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Abstract

This work examines the large-scale deployment of energy harvesting sensors for the purpose of

sensing and reconstruction of a spatially correlated Gaussian random field. The sensors are powered

solely by energy harvested from the environment and are deployed randomly according to a spatially non-

homogeneous Poisson point process whosedensitydepends on the energy arrival statistics at different

locations. Random deployment is suitable for applicationsthat require deployment over a wide and/or

hostile area. During an observation period, each sensor takes a local sample of the random field and

reports the data to the closest data-gathering node if sufficient energy is available for transmission.

The realization of the random field is then reconstructed at the fusion center based on the reported

sensor measurements. For the purpose of field reconstruction, the sensors should, on the one hand, be

more spread out over the field to gather more informative samples, but should, on the other hand, be

more concentrated at locations with high energy arrival rates or large channel gains toward the closest

data-gathering node. This tradeoff is exploited in the optimization of the random sensor deployment

in both analog and digital forwarding systems. More specifically, given the statistics of the energy

arrival at different locations and a constraint on the average number of sensors, the spatially-dependent

sensordensityand the energy-aware transmission policy at the sensors aredetermined for both cases

by minimizing an upper bound on the average mean-square reconstruction error. The efficacy of the

proposed schemes are demonstrated through numerical simulations.

I. INTRODUCTION

Wireless sensor networks (WSNs) consist of spatially distributed sensors that have the ability

to sense the physical environment, process the gathered information, and communicate through

the wireless interface. In recent years, WSNs have been adopted in a wide range of applications,
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such as environmental monitoring, disaster recovery, and battlefield surveillance, etc [1]. In

these applications, sensors are often deployed in large-scale and in hostile areas making human

maintenance and battery-replacement impractical. Due to these reasons, energy harvesting tech-

niques for sensor nodes [2]–[4], which enable the conversion of ambient energy (such as solar

[5], vibrational [6], or thermal energy [7]) to electric energy, are being developed and used to

prolong sensor lifetime. By employing energy harvesting technology, the characteristics of the

energy arrival and the efficiency of energy usage will have a significant impact on the sensing

performance. It is therefore necessary to adapt the sensor deployment and sensor operations to

spatial variations of the energy arrival process.

The main objective of this workis to determine optimal sensor deployment strategies, namely,

spatial densities of energy harvesting sensors, for the purpose of sensing and reconstruction of

a spatially correlated Gaussian random field. The sensors are assumed to be deployed randomly

and in large scale according to a spatially non-homogeneousPoisson point process (NHPPP)

[8]–[10]. During an observation period, each sensor takes alocal sample of the random field and

reports the observation to the closest data-gathering nodebased on a threshold-based energy-

aware transmission control policy. The policy allows the sensor to transmit only if it has

accumulated enough energy for transmission. We consider both analog-forwarding (AF) systems,

where sensors transmit a scaled version of their analog measurements to the data-gathering node,

and digital-forwarding (DF) systems, where digital representations of their measurements are

forwarded instead. The random field is then reconstructed atthe fusion center based on the

information gathered from the sensors.

In this work, we assume that the sensors’ operations are supported solely by ambient energy

(i.e., energy harvested from the environment) and, thus, their transmit powers and probabilities

depend strongly on the characteristics of their energy arrival at their respective locations. To

reduce the field reconstruction error, the sensors should, on the one hand, be more spread out

over the field to gather more informative samples, but should, on the other hand, be concentrated

more at locations with large energy arrivals or with large channel gains toward the closest data-

gathering node. This tradeoff is exploited to determine theoptimal random sensor deployment in
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both AF and DF systems. In particular, giventhe locations of data-gathering nodes1, the statistics

of the energy arrival at different locations and a constraint on the average number of sensors, we

determine the spatially-dependent sensordensitiesand the energy-aware transmission thresholds

at the sensors by minimizing an upper bound on the average mean-square reconstruction error.

