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Abstract—Much research has been carried out on shrinkage
methods for real-valued covariance matrices. In spectral analysis
of p-vector-valued time series there is often a need for good
shrinkage methods too, most notably when the complex-valued
spectral matrix is singular. The equivalent of the Ledoit-Wolf
(LW) covariance matrix estimator for spectral matrices can be
improved on using a Rao-Blackwell estimator, and using random
matrix theory we derive its form. Such estimators can be used
to better estimate inverse spectral (precision) matrices too, and
a random matrix method has previously been proposed and
implemented via extensive simulations. We describe the method,
but carry out computations entirely analytically, and suggest
a way of selecting an important parameter using a predictive
risk approach. We show that both the Rao-Blackwell estimator
and the random matrix estimator of the precision matrix can
substantially outperform the inverse of the LW estimator in a
time series setting. Our new methodology is applied to EEG-
derived time series data where it is seen to work well and deliver
substantial improvements for precision matrix estimation.

Index Terms—Rao-Blackwell estimators, random matrix the-
ory, shrinkage, spectral matrix.

I. I NTRODUCTION

A stationaryp-vector-valued time series has, at each fre-
quencyf, a p × p complex-valued spectral matrixS(f), for
which an estimator̂S(f), can be derived. If such an estimator
is computed by a multitaper scheme involvingK tapers (e.g.,
[32]) then the spectral matrices — complex-valued analogues
of covariance matrices — will be singular ifp > K (and ill-
conditioned ifK is only a little larger thanp). Unfortunately
K cannot be simply increased because of its connection
to the implied smoothing bandwidth: ifK is made larger,
the required resolution may be lost. (Other estimators such
as periodograms smoothed over frequencies have analogous
properties.) In this paper we look at the estimation ofS(f)
and more particularly the spectral ‘precision’ matrix defined
as C(f) = S−1(f) when Ŝ(f) is singular. The precision
matrix is used in the computation of partial coherencies in
time series graphical modelling (see e.g. [29] and references
therein for a neuroscience application). We don’t assume a
very largep since the moderatep scenario is often encountered
in practice and practically is just as important. We shall
first give a review of relevant covariance matrix estimation
literature, before turning to the contributions of this paper.
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The estimation of a covariance matrixΣ from N sam-
ples of p real-valued zero mean random variables has been
extensively researched for the caseN > p. Although the
resulting non-singular sample covariance estimatorΣ̂ of Σ

is unbiased its eigenvalues tend to be more spread out than
the true eigenvalues. To ameliorate this problem [21] looked
at minimax estimation over a certain group, but the estimators
depend on the coordinate system. This problem was removed
by [10] who considered orthogonally equivariant minimax
estimators: an estimatorF(Σ̂) of Σ is said to be orthogo-
nally equivariant if for any orthogonal matrixO, we have
F(OΣ̂OT ) = OF(Σ̂)OT , whereT denotes transposition. In
fact such estimators shrink the sample eigenvalues, and so are
of the widely researched shrinkage class, see e.g., [11], [18],
[36].

For shrinkage estimators which are a combination of the
standard covariance matrix and a target matrix proportional
to the identity, Ledoit and Wolf (LW) [24], [25] derived the
ideal shrinkage parameter, or ‘oracle’ value, that minimizes a
risk measure between̂Σ andΣ. Such LW estimators are (i)
suitable for the caseN < p when Σ̂ is singular, (ii) do not
assume Gaussianity, and (iii) may be used in largep settings.
Modifications to the target matrix were discussed in [35] and
[8], the latter shrinking the sample covariance matrix towards
its tapered version for high-dimensional matrices; modified
estimators for this case were also suggested in [13].

Under the Gaussianity assumption, [9] showed that the LW
estimator can be significantly improved upon. They developed
the so-called Rao-Blackwell (RB) estimator which is guaran-
teed at least as good as the LW estimator under any convex
loss criterion.

There has also been much interest in accurate estimation of
the precision matrixΣ−1. A weighted combination of̂Σ−1

and the identity was considered by [11], and improved on by
[17]. By looking over the class of orthogonally equivariant
estimators for real covariance matrices, Ledoit and Wolf [26]
produced nonlinear shrinkage estimators forΣ andΣ−1. All
these studies assumed thatN > p. Also the calculations
involved in [26] are hugely costly. The singular case has been
attracting much attention recently in the context of estimating
sparse precision matricesΣ−1 in high-dimensional situations
(p >> N ), see e.g., [3], [7], [23], [30], [34].

Following some background material on spectral matrix
estimation in Section II, the contributions of this paper are
as follows.

1) In Section III we study LW oracle estimation forS(f),
and give the form of the practical estimator̂SLW(f).
The related Rao-Blackwell estimator for the spectral
matrix, ŜRB(f), is found in Section IV. These oracle
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and Rao-Blackwell estimators are surprisingly different
in form to the real-valued cases. The Rao-Blackwell
estimator is derived making substantial use of random
matrix theory and is very simple in form and thus highly
usable in practice. The Gaussian assumption is used to
derive simple forms for the oracle shrinkage parameter
and for the Rao-Blackwell estimator. While in standard
real-valued covariance matrix estimation Gaussianity is
a problematic assumption and robustness issues arise, in
our context this is not dubious because of the Central
Limit Theorem effect of the vector Fourier transform
used in the time series setting.

2) Section V points out that the inverse of the Rao-
Blackwell estimator is in the form of a “Rao-
Blackwellized” estimator forC(f). We show that this
estimator can substantially outperform the inverse of the
LW estimator in a time series setting.

3) In Section VI we examine direct estimation ofC(f)
from singular estimatorsŜ(f) using random matrix
methods as developed in [28], and formulate a com-
pletely analytic (rather than simulation-based) approach
to obtain the estimators. A predictive risk approach is
given to select a controlling parameter. We show that
this estimator can substantially outperform the inverse
of the LW estimator in a time series setting.

4) Our new methodology is applied to electroencephalo-
gram (EEG) derived time series data in Section VII,
where it is seen to work well and deliver substantial
improvements over the inverse LW estimators ofC(f).

II. SPECTRAL MATRIX ESTIMATION

Here we consider a realp-vector-valued discrete time
stochastic process{Xt} whose tth element is the column
vectorXt = [X1,t, . . . , Xp,t]

T , and each component process
has zero mean. The sample interval is denoted by∆t. We
assume thep processes are jointly stationary, i.e., for all
l,m = 1, . . . , p, slm,τ = cov {Xl,t+τ , Xm,t} is a function
of τ only.

