) Compute the Fiedler vectgr.
clustering [8], social and biological network analysis, [E10], (3) Perform K-means clustering gnto cluster the nodes into
and network vulnerability assessment|[11]][12], amongrth WO groups.

This paper provides fundamental limits affecting commpnitNOte that K-means clustering determines two centroidsdase
detectability for spectral clustering methods. Thesetiare ©n the Fiedler vectoly and then label each node to the
in the form of a phase transition threshold in the algebraéosest cluster according to the Euclidean distances of its
connectivity of the network as a function of the random inteforresponding entry iny to the centroids. The graph cut
community edge connection probability. is the set of edges between the two identified communities.

Consider a network consisting of two node-disjoint su=0r community detection on more than two subnetworks,
networks (communities) connected by some external edgé§ can use successive spectral clustering on the discovered
Let n denote the total number of nodes in a network. F&ubnetworks.
an undirected and unweighted graph, the network topologyln this paper, we establish the existence of an abrupt phase
can be characterized by its adjacency mafkixwhereA is a transition for community detection based on spectral elast
binary symmetrior x n matrix, with A;; = 1 if an edge exists ing. At some critical value of random external connection
between node and nodej, and A;; = 0 otherwise. Given probability, the network transitions from one admittingnaist
the adjacency matrix of the entire network, the communifyerfect detectability to one in which the subnetworks canno
detection problem can be cast as a graph partitioning pmoblée identified accurately. We provide upper and lower bounds
that identifies the external edges as the graph cut thatatesaron this critical value. The bounds become equal to each other
these two subnetworks. It also can be viewed as a clusterliglding an exact expression for the critical value, whegsth
problem when the input data is a binary adjacency matrix,(e.tvo subnetwork sizes are identical. This framework can be
friendship graph) instead of a similarity graph. Note that igeneralized to community detection on more than two sub-

networks by aggregating multiple subnetworks into two éarg
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is reliable, i.e., below the phase transition threshold. the second (higher) threshold only depends on local graph
connectivity.

Il. RELATED WORKS
. NETWORK MODEL AND PHASE TRANSITIONS IN

. . . . . . "
Community detection arises in technological, social, and
SPECTRAL COMMUNITY DETECTION

biological networks. For social science, the goal is to find
tightly connected subgraphs in a social netwark [7].[In] [10] Consider two arbitrarily connected subnetworks with in-
Newman proposes a measure called modularity that evaluderaal adjacency matrices; and A, and network sizes
the number of excessive edges of a graph compared with the and ny, respectively. The external connections between
corresponding degree-equivalent random graph. More fspedhese two subnetworks are characterized by a binary ns
cally, define the modularity matrix aB = A — %, where adjacency matrixC. We assume Erdos-Renyi random model
d = A1, is the degree vector and is the number of edges in for external edges, where each entryGhis a Bernoullip)

the graph. The last terid— is the expected adjacency matrixandom variable. Let = n;+ns. The overall x n adjacency

of the degree-equivalent random graph. Similar to spectraptrix can be represented as
clustering, the community indication vector is obtained by

performing K-means clustering on the largest eigenvector A, C
of B. We will compare the community detection results of A= [CT AQ] @)
spectral clustering and the modularity method in $dc. V. , ) )

The stochastic block model [R1] is widely used for com--rhe _ngtwork mngII]Z) is very general as it does not impose
munity detection as it parameterizes community detectidfiStrctive conditions on the_ forms af, and A,. The two
problems with a small number of parametérs) [22], where tﬁgbnetworks can hav_e arbitrary network structures as long
parameters are common edge connection probabilitiesrwitr"i\S each subnetwork is connected. Therefore, the proposed

and between each subnetwork. Furthermore, it has been sh&l}hOIeI [2) fits any stochastic model for community structure

that the stochastic block model can provide a good fit to re%‘—at has constant inter-community connectivity paranseter

world community datal[22][23]. Under the stochastic bloc or example,[([2) is equivalent to a stochastic block model
’ jven stochastic realizations of the subnetwork adjacency

model, many authors have observed apparent phase transilty

phenomenon on community detectability for different con@atr'ceSAl and A;. In the stochastic block model the two

munity detection algorithms when one gradually increakes tsubnetvv_orks are assumed to pe generated by Erdos-Renyi
raphs, i.e., the internal connections are governed bytaonhs

