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Analysis and Design of Multiple-Antenna Cognitive
Radios with Multiple Primary User Signals

David Morales-Jimenez, Raymond H. Y. Louie, Matthew R. McKay, and Yang Chen

Abstract—We consider multiple-antenna signal detection of
primary user transmission signals by a secondary user receiver
in cognitive radio networks. The optimal detector is analyzed for
the scenario where the number of primary user signals is no less
than the number of receive antennas at the secondary user. We
first derive exact expressions for the moments of the generalized
likelihood ratio test (GLRT) statistic, yielding approximations
for the false alarm and detection probabilities. We then show
that the normalized GLRT statistic converges in distribution
to a Gaussian random variable when the number of antennas
and observations grow large at the same rate. Further, using
results from large random matrix theory, we derive expressions
to compute the detection probability without explicit knowledge
of the channel, and then particularize these expressions for two
scenarios of practical interest: 1) a single primary user sending
spatially multiplexed signals, and 2) multiple spatially distributed
primary users. Our analytical results are finally used to obtain
simple design rules for the signal detection threshold.

Index Terms—Signal detection, cognitive radio, spectrum sens-
ing, generalized maximum likelihood ratio test, sphericity test.

I. INTRODUCTION

Cognitive radio is a promising technology which can be
used to improve the utilization efficiency of the radio spectrum
by allowing secondary user (SU) networks to co-exist with
primary user (PU) networks through spectrum sharing [1]–[5].
A key requirement is that SU transmission will not adversely
affect the PUs’ performance. To achieve this, a common
technique involves the SUs first detecting if at least one PU
is transmitting, which is commonly referred to as “spectrum
sensing”. If no signals are detected, the SUs are allowed to
transmit. The importance of signal detection can be seen by
its inclusion in the IEEE 802.22 standard, built on cognitive
radio techniques [6].

Signal detection has been extensively investigated over the
past few decades (see [7]–[9] as examples of some seminal
works), within different contexts of application (see, e.g., [10],
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[11] in radar). Inspired by some of those seminal works, a
number of signal detection tests have been proposed to detect
PU transmission when there are multiple receive antennas at
the SUs (see e.g., [12]–[20]). Optimality is often considered
in the Neyman-Pearson sense, which involves comparing the
generalized likelihood ratio (GLR) to a user-designed detection
threshold. The GLR can be used to determine the false alarm
and detection probabilities, which can then be subsequently
used to design the threshold. The particular form of the GLR
is dependent on the number of PU transmission signals, and
whether noise and/or channel information is known at the SU
receiver performing the signal detection. Albeit being a well-
investigated subject, multiple-antenna based signal detection is
a problem raising a substantial interest in the recent literature
(see, e.g., [15], [18]–[21]) since fundamental issues still remain
open. In particular, very little is known for the performance
of GLR-based detectors under the presence of multiple PU
signals.

A reasonable scenario is to assume that nothing is known
at the SU receiver, i.e., no noise and channel information
are known. For this scenario, the false alarm and detection
probability have been analyzed when there is only one PU
signal (see e.g., [15], [16]). However, the simultaneous pres-
ence of multiple PU signals is a common occurrence in current
and next generation systems. This may occur, for example,
in multiple-antenna systems where spatial multiplexing tech-
niques are employed, or where multiple independent PUs (e.g.,
from adjacent cells) simultaneously access the same frequency
channel. Furthermore, the number of PU signals are expected
to grow given the current trend towards more dense networks
with more users simultaneously served [22]. On the other
hand, low-complexity cognitive devices (mobile units) can be
reasonably assumed to have less antennas than the transmitters
in the primary system. Thus, for many practical scenarios of
interest, the number of PU signals k is no less than the number
of receive antennas at the SUs n. As a concrete example, we
could have a primary system built on multiple-antenna base
stations, where a large number of signals (say, e.g., k = 16) are
simultaneously transmitted in the downlink to different PUs. In
contrast, we can consider mobile SUs having a limited number
of antennas of, e.g., n = 4. The non-symmetric complexity of
base stations (with fixed deployments) and mobile terminals
is indeed a common occurrence in practice which motivates
our interest in cases where k ≥ n. See, for instance, the LTE
standard [23] or references on multiple-antenna based multi-
user communications (e.g., [24] and references therein).

From a practical perspective, however, the optimal test (i.e.,
optimal detector) takes a form which depends on the number
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of PU signals k [18], which is generally not known to the
cognitive devices. Therefore, a universally optimal detector
would entail, prior to signal detection, the estimation of k in
order to determine the optimal test to be performed during
the detection phase. Interestingly, for scenarios where k ≥ n,
the optimal test, referred to as the sphericity test [7], takes
the same form regardless of k. Therefore, the sphericity
test would uniformly yield optimal results provided that the
situation k ≥ n (i.e., full-rank signal) holds. This situation
can be either estimated via, e.g., minimum description length
(MDL) methods [25], or anticipated (assumed) in some typical
scenarios where the number of PU signals can be known (or
at least lower bounded) beforehand. This is the case of TV
broadcasting stations or cellular base stations which, in com-
pliance with wireless standards, have a given (known) number
of transmitting antennas. Examples range from broadcasting
standards, such as the European DVB-T2 [26] which considers
two-antenna space-time Alamouti codes, to point-to-multipoint
standards, such as IEEE 802.11n [27], IEEE 802.16 [28],
or LTE [23], which support up to sixteen transmit antennas
according to their latest releases.

For these scenarios where k ≥ n, exact expressions for
the false alarm probability and the detection probability were
derived in [19] when there are two receive antennas. For more
general scenarios with arbitrary number of receive antennas
and observations, [18] conducted Monte Carlo simulations
while [8] [17, pp. 230] derived infinite series expansions.
However, the series expansions in [8] involved complicated
zonal polynomials or Meijer-G functions which are generally
hard to compute (they are in fact integrals that need to be
evaluated by numerical integration methods), while the false
alarm probability expression in [17, pp. 230] was not amenable
to analysis. For the same general scenario, an approximation
was considered in [19]; however, the approximation therein
was only justified for the false alarm probability, and only then
for a very small number of antennas. Despite having made
some progress in the detection of multiple PU signals, the
aforementioned works do not provide a tractable analysis for
the probabilities of detection and false alarm to a full extent. It
is our aim to fill this gap by providing accurate approximations
for these probabilities which result in simple design rules for
practical detectors.

In this paper, we derive accurate approximations for the
false alarm and detection probabilities of the GLR detector1

which: (i) are valid for any number of receive antennas, pro-
vided that k ≥ n, and (ii) are easy-to-compute involving only
a finite number of terms comprising the well-known Gamma
function. This is facilitated by an expression for the moments
of the GLR test (GLRT) statistic which we derive. Despite
the computational benefits of these expressions over previous
results, our results allow us to further analyze the detection
performance in the asymptotic regime where the number of
receive antennas and observations are large and of similar
order. For this scenario, we first derive simple and accurate
approximations for the moments and cumulants of the GLRT

1Note that the performance of the GLR detector has been previously shown
to perform better than other detectors in many practical scenarios [19], and
thus we do not consider such comparisons in this paper.

statistic, and then show that this statistic converges in distribu-
tion to a Gaussian random variable under the hypothesis of no
PU signals being present. Moreover, we analyze the detection
probability for a large number of PU signals with k ≥ n.
Using results from large random matrix theory, we show that
the (instantaneous) detection probability can be accurately
approximated without explicit knowledge of the channel for
a practical number of antennas. Leveraging our analytical
results, we then propose simple design rules to approximate
the detection threshold that achieves a desired false alarm
probability while maximizing the detection probability.