The matrix autocovariance sequence{sτ} is defined by
sτ = cov{Xt+τ ,X

T
t } = E{Xt+τX

T
t }, and each component

is assumed absolutely summable. The spectral matrix, is then
S(f) = ∆t

∑∞
τ=−∞ sτ e

−i2πfτ ∆t .

We make use of a set ofK orthonormal tapers{hk,t}, k =
0, . . . ,K−1 and fort = 0, . . . , N−1, form the producthk,tXt

of the tth component of thekth taper with thetth component
of the p-vector-valued process, and fork = 0, . . . ,K − 1
compute the vector Fourier transform

Jk(f)
def
= ∆

1/2
t

N−1∑

t=0

hk,tXt e
−i2πft∆t .

Let J(f) be thep×K matrix defined by

J(f) = [J0(f), . . . ,JK−1(f)]. (1)

Then the multitaper estimator of thep×p spectral matrixS(f)

is

Ŝ(f) =
1

K

K−1∑

k=0

Ŝk(f) =
1

K

K−1∑

k=0

Jk(f)J
H
k (f) =

=
1

K
J(f)JH (f), (2)

whereŜk(f)
def
=Jk(f)J

H
k (f).

Remark 1. This conveniently mimicks the classical covariance
matrix estimator: if Y0, . . . ,YK−1 are K independentp-
dimensional Gaussian real-valued random vectors with zero
means and covariance matrixΣ, then the maximum likelihood
estimator forΣ is Σ̂ = 1

K

∑K−1
k=0 YkY

T
k .

Letting B denote the bandwidth of the spectral window
corresponding to the tapering, thenJk(f), k = 0, . . . ,K − 1,
may be taken to be independently and identically distributed
as p-vector-valued complex Gaussian with mean zero and
covariance matrixS(f) :

Jk(f)
d
= NC

p {0,S(f)}, (3)

for B/2 < |f | < fN − B/2 for finite N and Gaussian
processes, or0 < |f | < fN asymptotically [5]. Then the
estimator of (2) is the maximum-likelihood estimator forS(f),
[16]. Further,

E{Ŝ(f)}=
1

K

K−1∑

k=0

E{Jk(f)J
H
k (f)}=

1

K

K−1∑

k=0

S(f) = S(f),

(4)
and E{tr{Ŝ}} = E{

∑p
j=1 Ŝjj} =

∑p
j=1 Sjj = tr{S},

results we shall make use of later. These hold whetherK ≥ p,
which corresponds tôS(f) being non-singular, orK < p,
when the estimated matrix is singular (both with probability
one).

III. C ONVENTIONAL SHRINKAGE METHODOLOGY

The conventional approach to ‘covariance matrix’ regu-
larization which has been extensively studied involves the
forming of a convex combination of the sample covariance
matrix and some well-conditioned ‘target’ matrix. For an
estimatedp × p Hermitian spectral matrixŜ(f) this would
take the form

S⋆(f) = (1− ρ(f))Ŝ(f) + ρ(f)T̂ (f), (5)

where ρ(f) ∈ (0, 1) is known as the shrinkage parameter
and T̂ (f) is the target matrix. Provided̂S(f) and T̂ (f) are
both positive definite, then this convex combination will itself
be positive definite. For notational brevity we shall drop the
explicit frequency dependence in most of what follows.

Apart from being positive definite, suppose that noa priori
form is imposed onT̂ and our goal is to find an optimal
estimator forS of the form of (5) by determiningρ = ρ0
such that

ρ0 = argminE{||S⋆ − S||2F},

where, forA ∈ Cp×p, ||A||F denotes the Frobenius norm
||A||F = [tr{AAH}]1/2, tr{·} denotes trace, andH denotes
complex-conjugate (Hermitian) transpose.
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A. Oracle Estimator

Firstly we define

α2 = E{||S − T̂ ||2F} = E{tr{[S − T̂ ][S − T̂ ]H}}

β2 = E{||Ŝ − S||2F} = E{tr{[Ŝ − S][Ŝ − S]H}}

δ2 = E{||Ŝ − T̂ ||2F} = E{tr{[Ŝ − T̂ ][Ŝ − T̂ ]H}}

γ2 = E{tr{[Ŝ − S][S − T̂ ]H}}.

Then withRe{·} denoting “real part of,”

δ2 = E{||Ŝ − T̂ ||2F} = E{|| [Ŝ − S] + [S − T̂ ] ||2F}

= E{|| S − T̂ ||2F}+ E{|| Ŝ − S ||2F}

+ 2Re{E{tr{[Ŝ − S][S − T̂ ]H}}}

= α2 + β2 + 2γ2,

since[Ŝ−S] and[S−T̂ ]H are both Hermitian, (each of̂S,S
and T̂ is Hermitian), and therefore the trace of the product is
guaranteed real-valued, soRe{·} is not needed.

The objective function can be written

E{||S⋆ − S||2F} = E{||(1− ρ)Ŝ + ρT̂ − S||2F}

= E{|| ρ[T̂ − S] + (1− ρ)[Ŝ − S] ||2F}

= ρ2α2 + (1− ρ)2β2 − 2ρ(1− ρ)γ2.

Differentiating with respect toρ and setting to zero:

∂

∂ρ
E{||S⋆ − S||2F} = 2ρα2 − 2(1− ρ)β2 − 2(1− 2ρ)γ2 = 0

so that the solution is [12], [13]

ρ0 =
β2 + γ2

δ2
=

β2 − α2 + δ2

2δ2
. (6)

The second derivative is positive so that the objective function
is minimized with thisρ0 value.

The termβ2 + γ2 can be rewritten as

E{tr{[Ŝ − S][Ŝ − S]H}}+ E{tr{[Ŝ − S][S − T̂ ]H}}

= E{tr{[Ŝ − S][Ŝ − T̂ ]}},

where we have used the Hermitian properties ofŜ andT̂ . So
ρ0 in (6) becomes

ρ0 =
E
{

tr{[Ŝ − S][Ŝ − T̂ ]}
}

E
{

tr{[Ŝ − T̂ ]2}
} . (7)

which is of the same form as found in [9, eqn. (6)] for the
real-valued case. This form forρ0 is distribution invariant. In
order to rewriteρ0 in (7) in a useful form involving justS
and parametersK andp, Gaussianity will be assumed, which
is justified as discussed earlier.

