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Abstract—Much research has been carried out on shrinkage  The estimation of a covariance matr® from N sam-
methods for real-valued covariance matrices. In spectral malysis ples of p real-valued zero mean random variables has been
of p-vector-valued time series there is often a need for good extensively researched for the cade > p. Although the
shrinkage methods too, most notably when the complex-valde . . . s
spectral matrix is singular. The equivalent of the Ledoit-Wolf _resultlr_wg ”Or_"s'”gu'ar sample covariance estima&bof
(LW) covariance matrix estimator for spectral matrices canbe IS unbiased its eigenvalues tend to be more spread out than
improved on using a Rao-Blackwell estimator, and using randm  the true eigenvalues. To ameliorate this problem [21] ldoke
matrix theory we derive its form. Such estimators can be used at minimax estimation over a certain group, but the estinsato
to better estimate inverse spectral (precision) matricesao, and depend on the coordinate system. This problem was removed

a random matrix method has previously been proposed and by 1101 wh idered orth I ivariant mini
implemented via extensive simulations. We describe the ntead, y [10] who considere orthogonally equivariant minimax

but carry out computations entirely analytically, and suggest estimators: an estimatoF(X) of X is said to be orthogo-
a way of selecting an important parameter using a predictive nally equivariant if for any orthogonal matri©®), we have

risk approach. We show that both the Rao-Blackwell estimato f(of)oT) = O_F(f))OT, where™ denotes transposition. In
and the random matrix estimator of the precision matrix can 5t sych estimators shrink the sample eigenvalues, anckso a

substantially outperform the inverse of the LW estimator in a . .
time series setting. Our new methodology is applied to EEG- of the widely researched shrinkage class, see e.g., [18], [1

derived time series data where it is seen to work well and deler  [36]- ) ) . o
substantial improvements for precision matrix estimation For shrinkage estimators which are a combination of the

Index Terms—Rao-Blackwell estimators, random matrix the- Standa_rd quariance_ matrix and a target matrix p_roportiona
ory, shrinkage, spectral matrix. to the identity, Ledoit and Wolf (LW) [24], [25] derived the
ideal shrinkage parameter, or ‘oracle’ value, that mingsia
risk measure betweeR and ¥. Such LW estimators are 0]
I. INTRODUCTION suitable for the cas&V < p when X is singular, (i) do not
, ) , assume Gaussianity, and (iii) may be used in largettings.
A stationaryp-vector-valued time series has, at each frgy jitications to the target matrix were discussed in [35] and

q“‘?“CYf’ apxp complex-valued s_,pectral matrié(f), _for #8], the latter shrinking the sample covariance matrix taisa
Wh'Ch an estlmatOS(f)_, can be denve_d. If S_UCh an estimatogq tapered version for high-dimensional matrices; modifie

is computed by a multitaper scheme involviigtapers (€.9., egtimators for this case were also suggested in [13].

[32]) then the spectral matrices — complex-valued analsgue qer the Gaussianity assumption, [9] showed that the LW
of covariance matrices _,W'" be singularsif> K (and ill-  egtimator can be significantly improved upon. They develope
conditioned if & IS only.a little larger tharp). Unfortunately the so-called Rao-Blackwell (RB) estimator which is guaran
K cannot be simply _mcreased _beca_use_ of its connectig,y ¢ |east as good as the LW estimator under any convex
to the implied smoothing bandwidth: iK' is made larger, |ooq criterion.

the required resolution may be lost. (Other estimators suchrpere has also been much interest in accurate estimation of
as periodograms smoothed over frequencies have analogﬂ’]lésprecision matrix®~!. A weighted combination of~!
properties.) In this paper we look at the gst!matlth:(fJ“) and the identity was considered by [11], and improved on by
and more partltiularly the spectral ‘precision’ matrix defin [17) By |ooking over the class of orthogonally equivariant
as C(f) = 57 (f) when S(f) is singular. The precision egtimators for real covariance matrices, Ledoit and Wol [2
matrix is used in the computation of partial coherencies Broduced nonlinear shrinkage estimators oand 1. All
time series graphical modelling (see e.g. [29] and ref@enGpese studies assumed that > p. Also the calculations
therein for a neuroscience application). We don’t assume;gys|yed in [26] are hugely costly. The singular case hasibee
very largep since the moderagescenario is often encountered, s cting much attention recently in the context of estinga

in practice and practically is just as important. We shallyase precision matric&—! in high-dimensional situations
first give a review of relevant covariance matrix estimatio, ~~ n) see e.g.. [3], [7], [23], [30]. [34].

literature, before turning to the contributions of this pap Following some background material on spectral matrix

) ) o estimation in Section II, the contributions of this papee ar
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and Rao-Blackwell estimators are surprisingly differens

in form to the real-valued cases. The Rao-Blackwell = | Kl

estimator is derived making substantial use of random S(f) = — Si(f) = — Z J(HJTE(f) =
matrix theory and is very simple in form and thus highly k=0 k=0

usable in practice. The Gaussian assumption is used to - iJ(f)JH(f) @
derive simple forms for the oracle shrinkage parameter K ’

and for the Rao-Blackwell estimator. While in standard def H

real-valued covariance matrix estimation Gaussianity thereSk(f) = Ju(H) i (F).

a problematic assumption and robustness issues ariseR#mark 1. This conveniently mimicks the classical covariance

our context this is not dubious because of the Centralatrix estimator: if Yy,...,Yx_1 are K independentp-