number of external edges between communities [24]-[27. TH . X °
detectability of the modularity method is studied[in][28]evh su_bnet\Nor_K-Wlde connection probabmty betvyeen eg_ch node
the two subnetworks are of equal size and each node p%ﬂjr. Specifically, the stochastic block model is specifigcab

in each subnetwork is randomly connected by the same e&gé 2 connection probability matrix

connection probability. The planted clique detection peab subnetwork 1  subnetwork 2
in [29] is a further restriction of the stochastic block mbde
" ; subnetwork 1
In [30], the authors study phase transitions on communityP = ! W < P p ), 3)
detectability for sparse random networks generated by the  Subnetwork 2 p P2

stochastic block model. A universal phase transition thols where p; is the internal edge connection probability for

on community detectability for the modularity method undesubnetworki. Thus the adjacency matrid; in @) can

the stochastic block model is established[in| [31], where th@ interpreted as a connected realization of a Erdos-Renyi

asymptotic critical value depends only on the parameters gfaph with edge connection probability. The planted clique

the stochastic block model and does not depend on the rafistection problem i [29] is a special case[df (3) wher= 1

of community sizes in the large network limit. and p, = p. The analysis below holds for random graph
Our model is more general than the stochastic block mod#tributions that are more general than the stochastickblo

since it does not assume any edge connection models withiadel. We only need to assume that the connections between

the communities. The details are discussed in $et. lll. the two arbitrarily connected subnetworks are random with

similar model is studied in_[32] for interconnected netwrk probability p. Thus, the phase transition results obtained in

However, in [32] the subnetworks are of equal size ar@ec.[T¥ hold for the stochastic block modgl (3), and indeed

the external edges are known (i.e., non-random). The md#r any stochastic model of intra-community connectivity,

contribution of [32] was a study of the eigenstructure of thgny p,, p, > 0.

overall graph Laplacian matrix with different intercontet et 1,, be the all-one vector of length;, and 1,, be

edge strengths as contrasted to community detection. Tifie sihe all-one vector of length,, and letD; = diag(C1,,)

ulation results in[[33] show that phase transition on comityun and D, = diag(C”'1,,). The corresponding overall graph

detectability exists under this general model, yet theoaiit |aplacian matrix can be represented as

phase transition threshold is still poorly understood. géha

transition results on p-resistance distances of randormgeo L= Lo+ TD1 —C , (4)

ric graphs are obtained in [84]. The authors[ofl [34] show that —C L2+ Do

there exist two critical thresholds for the p-resistandee Tirst whereL; and L, are the graph Laplacian matrices of sub-

(lower) threshold depends on the global graph topologyevhihetworks 1 and 2, respectively. Lat = [x; x2]7, where



x; € R™ and xo € R". By (@) we have)y(L) = when,/ninap — oo. Consequently, we have
min, x? Lx subject to the constraints! x; + xJ x5 = 1 and

1 1
x{'1,, +x41,, = 0. Using Lagrange multiplierg;, » and —Dily, = —Cl,, =35 pl,; (14)
@), the Fiedler vectoy = [y; y2|” of L, with y; € R™ and 12 12
y1 € R"2, satisfiesy = arg min, I'(x), where —Dsl,, = n—CTln1 2% p1,,. (15)
1 1
_ T T T
[(x) = xp (L1 + D1)xi + x5 (L + Da)xa — 2x3 Cxo Applying (I3), [13) and[{D5) to[{8) andl1(9) and recalling
— p(xix1 +x3x2 — 1) = v(x] 1, +x31n,). (5) thaty =0 andL = ¢ > 0, we have
Differentiating [3) with respect ta; andx, respectively, and 1 7 T T as, .
substitutingy into the equations, we obtain %pl’“m —Veply.ye - N pln,yr = 0: - (16)
1 1
2(Ly + Dy)y1 — 2Cy2 — 2uy1 — vly,, = 0y, (6) \/Eplzzyg - —p1£1}’1 - —/L]_Zzyg 2%0. a7

Ve N

T T —
By the fact thatl;, y1 + 1;,,y2 = 0, we have

2(Ly + Dy)ys — 2CTy1 — 2pys — vl,, = 0,y (7)
Left multiplying (8) by 17, and left multiplying [7) by1}

ny !