B. Stochastic Target

Suppose we defineµ0 = tr{S}/p and µ̂0 = tr{Ŝ}/p and
takeT̂ = (tr{Ŝ}/p)Ip = µ̂0Ip. In this case botĥT andŜ will
be subject to estimation error and will in general be correlated.
(This was the case developed in [24] for real-valued covariance
matrices.)

Theorem 1. Let T̂ = (tr{Ŝ}/p)Ip. Under the assumption (3),
ρ0 in (7) can be written

ρ0 =
tr2{S} − 1

p tr{S2}

[1− K
p ]tr

2{S}+ [K − 1
p ]tr{S

2}
. (8)

Proof: From (7)

ρ0 =
E
{

tr{[Ŝ − S][Ŝ − (tr{Ŝ}/p)Ip]}
}

E
{

tr{[Ŝ − (tr{Ŝ}/p)Ip ]2}
} .

The numerator and denominator are then

E
{

tr{Ŝ2} −
1

p
tr2{Ŝ} − tr{SŜ}+

1

p
tr{S}tr{Ŝ}

}

and E
{

tr{Ŝ2} −
1

p
tr2{Ŝ}

}
,

respectively. Under the assumption (3),KŜ has the complex
Wishart distribution with meanKS. Then we know (e.g., [27])

E
{

tr{Ŝ2}
}

= tr{S2}+
1

K
tr2{S}

E
{

tr2{Ŝ}
}

= tr2{S}+
1

K
tr{S2}.

So the numerator and denominator become
1

K
[tr2{S} −

1

p
tr{S2}]

and

[
1−

1

pK

]
tr{S2}+

[
1

K
−

1

p

]
tr2{S},

respectively, and their ratio gives the required result.
The form (8) is known as an ‘oracle’ estimator since it

involves the unknown quantities tr{S} and tr{S2} and so its
value is not known in practical situations.

Remark 2. The form of the estimator (8) for complex-valued
covariance matrix estimators is surprisingly different tothat
for real-valued covariance matrix estimators: compare (8)
with [9, eqn. (7)].

C. Deterministic Target

If T̂ is constant,T̂ = T say, then the termγ2 = tr{E{[Ŝ−
S]}[S − T ]} = 0, and ρ0 in (6) becomesρ0 = β2/δ2. We
now consider the target matrixT = (tr{S}/p)Ip = µ0Ip.

Theorem 2. LetT = (tr{S}/p)Ip. Under the assumption (3),
ρ0 = β2/δ2 can be written

ρ0 =
tr2{S}

[1− K
p ]tr

2{S}+Ktr{S2}
. (9)

Proof: This proceeds along the same lines as for Theo-
rem 1.

This case was extensively studied in [25] who made many
interesting observations. WhenT = µ0Ip, then using (5) the
eigenvalues of̂S are shrunk according tôλi → (1− ρ0)λ̂i +
ρ0µ0, thus reducing the condition number.µ0 is the “grand
mean” of both true and sample eigenvalues [25] and thus the
sample eigenvalues will be shrunk towards their grand mean.
In practice we will know neitherµ0 norρ0 = β2/δ2 since they
both involve the unknownS. These quantities can be estimated
via “plug-in” values. Following the derivation of consistent



4

estimators in [2] we first takêµ0 for µ and next note thatδ2

could be estimated by omitting the expected value:

δ̂2 = ||Ŝ − µ̂0Ip||
2
F = tr{[Ŝ − µ̂0Ip][Ŝ − µ̂0Ip]

H}

= tr{Ŝ2} −
tr2{Ŝ}

p
=

p∑

i=1

p∑

j=1

|Ŝij − µ̂0δi,j |
2,

whereδi,j is the usual Kronecker delta, equal to unity when
i = j, and zero otherwise. The estimation ofβ2 = E{||Ŝ −
S||2F} is less simple. Using (4),β2 can be written

β2 =

p∑

i=1

p∑

j=1

E{|Ŝij −E{Ŝij}|
2} =

p∑

i=1

p∑

j=1

var{Ŝij}, (10)

so it can be estimated using a form of sample vari-
ance: β̂2 =

∑p
i=1

∑p
j=1 v̂ar{Ŝij}. Given (3), for the mul-

titaper spectral matrix estimator we knowvar{Ŝij} =

var
{
(1/K)

∑K−1
k=0 Ŝk,ij

}
= (1/K) var{Ŝk,ij}, where

Ŝk,ij = (Ŝk)ij . An estimator forvar{Ŝk,ij} is v̂ar{Ŝk,ij} =

(1/K)
∑K−1

k=0 |Ŝk,ij − Ŝij |2, so we get v̂ar{Ŝij} =

(1/K2)
∑K−1

k=0 |Ŝk,ij − Ŝij |2, which gives an estimator ofβ2

in (10) of the form

β̂2 =
1

K2

K−1∑

k=0

||Ŝk − Ŝ||2F, (11)

so the estimator ofρ0 becomes

ρ̂0 =
β̂2

δ̂2
=

∑K−1
k=0 ||Ŝk − Ŝ||2F

K2
[
tr{Ŝ2} − (tr2{Ŝ}/p)

] def
= ρ̂LW, (12)

where we have defined this estimator to beρ̂LW because it is of
the same form as derived in [25, pp. 379–380] for real-valued
covariance matrices.

Finally then the proposed shrinkage estimator of the spec-
trum is, from (5), given by

ŜLW = [1− ρ̂LW] Ŝ + ρ̂LWµ̂0Ip, (13)

exactly mimicking [25, p. 380]. As a result the empirical
shrinkage of the eigenvalues is given byλ̂i → (1− ρ̂LW)λ̂i +
ρ̂LWµ̂0. This approach can be used if̂S is singular or ill-
conditioned. Notice that ifK < p, so thatŜ is singular, the
resulting zero eigenvalues will be modified tôρLWµ̂0.

Note that sinceδ2 = α2+β2 if we defineβ̄2 = min{β̂2, δ̂2}
then β̄2/δ̂2 = min{ρ̂LW, 1} provides an estimate for the
shrinkage parameter which is constrained by its theoretical
upper bound of unity. This would be used in practical appli-
cations.