II. PROBLEM STATEMENT

Consider a wireless communications system where a SU
receiver equipped with n antennas is tasked with determining
if PU transmission signals are present from m independent
and identically distributed (IID) observation sample vectors
x1, . . . ,xm, where2 x` ∼ CNn,1(0n,1,R) for ` = 1, . . . ,m,
and R is a n×n population covariance matrix. The `th sample
vector x` for this hypothesis testing problem is modeled as

H0 : x` = n` no signal present
H1 : x` = Hs` + n` signals present (1)

where n` ∼ CNn,1(0n,1, InN0) denotes additive white Gaus-
sian noise with variance N0, s` ∈ Ck is the signal vector with
E[s`s

†
`] = Ik, H ∈ Cn×k is the channel matrix from the PUs

to the SU detector3, which is assumed to be constant during
the m observation time periods, and k is the number of PU
transmission signals. Both n` and s` are assumed IID over
` = 1, . . . ,m, implying that the observation sample vectors
x` are also IID. Unless otherwise specified, we do not assume
a specific distribution for H; thus, our results can account for
each PU transmission signal having different transmit power.
We assume that H, k and N0 are unknown at the detector,
and that HH† is positive-definite (full rank), i.e., k ≥ n.
The latter condition can correspond to the scenario where
there are at least n single-antenna transmitting PUs, or if
there is at least one transmitting PU equipped with at least
n antennas which are utilized for spatial multiplexing. As
discussed in the previous section, the full-rank condition can
be either estimated prior to detection via, e.g., MDL methods,
or anticipated in many typical scenarios with a known or lower
bounded number of PU signals.

The detection problem in (1) is equivalent to testing if the
population covariance matrix R is one of two structures:

H0 : R = InN0 no signal present

H1 : R = HH† + InN0 signals present . (2)

To proceed, it is convenient to introduce the observed data
matrix X = [x1, . . . ,xm] and the sample covariance matrix

R̂ =
1

m

m∑
`=1

x`x
†
` =

1

m
XX† .

20p,q denotes the p× q matrix of all zeros.
3Note that the PUs’ transmit signal power is included in H.
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Different testing criteria can be considered for the detec-
tion problem in (1). Bayesian tests such as [11], [20] aim
at minimizing an average cost function which involves all
possible incorrect decisions. In contrast, we consider in this
paper detectors of the Neyman–Pearson type, which aim at
maximizing the probability of correct detection (probability
of choosing H1 given H1) under a certain constraint on the
maximum admissible probability of false alarm (probability of
choosing H1 given H0). Since there are unknown parameters
under both hypotheses (N0 and H), the Neyman–Pearson
detector, which yields a uniformly most powerful test, is not
directly implementable. Therefore, we adopt the classical GLR
approach as it has been shown to result in simple detectors
with good performance [29]. The likelihood function of the
observation samples is given by their joint density, i.e.,

f

(
x1, . . . ,xm

∣∣∣∣R) =
1

πmn det(R)m
etr
(
−mR̂R−1

)
,

with etr(·) = eTr(·). The GLR L, used for determining H0 or
H1, is the ratio between likelihoods under H0 and H1, with
these likelihoods maximized over the unknown parameters [18,
Sec. III] [29], i.e.,

L =

sup
N0∈R+

f

(
x1, . . . ,xm

∣∣∣∣R = InN0

)
sup

N0∈R+, H∈Cn×k
f

(
x1, . . . ,xm

∣∣∣∣R = HH† + InN0

) .
(3)

The GLRT then determines H0 or H1 by testing whether L
is above or under a user-specified detection threshold. The
GLR L has been studied in the literature under different
assumptions on the rank of HH†; see e.g., [21] for rank-
1 or [9], [18] for more general assumptions. Here, we are
concerned with the case of HH† having full rank, which has
yet to be studied in detail in the literature. In this case, L can
be obtained explicitly and the GLRT yields the well-known
sphericity test [7]. We use W to denote the corresponding
GLRT statistic which admits4 [18, Sec. III]

W ,
Tr(XX†)

n

det(XX†)
1
n

H1

≷
H0

η, (4)

where η is a user-specified detection threshold. Thus, PU
signals are deemed to be present if W > η, while no PU
transmission is deemed if W ≤ η. Note that H1, as defined
in (1), implies the presence of an arbitrary number of PU
signals, i.e., it does not necessarily imply the presence of
k ≥ n signals. However, if the full-rank assumption is violated
(k < n), the test in (4) will only yield sub-optimal results
without the probability of detection being maximized.

A. False Alarm and Detection Probability

To evaluate the performance of the GLRT statistic (4), we
consider the false alarm and the detection probability. The false

4The GLRT statistic usually presented in literature is 1
W

, which is used
to form the sphericity test [7]. However, we work with W for mathematical
convenience.

alarm probability is

PFA(η)
∆
= Pr (W0 > η) = 1− FW0(η) (5)

where

W0
∆
=

Tr(XX†)
n

det(XX†)
1
n

, X ∼ CNn,m (0n,m, InN0)

and FW0
(η) denotes the cumulative distribution function

(c.d.f.) of W0. The threshold η is typically chosen to ensure
the false alarm probability does not exceed a maximum value
α0 ∈ (0, 1), i.e.,

η = P−1
FA(α0) .

Note that the false alarm probability does not depend on H
and, thus, the detection threshold can be designed regardless
of the channel statistics; for instance, the designed threshold
will be independent of the PUs’ transmit power.

The probability of correct detection is

PD(η)
∆
= Pr (W1 > η) = 1− FW1(η) (6)

where

W1
∆
=

Tr(XX†)
n

det(XX†)
1
n

, X ∼ CNn,m

(
0n,m,HH† + InN0

)
and FW1

(η) denotes the c.d.f. of W1.

III. C.D.F. OF W0 AND W1: NON-ASYMPTOTIC ANALYSIS

In this section, we derive expressions for the c.d.f. of W0

and W1 for arbitrary n and m with k ≥ n. We first present
closed-form expressions for the moments of W0 and W1.

A. Exact Moments
Theorem 1. The pth (p ∈ Z+) moment of W0 and W1, for
p < n(m− n+ 1), are respectively given by

µW0,p = E [W p
0 ]

=
Γ (mn)

npΓ (mn− p)

n−1∏
j=0

Γ
(
m− n+ 1− p

n + j
)

Γ (m− n+ 1 + j)
, (7)

µW1,p = E [W p
1 ]

=
p!
∏n
i=1 y

− pn
i

np

n−1∏
j=0

Γ
(
m− n+ 1− p

n + j
)

Γ (m− n+ 1 + j)

×
∑

k1+...+kn=p

n∏
i=1

Γ
(
m− p

n + ki
)
ykii

Γ(ki + 1)Γ
(
m− p

n

) , (8)

where Γ(·) denotes the Gamma function, k1, . . . , kn are non-
negative integers, and N0 < y1 ≤ y2 ≤ . . . ≤ yn <∞ denote
the eigenvalues of HH† + InN0.

Proof: See Appendix A.
Note that (7) has been derived previously in [19], while (8)

is new.
Condition p < n(m− n+ 1): The condition on p, required

for (7) and (8) to hold, becomes milder as the difference
between the numbers of observations and antennas grow. The
first few moments can be obtained for even a very small
number of antennas and observations. For example, for p = 3,
the condition is satisfied when n = 2 and m = 3.

3



B. C.D.F. Approximation: Edgeworth Expansion

Armed with the derived expressions for the moments, we
now aim at characterizing the c.d.f. of W0 and W1 in an
easy-to-compute form, which can help in understanding the
performance of the GLRT in order to design the detection
threshold η.