e have 1 5,
e <\/5+ %> (r- %) 1y =% 0; (18)
21! Dyy; — 21} Cys —2ul} y1 —vny =0, ®) 1 A e
217 Doy, — 217 CTy; — 2017 ys —vny = 0. (9) <\/E + %> (p - 5) 1,,y2 — 0. (19)
Sincel;, D; = 1;,,C" and1;, C = 1;,D,, adding [B) and consequently, ag = \»(L), at least one of the two cases
@) together we obtaim = —22(yT'1,, +yI'1,,), which is have to be satisfied:
equivalent to0 since 17y = 0 asy is the Fiedler vector. Ao(L)
Applying » = 0 and left multiplying [) byy? and left Case 1:.°22 2% 4, (20)
multiplyin by y%, we have "
plying (7) by ys Case 21” y; 230 and 17y, =3 0. (21)
yi (L1 +D1)y1 — yi Cys — pyi y1 =0, (10)

The algebraic connectivity and the Fiedler vegtaundergo
T T T T _

y2 L2+ D2)y2 —y; Cy1 —pypy2=0. - (11) 4 phase transition between Case 1 and Case 2 as a function

Adding them together and blyl(1) arid (4) we obtaia \»(L). of p € [0,1]. That is, a transition from Case 1 to Case 2

ccurs wherp exceeds a certain threshgld. In Case 1, the

Let C = pl1,,17 | a matrix whose elements are the mearf¥

of entries in ("jl Cét :(M) denote theith largest singular asymptotic algebraic connectivity grows linearly witwhile

value of M ] and writeC = C + A, whereA — C — C. By _the z_;lsymptotic Fiedler vector remains the same (unique up to
Latala’s theorem([35] its sign). Furthermore, fron (10Y, (11}, (13, (2@~ A2(L)
' and1l y, + 1] y, = 0, the Fielder vectoy in Case 1 has

B [0_1 ( A )] o (12) the following property.
i Ty (1T 2 — Vapy Ty 250

This is proved in Appendif_VIEA. Furthermore, by Tala- "/, ' W0 T i, oYt PY1 Y1 ’

grand’s concentration inequality [36], (22)

C a.s. C a.s. . 1 T p T 2 1 T a.s,
; > ———y3 Loya + 1., y1)" — —=pyzy2 — 0.
o1 (m> —p and o; (\/m> 250 Vi > 2 g 2 2y2 n1n2( Y1) NG 2Y2

(13) (23)

whenn; — oo andns — oo, and =3 denotes almost sureAdding (22) and[(28), we have
convergence. This is proved in Appenflix VII-B. Note that the TL L
convergence rate is maximal when = n, because:; +no > N (v1 Layr +y2 Loyz) +
.2~/n1n2 and the equality ho!ds ifiy = no. The interpretation _ 2(1513,1)2 . 1 as
is that the convergence rate is governed by the subnetwaink wi W —(Veyiyi+ —=yay2 || p— 0. (24)

. . c
the smallest size. Throughout this paper we further assume ) ve
oy ¢ > (0 asni,ne — oo. This means the subnetworkAs the parenthesized and bracketed term§ih (24) converge to

n2

sizes grow with comparable rates. finite constants for alp in Case 1,

As proved in[37], the singular vectors 6f andC are close T1.vy +vIL as . 25
to each other in the sense that the square of inner product of /nin2 (y1 RARRE 2Y2) ’ (23)

their Ieft/right Singular vectors converges toalmost Surely 2(]_7 3’1)2 1
ni 1 1 a.s.
\/1n9 <\/E 1ot \/E 2 2) ( )

INote that for convenience, we use (M;) to denote theith smallest By the PSD property of the graph LapIaC|an matrix,

T T . .
eigenvalue of a square matd; and user;(M>) to denote theth largest Y1 L,y: > 0andy; Loys > 0if angl Only if y; andy, are not
singular value of a rectangular matris. constant vectors. Thereforle {25) impligs andy, converge



to constant vectors. By the constraigtSy; +yly> =1 and Note that whem; = n,, the equality in[(5B) holds and the

1£]y1 + 1£2y2 =0, we have gap in [32) vanishes. This means in Case 2 when- no,
A (L) as. p A2(L1) + Aa(La) — |A2(Ly) — Ao(L
\/%}ﬁ 2% 41, and 1/@3’2 25 ¥, (27) —272 ) —— 5t 2(Ln) + Ao (L) 2n| 2(In) = da(Le)|
no ni1 »
Consequently, in Caseyl; andy, tend to be constant vectors = 9 +c, (33)
with opposite signs. Aa(L)+ 22 (La)—[ A2 (L) ~Aa (La)|