Limit Theorem effect of the vector Fourier transformdimensional Gaussian real-valued random vectors with zero

used in the time series setting. means and covariance matr®, then the maximum likelihood
2) Section V points out that the inverse of the Racestimator for® is 3 = %ZkK:_ol YY"

Blackwell estimator is in the form of a “Rao-

Blackwellized” estimator forC(f). We show that this  Letting B denote the bandwidth of the spectral window

estimator can substantially outperform the inverse of thrresponding to the tapering, théfa(f),k =0,..., K — 1,

LW estimator in a time series setting. may be taken to be independently and identically distrithute
3) In Section VI we examine direct estimation 6f(f) as p-vector-valued complex Gaussian with mean zero and

from singular estimatorsS(f) using random matrix covariance matrixS(f) :

methods as developed in [28], and formulate a com- a4

pletely analytic (rather than simulation-based) approach Ji(f) = NJ{0,8(f)}, 3)

to obtain the estimators. A predictive risk approach ig,, B/2 < |f| < fy — B/2 for finite N and Gaussian

given to select a controlling parameter. We show thﬁ?ocesses, ob < |f] < f, asymptotically [5]. Then the

this estimator can substantially outperform the inversesimaor of (2) is the maximum-likelihood estimator ),
of the LW estimator in a time series setting. [16]. Further

4) Our new methodology is applied to electroencephalo-

gram (EEG) derived time series data in Section VII 1

R 1 K-—1
where it is seen to work well and deliver substantiaﬁg{s(f)}zg ; E{Jk(f)Jlf(f)}ZE S(f)=8(f),

improvements over the inverse LW estimatorsCoff). 0 (4)

and E{tr{S}} = E{>]_,5;} = X5, = tr{S},
results we shall make use of later. These hold whefher p,
which corresponds t&(f) being non-singular, o < p,
when the estimated matrix is singular (both with probapilit

S
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Il. SPECTRAL MATRIX ESTIMATION

Here we consider a reap-vector-valued discrete time
stochastic proces$X;} whosetth element is the column one).
vector X; = [X14,...,X,.]7, and each component process
has zero mean. The sample interval is denotedAyy We

assume thep processes are jointly stationary, i.e., for all The. conve_ntional approach to fcovarianc_e matrix’ regu-
ILm = 1,...,p, Stmr = cov{Xii1r, Xm.} is a function larization which has been extensively studied involves the

of 7 only. forming of a convex combination of the sample covariance

The matrix autocovariance sequenge,} is defined by matrix and some well-conditioned ‘target’ matrix. For an
sy = cov{Xyir, XT'} = B{X,,, X7}, and each COmponemestimatedp x p Hermitian spectral matrixS(f) this would
is assumed absolutely summable. The spectral matrix, is téke the form
_ 0 —i2wfr Ay A ~
S(f) = Aed iy oo re : S*(f) = (1= p(FNS(F) + p(HYT(), 5)
We make use of a set df orthonormal taperghy .}, k = ) _
0,...,K—1landfort = 0,..., N—1, form the producty, . X, where p(f) € (0,1) is known as the shrinkage parameter

of the tth component of thé:th taper with thetth component andT'(f) is the target matrix. Provide(f) and T'(f) are
of the p-vector-valued process, and fér = 0,..., K — 1 both positive definite, then this convex combination wikif

compute the vector Fourier transform be positive definite. For notational brevity we shall drop th
explicit frequency dependence in most of what follows.

IIl. CONVENTIONAL SHRINKAGE METHODOLOGY

dof N—1 . Apart from being positive definite, suppose thatapriori
Je(f) = A2 Z hy 1 Xy e 2T A form is imposed onI’ and our goal is to find an optimal
t=0 estimator forS of the form of (5) by determining = po
) ) such that
Let J(f) be thep x K matrix defined by po = argmin E{||S* — S|21,
J(f) =[Jo(f),- - Tk-1(f)]- (1) where, forA € CP*?, ||A]|r denotes the Frobenius norm

||A|lr = [tr{AAT}]Y/2 tr{-} denotes trace, antl denotes
Then the multitaper estimator of thex p spectral matrixS(f) complex-conjugate (Hermitian) transpose.



A. Oracle Estimator Theorem 1. LetT = (tr{S}/p)I,. Under the assumption (3),
po in (7) can be written

tr*{S} — Jtr{S*}

Firstly we define

o = EB{|S-T|}=E{t{S-T)S—-T]"}} po = - : . (8)
# = B{IS - Sl = Bir{($ - 5]S - 5]"}} |- SRS K - (s
& = E{[|S-TI#} =E{tr{[S-T]S-T]"}} Proof: From (7)
v = E{t{(S-S|[S-T)"}}. P E{tr{(S - 8][S (tr{S}/p) ]}}_
Then withRe{-} denoting “real part of, E{tr{ — (r{S}/p)L; 12}}
A N R The numerator and denominator are then
8 = E{IS-TI}=E{|[S-S+[S-T] |} . 1. . 1 R
= B{|S-TI|2}+E{]|S-5 2} E{tr{S*} - ];trQ{S} —tr{SS} + ];tr{S}tr{S}}
+ 2Re{E{tr{[S - S|[S - T|"}}} N S
— Q4420 and  E{tr{S%} S {81},

since[$ — §] and[S —T']¥ are both Hermitian, (each &, S respectively. Under the assumption (&)S has the complex

andT is Hermitian), and therefore the trace of the product \&/ishartdistribution with meai’S. Then we know (e.g., [27])

guaranteed real-valued, ${-} is not needed. a0 _ 2y, 1.
The objective function can be written E{tr{S }} = wSH+ Ktr {5}
~ ~ 214 _ 2 1 2
E{||S* ~ SR} = B{II(1—p)S+pT - S|} E{r*{S}} = w{S}+ tr{S*}.
= E{|| plT — S]+(1—p)[S—5S]|E} So the numerator and denominator become
= pa?+ (1 p)*B% = 2p(1 - p)*. Lrorcy lirce
e (S) - r{s?)