Remark 3. The form ofβ̂2 given in (11) for the multitaper
approach is very appealing as the averaging is all carried out
at the frequency of interest, and is done over tapers. In the
approach of [2, p. 921] the “local variance” averaging must
be done over different frequencies.
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Fig. 1. Simulated PRIAL values for (a)SA for which p = 4 and (b)SB

for which p = 10. In each case the dotted line indicatesp.

IV. RAO-BLACKWELL ESTIMATION

It is possible to produce another estimator from̂SLW

which is at least as good under any convex loss criterion.
The transformed estimator to be derived is known as the
Rao-Blackwell estimator and was developed for real-valued
covariance matrices in the context of (13) by [9]. The idea is
that if T (J0, . . . ,JK−1) is a sufficient statistic forS, and if
S(J0, . . . ,JK−1) is an estimator forS, then the conditional

expectationS ′(J0, . . . ,JK−1)
def
=E{S(J0, . . . ,JK−1)|T } is

never worse thanS(J0, . . . ,JK−1) under any convex loss
criterion. To see this, start with the riskR(S,S) of the original
estimator [4, p. 483]

R(S,S) = ES{L(S,S(J0, . . . ,JK−1))} (14)

= ES{E{L(S,S(J0, . . . ,JK−1))|T }}

≥ ES{L(S, E{S(J0, . . . ,JK−1)|T })}

= ES{L(S,S
′(J0, . . . ,JK−1))} (15)

= R(S,S ′).

(Here the second line uses the rule of iterated expectation and
the third line follows from Jensen’s inequality and the assumed
convexity of the loss function.)

In the context of spectral matrix estimation we note that
under the independent complex Gaussian assumption for the
J0, . . . ,JK−1, (3), that Ŝ is a sufficient statistic for esti-
mating S, [16, Theorem 4.2]; this is true forK ≥ p and
K < p. Then, the Rao-Blackwell estimator takes the form
ŜRB = E{ŜLW|Ŝ} and

R(S, ŜLW) = ES{||ŜLW − S||2F}

= ES{E{||ŜLW − S||2F|Ŝ}}

≥ ES{||E{ŜLW|Ŝ} − S||2F}

= ES{||ŜRB − S||2F} = R(S, ŜRB).

So,

ŜRB = E{ŜLW|Ŝ} = E{[1− ρ̂LW] Ŝ + ρ̂LWµ̂0Ip|Ŝ}

= [1− E{ρ̂LW|Ŝ}]Ŝ + E{ρ̂LWµ̂0|Ŝ}Ip
def
= [1− ρ̂RB]Ŝ + ρ̂RBµ̂0Ip,
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where the Rao-Blackwell shrinkage parameterρ̂RB is

ρ̂RB
def
= E{ρ̂LW|Ŝ} =

E
{∑K−1

k=0 ||Ŝk − Ŝ||2F |Ŝ
}

K2
[
tr{Ŝ2} − (tr2{Ŝ}/p)

] . (16)

The form of the shrinkage parameter was derived in [9] for
real-valued covariance matrices. For our complex-valued case
the form is substantially different.

Theorem 3. Under the assumption (3),̂ρRB in (16) takes the
simple form

ρ̂RB =
tr2{Ŝ} − (tr{Ŝ2}/K)

(K + 1)
[
tr{Ŝ2} − (tr2{Ŝ}/p)

] . (17)

Proof: This uses invariance properties of the random
matrix J and the random unitary matrices arising from its
singular value decomposition. Details are given in AppendixB:
put the results of Lemma 6 and Lemma 7 into the numerator
of (16), then (17) readily follows.

From (14) and (15) we have thatES{‖ŜLW − S‖2F} ≥
ES{‖ŜRB − S‖2F}. It is common to look at such a differ-
ence via the percentage relative improvement in average loss
(PRIAL) defined as

PRIAL
def
= 100

ES{‖ŜLW − S‖2F} − ES{‖ŜRB − S‖2F}

ES{‖ŜLW − S‖2F}
.

To illustrate this quantity two different Hermitian matrices,SA

andSB were utilized.SA is the4× 4 ‘random’ choice

SA =




10 7 + i 8 4
7− i 12 6 + 2i 5− i
8 6− 2i 15 9− 3i
4 5 + i 9 + 3i 10




and the secondSB is set equal to a10 × 10 estimated
spectral matrix from an EEG dataset. From each of theseS

matrices, a set ofm = 5000 matrix estimatesŜ1, . . . , Ŝm

were simulated satisfying (2) and (3). For each replication,
estimates were constructed of the form̂SLW and ŜRB, and
the Frobenius norm between the estimate and the true matrix
(SA or SB) was found. The results were averaged over the
5000 replications to give estimates ofES{‖ŜLW −S‖2F} and
ES{‖ŜRB −S‖2F}. This was done forK < p (singular case)
andK ≥ p (non-singular). The results are shown in Fig. 1.
Behaviour seems quite smooth asK crosses from the singular
to non-singular cases. The Rao-Blackwell estimator offersa
useful improvement over the Ledoit-Wolf estimator. In these
examples the PRIAL decreases almost monotonically with
increasing degrees of freedom,K, but this behaviour need
not hold for other choices forS.

Note that, analogously to the Ledoit-Wolf estimate of the
shrinkage parameter,min{ρ̂RB, 1} provides an estimate for
the shrinkage parameter which is constrained by its theoretical
upper bound of unity, and would be used in practice.

Remark 4. In [9] an oracle approximating shrinkage (OAS)
estimator was given. The analogous estimator in the complex
case for (8) was found to be unpredictable. For example, for
SA while forK = 2 the PRIAL (comparing to the Ledoit-Wolf
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Fig. 2. Simulated distributions for̂ρLW (thin line) andρ̂RB (thick line) for
the 10 × 10 matrix SB for (a) K = 6, (b) K = 8, (c) K = 10 and (d)
K = 12. The vertical dash-dot line shows the oracle solutionρ0 of (9).

estimator) was increased from 6.5% (Rao-Blackwell) to 15%
(OAS), forK = 4 it decreased from 5.2% (Rao-Blackwell)
to 1.0% (OAS). The behaviour of the Rao-Blackwell estimator
seems better suited for practical use. It should also be pointed
out that the oracle in (8) is optimal for the stochastic target,
while ρ̂LW andρ̂RB were developed for the deterministic target
optimization.