. . where ¢* = , and the critical
More importantly, these results suggest a phase transiti ¢ 2n

effect in spectral clustering. By (R7) and the constrairt th

1£1y1 + 122}/2 = 0, we know that in Case 11£1y1 — o as A2(Ly) + Aa(La) — | A2(Ly) — )\2(L2)|' (34)
—17 y2, and the two centroids found by K-means clustering n
of step (3) in Sed] ! will have opposite signs siftg y:| = The bounds and the critical valyg can be specified for

|17 y2| # 0 almost surely. Therefore in Case 1 spectraiome special types of graphs.
clustering can almost correctly identify these two suboeks

sincey, andy, are constant vectors with opposite signs. , Complete graph: when each subnetwork is a complete
On the other hand, in Case 2] y; — 0 and1] y, — 0 graph (i.e., a clique));(L;) = n; for all j > 2 [38].
almost surely. The entries gf; andy, tend to have opposite Thereforepyg = 1 andpg = “2<=l1=< where 2t —
signs within each subnetwork. Therefore, in Case 2 spectral Letll=cl S

clustering leads to very poor community detection ¢ > 0. Whenny = ny, p” = 1. This result coincides
g yp y ’ with the intuition that communities that are completely

connected are the most detectable.
o Star graph: when each subnetwork is a star graph,

IV. UPPER ANDLOWER BOUNDS AND CRITICAL VALUE A2(L;) = 1 [38]. Sincepus Za(l for all ny, ny such
WHEN nq = no that Z—; — ¢ > 0, we havep* — 0. This means that

spectral clustering can not correctly identify the network
if each subnetwork is a star graph.

« Stochastic block model:when each subnetwork is gen-
erated by the Erdos-Renyi graph with edge connection

probability p;, A (L) 2% p.. This is proved in

In this section we establish upper and lower bounds on
the critical valuep* of the phase transition. Following the
derivation in AppendiX_VII-ID, in Case 2 we have, almost

surely, n;
X@) _p  |ni—nalp Appendix[VII-Q. Thereforepug = wﬁfg:—{iﬁl‘f"" and
< = _ _ cpi+p2—|epi—pa| o .
n =o' omn pLB; %%. Whenn, = no, the critical value
" )\2(L1)+/\2(L2)— |)\2(L1)—/\2(L2)| (28) p* == LW_QLI’?‘
2n 7 For community detection with multiple (more than two)
and subnetworks, we can use successive spectral clustering on
L) _p  |ni—nelp the discovered subnetworks. Assume there /rearbitrarily
n = 9 m connected subnetworks with Bernoulli-type random intarco
A2 (L1) + Aa(La2) — [A2(L1) — Aa(La)| 29 nections between subnetworks. L&t denote a subset of
+ m - (29) indices {1,2,...,M} such thatZ and its set complement

Let p* be the critical value of the phase transition in Case 1L are nﬁnempty, ang trf1e tvt\)/o corrispprédlngdgggredgated

to Case 2. There is a phase transition on the asymptotic Vaﬁ%networ S comzose 0 _sul nei\&vlor ;’ in exeh »\n N

of 228 since the slope o2 converges to 1 almost surely ~ '€ connected respectively. L&ty denote the grap

wher? < p*, whereas fromﬁZB\xz(L) < Umzmalmlp Laplacian matrix of the connected aggregated subnetwork
o (L ﬁ;(f (L) Aa (L) o b= n from Z and letL_; denote the graph Laplacian matrix of
2T o) lrai) 22/l whenp > p*. Substitutingp®

) 2n ) the connected aggregated subnetwork fref. Let ny and
into (28), we obtain an asymptotic upper boungs on the ,  genote the corresponding aggregated subnetwork size.
critical valuep*, where

Then, following the previous derivations, the asymptotiage

A2(Ly) + Aa(La) — [A2(Ly) — Aa(La)] (30) transition bounds are
buB = .