Differentiating with respect t@ and setting to zero: 1 11
P and [1 - —K} tr{S?} + {E - —] tr’{S},
5, EUIS™ = SI[F} = 200" = 2(1 = p)B* = 2(1 = 2p)7* = 0 _ pRl pl
p respectively, and their ratio gives the required result. =
so that the solution is [12], [13] The form (8) is known as an ‘oracle’ estimator since it
s o 5 o <o involves the unknown quantities{ts} and t{S?} and so its
e A A ; ) NS
po = = 557 . (6) value is not known in practical situations.

The second derivative is positive so that the objectivetionc
is minimized with thispy value.
The termB3? + ~? can be rewritten as

E{tr{[S — S|[S — 8]"}} + E{tr{[S — S|[S — T'|"}}
= E{tr{[S—S][S - T]}}, C. Deterministic Target

L . R If T is constantT’ = T say, then the term? = tr{ E{[S —
where we have used the Hermitian propertieSadindT’. So S]}[S — T]} = 0, and po in (6) becomesp, = 52/52. We

po In (6) becomes now consider the target matrik = (tr{S}/p)I, = pol,.

Remark 2. The form of the estimator (8) for complex-valued
covariance matrix estimators is surprisingly differentttat
for real-valued covariance matrix estimators: compare (8)
with [9, eqn. (7)].

o = E{tr{[S‘ - S8)[S - T]}} @) Theorem 2. LetT = (tr{S}/p)I,. Under the assumption (3),
B{tr{[S-T?}} po = (32/62 can be written
which is of the same form as found in [9, eqn. (6)] for the 00 = tr*{S} (9)

real-valued case. This form fag, is distribution invariant. In
order to rewritepy in (7) in a useful form involving justS
and parameter& andp, Gaussianity will be assumed, whichre
is justified as discussed earlier.

[1 - EJr2{S} + Ktr{S?}

Proof: This proceeds along the same lines as for Theo-
m 1. ]
This case was extensively studied in [25] who made many

interesting observations. Wheh = 11, then using (5) the
B. Stochastic Target eigenvalues ofS are shrunk according t&; — (1- po)/\ +

Suppose we defing, = tr{S}/p and ji = tr{S}/p and Poto, thus reducing the condition number is the “grand
takeT — (tr{S}/p) = fioI,. In this case botA” andS will mean” of both true and sample eigenvalues [25] and thus the
p . . .
be subject to estimation error and will in general be coteela sample eigenvalues will be shrunk towards their grand mean.

. . : 275
(This was the case developed in [24] for real-valued conaga N Practice we will know neithegip nor p, = 5%/6 since they
matrices.) both involve the unknowi$. These quantities can be estimated

via “plug-in” values. Following the derivation of consiste



estimators in [2] we first tak@o for x4 and next note thai? 10
could be estimated by omitting the expected value:

PRIAL
o

6A2 = ||‘SA’_I&OI ||12? :tr{[g_:&OI ][‘SA'_I&OI ]H} 02 3 4 5 6 7 8 9 10
t K
= tr{S%} — r {S} ZZ|S” fi0di ;% 10 ; : o
=1 j=1

PRIAL
<) o

whered; ; is the usual Kronecker delta, equal to unity when
i = j, and zero otherwise. The estimation @f = E{||S — 5 10 15 20 25
S||2} is less simple. Using (4)3* can be written

L . . L N Fig. 1. Simulated PRIAL values for (a4 for which p = 4 and (b)Sp
8% = Z Z E{|Si; — E{Sij}|2} = Z Z var{S;;}, (10) for which p = 10. In each case the dotted line indicajes
i=1 j=1 i=1 j=1

so it can be estimated using a form of sample vari- IV. RAO-BLACKWELL ESTIMATION

ance: 8% = Y- Y var{S;;}. Given (3), for the mul-
titaper spectral matrix estimator we knowar{S;;} = It is possible to produce another estimator frafiy
Var{(l/K) ka01 S, ij} = (1/K) Var{gk i}, where which is at least as good under any convex loss criterion.