As observed in the conference version of this paper [30],
the empirical distribution of W0 approaches a Gaussian as the
number of antennas and observations grow large with fixed
ratio. As also pointed out in [30], a similar phenomenon is
observed for W1. This convergence motivates us to consider
a Gaussian approximation for the c.d.f. of W0 and W1,
corrected with additional terms obtained by the Edgeworth
expansion [31], [32]. Specifically, the c.d.f. of an arbitrary
random variable X in L-truncated Edgeworth expansion takes
the form [32, eq. (45)]

FX(x) ≈ Φ(x̃)

− e−
x̃2

2

√
2π

L∑
s=1

∑
{Js}

Hes+2r(x̃)

σs+2r
X

s∏
`=1

1

j`!

(
κX,`+2

(`+ 2)!

)j`
(9)

where x̃ = x−E[X]
σX

, σX is the standard deviation of X , Φ(·) is
the c.d.f. of a standardized Gaussian, {Js} is the set containing
the nonnegative integer solutions to j1 + 2j2 + . . .+ sjs = s,
and r = j1 + j2 + . . .+ js. Further, κX,p is the pth cumulant
of X , related to the first p moments through

κX,1 = µX,1

κX,p = µX,p −
p−1∑
`=1

(
p− 1

`− 1

)
κX,`µX,p−` , p ≥ 2, (10)

with µX,p = E [Xp], and He`(z) is the Chebyshev–Hermite
polynomial [31, eq. (13)]

He`(z) = `!

b `2 c∑
k=0

(−1)kz`−2k

k!(`− 2k)!2k
,

where b·c denotes the floor function.
In (9), a truncation limit L implies that κX,p, p =

3, 4, . . . , L+2, are involved in the corrected c.d.f. Particulariz-
ing (9) for L = 2 results in the following simple approximation
for the c.d.f. of W0 and W1:

FW`
(η) ≈ G

(
η − µW`,1

σW`

;σW`
, κW`,3, κW`,4

)
, (11)

for ` = 0, 1, with

G(x;σ, κ3, κ4) = Φ(x)−
√

2

π

e−
x2

2

12σ3

(
κ3(x2 − 1)

+
κ4

4σ
x(x2 − 3) +

(κ3)2

12σ3
x
(
x4 − 10x2 + 15

))
. (12)

More terms can be added (L > 2) with an expected increase in
accuracy; however, with L = 2, i.e., involving up to the fourth
cumulant, the c.d.f. of W0 and of W1 are already approximated
with high accuracy. This can be observed in Figs. 1 and 2,
which plot respectively the probability of false alarm PFA(η)
and the probability of detection PD(η), both as a function
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Fig. 1. Probability of false alarm vs. detection threshold, with k = n.

of the detection threshold η. The ‘Analytical (Gaussian)’
curves correspond to a Gaussian approximation without any
correction terms (L = 0), i.e., FW1

(η) ≈ Φ((η−µW1,1)/σW1
)

and FW0
(η) ≈ Φ ((η − µW0,1)/σW0

), while the ‘Analytical
(Correction)’ curves are plotted using (11). The ‘Analytical
(Beta) [19]’ curves are plotted using the Beta function ap-
proximation introduced in [19]. These results are all compared
with the true c.d.f., computed via Monte Carlo simulation5.

For the false alarm probability curves in Fig. 1, we observe
that the Gaussian approximation deviates from Monte Carlo
simulations, thus justifying the use of additional correction
terms. With these terms, the ‘Analytical (Correction)’ curve
closely matches the simulations with improved accuracy as n
and m increase. Finally, the ‘Analytical (Beta) [19]’ curve
shows a satisfactory agreement for {n = 4,m = 15},
but it starts deviating for larger number of antennas and
observations.

For the detection probability curves in Fig. 2, we again
observe a significant deviation of the Gaussian approximation
from the Monte Carlo simulations, especially for the case
{n = 4,m = 15}. Moreover, for {n = 10,m = 20},
the ‘Analytical (Beta) [19]’ curves are inaccurate for most
detection probabilities as opposed to our ‘Analytical (Correc-
tion)’ curves, which closely match the simulations for both
configurations.

IV. ASYMPTOTIC ANALYSIS

The false alarm and detection probabilities can be calculated
for arbitrary number of antennas n (provided that k ≥ n) and
observations m using the moment expressions (7) and (8).
However, the computation of such expressions, involving n-
products of Gamma functions, gets rather involved when n and
m are large. We are thus motivated in this section to look into
more convenient asymptotic expressions for the moments and
cumulants, which allow in turn for an efficient computation of
the c.d.f. with (moderately) large n and m.

5To simulate the detection probability, we generate H as ∼
CNn,k

(
0n,k, In

)
, which is held constant for m observation periods. This

corresponds to a scenario where a single PU transmits k spatially multiplexed
signals and where the channel undergoes Rayleigh fading.
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Fig. 2. Probability of detection vs. detection threshold, with N0 = 5 and
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A. Moments and Cumulants of W0

We aim to obtain simple expressions for the cumulants of
W0 which, plugged into (9), allow for an efficient computation
of the false alarm probability. Letting n and m be large
but finite, we first provide an asymptotic expansion for the
moments.

Proposition 1. The pth (p ∈ Z+) moment of W0, with p <
n(m− n+ 1) and c = n

m ∈ (0, 1), admits the expansion

µW0,p =

∞∑
j=0

βp,j(c)

n2j
(13)

with βp,0(c) = eAp,0(c), and for j > 0,

βp,j(c) = eAp,0(c)
∑

i1+2i2+...+jij=j

j∏
r=1

Ap,r(c)
ir

ir!
, (14)

where the sum is taken over the non-negative integer solutions
to i1 + 2i2 + . . .+ jij = j, and the coefficients Ap,q(c) are

Ap,0(c) = p− p
(

1− 1

c

)
log(1− c), (15)

Ap,1(c) =
−p2

2
log(1− c) +

cp(12− 11c+ 6(1− p)(c− 1))

12(c− 1)
,

(16)

and, for q > 1,

Ap,q(c) =
(cp)q

(
c+ 12p− 12cp− cq2

)
12cq (−1 + q2) (1− c)q

+
(cp)q

(
−12p+ c

(
−1 + q2

))
12cq (−1 + q2)

− cq

q
Hp,−q

+

q−1∑
j=1

B2j+2 c
2j (2j)q−j (pc)q−j

4j (j + 1) (q − j)!
(
1− (1− c)−j−q

)
,

(17)

where Ha,b and Bk are, respectively, the Harmonic numbers
and Bernoulli numbers [33].

Proof: See Appendix B.

We may now obtain corresponding expansions for the
cumulants.

Proposition 2. The pth (p ∈ Z+) cumulant of W0, with p <
n(m− n+ 1) and c = n

m ∈ (0, 1), admits the expansion

κW0,p =

∞∑
j=0

αp,j(c)

n2(p−1+j)
, (18)

where

αp,j(c) = βp,p−1+j(c)

−
p−1∑
r=1

(
p− 1

r − 1

)
·
p−r+j∑
`=0

αr,`(c)βp−r, p−r+j−`(c) ,

(19)

with α1,j(c) = β1,j(c) and βp,j(c) given by (14) with
βp,0(c) = eAp,0(c).

Proof: Follows by substituting (13) into (10) and rear-
ranging terms in the resultant series.

For large (but finite) n and m, and c = n
m ∈ (0, 1), the

leading-order term αp,0(c) dominates the pth cumulant, giving

κW0,p ≈
αp,0(c)

n2(p−1)
. (20)

Using (19) to obtain αp,0(c) for the first four cumulants yields

κW0,1 ≈ a
−a3
1 e (21)

κW0,2 ≈
−e2

n2
a−2a3

1 [c+ a2] (22)

κW0,3 ≈
−e3

n4
a−3a3−1

1

[
c2(2c− 3)− 6ca1a2 − 3a1a

2
2

]
(23)

κW0,4 ≈
−e4

n6
a−4a3−2

1

[
c3(16 + c(6c− 23))

−12a1c
2(3c− 4)a2 + 48ca2

1a
2
2 + 16a2

1a
3
2

]
, (24)

where a1 = 1− c, a2 = ln a1, and a3 = 1− 1
c .