UB n — |n1 - n2| PUB = min )\Q(LI) + /\2 (sz) — |)\2(LI) — /\2 (L,I)|.
Similarly, by substituting* into (29), we obtain an asymptotic Tc{1,2,.., M} n—|nz —n_z| 7
lower boundp,g, where (35)

_ Do(L) + a(a) = Pa(ln) = do(Lo) po= min 22Ln)+lel-g) — Pels) - A(L-g)|
B = . (31) Tc{1,2,....M} n+|nz —n_z

n+|n; — nal

(36)
Comparing [(3D) with[(31), the gap betwepns andp g is

That is, the phase transition bounds are determined by the
|n1 — nel (A2(L1) + Aa(La) — Aa(Ly) — Aa(Lo)]).  (32) connected aggregated subnetwork that is the least separabl
2n1ng from other subnetworks.



V. NUMERICAL EXPERIMENTS s iifjﬂi“;“ | (é)

A. Validation of phase transition theory on simulated nekso - m:m _py 1]
For community detection on simulated networks, the ne = S ~_ ” 1

work detectability is defined as the fraction of nodes thi 0 : : : _phase transition

. - . 0 0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4
are correctly identified. If the network sizeg andn. are D
known a priori, a naive identification strategy is to assiin ¢ > 1 EEEEEEEEEEFEFERFETE ; ; ;
nodes to the subnetwork that has larger network size. T 2 ;| i;ﬁigﬂiduswmg )
detectability of the naive strategyhax{”L, 22}, is referred g 0ol
to as the baseline detection performance. Elg. 1 (a) sho <  (CEE08EEEEEE0E0E0 S EEEEEEEE

Frofieotudptinty

the case that the two subnetworks are generated by Erd
Renyi (ER) graphs with the same network sizes and connect
probabilities (i.e., the conventional stochastic block delo
setting thatn; = ny andp; = p»). The empirical critical
value isp*=0.2142. Note that following the derivations for the
stochastic block model in Sec. ]IV, the empirical valuepdf
will converge t00.25 as we increase. The simulation results
verify the phase transition effect th%ﬁ% approachep when

p < p* and % approaches + ¢* whenp > p*, where

vvvvvvvvvvvvvvv
.........................

1TYz

ot = )\2(L1)+)\2(L2);7\1k2(111)—)\2 Lo)| . Moreover, the commu- gﬁ < 0.05 -—— @ §+: A:l
nity detection performance transitions from almost perfe = | = I r5E - phase transition
detectability to low detectability ap*. As derived in [2F), % 0.02 0.04 0.06 0.08 01
the Fiedler vector componengs andy- are constant vectors p :
with opposite signs fop below p*, and 12 y; — 0 and £ 1rEEaeaaeaaaR- i;gﬁg::'““e”"g“
1% y2 — 0 above phase transition. Similar results are shov r‘g 08 hase transition ;T\S-EI-EI-EI-EI-EI-EI-EI-EJ
in Fig. [ (b), where the two subnetworks are generated £ o6 AAA i e .~ .~ . o~ o~ o~ o A
the Watts-Strogatz small-world network model][39] with the © VY VY VUK,V IIH O OUUMY ‘6"1';;‘ a%
same average degree and different edge rewiring probesbilit x ‘

The empirical critical value of this network j5=0.0566. The 201

low critical value of the Watts-Strogatz small-world netiwo
model can be explained by the fact that given the same num
of nodes and edges, the algebraic connectivity of such 0
small-world network increases as the edge rewiring prdibabi
increases [40]. When the edge rewiring probability is edoal

one, the Watts-Strogatz network is equivalent to a ErdasyRe Fig. 1. (a) Two identical Erdos-Renyi subnetworks=2000, n5=2000,
graph. p1=0.25 andp»=0.25. The empirical critical valug*=0.2142. (b) Two small-

world subnetworksn1=500 andn2=500. Each subnetwork is generated by

L L L. the Watts-Strogatz small-world network model][39] with mge degree 100.
B. Appllcatlon to eStabI'Sh'ng the phase transition for Ii:ea-The edge rewiring probabilities are 0.2 and 0.8, respdgtivEhe empirical

world network data critical value p*=0.0566. The simulation results are averaged over 500 runs

. . and they validate the phase transition analysis.
Based on the phase transition results in S€t. IV, we propose Y P y

an empirical method to assess the reliability of discovered
communities. In this method we explicitly estimate the ghas_ PR . . . .
transition boundsus, pLs and the external edge connectio8 < P < Pus, the network is in the intermediate detection
probability p from the data. Lefl; be the graph Laplacian "€9i0"- 7 = pus, the network is in the unreliable detection
matrix of the identified subnetwork having network size region. The network descriptions and the results of splectra