The transformed estimator to be derived is known as the
Rao-Blackwell estimator and was developed for real-valued
covariance matrices in the context of (13) by [9]. The idea is
that if T'(Jo, ..., Jx—1) is a sufficient statistic foiS, and if

Sy i = (Sk)w An estimator forvar{Sk ij}is Var{Sk g} =
(1/K)Z |Sk i o= S”| so we get Var{SU} =
(1/K2) S |Skij — Sij|2, which gives an estimator gf?
in (10) of the form

S(Jo,...,Jx—_1) is an estimator foiS, then the conditional
A =0 expectation S’ (Jo, .. .,JK_l)dCfE{S(JO, L Jk_)|T) s
B =— Z 1Sk — S|[f. (11) never worse tharS(Jy,...,JJx_1) under any convex loss
Ll criterion. To see this, start with the rigk(.S, S) of the original

. estimator [4, p. 483]
so the estimator of, becomes

R(S,S) = Es{L(S,SJo,...,Jdk-1))} (14)
Es{E{L(S,S(Jo,...,Jx-1))|T}}
Es{L(S,E{S(Jo,...,Jx-1)|T}H}
where we have defined this estimator tojpg; because it is of Es{L(S,8'(Jo, ... Jx-1))} (15)

the same form as derived in [25, pp. 379-380] for real-valued = R(S,8)).
covariance matrices.

Finally then the proposed shrinkage estimator of the speQF'ere the second line uses the rule of iterated expectatidn a

- fBQ Z ||5k—S|IF def .
PO — =T = —
07 K2 [tf{SQ} — (tr*{S}/p)

|
i
z
—
=
N
~
AV

trum is, from (5), given by the third line follows from Jensen’s inequality and the ased
convexity of the loss function.)
Stw = [1 — prw] S + prwiiol,, (13) In the context of spectral matrix estimation we note that
under the independent complex Gaussian assumption for the
exactly mimicking [25, p. 380]. As a result the empirical/o, -, Jx—1, (3), that S is a sufficient statistic for esti-
shrinkage of the eigenvalues is given hy_> (1 —pLW)/\ 4+ mating S, [16, Theorem 4.2]; this is true foK > p and
prwilo. This approach can be used § is singular or ill- K < p. Then, the Rao-Blackwell estimator takes the form

conditioned. Notice that ifX’ < p, so that$ is singular, the Srs = E{SLw|S} and
resulting zero eigenvalues will be modified ggw fio.

Note that sincé? = a2+ 32 if we define3? = min{ 32, 62} R(S,S1w) = Es{l[Suw - S|}
then 32/6> = min{prw,1} provides an estimate for the = Es{E{||Suw — S||3|S}}
shrinkage parameter which is constrained by its theoletica > Es{||E{Suw|S} — S||2}
upper bound of unity. This would be used in practical appli- - 9 -
cations = Es{|[Sr — S|[z} = R(S, SrB).
Remark 3. The form of32 given in (11) for the multitaper So,
approach is very appealing as the averaging is all carried ou _ . . . .
at the frequency of interest, and is done over tapers. In théfrs = E{Sww|S} = E{[1 — puw] S + prwitoI,|S}
approach of [2, p. 921] the “local variance” averaging must = [1- E{ﬁLW|g}]g + E{ﬁLwﬂo|5’}Ip

be done over different frequencies. def o
= [1 - prB]S + prBiodp,



where the Rao-Blackwell shrinkage parameigg is 60 T 60 !

| @ | (b)
o def .. A {Z ||Sk—5||p |S} 40 : 20 !
pre = E{pw|S} = (16) I I

K2 |tr{$?} - (1*{$} /)] 20 | 20
The form of the shrinkage parameter was derived in [9] for o o

real-valued covariance matrices. For our complex-valusese ¢ 0 0.2 0.4 0 0.2 0.4
the form is substantially different. shrinkage parameter shrinkage parameter
. . 60
Theorem 3. Under the assumption (3prs in (16) takes the ! © ! @
H C
simple form 40 | 40
R tr2{S} — (tr{S?}/K)
PRB = N N . 17) 20 20
(K +1) |tr{$%} - (S} /p)|
Proof: This uses invariance properties of the random % 0.2 04 Co 0.2 0.4
matrix J and the random unitary matrices arising from its shrinkage parameter shrinkage parameter

singular value decomposition. Details are given in ApprBdi
put the results of Lemma 6 and Lemma 7 into the numeratgg. . simulated distributions fgir (thin line) andjrs (thick line) for
of (16), then (17) readily follows. B the 10 x 10 matrix Sp for (a) K = 6, (b) K = 8, (c) K = 10 and (d)
From (14) and (15) we have thde{HSva _ SH%} > K =12. The vertical dash-dot line shows the oracle solutignof (9).
Es{||Srs — S||2}. It is common to look at such a differ-
ence via the percentage relative improvement in average lo

(PRIAL) defined as estlmator) was increased from 6.5% (Rao-Blackwell) to 15%

(OAS), for K = 4 it decreased from 5.2% (Rao-Blackwell)
Es{||Stw — S||32} — Es{||Srs — S||F} to 1.0% (OAS). The behaviour of the Rao-Blackwell estimator

Es{||Stw — S|2} seems better suited for practical use. It should also betpdin
out that the oracle in (8) is optimal for the stochastic targe
while prw andprp were developed for the deterministic target
optimization.