Fig. 2 compares the empirical distributions ofρ̂LW andρ̂RB

for the matrixSB (p = 10) for (a) K = 6, (b) K = 8, (c)
K = 10 and (d)K = 12. As expected asK increases,̂ρLW
and ρ̂RB reduce in variance and converge toward the oracle
solution. The distribution of̂ρRB is always preferable to that
of ρ̂LW.

In the rest of the paper we turn our attention to estimation
of inverse spectral matrices.

V. RAO-BLACKWELL ESTIMATION FOR INVERSE

SPECTRAL MATRICES

We denote the inverse of the spectral matrix, i.e., the

precision matrix, byC
def
= S−1. We shall firstly show that̂S−1

RB

is actually a “Rao-Blackwellized” estimator forC.

Lemma 1. The inverse,̂S−1
RB, of the Rao-Blackwell estimator,

ŜRB, is in the form of a “Rao-Blackwellized” estimator for
C.

Proof: Firstly we note thatŜ is a sufficient statistic for
C. To see this we note that the probability density function
for J0, . . . ,JK−1 can be written

p(J0, . . . ,JK−1;C) = π−pKdetK{C} exp[−Ktr{CŜ}].

The part that depends onC only depends on the sample
through Ŝ, so this is a sufficient statistic forC by the
factorization theorem [19]. NoŵSRB(Ŝ) = E{ŜLW|Ŝ} is
an estimator forS, so Ŝ−1

RB(Ŝ) is an estimator forC. Recall
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Fig. 3. Estimated PRIAL (%) (improvement of̂CRB over ĈLW) for a
VAR5(1) time series example.

the general result that for a functionh(·),

E{h(Ŝ)|Ŝ} = h(Ŝ),

so
E{Ŝ−1

RB(Ŝ)|Ŝ} = Ŝ−1
RB(Ŝ)

def
= ĈRB(Ŝ),

which completes the proof.
Clearly we can useĈRB(Ŝ) to estimateC when Ŝ is

singular,K < p, or non-singular,K ≥ p.
In order to illustrate the Rao-Blackwellized estimator forC

a stable and stationary vector autoregressive process of order
1 and dimensionp = 5 (VAR5(1)) was utilized. The process
was simulated 5000 times withN = 1000 andK = 4. Fig. 3
shows the resulting (estimated) PRIAL

PRIAL
def
= 100

ES{‖ĈLW −C‖2F} − ES{‖ĈRB −C‖2F}

ES{‖ĈLW −C‖2F}
,

(18)
whereĈLW = Ŝ−1

LW. The PRIAL reaches as much as 15% for
some frequencies showing that the Rao-Blackwell approach
can be a worthwhile improvement over the Ledoit-Wolf esti-
mator even for dimensionp = 5.

VI. RANDOM MATRIX APPROACH TOINVERSESPECTRAL

MATRICES

Marzettaet al. [28] examined how to manipulate a singular
(K < p) covariance matrix constructed from circularly-
symmetric complex vectors to obtain a non-singular version.
In the context of spectral matrices, we can explain their idea
as follows.

Firstly an ensemble ofL× p randommatricesΦ ∈ CL×p,
with L ≤ K < p, is introduced, which have orthonormal
rows, so thatΦΦ

H = IL. Such matrices are often called
‘semi-unitary’ and were chosen to be bi-unitarily invariant (see
AppendixA). Such matrices are called “isotropically random”
with the Haar distribution in [28].

The L × L matrix ΦŜΦH is invertible (with probability
one). [28] advocate inverting this matrix and projecting out the
result to ap× p matrix again using the random semi-unitary
matrix Φ. Then taking the conditional expectation over the
semi-unitary ensemble, gives

Ĉ⋆
L(Ŝ)

def
= (p/L)EΦ{Φ

H [ΦŜΦH ]−1
Φ
∣∣ Ŝ},

as an estimator forC. Although not given explicitly in [28]
a rescaling by(p/L) has been included as in [38] so that the
estimate of the inverse of the identity matrix is the identity.
The termL such thatL < K < p is a parameter to be chosen;
its determination is discussed later.

Since hereK < p, the Hermitian matrixŜ has rankr =
min{p,K} = K with probability 1. Its spectral decomposition
is Ŝ = UΛUH , where

Λ = diag{λ1, . . . , λK , 0, . . . , 0︸ ︷︷ ︸
p−K times

}

is the diagonal matrix of estimated eigenvalues, (ordered
largest to smallest), andU is the unitary matrix having cor-
responding eigenvectors for its columns. From [28] it follows
that

Ĉ⋆
L(Ŝ) = (p/L)U Ĉ⋆

L(Λ)UH , (19)

so the required estimator can be constructed fromĈ⋆
L(Λ).

Further, [28] show that

Ĉ⋆
L(Λ) = diag{λ⋆

1, . . . , λ
⋆
K , λ⋆, . . . , λ⋆}, (20)

where λ⋆
i , i = 1, . . . ,K are modified versions ofλi, i =

1, . . . ,K, and thep − K zero eigenvalues of̂S have been
replaced byp−K copies of a single value,λ⋆.

A. Computations via simulations

The computation ofλ⋆
i , i = 1, . . . ,K andλ⋆ can be carried

out purely via simulation, as done by [28] (personal correspon-
dence with Gabriel Tucci). However, for a given̂S, in order
to get good agreement between the estimator ofS derived by
averaging many copies ofΦH [ΦΛΦ

H ]−1
Φ for differentΦ,

(followed by premultiplication byU and post-multiplication
by UH ), and the analytic estimator to be described below,
the number of copies needing to be averaged is typically very
large. For example the order of106 Φ’s were required for
the p = 10 channel EEG example to achieve agreement to
two significant figures. The corresponding compute-time cost
turned out to be around 5000 times as heavy, about 500s for
the simulation approach versus 0.1s for the analytic scheme
at any frequency. Even with modern computational power this
sort of simulation burden is not suitable in a spectral matrix
context whereC must be estimated at possibly thousands of
frequencies.