Note that the leading-order cumulant approximations in
(21)-(24) are much simpler to compute than the exact cumu-
lants, especially when n is large. The false alarm probability
can thus be efficiently computed via the approximated cumu-
lants by plugging (21)-(24) into (11). To see the accuracy of
such an approximation, we compare it with the same c.d.f.
expression (11) computed with the exact cumulants. This
comparison is shown in Fig. 3, where we observe that the
difference between the “asymptotic cumulants” and the “exact
cumulants” curves is indistinguishable even for n as low as 4.

Remark 1 (The case c = 1). Note that the expansions for
the moments and the cumulants, as given in Propositions
1 and 2, are not valid when c = 1. For this particular
case, different expansions involving all powers of n−1 are
obtained in Appendix C and provide analytic continuation
to the aforementioned propositions. Remarkably, the leading-
order approximation to the pth cumulant, p < n(m− n+ 1),
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when c = 1 is found to be

κW0,1 ≈ e (25)

κW0,2 ≈
1

n2
e2 (C + log n) (26)

κW0,p ≈
1

np
ep (p− 1)! ζ(p− 1), p > 2, (27)

where C is the Euler-Gamma constant [34, (8.367)] and ζ(·)
is the Riemann-Zeta function [34, (9.5)]. This result, albeit
practically less meaningful than for the case c 6= 1, may still
be of theoretical interest in other contexts.

B. Gaussian Convergence of W0

We now show the asymptotic convergence of W0 to a
Gaussian distribution.

Theorem 2. Let n→∞ with n
m → c̄ ∈ (0, 1). Then6

n (W0 − µ̄)
d→ N

(
0, σ̄2

)
(28)

where

µ̄ = e(1− c̄)
1−c̄
c̄ , (29)

and

σ̄2 = e2(1− c̄)
2(1−c̄)
c̄

(
ln

(
1

1− c̄

)
− c̄
)
. (30)

Proof: See Appendix D.
The result above confirms what was empirically observed

in [30], i.e., the distribution of W0 approaches a Gaussian
as the number of antennas n and observations m grow large
with a fixed ratio. Motivating examples for the large n regime
can be found when considering a secondary system built on a
massive antenna array setup, e.g., a secondary (non-licensed)
base station with a very large number of antennas. On the other
hand, there are applications where m can be very large. For TV
channels, for example, the IEEE 802.22 standard [35] specifies
the sensing estimation to be performed at speeds of under 1 ms

6x
d→ y implies x converges in distribution to y.

per channel, which along with a typical sampling frequency
of 10 MHz yield a maximum of m = 10000 samples to
sense a given channel. Moreover, the cellular LTE standard
defines a subframe as a transmission time interval (TTI) of 1
ms [36] and, therefore, the required sensing time should be
well below the TTI (say, 1/10 ms) in order to maximize the
time available for data transmission. This results in m = 1500
samples considering a bandwidth configuration of 10 MHz and
sampling frequency of 15 MHz.

C. Asymptotic Analysis of W1

Here, we first aim to obtain simple expressions for the
cumulants of W1 which, plugged into (9), allow for an efficient
computation of the detection probability for large (but finite)
n and m. Recall that W1 is the GLRT statistic under the
hypothesis of transmitted PU signals being present. In this
case, as shown by (8), the moments (and therefore the cumu-
lants) involve the eigenvalues of HH† + InN0. Hence, it is
convenient to first define certain functions of these eigenvalues.

Definition 1. Let {y1, y2, . . . , yn} denote the eigenvalues of
HH† + InN0, with HH† positive definite, then

Ψ1 ,
n∏
i=1

y
− 1
n

i (31)

Ψ`+1 ,
1

n

n∑
i=1

y`i , ` ≥ 1, (32)

with Ψ1 ∈
(
0, N−1

0

)
, Ψ`+1 ∈ (N0,∞) .

In the next proposition, we provide simple expressions for
the cumulants of W1 for large n and m. Note that H is
assumed to be constant over the sensing time (i.e., constant
over the m samples), which may seem contradictory in the
large m regime. However, as discussed above, the sensing
time (yielding very large values of m in the aforementioned
examples) is required to be well below the subframe duration,
which is usually designed to be shorter than the typical channel
coherence time.

Proposition 3. For large (but finite) n and m, and c = n
m ∈

(0, 1), the first three cumulants of W1 are given by

κW1,1 = e(1− c)
1−c
c Ψ1Ψ2 +O

(
1

n2

)
(33)

κW1,2 =
1

n2
Ψ2

1e
2(1− c)2 1−c

c

×
[(

ln

(
1

1− c

)
− 2c

)
Ψ2

2 + cΨ3

]
+O

(
1

n4

)
(34)

κW1,3 =
1

n4
Ψ3

1e
3(1− c)3 1−c

c

×
[(

c2(−10 + 9c)

−1 + c
+ 3 ln(1− c)(4c+ ln(1− c))

)
Ψ3

2

−Ψ2Ψ33c(3c+ 2 ln(1− c)) + Ψ42c2
]

+O

(
1

n6

)
,

(35)

with Ψ` given in Definition 1.

Proof: See Appendix E.
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Although only the first three cumulants are given in Propo-
sition 3, higher order cumulants can be derived by following
the same approach. However, such derivations become more
tedious as the cumulant order increases. Nevertheless, as
shown later in this paper, the first three cumulants are enough
for an accurate computation of the detection probability.

Plugged into (9), these cumulants yield the approximate
detection probability for a given PU-SU channel realization
H, which determines Ψ` in Proposition 3. In practice, H
is a random communication channel, and thus the detection
probability can be seen as a random function of H. It turns out,
however, that as n and k grow large, this function converges to
a deterministic value, which depends only on some statistical
properties of H, but not on its specific distribution.

Deterministic Equivalents for Ψ`: Note from (31)-(32) that

Ψ1 = det−
1
n
(
HH† + InN0

)
,

Ψ`+1 =
1

n
Tr
((

HH† + InN0

)`)
, ` ≥ 1, (36)

for which we aim to find deterministic equivalents Ψ̄` such
that7

|Ψ` − Ψ̄`|
a.s.→ 0 as n→∞ with

k

n
→ β > 1,

where the deterministic equivalent Ψ̄` does not depend on
the PU-SU channel realization H, but only on its statistical
properties. To that end, we first state the following assumption.

Assumption 1: The empirical distribution of the eigenvalues
of an n×n Hermitian matrix HH†, denoted by8 F

(n)

HH†
(x) =

1
n

∑n
i=1 1{yi ≤ x}, satisfies

F
(n)

HH†
(x)

a.s.→ Fβ(x) , ∀x ∈ R− {0} (37)

as n→∞ with k
n → β, and Fβ(x) commonly referred to as

the asymptotic spectrum with density denoted by fβ(x).
Under the above assumption, commonly adopted in large

random matrix theory (see e.g. [37], [38]), the limiting quan-
tities Ψ̄` are closely related to some asymptotic results which
we invoke next.

Let us first connect Ψ1 with the mutual information of the
PU-SU channel through

Ψ1 =
1

N0
exp

(
− 1

n
IH
(

1

N0

))
, (38)

where

IH
(

1

N0

)
= log det

(
In +

1

N0
HH†

)
(39)

is the mutual information of H with average SNR 1/N0. The
asymptotics of this quantity have been extensively studied in
information theory under different assumptions on the statistics
of H (see, e.g., [38]–[42]). In view of (38), the existing
asymptotic results for (39) can be directly translated into the
corresponding limiting value9 Ψ̄1.