PRIAL % 100

To illustrate this quantity two different Hermitian maiis S 4
and S were utilized.S 4 is the4 x 4 ‘random’ choice
7181 7;; ! 6 f 9% 5 Zi ; Fig. 2 compares the empirical distributions@fy andprs
Sa= . . for the matrixSp (p = 10) for (a) K = 6, (b) K = 8, (c)
8 6 —2i 15 9—-3i ! A
. . K =10 and (d) K = 12. As expected ad{ increasesprw
4 541 9431 10 . . .
and grp reduce in variance and converge toward the oracle
and the secondSp is set equal to al0 x 10 estimated solution. The distribution ofrg is always preferable to that
spectral matrix from an EEG dataset. From each of thgseof prw.
matrices, a set ofn = 5000 matrix estimatesS;,...,S,, In the rest of the paper we turn our attention to estimation
were simulated satisfying (2) and (3). For each replicatioof inverse spectral matrices.
estimates were constructed of the fo$ayw and Skrg, and
the Frobenius norm between the estimate and the true matrix
(S4 or Sp) was found. The results were averaged over the
5000 replications to give estimates BE{||Stw — S|2} and
Es{IISRB—SIIF} This was done fok < p (singular case) We denote the inverse of the spectral matrix, i.e., the
and K > p (non-singular). The results are shown in Fig. lprecision matrix, b>C ¢ §~1. We shall firstly show thaS
Behaviour seems quite smooth &scrosses from the singularis actually a “Rao-Blackwellized” estimator fap.
to non-singular cases. The Rao-Blackwell estimator ofters . o .
useful improvement over the Ledoit-Wolf estimator. In thesemma 1. The mverseSRP, of the Rao- Black’}/vell estimator,
examples the PRIAL decreases almost monotonically Wlt%RB’ is in the form of a "Rao-Blackwellized" estimator for
increasing degrees of freedork;, but this behaviour need
not hold for other choices fo§. Proof: Firstly we note thatS is a sufficient statistic for
Note that, analogously to the Ledoit-Wolf estimate of the'. To see this we note that the probability density function
shrinkage parametemin{prg,1} provides an estimate forfor J;,..., Jx_; can be written
the shrinkage parameter which is constrained by its thieatet R
upper bound of unity, and would be used in practice. p(Jo, ..., Ik —1;C) = 7 PX et {C} exp[- Ktr{CS}].

V. RAO-BLACKWELL ESTIMATION FOR INVERSE
SPECTRAL MATRICES

Remark 4. In [9] an oracle approximating shrinkage (OAS)The part that depends o€ only depends on the sample
estimator was given. The analogous estimator in the compkéxough S, so this is a sufficient statistic fo€ by the
case for (8) was found to be unpredictable. For example, feactorization theorem [19] NowSge(S) = E{Srw|S} is
S 4 while for K = 2 the PRIAL (comparing to the Ledoit-Wolfan estimator forS, so SRB(S) is an estimator foilC'. Recall



20

PRIAL
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frequency
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Fig. 3. Estimated PRIAL (%) (improvement af'zp over Crw) for a
VAR5(1) time series example.

the general result that for a functidr{-),
E{h(S)|S} = h(S),

SO

as an estimator fo€'. Although not given explicitly in [28]
a rescaling by(p/L) has been included as in [38] so that the
estimate of the inverse of the identity matrix is the identit
The termL such thatl, < K < p is a parameter to be chosen;
its determination is discussed later.

Since herek < p, the Hermitian matrixS has rankr =
min{p, K} = K with probability 1. Its spectral decomposition
is § = UAU , where

A =diag{),...,\k, 0,...,0}

——
p— K times
is the diagonal matrix of estimated eigenvalues, (ordered
largest to smallest), anty’ is the unitary matrix having cor-
responding eigenvectors for its columns. From [28] it faio
that
Ci(S) = (p/L)U CL(A) U™, (19)
so the required estimator can be constructed fiG(A).
Further, [28] show that

E{S;{é(S‘HS} _ g;{é(g) def Cri(9), Ci(A) =diag{\],..., X, A, ..., ) (20)

which completes the proof. m where)\!,i = 1,...,K are modified versior)s oh;, i =

Clearly we can useC’RB(S) to estimateC when S is 1,...,K, and thep — K zero eigenvalues of have been
singular, K’ < p, or non-singulark > p. replaced byp — K copies of a single value\*.

In order to illustrate the Rao-Blackwellized estimator €r
a stable and stationary vector autoregressive procesdef or . L .
1 and dimensiomp = 5 (VAR5(1)) was utilized. The processA' Computations via simulations
was simulated 5000 times with = 1000 and K = 4. Fig. 3 The computation of*, i = 1,..., K and\* can be carried

shows the resulting (estimated) PRIAL
Es{||Cuw — C|}} - Es{||Crs — C|}}
Es{|Cuw — C|}}

out purely via simulation, as done by [28] (personal coroesp
dence with Gabriel Tucci). However, for a give$) in order
to get good agreement between the estimata$ aferived by
averaging many copies @b [®A®H|~1® for different &,
followed by premultiplication bylU' and post-multiplication
U™), and the analytic estimator to be described below,
the number of copies needing to be averaged is typically very
II'arge. For example the order af)® ®'s were required for
the p = 10 channel EEG example to achieve agreement to
VI. RANDOM MATRIX APPROACH TOINVERSE SPECTRAL WO significant figures. The corr_esponding compute-time cos
MATRICES turned out to be around 5000 times as heavy, about 500s for
. , , the simulation approach versus 0.1s for the analytic scheme
Marzettaet al. [_28] examlngd how to manipulate a smgulagt any frequency. Even with modern computational power this
(K < p) covariance matrix constructed from CIrCUIarly'sort of simulation burden is not suitable in a spectral matri

symmetric complex vectors to obtain a non-singular VeESiOE'ontext whereC must be estimated at possibly thousands of
In the context of spectral matrices, we can explain theiEtideFrequencies

as follows.
Firstly an ensemble of x p randommatrices® € CL*P,
with L. < K < p, is introduced, which have orthonormalB. Computations using analytic methods

o .
rows, so that@$™ = Ir. Such matr!ces_ are Pﬁe”_ called We now examine how to compute (20) using analytic meth-
‘semi-unitary’ and were chosen to be bi-unitarily invatigsee ¢ DefineDy = diag{ )\ Ax }. Then [28, Theorem 1]
AppendixA). Such matrices are called “isotropically ramdo ¢ é continuous functiory&:)' v ' ' ’

with the Haar distribution in [28].