B. Computations using analytic methods

We now examine how to compute (20) using analytic meth-
ods. DefineDK = diag{λ1, . . . , λK}. Then [28, Theorem 1],
for a continuous functiong(·),

∫

Ω0

1

K
tr{g(ΦH

0 DKΦ0)}dΦ0 =

L−1∑

k=0

(K − (k + 1))!det{Gk}

(L − (k + 1))!det{VK}

(21)

Here Ω0
def
= {Φ0 ∈ CK×L : Φ

H
0 Φ0 = IL}, these matrices

with orthonormal columns again being bi-unitarily invariant
(Haar distributed) — see Lemma 4 of AppendixA.VK is
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the Vandermonde matrix associated withDK given in the
‘flipped’ form

VK =




λK−1
1 λK−1

2 · · · λK−1
K

λK−2
1 λK−2

2 · · · λK−2
K

...
...

...
...

λ1 λ2 · · · λK

1 1 · · · 1



,

andGk is the matrix defined by replacing row(k+1) of the
Vandermonde matrixVK , namely [λK−(k+1)

1 , . . . λ
K−(k+1)
K ],

by the row
[
I(K−L){xL−(k+1)g(x)}

∣∣∣
x=λ1

, . . . ,

I(K−L){xL−(k+1)g(x)}
∣∣∣
x=λK

]
, (22)

whereI(q){f(x)} denotesq integrations off(x).
We consider first the computation ofλ⋆

i , for which [28,
p. 6265]

λ⋆
i =

∂

∂λi

∫

Ω0

1

K
tr{log(ΦH

0 DKΦ0)}dΦ0. (23)

The integral component is given by (21) withg(·) ≡ log(·).
So to computeGk via (22) we need to know terms like
I(q){xn log x} for q ≥ 1, n ≥ 0. This is found to be,

I(q){xn log x} =
xn+qn!

(n+ q)!


log x−

q∑

j=1

1

n+ j


 .

To calculateλ⋆
i in (23) we can now use (21),

λ⋆
i =

L−1∑

k=0

(K − (k + 1))!

(L− (k + 1))!

∂

∂λi

[
det{Gk}

det{VK}

]
.

The partial derivative on the right is given by

det{VK} ∂
∂λi

det{Gk} − det{Gk}
∂

∂λi

det{VK}

det2{VK}
.

To find the derivative of the determinant of aK ×K matrix
M (Gk or VK ) we first differentiate all entries of the matrix
M by λi; denote the(l,m)th resulting entry byAl,m. Now
let B be the cofactor matrix corresponding toM . For 1 ≤
l,m ≤ K defineDl,m = Al,mBl,m, the element-by-element
multiplication of the matricesA andB. Then the derivative
of the determinant is given by [15, eqn. 6]

∂

∂λi
det{M} =

K∑

l,m=1

Dl,m.

For the matrixVK ,

Al,m =

{
(K − l)λ

K−(l+1)
i , if m = i;

0, otherwise.

For Gk, entryAl,m is given by




(K − l)λ
K−(l+1)
i , ifm = i, l 6= k + 1;

∂
∂λi

I(K−L){xL−(k+1) log(x)}
∣∣∣
x=λi

, ifm = i, l = k + 1;

0, otherwise,

where of course we can simplify the second term to

I(K−L−1){xL−(k+1) log(x)}
∣∣∣
x=λi

.

The cofactor matrices forGk or VK can be readily found
using standard matrix software. Hence we are able to compute
λ⋆
i , i = 1, . . . ,K.
The computation ofλ⋆ is straightforward. We know [28,

p. 6264] that forL < K, λ⋆ = det{G}/det{VK} with G

being the matrix defined by replacing theLth row of the
Vandermonde matrixVK , namely[λK−L

1 , . . . , λK−L
K ], by the

row
[
λ
K−(L+1)
1 logλ1, . . . , λ

K−(L+1)
K logλK

]
. We are thus

able to compute all the components of (20) and therefore
Ĉ⋆

L(Ŝ) in (19).

C. Choice ofL

In practice we must choose a suitable value ofL to use. Use
of the analytic results means we requireL < K and we are
interested in the singular caseK < p. To selectL we proceed
by seekingL = L̂ that minimizes the predictive risk defined
as

PR(ℓ) = E
{
E

J̃
{‖Ĉ⋆

ℓ J̃ J̃
H − Ip‖

2
F

∣∣J0, . . . ,JK−1}
}

whereĈ⋆
ℓ is the estimated inverse spectral matrix found from

J0, . . . ,JK−1 whenL = ℓ, andJ̃ is independent of theJk ’s
and from the same distribution. Here we have used quadratic
loss which does not involve any further matrix inversions.
We approximate the predictive risk using leave-one-out cross-
validation. Specifically, the estimate of the predictive risk is

P̂R(ℓ) =
1

K

K∑

j=1

‖Ĉ
⋆[j]
ℓ JjJ

H
j − Ip‖

2
F,

where Ĉ
⋆[j]
ℓ denotes the estimated inverse spectral matrix

found fromJ0, . . . ,JK−1 excludingJj . Then we take

L̂ = argmin
ℓ

P̂R(ℓ). (24)

Note that using this scheme it is only possible to consider
values ofℓ < K − 1 since we know that ordinarilyL must be
less thanK but additionally hereĈ [j]

ℓ is derived fromK − 1
of theJj ’s.

D. Example

In order to illustrate the random matrix estimatorĈ⋆
L(Ŝ)

for C in a time series context, a stable and stationary vector
autoregressive process of order 1 and dimensionp = 10
(VAR10(1)) was utilized withN = 1000 and K = 8. At
each frequency (24) was used to chooseL. Fig. 4 shows the
resulting (estimated) PRIAL

PRIAL
def
= 100

ES{‖ĈLW −C‖2F} − ES{‖Ĉ⋆
L −C‖2F}

ES{‖ĈLW −C‖2F}
.

(25)
This estimated PRIAL was found from 100 replications and
because of the need to produce the replications computations
were carried out only at every 10th Fourier frequency. The
PRIAL reaches nearly 20% for some frequencies again show-
ing a worthwhile improvement over the Ledoit-Wolf estimator.
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Fig. 4. Estimated PRIAL (%) (improvement of̂C⋆

L
over ĈLW) for a

VAR10(1) time series example.