7x
a.s.→ y implies that x converges almost surely to y.

81{E} denotes the indicator function of an event E.
9Note that the limiting value of (39) yields the limiting value of (38) due

to smoothness of the exponential function.

Let us now turn our attention to Ψ`+1, ` ≥ 1, which can be
related to the so-called “moments” of HH† as shown in the
following lemma.

Lemma 1. The convergence values Ψ̄`+1, ` ≥ 1, are given by

Ψ̄`+1 = N `
0 +

∑̀
r=1

(
`

r

)
N `−r

0 Mr, (40)

where Mr is the rth moment:

Mr = lim
n→∞
k
n→β

1

n
Tr
((

HH†
)r)

. (41)

Proof: Follows straightforwardly from (36) by using the
binomial expansion.

Both the mutual information and Mr have been broadly
studied for n, k → ∞ in the context of information theory
and large random matrix theory under different assumptions
on the statistics of H. The rich body of existing results allows
for computing the limiting values Ψ̄` for a broad number of
scenarios. Among these results, we focus on two particular
cases, especially relevant in our detection problem:

1) IID case: the entries of H are IID with zero mean and
1
n variance. This is the case for multiple PU signals being co-
located as, e.g., when a single PU sends spatially multiplexed
signals with equal transmit powers. In this case, the asymptotic
value of (39) is given by [39, Eq. (105)] (see also, e.g., [40,
Eq. (95)], [38, Eq. (1.14)]), which yields

Ψ̄1 =
1

N0

(
1 +

1

N0
− 1

4
F
(

1

N0
, β

))−β
×
(

1 +
β

N0
− 1

4
F
(

1

N0
, β

))−1

exp

(
N0

4
F
(

1

N0
, β

))
(42)

with k
n → β as n→∞, and

F (x, z) =

(√
x(1 +

√
z)2 + 1−

√
x(1−

√
z)2 + 1

)2

.

(43)

Furthermore, Mr is obtained as [38, Eq. (2.102)]

M(iid)
r =

1

r

r∑
i=1

(
r

i

)(
r

i− 1

)
βi, (44)

which plugged into (40) yield Ψ̄`+1, ` ≥ 1. We can now
compute the limiting Ψ̄2, Ψ̄3, Ψ̄4, required for the cumulants
in Proposition 3. Thus, setting ` = {1, 2, 3} in (40) gives

Ψ̄2 = β +N0, (45)

Ψ̄3 = β2 + β (1 + 2N0) +N2
0 , (46)

Ψ̄4 = β3 + 3β2(1 +N0) + β
(
1 + 3N0 + 3N2

0

)
+N3

0 . (47)

2) Unequal variances: H = HiidΣ1/2 where Hiid has IID
entries with zero mean and 1

n variance, whilst Σ is a diag-
onal matrix with non-negative entries σ2

1 , . . . , σ
2
k uniformly

bounded. This accommodates multiple signals from spatially
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distributed PUs having different transmit powers. For this case
we invoke [42, Thm. 1] to obtain

Ψ̄1 =
β δ

N0
exp

(
β2

N0
δδ̃

) k∏
i=1

(
1 +

β

N0
δσ2
i

)− 1
n

, (48)

with k
n → β,

δ =
1

β

(
1 +

β

N0
δ̃

)−1

, (49)

and δ̃ being the unique positive solution to

δ̃ =
1

k

k∑
i=1

σ2
i (βδ̃ +N0)

σ2
i +N0 + βδ̃

. (50)

For Mr, according to [43, Thm. 4],10

M(unequal)
r =

r∑
i=1

βi

ki

∑
r1+...+ri=r

ξ(r1, . . . , ri) · Tr (Σr1) · · ·Tr (Σri) ,

(51)

where {r1, . . . , ri} are the strictly positive integer solutions to
r1 + . . .+ ri = r satisfying r1 ≤ . . . ≤ ri, and

ξ(r1, . . . , ri) =
r!

(r − i+ 1)!f1! · · · fr!
, (52)

with fj being the number of entries in {r1, . . . , ri} equal to j.
We can now compute Ψ̄`+1, ` ≥ 1, for the unequal variances
case by plugging (51) in (40), which results in

Ψ̄2 = N0 +
β

k
Tr(Σ), (53)

Ψ̄3 = N2
0 + 2N0

β

k
Tr(Σ) +

β

k
Tr(Σ2) +

β2

k2
Tr2(Σ), (54)

Ψ̄4 = N3
0 + 3N2

0

β

k
Tr(Σ) + 3N0

(
β

k
Tr(Σ2) +

β2

k2
Tr2(Σ)

)
+
β

k
Tr(Σ3) + 3

β2

k2
Tr(Σ)Tr(Σ2) +

β3

k3
Tr3(Σ). (55)

As we will see shortly, the convergence |Ψ` − Ψ̄`|
a.s.→ 0

is quite fast, with Ψ̄` giving an accurate approximation of Ψ`

for not-so large n. Thus, under either the IID or the unequal
variances assumption on H, the cumulants in Proposition 3
can be accurately approximated using Ψ̄`, ` = 1, . . . , 4, given
respectively by either (42) and (45)-(47), or (48) and (53)-(55).
Plugging these cumulants in (9), we can compute the detection
probability in two typical scenarios of interest: 1) detection of
a single PU which transmits k spatially multiplexed signals
with equal power, or 2) multiple spatially distributed PUs with
different transmit powers. As an example, Fig. 4 shows the
detection probability vs. the detection threshold corresponding
to the first scenario (IID case), with the same number of
antennas at the PU and the SU, i.e., k = n. The solid curve
is obtained with the asymptotic values Ψ̄`, while the dots are
computed via the exact Ψ` for a particular channel realization
H. On the one hand, we see that the correction curve provides

10See also [44, Appx. C] for a more general result which encompasses
non-line-of-sight channels, i.e., H with non-zero mean entries.
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Fig. 4. Detection probability vs. detection threshold, with k = n, N0 = 6.

Fig. 5. Analytic ROC curve (detection probability vs. false alarm probability)
with N0 = 6, m = 5n and k = n.

a satisfying match with Monte Carlo simulations. On the other
hand, the correction based on Ψ̄` is almost indistinguishable
from the one based on Ψ` for a not-so-large11 n = 8, which
shows the quick convergence of Ψ`. Remarkably, even for a
moderate number of antennas and observations, the detection
probability can be computed without explicitly knowing H.

V. THRESHOLD DESIGN

Having derived expressions to compute the probabilities of
detection and false alarm, we now put these expressions to
work in order to design the detection threshold, which will be
used at the SUs to perform the GLR test, i.e., to determine the
presence/absence of PU signals. As previously discussed, the
PU-SU channel is typically unknown in practice, and therefore,
the design usually relies on a false alarm probability require-
ment. Note that the false alarm probability is independent of
k, and therefore, the number of PU signals is not required to
design the threshold. Once the threshold is set, we can, under

11Larger values of n could be shown with an increased accuracy. However,
we deliberately considered a relatively low number of antennas to show the
accuracy and quick convergence of our asymptotic results.
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Fig. 6. ROC curve (detection probability vs. false alarm probability) with
k = 8, m = 32, N0 = 6.
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Fig. 7. ROC curve (detection probability vs. false alarm probability) with
n = 8, m = 40, N0 = 6.

some statistical assumptions on H, e.g., IID or with unequal
variances, compute the corresponding detection probability for
different PU-SU scenarios such as, e.g., a single transmitting
PU with k antennas, or k spatially distributed PUs. Note
that the probability of detection is a performance measure
computed offline and that this quantity is not required at the
SUs. Therefore, no specific knowledge on k is required at the
cognitive device in order to perform the GLR test.