7;. Using [BT) and [(80), the empirical estimators of thescéustering and the m_odularity_ methdd [10] are summarized in
parameters are Tabl€el]l. Note that no information beyond the network topglog

is used to estimate these phase transition parameters. The

ITYz'
o

X2(L1) + Ao(La) — [A2(Ln) — Ao (Lo) community labels in Tablg | are used to verify the network
Pl = — ; (37) detectability.
n+ |y — Nl . : _
R R " . We illustrate this method on two datasets. The first dataset
R A2(L1) + A2(L2) — [A2(L1) — A2(L2) is the co-purchasement data between 105 American political
Pus = ; (38) books sold on Amazon_[10]. An edge exists between two

n—\ng—n
7 2 books if they are frequently purchased by the same buyer.
(39) . ) "

Three labelsliberal, conservativeand neutral are specified
Based on these spectral estimates, the performance of camfL0]. We perform community detection by separating the
munity detection can be classified into three categories. Hboks into two groups since there are only 13 books with
p < pie, the network is in the reliable detection region. Iheutral labels. The graph cuts identified by spectral ctirgie

p = number of identified external edgég n,.
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Fig. 2. (a) Co-purchasement of political books on Amazon].[Nbdes

are political books and edges are co-purchasements. Nieglebe 13 books
with neutral labels, 3 books are misidentified by the modiylanethod and 2
books are misidentified by spectral clustering. (b) IEEEakglity test system
consisting of 3 subsystem5_[41]. Nodes are power statioms ealges are
power lines. The first cut via spectral clustering perfectparates subgrid
3 from subgrids 1 and 2. Overall, 14 power stations are nisiiled by
the modularity method and 8 power stations are misidentifigdspectral
clustering.

clustering perfectly separates subgrid 3 from subgridsd an
2. This is consistent with the fact that the empirically mstied
value [39) isp=0.0017, which is close to the estimated phase
transition lower boundp g=0.0016 andp < pys. For the
second cut on the subnetwork consisting of subgrids 1 and 2, 8
power stations are misidentified by spectral clusteringcivh

is consistent with the empirical finding that > pyg. The

fact that this second cut discovered communities are above
the phase transition threshold might explain why 14 power
stations are misidentified by the modularity method. These
results suggest that we can use the proposed phase transitio
estimates to experimentally validate estimates obtaineuh f
the community detection procedure.

VI. CONCLUSION

In this paper, we establish and quantify a phase transition
threshold for spectral clustering based community detacti
The critical value of this phase transition is a function loé t

B probability of an edge connecting two subnetworks. Boumds o
£ the critical valuep* are derived and validated by simulation.

The bounds are tight when the two subnetwork sizes are

. identical. We use real-world network data to show that these

phase transition bounds can be estimated to validate the
detection reliability of spectral community detection ireads.

VII. APPENDIX
A. Proof of [12)
SinceA = C — C, we haveA,;; = 1 — p with probability
p and A;; = —p with probability 1 — p. Latala’s theorem
[35] states that for any random matrd with statistically
independent and zero mean entries, there exists a positive
constantc; such that

Elon(M)] < ex | max [>TE[MZ] +max [3 78 [MZ]
ﬂ“/ZE [M]

It is clear thatE[A;;] = 0 and each entry inA is

independent. By usingM = ﬁ in Latala’s theorem,

(40)

i _ 1
and the modularity method are shown in fily. 2 (a). Neglectif’ce P € [0,1], we havemax; /37, E [M}] = O(7=),

the 13 books with neutral labels, 3 books are misidentifieg,x; /5> E [M2]

by the modularity method and 2 books are misidentified
spectral clustering. The empirical estimdte] (39) of themdl

N = O(5). and {3 E[MY] =
g(ﬁ). Thereforel [al (\/1%2)} — 0 asn; — oo and

edge connection probability i§=0.0073 and the empirical "2 —* °°-
estimate [(37) of the lower bound on the phase transition is
pLe=0.0127. The fact thap < p.g provides evidence that B. Proof of [I38)

these communities are in fact detectable, providing reéassu Tajagrand’s concentration inequality is stated as folldves

about their validity.