VII. A PPLICATION TO EEGDATA

We now computeĈRB and Ĉ⋆
L for electroencephalogram

(EEG) data, (resting conditions with eyes closed), for a patient
diagnosed with positive syndrome schizophrenia. Interestwas
in the delta frequency range,0.5 < f ≤ 4Hz, see [29]. EEG
was recorded on the scalp at10 sites, so{Xt} is a p =
10 vector-valued process, using a bandpass filter of 0.5–45Hz
and sample interval of∆t = 0.01s. To remove the dominant
and contaminating 10Hz alpha rhythm, which would otherwise
cause severe spectral leakage, the data was low-pass filtered
and resampled to a sample interval of∆t = 0.05s. After this
downsamplingN = 612.

Using this real data the spectral matrixS(f) was estimated
as S0(f), say, for |f | ≤ fN , usingK = 40 tapers. Using
the vector-valued circulant embedding approach, [6], 100 in-
dependent Gaussianp-vector-valued time series (p = 10) were
computed, each havingS0(f), |f | ≤ fN , as its true spectral
matrix. For each of these time series the singular matrixŜ(f)
was computed using multitaper estimation withK = 8 tapers
for 100 frequencies equally spaced between 0.5 and 4Hz, and
from these estimateŝCRB andĈ⋆

L were computed, (with (24)
choosingL for Ĉ⋆

L). The estimated PRIAL — withC = S−1
0

— was then found over the 100 replications. In this way
the simulation experiment mimicks the spectral propertiesof
the EEG data while providing calibrated results, which are
shown in Fig. 5. We see that both schemes improve on the
LW method, but thatĈ⋆

L does particularly well, with PRIAL
reaching 50%.

VIII. C ONCLUDING DISCUSSION

We have described two analytical estimators (Rao-Blackwell
and random matrix) for the spectral precision matrix. Interest-
ingly, ĈRB is the inverse of a shrinkage estimator where the
shrinkage parameter is obtained as a conditional expectation,
conditional on Ŝ, while the random matrix estimator̂C⋆

L

is also a conditional expectation, again conditioned onŜ.
We have shown that both hold promise for being useful in
practice, offering possibly substantial improvements over the
inverse of the LW estimator ofC. Further investigation of
their properties seems worthwhile.

APPENDIX

To simplify notation we drop explicit frequency dependence.
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Fig. 5. Estimated PRIAL (%) for EEG data. Improvement ofĈRB over
ĈLW is shown by the thick line. Improvement of̂C⋆

L
over ĈLW is shown

by the thin line.

A. Bi-unitary invariance

Definition 1. A complex-valuedn × m random matrixZ
is right(left)-unitarily invariant if its distribution isinvariant
under the transformationZ → ZΘ (Z → ΥZ) where
Θ ∈ U(m),Υ ∈ U(n), whereU(n) is the compact group of
all n × n complex unitary matrices, i.e.,U(n) = {Un×n :
UHU = In}. If both are true we sayZ is bi-unitarily
invariant.

Lemma 2. The matrixJ defined in (1) withJk given by
(3) is right-unitarily invariant. (If S = Ip it is bi-unitarily
invariant.)

Proof: This follows from [22, p. 487].

Lemma 3. When considered as a metric spaceU(n) is mea-
surable. There is a unique left-unitarily invariant probability
measureµ for U(n) such thatµ(ΘA) = µ(A) for any
measurableA ⊂ U(n) and anyΘ ∈ U(n). Moreover, since
U(n) is compact, the same measureµ is also right-unitarily
invariant. The Haar measure is this unique probability mea-
sureµ onU(n) that is bi-unitarily invariant. See [37, p. 108].

Remark 5. LetΥ ∈ U(n). If Υ has Haar measure then for all
Θ1,Θ2 ∈ U(n), p(Θ1ΥΘ2) = p(Υ), wherep(Υ) denotes
the joint probability density function of the components ofthe
unitary matrix.

Lemma 4. Let Υ ∈ U(n) equipped with Haar measure. We
now consider two specific truncations of then × n unitary
matrices. Suppose we partitionΥ in two ways:

Υ =

[
Φ

P(n−m)×n

]
=

[
Φ0 Qn×(n−m)

]
,

whereΦ is m × n,m < n and Φ0 is n × m,m < n. Then
Υ → Φ maps the unitary group onto the Stiefel manifold of
m × n matrices with orthonormal rows,ΦΦ

H = Im. The
image of the Haar measure under this map is bi-unitarily
invariant. Likewise,Υ → Φ0 maps the unitary group onto the
Stiefel manifold ofn×m matrices with orthonormal columns,
Φ

H
0 Φ0 = Im. The image of the Haar measure under this map

is again bi-unitarily invariant. See [14].
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B. Results required for proof of Theorem 3

Theorem 4. We know that the singular value decomposition
(SVD) for thep×K random matrixJ defined by (1) and (3)
is [1, p. 182] J = UΨV H , whereU ∈ U(p),V ∈ U(K)
andΨ is thep×K matrix

Ψ =

[
Ω 0r×(K−r)

0(p−r)×r 0(p−r)×(K−r)

]
,

Ω is the diagonal matrixΩ = diag{ω1, . . . , ωr}, ωi = λ
1/2
i ,

the square root of theith ordered eigenvalueλi(JJ
H) =

λi(J
HJ). Here r = rank{J} = rank{JJH} =

rank{JHJ}. Further r = min{p,K} with probability 1.
Then,

1) {U ,Ω} andV are statistically independent.
2) V is a bi-unitarily invariant unitary matrix.

Proof: 1. We firstly show that{U ,Ω} andV are statis-
tically independent.

Let U = [U0,ur+1, . . . ,up] = [U0 |U1] and let V =
[V0,vr+1, . . . ,vK ] = [V0 |V1]. The full SVD J = UΨV H

can be written in the form

J = [U0 |U1]Ψ

[
V H
0

V H
1

]
.

Now consider two cases

• K ≤ p. In this case,r = K and

J = [U0 |U1]

[
Ω

0(p−K)×K

]
V H . (26)

• K > p In this case,r = p and

J = U
[
Ω 0p×(K−p)

] [ V H
0

V H
1

]
. (27)

Write J = A+iB. The probability density is given by [22,
eqn. 78]

π−pK |S|−K exp−tr{S−1
JJ

H} ∏p
i=1

∏K
j=1dAijdBij . (28)

dAij is thei, j-th element ofdA and
∏p

i=1

∏K
j=1dAijdBij is

the volume element. Since we are interested in transformingJ

it is convenient to use another notation for the volume element,
viz (dJ), so that (28) becomes

π−pK |S|−K exp−tr{S−1
JJ

H}(dJ) (29)

which relates the volume element to the exterior product
notation:

(dJ)
def
= (dA)(dB).

where (dA) = ∧K
j=1 ∧p

i=1 dAij ; see [31, Chapter 2]. Now
we return to the case ofK ≤ p and consider the ‘thin’ SVD
corresponding to (26). It takes the form

J = U0ΩV H . (30)

The transformationJ → U0ΩV H was studied in [33] who
found the volume element(dJ) to be proportional to

[det{Ω}]2p−2K+1∏K
k<l(ω

2
k − ω2

l )
2(Ω)(U0dU0)(V dV H).