From (11), the false alarm probability is approximated by

PFA(η) = 1− FW0
(η)

≈ 1− G
(
η − µW0,1

σW0

, σW0
, κW0,3, κW0,4

)
, (56)

where µW0,1, σ2
W0

, κW0,3, and κW0,4 are given by (21)-(24),
and thus the minimum threshold which can satisfy a false
alarm probability requirement of α0 can be approximated as

η0 ≈ P−1
FA(α0). (57)

This threshold can be computed numerically from (56), and
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Fig. 8. ROC curve (detection probability vs. false alarm probability) with
N0 = 6, m = 5n and k = n. The vertical dotted line at a false alarm
probability of 0.01 is shown for convenience.

then used to obtain the corresponding detection probability

PD(η0) = 1− FW1
(η0)

≈ 1− Φ(x) +

√
2

π

e−
x2

2

12σ3
W1

κW1,3(x2 − 1), (58)

with x =
η0−µW1,1

σW1
and µW1,1, σ2

W1
, κW1,3 given by (33)-

(35). The pair of values {PFA(η),PD(η)} defines the receive
operating characteristics (ROC) curve, which is plotted in
Fig. 5 for the IID scenario (a single transmitting PU with
k antennas), with N0 = 6, k = n, and m = 5n. We see
that, with an average SNR of −10 log10N0 = −7.78 dB,
a low false alarm probability and high detection probability
can be simultaneously achieved with n > 7 antennas and
m > 35 observation samples. To better illustrate the effect
of increasing n, we now keep the number of PU signals k
and observations m fixed with k = 8, m = 32, and N0 = 6.
The corresponding ROC curve is shown in Fig. 6, where we
observe that for a given false alarm probability, the detection
probability increases as n grows, implying that SUs with more
antennas attain a higher accuracy in detecting the PU signals.

Let us now consider a primary system where a (possibly)
large number k of PU signals are simultaneously transmitted
(via spatial multiplexing) in the downlink. In contrast, consider
mobile SUs having a limited number of antennas n = 8,
representative of low-complexity cognitive radios. In this type
of scenarios, we aim at understanding the implications of
having a growing number of signals k. This is illustrated in
Fig. 7, which shows the ROC curve for different values of k
with n = 8, m = 40, N0 = 6. We observe that, for a given
false alarm probability, the detection probability decreases as
the number of PU signals k grows. In fact, it can be seen from
the definitions of W0 and W1 in Section II-A that, in the limit
k →∞, the presence of “infinitely” many transmitted signals
would be indistinguishable from noise.

The above design and ROC analysis is based on accurate
representations of PFA(η) and PD(η), which have been nu-
merically validated earlier in this paper. However, the design
threshold needs to be computed by numerical search. In order
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to simplify the threshold design, we focus on our asymptotic
results next.

For large n and m, Theorem 2 suggests that the false alarm
probability can be approximated as

PFA(η) = 1− FW0(η) ≈ 1

2

(
1− erf

(
n (η − µ̄)√

2σ̄2

))
, (59)

and thus the minimum threshold which can satisfy a false
alarm probability requirement of α0 can be approximated as

η0 ≈ µ̄+

√
2σ̄2

n
erf−1 (1− 2α0) . (60)

A natural question then is whether this approximation is
accurate enough for practical numbers of antennas and obser-
vations. To investigate this, we plot the ROC curve in Figs. 8
and 9 for c = 1/5 and c = 1/7 respectively. The ‘ROC curve’
is plotted using Monte Carlo simulations. The threshold com-
puted via the Gaussian approximation in (60) for a target false
alarm probability of α0 = 0.01 is shown. For comparison,
the threshold computed with the c.d.f. approximation function
(through higher order cumulants) in (57) is also shown. We
observe that the approximate threshold (60) yields a false
alarm probability slightly above the requirement α0 = 0.01,
whilst this requirement is successfully met with the threshold
in (57). As expected, this loss in accuracy diminishes as n
(and consequently m) increases, which is in agreement with
Theorem 2. Further, for satisfactory detection probabilities
above 80%, the threshold in (57) results in a false alarm
probability that tightly meets the requirement α0 = 0.01.
Moreover, we observe in Figs. 8 and 9 that decreasing c for
the same n results in a higher detection probability, as more
observations are utilized for detection.

VI. CONCLUSION

Multiple-antenna signal detection has been addressed in
cognitive radio networks with multiple primary user signals.
By virtue of new closed-form expressions for the moments
of the GLRT statistic, we have derived easy-to-compute
and accurate expressions for the false alarm and detection

probability. We have also proved that the GLRT statistic
under hypothesis H0 converges to a Gaussian random variable
when the number of antennas and observations grow large
simultaneously. Further, the detection probability has been
analyzed for a large number of primary user signals being
no less than the number of receive antennas at the secondary
user. Using results from large random matrix theory, we have
shown that the (instantaneous) detection probability can be
accurately approximated without explicit knowledge of the
channel for a practical number of antennas. Leveraging our
analytical results, simple design rules have been proposed
to approximate the minimum detection threshold in order to
achieve a desired false alarm probability.

APPENDIX

A. Proof of Theorem 1

Let us first derive an expression for the moments of

W =

Tr(XX†)
n

det(XX†)
1
n

, X ∼ CNn,m (0n,m,R) , (61)

where R ∈ Cn×n is a Hermitian positive definite matrix.
Denote 0 ≤ λn ≤ λn−1, . . . ,≤ λ1 < ∞ as the ordered
eigenvalues of XX†, which have a joint distribution12 [45]

fΛ(λ1, . . . , λn) =
(−1)

n(n−1)
2∏n

`=1(m− `)!
detn

(
e−y

−1
i λj

)
×
(∏n

`=1 λ
m−n
` y−m`

)
detn

(
λi−1
j

)∏
i<j(y

−1
i − y

−1
j )

(62)

where y1, . . . , yn are the eigenvalues of R. By denoting D =
{0 ≤ λn ≤ . . . ≤ λ1 <∞}, we have

µW,p

=
1

np

∫
D

(∑n
i=1 λi∏n
i=1 λ

1
n
i

)p
fΛ(λ1, . . . , λn)dλ1, . . .dλn

=
1

np
dp

dωp

∫
D

eω
∑n
i=1 λi∏n

i=1 λ
p
n
i

fΛ(λ1, . . . , λn)dλ1, . . .dλn

∣∣∣∣
ω=0

,

(63)

where the second equality follows by noting that
dp

dωp e
ωψ
∣∣
ω=0

= ψp and interchanging the integral and
the derivative by virtue of Leibniz integral rule [33, Eq.
(3.3.7)]

Substituting (62) into (63),

µW,p =
(−1)

n(n−1)
2

np
∏n
`=1(m− `)!

∏n
`=1 y

−m
`∏

i<j(y
−1
i − y

−1
j )

dp

dωp

∫
D

eω
∑n
i=1 λidetn

(
λi−1
j

)
∏n
i=1 λ

p
n−m+n
i

detn

(
e
−
λj
yi

)
dλ1, . . .dλn︸ ︷︷ ︸

I1(ω)

∣∣∣∣
ω=0

,

(64)

12detn(g(i, j)) is the determinant of an n×n matrix with (i, j)th entry
g(i, j).
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and the integral I1(ω), defined on the set {ω ∈ R : y−1
j −ω >

0}, can be evaluated as [46, Eq. (51)]

I1(ω) = detn

(∫ ∞
0

e−λ(y−1
j −ω)λm−n−

p
n+i−1dλ

)
. (65)

From [34, Eq. (8.310)], we rewrite (65) as

I1(ω) = detn

 Γ
(
m− n− p

n + i
)(

y−1
j − ω

)m−n− pn+i

 . (66)

Substituting (66) into (64), followed by some algebraic
manipulations, we obtain

µW,p

=
(−1)

n(n−1)
2

np
∏n
`=1(m− `)!