The L x L matrix @S®Y is invertible (with probability
one). [28] advocate |r_1vert|n_g thls_ matrix and prOjectln_gﬂnga o (L —(k+1)ldet{Vi}
result to ap x p matrix again using the random semi-unitary **

matrix ®. Then taking the conditional expectation over the def Kol H (2_1)
semi-unitary ensemble, gives Here Qo ={®, € C . @ Py = I}, these matrices

with orthonormal columns again being bi-unitarily invaria
(Haar distributed) — see Lemma 4 of Appendix¥x is

PRIAL % 100

)

(18)
whereCryw = Sy, The PRIAL reaches as much as 15% fo
some frequencies showing that the Rao-Blackwell appro
can be a worthwhile improvement over the Ledoit-Wolf est
mator even for dimensiop = 5.

L-1

1
Etr{g(q’ngK@o)}d@o =y
k=0

(K — (k +1))!det{Gy}

C1(S)E (/L) E«{®"[®5%"] ' | S},



the Vandermonde matrix associated wiy given in the
‘flipped’ form

Vs Vs KL
A b A
Vie=| oo
A Ao . Ak
and Gy, is the matrix defined by replacing rogk + 1) of the
vandermonde matrid/x, namely (AKX~ A K=y
by the row
JE—=L) [, L—(k+1)
=gy
) I
T=Ag

whereI@{ f(z)} denotes; integrations off (z).
We consider first the computation of, for which [28,
p. 6265]

. 0 1
NN o K
The integral component is given by (21) witlf-) = log().

tr{log(® Dy ®¢)}d®y. (23)

So to computeGy via (22) we need to know terms like

I9{z"log z} for ¢ > 1,n > 0. This is found to be,

I |
logx — .
B
Jj=1
To calculate); in (23) we can now use (21),

o Lf (K—(k+1) & [det{Gk}] |
E pre (L—(k+1))! 0N | det{VKk}
The partial derivative on the right is given by
det{ Vi } 53-det{Gy} — det{G}} z5-det{ Vi }
det?{Vi} .
To find the derivative of the determinant off& x K matrix

" an)

[(q){xn logz} = m

M (G, or Vi) we first differentiate all entries of the matrix

M by \;; denote the(l, m)th resulting entry byA; ,,,. Now
let B be the cofactor matrix corresponding . For 1 <

I,m < K defineD, ,,, = AjmBi,m, the element-by-element
multiplication of the matricesA and B. Then the derivative

of the determinant is given by [15, egn. 6]

) K
oy det{M} = > Dipm.

l,m=1

For the matrixVy,

_ K-
Ay = DX
' 0, otherwise.

if m=1;

For Gy, entry 4; ,,, is given by
8i}\iI(KfL){fo(kJrl) log(:c)}

ifm=dl#k+1;
, ifm=idil=k+1;

0, otherwise,

where of course we can simplify the second term to
(K—L—-1) g, . L—(k+1)
I {z log(x)} .
The cofactor matrices fo6;, or Vi can be readily found
using standard matrix software. Hence we are able to compute
NLi=1,..., K.

The computation of\* is straightforward. We know [28,
p. 6264] that forL < K, \* = det{G}/det{Vx} with G
being the matrix defined by replacing thgh row of the
Vandermonde matri¥z, namely[\X<—% . AE=E] by the

row [ATE D 10g Ay, AETE 00 0| We are thus
able to compute all the components of (20) and therefore

C:(8) in (19).

C. Choice ofL

In practice we must choose a suitable valud.db use. Use
of the analytic results means we requite< K and we are
interested in the singular cagé < p. To selectL we proceed
by seekingL = L that minimizes the predictive risk defined
as

PR() = B{EAICIT — |} Jo, ... Jic1}

whereC; is the estimated inverse spectral matrix found from
Jo,...,Jx_1 whenL =/, andJ is independent of thd}’s

and from the same distribution. Here we have used quadratic
loss which does not involve any further matrix inversions.
We approximate the predictive risk using leave-one-oussro
validation. Specifically, the estimate of the predictivekris

K
o 1 Al
PR(0) = 2 >_ICP ;3] ~ L.

j=1

where é;[j] denotes the estimated inverse spectral matrix
found fromJy, ..., Jx_1 excludingJ;. Then we take

L =arg méin Igﬁ(f) (24)

Note that using this scheme it is only possible to consider
values of¢ < K — 1 since we know that ordinarily. must be
less thank' but additionally her@l@” is derived fromK — 1

of the J;’s.