: R* — R be a convex and 1-Lipschitz function. Lete

The Second dataset Considered iS the |IEEE rel|ab|l|ty t%k be a random vector and assume that every elemem Of
systems (RTS) for power system [41]. The network consisigtisfiesx;| < K forall i = 1,2, ...k, with probability one.
of 3 interconnected subsystems. Community detection is p§hen there exist positive constantsandc; such thate > 0,

formed by first partitioning the network into two subnetwsrk
and then repartitioning the largest subnetwork. The grajé c
are shown in Fig[d2 (b). Note that the first cut via spectral

Pr(1f60) ~ E[f60]l 2 9 < oo (- ). @)



TABLE |
DATA DESCRIPTIONS SPECTRAL ESTIMATES OF PHASE TRANSITION PARAMETER®ND NETWORK DETECTABILITY. THESE RESULTS SUGGEST THAT WE
CAN USE THE PHASE TRANSITION ESTIMATES TO EXPERIMENTALLY VAIDATE ESTIMATES OBTAINED FROM THE COMMUNITY DETECTION PRECEDURE
p<pLB,PLB < P < pus, AND p > pug CORRESPOND TO THE RELIABLEINTERMEDIATE, AND UNRELIABLE DETECTION REGIONS RESPECTIVELY.

Spectral Estimates | Network Detectability

Network Class Nodes / Edges pe/pus/ P Mod. Spec. Oracle
Political books 2 1057/ 441 .0127/.013 /.0073 .8476 .8571 6287
IEEE RTS (st cut) 3 73 /108 .0016 /.003 /.0017 .9041 1 1
IEEE RTS (2nd cut) 3 73 /108 .003 /.0047/.0078 .8082 .8904 1

It is well-known that the largest singular value of a mafik Since AD is a diagonal matrixg; (22) = max; |22z |.
can be represented as(M) = max,r,_; ||Mz||2 [42] such Using the union bound, for any> 0,
that o1 (M) is a convex and 1-Lipschitz function. Therefore AD n AD..
applying Talagrand’s inequality by substitutidg = \/ﬁ Pr<o—1 <—> > e> < Z Pr<‘—” > e>
n n
and using the facts th@ |01 (—2— )| — 0 and =i < =1
1 [ ( v "1"2)} Ve < nexp (—cane®). (46)

we have
vninsg! . .
o Since Y nexp(—cine?) < oo, applying Borel-

>25> <cpexp (—eamnac®).  (42) Cantelli lemma gives oy (82) 2% 0. Using the

o
standard ~ matrix  perturbation  theory result[][42],
o, (D—AJrADfAA _ 5 (D=A ‘ <o (AD;AA) for all

n g n

Pr A
ag

! v/ 1n2
Note that, since for any positive integeg,no > 0 niny >

M2 Y ng C2€XD (—c3ninze®) < oo. Hence, by Borel-

i. By the fact thatr; (AP=24) < g, (AR) 44 (AA) 25

Cantelli lemmal[[48],04 (J% 2% 0 whenni,ny — oo. 0, we have n

is |0;(C + A) — 0;(C)] < o1(A) for all i, and as

Finally, a standard matrix perturbation theory resllt][42] L D_A
((F)ma(2E) e
n

o1 (ﬁ) 2% 0, we have
for all i, ando; () = X; (&) sinceL is a PSD square

) o matrix. Finally, sinceD — A is the graph Laplacian matrix of

( C ) (C-I—A) as, (
g =0 — 0
! \/N1Ng ! \/N1MNg ! \/TN1M2

a complete graph with edge weightwe havex, (L) 2% ¢.

n

(43)
m‘( © )30 Vi > 2 (44)
V1M D. Proof of upper and lower bounds gif
whenn; — co andn; — co. From (@) and[(#) we know that
Xo(L) = y{ (L1 + D1)y1 +y3 (L2 + Da)ys — 2y1 Cy
C. Proof of \, (%) 2%y, for the stochastic block model (48)

Consider a network with adjacency matdk and sizen  Subject tol7 y1 +17 ys> = 0 andy{ y1 +y3 y> = 1. In Case
generated by the Erdos-Renyi graph with edge connectiBnSIHC_el_Z_lm — 0 and1] y, — 0 almost surely, recalling
probability g. Each entry ofA is an i.i.d Bernoulli random the definitionA = C — C,

variable with connection probability. Write the graph Lapla- 1 T 1 o=

cian matrix asL = D ~ A = D — A + AD — AA, Yt V2 = eyt (CHA)y

where AD = D — D, AA = A-A A =q1,17 and 1 e .