∏n
i=1 y

−m
i Γ

(
m− n− p

n + i
)∏

i<j(y
−1
i − y

−1
j )

× dp

dωp
1∏n

i=1

(
y−1
i − ω

)m−n− pn detn

(
1(

y−1
j − ω

)i
)∣∣∣∣

ω=0

=
(−1)

n(n−1)
2

np

n∏
i=1

(
y−mi Γ

(
m− n− p

n + i
)

(m− i)!

)
I2(ω)

∣∣∣∣
ω=0

,

(67)

with

I2(ω) =
dp

dωp
1∏n

i=1

(
y−1
i − ω

)m− pn . (68)

Applying Leibniz rule for differentiation [34] gives

I2(ω)

=
∑

k1+...+kn=p

(
p

k1, . . . , kn

) n∏
i=1

dki

dωki
1(

y−1
i − ω

)m− pn
=

∑
k1+...+kn=p

(
p

k1, . . . , kn

) n∏
i=1

ki∏
j=1

(−1)ki
(
m− p

n + j − 1
)(

y−1
i − ω

)m− pn+ki
.

(69)

Substituting ω = 0 into (69), and the resultant expression into
(67) followed by some algebraic manipulation, we obtain

µW,p =
p!
∏n
i=1 y

− pn
i

np

n−1∏
j=0

Γ
(
m− n+ 1− p

n + j
)

Γ (m− n+ 1 + j)

×
∑

k1+...+kn=p

n∏
i=1

Γ
(
m− p

n + ki
)
ykii

Γ(ki + 1)Γ
(
m− p

n

) , (70)

which yields (8) for W1 by setting R = HH† + InN0, in
which case, consequently, N0 < y1 ≤ y2 ≤ . . . ≤ yn < ∞.
For the moments of W0, (70) simplifies to (7) after substituting
y1 = . . . = yn = N0.

B. Proof of Proposition 1

We start by rewriting (7) as

µW0,p =

∏p
j=1(mn− j)

np
·
G
(
m− p

n + 1
)
G(m− n+ 1)

G
(
m− n− p

n + 1
)
G(m+ 1)

,

(71)

where G(·) is the Barnes-G function, which admits the fol-
lowing asymptotic expansion for large z [47]:

lnG(z + 1) =
1

12
− lnA+

z

2
ln(2π) +

(
z2

2
− 1

12

)
ln z

− 3z2

4
+

∞∑
k=1

B2k+2

4k(k + 1)z2k
(72)

where A is the Glaisher-Kinkelin constant [47] and Bk is the
Bernoulli number [33, pp. 803].

Taking the logarithm of (71) and noting that m = n/c,

lnµW0,p =

p∑
j=1

ln

(
n2

c
− j
)
− p lnn+ lnG

(n
c
− p

n
+ 1
)

+ lnG

(
n

(
1

c
− 1

)
+ 1

)
− lnG

(n
c

+ 1
)

− lnG

(
n(

1

c
− 1)− p

n
+ 1

)
. (73)

It is also convenient to note that, for large n,

ln

(
n2

c
− j
)

= 2 lnn− ln c−
∞∑
`=1

(c j)`

` n2`
, (74)

and, therefore,
p∑
j=1

ln

(
n2

c
− j
)

= 2p lnn− p ln c−
∞∑
`=1

c`

` n2`
Hp,−`, (75)

where Ha,b are the Harmonic numbers. Using the expansions
(75) and (72) in (73), and after further algebra, we arrive at

lnµW0,p

=
3

2
p+

(
p

c
− p− 1

2

( p
n

)2
)

log(1− c)

−
∞∑
`=1

c`

` n2`
Hp,−` −

(
1

2

(n
c
− p

n

)2

− 1

12

) ∞∑
`=1

(cp)`

` n2`

+

(
1

2

(n
c
− n− p

n

)2

− 1

12

) ∞∑
`=1

(cp)`

` (1− c)` n2`

+

∞∑
k=1

B2k+2 c
2k

4k(k + 1)n2k

∞∑
r=1

(2k)r(pc)
r

r!n2r

(
1− (1− c)−2k−r) .

(76)

Rearranging terms in (76) yields

lnµW0,p =
∞∑
q=0

Ap,q(c)

n2q
, (77)

with coefficients Ap,q(c) as given in Proposition 1. From (77),
we have that

µW0,p = exp

( ∞∑
q=0

Ap,q(c)

n2q

)

= eAp,0(c)
N∏
j=1

N−j+1∑
r=0

1

r!

(
Ap,j(c)

n2j

)r
+O

(
1

n2(N+1)

)
,

(78)

where the second equality is obtained after expanding expx
around x = 0 with N an arbitrary positive integer. Finally,
rearranging terms in (78) yields the series in Proposition 1.
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C. The case c=1: asymptotic moments and cumulants
The derivation steps are similar to those given in Appendix

B. For c = 1 (equivalently m = n), (71) specializes to

µW0,p =

∏p
j=1(n2 − j)

np
G
(
n− p

n + 1
)

G
(
1− p

n

)
G(n+ 1)

. (79)

Taking logarithms at both sides of the equality,

lnµW0,p =

p∑
j=1

ln
(
n2 − j

)
− p lnn+ lnG

(
n− p

n
+ 1
)

− lnG (n+ 1)− lnG
(

1− p

n

)
, (80)

where, for n large, the summation can be expanded as in
(75) and the lnG(·) terms can be expanded using (72), with
one exception: here, the term lnG

(
1− p

n

)
does not admit the

expansion (72) for logG(z + 1), only valid for large z, and
therefore we rely on the Taylor series expansion around z = 0,

logG(1− p

n
) = − p

2n
(ln 2π − 1)− 1

2
(1 + C)

( p
n

)2

−
∞∑
k=3

pkζ(k − 1)

k nk
, (81)

where C is the Euler-Gamma constant and ζ(·) is the Riemann-
Zeta function.

After substitution of the corresponding expansions and
tedious algebra, we arrive at

logµW0,p =
3

2
p− p

2n
+

1

2

( p
n

)2
(
C − 1

2
+ log n

)
− 1

2

(
n2 +

( p
n

)2

− 2p− 1

6

) ∞∑
k=1

pk

kn2k
−
∞∑
k=1

Hp,−k

k n2k

+

∞∑
k=3

ζ(k − 1)

k

( p
n

)k
+

∞∑
k=1

B2k+2

4k (k + 1)n2k

∞∑
r=1

(2k)r p
r

r!n2r
.

(82)

Rearranging terms in (82) results in the following corollary.

Corollary 1. With c = 1, the logarithm of µp admits

lnµW0,p =

∞∑
q=0

Ap,q
nq

(83)

where

Ap,0 = p (84)

Ap,1 = −p
2

(85)

Ap,2 =
1

2
p2(C + log n)− 5p

12
. (86)

If q > 2 and odd,

Ap,q =
pq

q
ζ(q − 1), (87)

whereas, for q even,

Ap,q =
pq

q
ζ(q − 1)−

2Hp,−q2

q
− 2p

q
2 +1q

q2 − 4

+

(
p+

1

12

)
2p

q
2

q
+

q
2−1∑
j=1

B2j+2 p
q
2−j (2j) q

2−j

4j (j + 1)
(
q
2 − j

)
!
. (88)

Further, from (83), we have that

µW0,p = exp

( ∞∑
q=0

Ap,q
nq

)

= eAp,0(c)
N∏
j=1

N−j+1∑
r=0

1

r!