(31)

In (29), π−pK |S|−K exp−tr{S−1
JJ

H} becomes

π−pK |S|−K exp−tr{S−1
U0Ω

2
U

H

0
} . (32)

The product of (32) and the volume element (31) shows
that the probability density can be factored into functionsof
{U0,Ω} andV . Now U = [U0 |U1] and in order forU to be
unitary,U1 depends totally onU0. HenceV is independent
of U andΩ.

For the caseK > p consider the ‘thin’ SVD corresponding
to (27), i.e.,J = UΩV H

0 . Then the probability density can be
factored into functions of{U ,Ω} andV0. Now V = [V0 |V1]
and in order forV to be unitary,V1 depends totally onV0.
HenceV is again independent ofU andΩ.

2. We now show that the unitary matrixV is bi-unitarily
invariant.

Proof: Note thatJHJ = V Ψ
2V H = V ΛKV H , with

ΛK =




λ1

. . .
λr

0r×(K−r)

0(K−r)×r 0(K−r)×(K−r)


 .

SinceJ is right-unitarily invariant (Lemma 2) we know that
J and JΘH have the same distribution forΘH ∈ U(K).

Hence, with
d
= denoting “equal in distribution,”

JHJ
d
=(JΘH)H(JΘH) = ΘJHJΘH = (ΘV )ΛK(ΘV )H

and soV ΛKV H d
=(ΘV )ΛK(ΘV )H . The random compo-

nents of ΛK are functions of the random components of
Ω, and V is independent ofU and Ω, so V and ΛK are

independent. Then,V
d
=ΘV . Since the distribution ofV

is left-unitarily invariant andV ∈ U(K), we know from
Lemma 3 of AppendixA that it is also right-unitarily invariant,
and hence is a bi-unitarily invariant unitary matrix. This
completes the proof.

Lemma 5. With theK×K matrixV defined as in Theorem 4,
let vjk = (V )jk. Then for1 ≤ j, k, l ≤ K, j 6= l,

E{|vkj |
4} = 2/[K(K + 1)] (33)

E{|vkj |
2 · |vkl|

2} = 1/[K(K + 1)]. (34)

Proof: The bi-unitarily invariant nature of the unitary
matrix V is sufficient [20, p. 812] for the stated moment
results of [20, Proposition 1.2] to hold, in particular (33)and
(34).

Lemma 6. We can write

E

{
K−1∑

k=0

||Ŝk − Ŝ||2F |Ŝ

}
=

K−1∑

k=0

E{||Jk||
4
2|Ŝ} −Ktr{Ŝ2}.

Proof: Expanding the expectation on the left we get

K−1∑

k=0

E{tr{JkJ
H
k JkJ

H
k }|Ŝ} −

K−1∑

k=0

E{tr{ŜJkJ
H
k }|Ŝ}

−
K−1∑

k=0

E{tr{JkJ
H
k Ŝ}|Ŝ}+

K−1∑

k=0

E{tr{Ŝ2}|Ŝ}
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Now,

tr{JkJ
H
k JkJ

H
k } = tr{JH

k JkJ
H
k Jk} = (JH

k Jk)
2 = ||Jk||

4
2,

so the first term is simply
∑K−1

k=0 E{||Jk||42|Ŝ}. For the second
term in the expansion we get

−E{tr{Ŝ
∑

k

JkJ
H
k }|Ŝ} = −E{tr{KŜ2}|Ŝ} = −Ktr{Ŝ2}.

Terms three and four follow likewise to give the result.

Lemma 7.

E{||Jk||
4
2|Ŝ} =

K

K + 1

[
tr{Ŝ2}+ tr2{Ŝ}

]
.

Proof: We adopt the approach of [9, Lemma 3], although
details and the result are different. Now

KŜ = JJH = UΨΨ
HUH = UΛpU

H , (35)

where, withλi ∈ R,

Λp =




λ1

. . .
λr

0r×(p−r)

0(p−r)×r 0(p−r)×(p−r)


 .

Let V H = [ν0, . . . ,νK−1] so thatJk = UΨνk and

JH
k Jk = νH

k Ψ
H
Ψνk = νH

k ΛKνk.

Consequently,

E{||Jk||
4
2|Ŝ} = E{(νH

k ΛKνk)
2|Ŝ}

= E{E{(νH
k ΛKνk)

2|Ŝ,ΛK}|Ŝ}. (36)

• Ŝ depends onU andΛp and the random components of
Λp are functions of the random components ofΩ.

• The random components ofΛK are functions of the
random components ofΩ.

• νk is a function ofV .

Now V is independent ofU andΩ by Theorem 4. Therefore,
for the inner conditional expectation of (36) we know that
E{(νH

k ΛKνk)
2|Ŝ,ΛK} is given by

r∑

j=1

λ2
jE{|νjk|

4}+
r∑

j 6=l

λjλlE{|νjk|
2|νlk|

2}

=
r∑

j=1

λ2
jE{|vkj |

4}+
r∑

j 6=l

λjλlE{|vkj |
2|vkl|

2}

wherevkl = (V )kl. Then using (33) and (34), we see that

E{(νH
k ΛKνk)

2|Ŝ,ΛK} =
1

K(K + 1)


2

r∑

j=1

λ2
j +

r∑

j 6=l

λjλl




=
1

K(K + 1)




r∑

j=1

λ2
j +

r∑

j,l

λjλl




=
1

K(K + 1)

[
tr{Λ2

p}+ tr2{Λp}
]

=
K

K + 1

[
tr{Ŝ2}+ tr2{Ŝ}

]
,

since from (35) we have that

tr{Λ2
p} = K2tr{Ŝ2} and tr2{Λp} = K2tr2{Ŝ}.

Taking the outer expectation conditional on̂S changes noth-
ing, which completes the proof.
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