D = diag(ng, . . ., nq). Following the arguments in Appendix = s (viCy2+yi Aya)

VII-Aland [VI[-B] since AA;; = 1 — ¢ with probability ¢ and 1

AA;; = —q with probability 1 — ¢, o7 (22) 2% 0 when < (v1 Cy2 + lly1l2llyzllz - o1 (A))
n — oco. Let B, be a binomial random variable which is N e

the sum ofs i.i.d Bernoulli random variables with success —0 (49)

probability ¢. We haveAD;; = B, , — ng if i = j and A as. ) ) -
AD;; = 0 otherwise. By Bernstein’s concentration inequalitpy the fact thato (\/m) — 0 in Appendix [VI-B

[43], for any ¢ > 0, there exists a positive constant such and C = pl1,,17 . Furthermore, by the facts thdD, =
that diag(C1,,) andD, = diag(C”'1,,), (I3) gives

ADy;
Pr <‘
n

. 1 . 1 s
> €> < exp (—cane’) Vi. (45) n—YiFD1y1 2% pyTyi; n—yipDzyl 2% pydys.  (50)
2 1



Therefore in Case 2 we have
A2(L)  as,
a3

n

min

1
min (x1 Lix; + x5 TLoxy + ngpx1 X1 + n1px, xz)

(51)
where

S= {x =[x x2)7,x; €R™ xy € R"™:

1£1X1 = 1£2x2 =0, xI'x; +x¥xy = 1}. (52

Define two sets
S = {X = [Xl XQ]T,Xl S Rnl,XQ cR"™
1£1X1 = 152):2 =0, XlTxl =1, x?xz = O} ;

Sy = {X = [Xl XQ]T,Xl S Rnl,XQ cR"™

(53)

1ZIX1 = 122)(2 =0, X,{Xl =0, x2Tx2 = 1} , (54)

and define pLB

pi(L) =

min

1
{— (X{lel + XgLQXQ + ngprxl + nlpxgx2) }
xeS; | N

(55)

(2]

(31

[4

[l

SinceS;, Se € S, we have, almost surely,
A2 (L)
n

(5]

< min {pu; (L), u2 (L)}

. {/\Q(Ll) +n2p A2(L2
= min ,
n
p A2(Ln) + A2 (La)
2 2n
B [A2(L1) — Aa(Lo) +
2n

)+ nip
n

(6]

|

(7]
(8]
El

(n2 —n1)p|

2n
2(L1) + A2(L2) — [A2(L1) — Aao(Lo)|
2n ’

where we use the facts thatin{a, b} = L‘“b' andl|a —

b| > |a| — |b|. Note that the equality il (56) holdsm‘l =ng
Let p* be the critical value for phase transition from Case 2]
to Case 2. There is a phase transition on the asymptotic va{u?

of 221 since the slope o2 converges to 1 almost surely
whenp < p*, whereas fromI]BG‘*Z(L) —p < Umznalonle
>\2(L1)+>\2(L2)—\>\2(L1) A2(Lo)| whenp > p*. From m) we
obtain an asymptouc upper boupds on the critical valug*
by substitutingp* into (58).

A2 (L) + A2 (L2) — [A2(Ln) —

n—|ni; — na|

(56) 110

(11]

[14]

[15]

[16]

A (La)|

puB = (57)

For the lower bound, witH (1) we have that in Case 2,
A2(L) as

L 7 T
min < — (x7 Lix; + x5 Laox
n xeS{?’L(l 1 222)

1
+ o (nng,{Xl + nle;FXQ)}
1
{ (Xl L1X1 —+ X2 LQXQ)}
1
{ﬁ (ngprxl + nleQTXQ)}

AQ(Ll)’ )\Q(Lg)} n Inin{
N 2n

n n
A2(L1) + Ao(Lg) — [A2(Ln) —
+ 2n

> min

P (58)

+ min
x€ES

= min{

_ P |ni—map
2

M@}
n’' n )’

Substitutingp* to (89), we obtain an asymptotic lower bound

on the critical valuep*.
A2(Ln) + A2(La) — [A2(Lq) —

n+|n; — nal

Aa(La)|

pB = (60)
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