D. Example

In order to illustrate the random matrix estimaiot; (S)
for C in a time series context, a stable and stationary vector
autoregressive process of order 1 and dimengion- 10
(VARo(1)) was utilized with N = 1000 and K = 8. At
each frequency (24) was used to chodserig. 4 shows the
resulting (estimated) PRIAL

Es{||Cww — C|}} — Es{|IC} — Cll%}_
Es{||Ciw — C||3}

PRIAL % 100

(25)
This estimated PRIAL was found from 100 replications and
because of the need to produce the replications compusgation
were carried out only at every 10th Fourier frequency. The
PRIAL reaches nearly 20% for some frequencies again show-
ing a worthwhile improvement over the Ledoit-Wolf estimato
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Fig. 4. Estimated PRIAL (%) (improvement of'; over Cry) for a

VAR 10 (1) time series example. .
Fig. 5. Estimated PRIAL (%) for EEG data. Improvement@kp over
C'Lw is shown by the thick line. Improvement &'} over Cw is shown

VIl. APPLICATION TO EEGDATA by the thin line.

We now computeCrs and C’z for electroencephalogram
(EEG) data, (resting conditions with eyes closed), for sepat
diagnosed with positive syndrome schizophrenia. Intenast
in the delta frequency rangé,5 < f < 4Hz, see [29]. EEG Definition 1. A complex-valuedh x m random matrix Z
was recorded on the scalp &b sites, so{X,} is ap = Iis right(left)-unitarily invariant if its distribution isinvariant
10 vector-valued process, using a bandpass filter of 0.5-45Hder the transformationz — Z© (Z — YZ) where
and sample interval of\, = 0.01s. To remove the dominant® € U(m), Y € U(n), wherel/(n) is the compact group of
and contaminating 10Hz alpha rhythm, which would otherwig¥l n x n complex unitary matrices, i.elf(n) = {Unxn :
cause severe spectral leakage, the data was low-passdfiltdfé’ U = I.}. If both are true we sayZ is bi-unitarily
and resampled to a sample intervalf = 0.05s. After this Invariant.
downsamplingV = 612.

Using this real data the spectral matSX /) was estimated
as So(f), say, for|f| < fu ., using K = 40 tapers. Using
the vector-valued circulant embedding approach, [6], 180 i
dependent Gaussianavector-valued time seriep & 10) were Proof: This follows from [22, p. 487]. u
computed, each havingo(f), |f| < fu, as its true spectral
matrix. For each of these time series the singular mafifix)
was computed using multitaper estimation with= 8 tapers
for 100 frequencies equally spaced between 0.5 and 4Hz,
from these estimateSrz andC were computed, (with (24) U

. 2 . . _ _1
choosingL for C'7). The estimated PRIAL — witlT' = 5, invariant. The Haar measure is this unique probability mea-

— was the_n found over th? 100 replications. In this_waé(ureu onU(n) that is bi-unitarily invariant. See [37, p. 108].
the simulation experiment mimicks the spectral properies

the EEG data while providing calibrated results, which af@emark 5. LetY € U(n). If X has Haar measure then for all
shown in Fig. 5. We see that both schemes improve on thl,®; € U(n), p(©,YO3) = p(Y), wherep(Y) denotes
LW method, but thaﬁ’z does particularly well, with PRIAL the joint probability density function of the componentshef

reaching 50%. unitary matrix.

A. Bi-unitary invariance

Lemma 2. The matrix J defined in (1) withJ, given by
(3) is right-unitarily invariant. (If S = I, it is bi-unitarily
invariant.)

Lemma 3. When considered as a metric spdeén) is mea-
surable. There is a unique left-unitarily invariant probty
mgasureu for U(n) such thatu(®@A) = p(A) for any
asurableA C U(n) and any® € U(n). Moreover, since
(n) is compact, the same measuyras also right-unitarily

VIIl. CONCLUDING DISCUSSION Lemma 4. Let Y € U(n) equipped with Haar measure. We
Jow consider two specific truncations of thex n unitary

We have described two analytical estimators (Rao-Bladkw! . e
Mmatrices. Suppose we partitiof in two ways:

and random matrix) for the spectral precision matrix. leser
ingly, Crg is the inverse of a shrinkage estimator where the P
shrinkage parameter is obtained as a conditional expentati = [
conditional onS, while the random matrix estimato€'; . _
is also a conditional expectation, again conditioned $n Where® is m x n,m < n and ®q is n x m,m < n. Then
We have shown that both hold promise for being useful i¥ — € maps the unitary group onto the Stiefel manifold of
practice, offering possibly substantial improvementsrahe 7 X n matrices with orthonormal rows@®* = I,,,. The
inverse of the LW estimator o€ Further investigation of image of the Haar measure under this map is bi-unitarily

P(nfm)xn :| = [ @ | an(n—m) ]a

their properties seems worthwhile. invariant. Likewise,X — &, maps the unitary group onto the
Stiefel manifold of. x m matrices with orthonormal columns,
APPENDIX &l ®, = I,,. The image of the Haar measure under this map

To simplify notation we drop explicit frequency dependencés again bi-unitarily invariant. See [14].