(
Ap,j
nj

)r
+O

(
1

nN+1

)
,

(89)

where the second equality is obtained after expanding expx
around x = 0 with N an arbitrary positive integer. Rearranging
terms in (89) yields

µW0,p =

∞∑
j=0

βp,j
nj

, (90)

where βp,0 = eAp,0 and, for j > 0,

βp,j = eAp,0 ·
∑

i1+2i2+...+jij=j

j∏
r=1

Airp,r
ir!

, (91)

with Ap,q given by (84)–(88).
From (90) and the recursive relation between cumulants

and moments (10), we obtain the series expansion for the pth
cumulant,

κW0,1 =

∞∑
j=0

α1,j

nj

κW0,p =

∞∑
j=0

αp,j
np+j

, p > 1, (92)

where α1,j = β1,j and the rest of coefficients (p > 1) obtained
recursively as

αp,k = βp,p+k −
p+k∑
j=0

α1,jβp−1,p+k−j

−
p−1∑
r=2

(
p− 1

r − 1

) p−r+k∑
j=0

αr,jβp−r,p−r+k−j , (93)

with βp,j given by (91).
Leveraging the above expressions, the leading-order term of

the pth cumulant is found to be

α1,0 = e (94)

α2,0 = e2 (C + log n) (95)
αp,0 = ep (p− 1)! ζ(p− 1), p > 2. (96)

D. Proof of Theorem 2

Through the invariance and homogeneity property of cu-
mulants, the pth cumulant of n(W0 − µ̄), for p ≥ 2, can be
written as npκW0,p. From (18), we thus observe that for p ≥ 3,
limn→∞ npκW0,p = 0, and thus limn→∞ n(W0 − µ̄) follows
a Gaussian distribution, with zero mean and variance given
by limn→∞ n2κW0,2 which is obtained from κW0,2 given by
(22).
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E. Proof of Proposition 3

We start by expressing the moments of W1 in terms of those
of W0, which can be expanded from Proposition 1.

From (8) and (7), we can write for p = 1,

µW1,1 =

(
n∏
i=1

y
1
n
i

)
1

n
µW0,1

n∑
j=1

1

yj

= Ψ1Ψ2µW0,1. (97)

Leveraging Proposition 1 yields

µW1,1 = Ψ1Ψ2e
A1,0(c)

×

(
1 +

1

n2
A1,1(c) +

1

n4

(
A2

1,1(c)

2
+A1,2(c)

))

+O

(
1

n6

)
, (98)

which gives (33) after taking the leading-order term and
substituting A1,0 with (15).

For p = 2, we have

µW1,2

=

∏n
i=1 y

2
n
i

n2

µW0,2(
m− 1

n

) (
m− 2

n

) ((m− 2

n

)(
m− 2

n
+ 1

)

×
n∑
i=1

1

y2
i

+ 2

(
m− 2

n

)2 n∑
i=2

i−1∑
j=1

1

yiyj


= Ψ2

1µW0,2

(
Ψ2

2 + (Ψ3 −Ψ2
2)

1

nm
(
1− 1

nm

)) , (99)

where the second equality follows from algebraic manipula-
tions by noting that(

n∑
i=1

1

yi

)2

=

n∑
i=1

1

y2
i

+ 2

n∑
i=2

i−1∑
j=1

1

yiyj
. (100)

Using the expansion

1

nm
(
1− a

nm

) =

∞∑
k=1

ckak−1

n2k
(101)

with m = n/c and Proposition 1 we arrive at

µW1,2 = Ψ2
1e
A2,0(c)

(
Ψ2

2 +
1

n2

(
Ψ2

2(A2,1(c)− c) + Ψ3c
)

+
1

n4

(
Ψ2

2

(
A2

2,1(c)

2
+A2,2(c)

)

+(Ψ3 −Ψ2
2)(A2,1(c) + c2)

))
+O

(
1

n6

)
. (102)

Now, the variance σ2
W1

= µW1,2 − µ2
W1,1

is obtained using
(98) and (102) as

σ2
W1

=
1

n2
Ψ2

1e
A2,0(c)

(
Ψ2

2(A2,1(c)− c) + Ψ3c− 2Ψ2
2A1,1(c)

)
+O

(
1

n4

)
,

(103)

which yields (34) upon substituting A2,0(c), A2,1(c), and
A1,1(c) with their respective values given in Proposition 1.

For the third cumulant, we first compute the third moment
from (8). For p = 3 we have

µW1,3 =
6
∏n
i=1 y

2
n
i

n3

µW0,3(
m− 1

n

) (
m− 2

n

)(
1

6

(
m− 3

n
+ 2

)(
m− 3

n
+ 1

) n∑
i=1

1

y3
i

+
1

2

(
m− 3

n
+ 1

)(
m− 3

n

) ∑
i,j=1,...,n

i 6=j

1

y2
i yj

+

(
m− 3

n

)2 ∑
i,j,k=1,...,n
i6=j 6=k

1

yiyjyk

 . (104)

Noting that(
n∑
i=1

1

y3
i

)3

=

n∑
i=1

1

y3
i

+ 3
∑

i,j=1,...,n
i 6=j

1

y2
i yj

+ 6
∑

i,j,k=1,...,n
i 6=j 6=k

1

yiyjyk
,

(105)

and
n∑
i=1

1

yi

n∑
k=1

1

y2
k

=

n∑
k=1

1

y3
k

∑
i,j=1,...,n

i 6=j

1

y2
i yj

, (106)

we can rewrite (104) as

µW1,3 = Ψ3
1

µW0,3(
m− 1

n

) (
m− 2

n

)(
Ψ2Ψ3

3

n

(
m− 3

n

)
+ Ψ3

2

(
m− 3

n

)2

+ Ψ4
2

n2

)

= Ψ3
1µW0,3

(
Ψ3

2 + Ψ3
2

1

nm
(
1− 2

nm

)
+
(
3Ψ2Ψ3 − 4Ψ3

2

) 1

nm
(
1− 1

nm

)
+ (2Ψ4 − 3Ψ2Ψ3)

1

n2m2
(
1− 1

nm

) (
1− 2

nm

)) .
(107)

Then, using (101) together with the expansion for µW0,3 given
in Proposition 1, we arrive at

µW1,3

= Ψ3
1e
A3,0(c)

(
Ψ3

2 +
1

n2

(
Ψ3

2A3,1(c) + 3Ψ2Ψ3c− 3Ψ3
2c
)

+
1

n4

(
Ψ3

2

(
A2

3,1(c)

2
+A3,2(c)

)
+ 3Ψ2Ψ3cA3,1(c)

−2Ψ3
2c

2 − 3Ψ3
2cA3,1(c) + 2Ψ4c

2
))

+O

(
1

n6

)
. (108)

Finally, the third cumulant,

κW1,3 = µW1,3 − 3µW1,2µW1,1 + 2µ3
W1,1, (109)
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is obtained using (98), (102), and (108), resulting in

κW1,3 =
1

n4
eA3,0(c)Ψ3

1

(
Ψ3

2

(
A2

3,1(c)

2
+A3,2(c)− 3cA3,1(c)

−3A1,1(c)(A2,1(c)− c)− 3
A2

2,1(c)

2
− 3A2,2(c)

+3A2,1(c)c+ c2 +
15

2
A2

1,1(c) + 3A1,2(c)

)
+Ψ2Ψ33c(A3,1(c)−A1,1(c)−A2,1(c)− c) + Ψ42c2

)
,

(110)

which finally yields (35) upon substituting Ap,q(c) with the
expressions given by Proposition 1, and further simplifications.
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