B. Results required for proof of Theorem 3 In (29), 7 PK| S| K exp~{S™'J7"} pecomes

Theorem 4. We know that the singular value decomposition 7 PK|§|~K exp—tr{s*luomu({f} _ (32)
(SVD) for thep x K random matrixJ defined by (1) and (3)

is [1, p. 182]J = U¥V whereU € U(p),V € U(K) The product of (32) and the volume element (31) shows
and ¥ is thep x K matrix that the probability density can be factored into functiofis
{Uo, 2} andV.Now U = [U, | U,] and in order folU to be

¥ = L | Orx (e 1) , unitary, U, depends totally oiUy. HenceV is independent
Op—ryxr | O(p—r)x(ic—r) of U and Q.
Q is the diagonal matrixX? = diag{wi, ..., w, }, w; = )\1/27 For the casd( > p consider the ‘thin’ SVD corresponding
the square root of theth ordered eigenvalue,;(JJ#) = 10 (27),i.e..J = UQV{. Then the probability density can be
XN(JHT). Here r = rank{J} = rank{JJH} = factored into functions of U, Q} andV,. Now V' = [V, | V4]
rank{JH J}. Further r = min{p, K} with probability 1. and in order forV to be unitary,V; depends totally ordj.
Then, HenceV is again independent d7 and Q2. [ ]
1) {U,Q} and V" are statistically independent 2. We now show that the unitary matriX is bi-unitarily
J S ) . o invariant.
2) V is a bi-unitarily invariant unitary matrix. Proof: Note thatd ' J = VI2VH = VALV, with
Proof: 1. We firstly show thaf{U, 2} andV are statis- \
tically independent. !
Let U = [Uo,ur+1,...,up] = [U0|U1] and letV = Ag = Or><(K—r)
Vo, Vry1,-..,0K] = [Vo|V4]. The full SVD J = USVH Ar
can be written in the form Ok—ryxr | O(k—r)x(K—r)
VH :| Si . . i . .
J = U, | U, W 0 . inceJ is right-unitarily invariant (Lemma 2) we know that
[To 1] [ Vi J and JOF have the same distribution f® € U(K).
Now consider two cases Hence, with< denoting “equal in distribution,”

. < p. i =
K < p. In this case; = K and J17L(g0MH(JeM) = eI Je! = (OV)Ax(OV)T

and soVAxVH L (OV)Ak(O®V)H. The random compo-
nents of Ax are functions of the random components of
Q, and V is independent oV and 2, so V and Ak are
|4 independent. TheanG)V. Since the distribution ofV’
= Qo _ ol ) D
J=U[ Q|0 | { vH ] (27) is left-unitarily invariant andV € U(K), we know from
: o . o Lo Lemma 3 of AppendixA that it is also right-unitarily invang
eq\r/:/n;Z]J_ A+iB. The probability density is given by [22, and hence is a bi-unitarily invariant unitary matrix. This
' completes the proof. [ |

J=[U|Uy] [ﬁ] VE (26)

e K > p In this casey = p and

ﬂ_—pK|S|—K exp—tr{S’lJJH} Hf

K
lnjzldAideij' (28) Lemma 5. With the K x K matrix V' defined as in Theorem 4,

dA;; is thei, j-th element ofl A andHfle_[f:ldAideij is letvje = (V)x. Thenforl < j k.1 < K,j # 1,

the volume element. Since we are interested in transforohing E{lu;|*}y = 2/[K(K +1)] (33)
it is convenient to use another notation for the volume elgme 2 2
. E ie- = 1/[K(K +1)]. 34
viz (dJ), so that (28) becomes {lvw |7 - Towal "} /[K(K +1)] (34)
_ Proof: The bi-unitarily invariant nature of the unitary
—pK|q-K —tr{s—tgJgHy . . o

T PRS|T exp (dJ) (29)  matrix v is sufficient [20, p. 812] for the stated moment

which relates the volume element to the exterior produ(ﬁéj‘”ts of [20, Proposition 1.2] to hold, in particular (38)d

notation: o u
(dJ) = (dA)(dB). Lemma 6. We can write
where (dA) = AK | AP_| dA;;; see [31, Chapter 2]. Now -l . K-l R .
we return to the i:ase af < p and consider the ‘thin’ SVD E Z 1Sk = S|[E IS ¢ = Z E{||74]2|S} — Ktr{S?}.
corresponding to (26). It takes the form k=0 k=0
- Proof: Expanding the expectation on the left we get
J=UQv, (30)
K-1 K-1
The transformation — UyQV*# was studied in [33] who >~ E{tr{Jy J! JyJ}|S} - > E{r{SJ,. T }|S}
found the volume elemer{tlJ) to be proportional to k=0 k=0
K—-1 K-1
[det {23~ (wf — wi)* (@) (UedUp)(VaVH). ~ 3" E{r{J IS5} + Y E{tr{$%}(5)

(31) k=0 k=0



Now,
tr{J i T i} = t{ T T T T} = (T Te)? = 1| T3,

so the first term is simply_ 5,
term in the expansion we get

—E{tr{S>  JuJ['}|S} = —E{tr{K5%}|8} = —Ktr{S"}.
k
Terms three and four follow likewise to give the result. B

Lemma 7.

B{|I318} = = [ir{8%} + u*{$}] .

Proof: We adopt the approach of [9, Lemma 3], aIthougH]

details and the result are different. Now

KS=JJ =uwe Uy —=UA,U", (35)
where, with); € R,
A1
A, = N 07 x(p—r)
Op—r)xr | O(p—r)x(p—r)
Let VH = [vy,...,vk_1] so thatJ, = UPy; and
J,ka = V,f\I'H\IIVk = VfAKVk.
Consequently,
E{|| 71318} = E{wiAxry)?|S}
= E{E{(w{Ax)*|S,Ax}|S}. (36)

10

since from (35) we have that

tr{A2} = K*tr{S?} and tF{A,} = K*tr*{S}.

E{]|Jx||3|8}. For the second Taking the outer expectation conditional hchanges noth-

ing, which completes the proof. ]
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