The energy-aware transmission policy allows a sensor to transmit only when its accumulated

energy (i.e., its battery level) is beyond a certain threshold and remains silent, otherwise, so

that energy can be preserved for use in later time slots. Notice that,in this work, we consider

only a simple threshold-based transmission policy and focus on the global effect of the sensor

deployment problem. In general, the optimal energy-aware transmission policy may involve

continuous power control in accordance with the data traffic, the transmission deadline, and queue

stability etc, but is not considered in this work to maintaintractability. Readers are referred to

[11]–[13] for further studies on this topic.The efficacy of the proposed schemes are demonstrated

by numerical simulations.

In the past, sensor deployment problems have been examined mostly for sensors without

energy harvesting capabilities (see [14] for a survey on these topics). In particular, without

energy harvesting considerations, sensor deployment policies have been proposed with the goal

of minimizing the field reconstruction error in [15], of guaranteeing connectivity in [16], and

of maximizing sensor coverage in [17]. In these works, sensors were assumed to be placed

at deterministic locations, in which case, the task of finding the optimal sensor placement is

often NP hard [14]. Therefore, heuristic or approximate solutions were proposed to reduce

the computational complexity. Due to advances in energy harvesting technology [2]–[4], similar

problems have also been examined recently, e.g., in [18] and[19], for energy harvesting wireless

systems with considerations on the stochastic nature of theenergy arrival at each node. In

particular, in [18] and [19], the deployment of energy harvesting relay nodes in sensor networks

were examined with the goal of enhancing network throughputand of guaranteeing connectivity,

respectively. However, they did not consider the cross-layer impact of the spatial dependencies

of the energy arrivals and sensor measurements on the field reconstruction performance. In

1Here, we assume that the locations of the data-gathering nodes are fixed and focus on the deployment of energy harvesting

sensors. This is often the case in practice since data-gathering nodes are typically grid-connected and, thus, their placement can

be more restrictive. However, in certain cases, further flexibility may also be given to the deployment of data-gathering nodes.

Readers are referred to [20] for further discussions on thistopic.
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our work, we consider the optimal random sensordeploymentstrategy for field reconstruction

by taking into consideration the spatial correlation between the sensor measurements and the

energy arrivals. Rather than designing a deterministic deployment scheme which places sensors

at precise locations, we consider the random deployment of sensors and determine the optimal

sensordensitiesat different locations. We argue that random deployment [20], [21] is more

practical when the number of sensors to be deployed is large or when the sensors are to be

deployed in a hostile environment. Comparisons between deterministic and random deployment

schemes can also be found in [22] and [23].

Field reconstruction and decentralized parameter estimation are essential applications of WSNs

and have been studied extensively in the literature for WSNswithout energy harvesting capabil-

ities, e.g., in [24]–[28]. For given sensor locations, these works focused on the design of sensor

transmission schemes under different centralized fusion rules. Two transmission systems have

been considered the most in the literature, namely, AF [24]–[26] and DF [27]–[29] systems.In

these systems, the amplifying gains [24]–[26] and the number of quantization bits [27]–[29] used

for transmission by the sensors respectively can be chosen to minimize the field reconstruction

error.Both of AF and DF systems are examined in our work under additional energy harvesting

considerations. Decentralized estimation under energy harvesting constraints have also been

investigated recently in [30] and [31]. However, the sensordeploymentproblem and the impact of

the location-dependent sensor measurements and energy arrivals on the estimation performance

have not been explored before. A preliminary version of our work can be found in [32], but

only for the AF case.

The rest of this paper is organized as follows. A general description of the system model is

presented in Section II. The sensor deployment and transmission control policies are then derived

separately for AF and DF systems in Sections III and IV, respectively. Numerical results are

provided in Section V and some concluding remarks are given in Section??.

II. SYSTEM MODEL AND PROBLEM DEFINITION

Let us consider a WSN that consists of a large number of sensors deployed randomly in the

regionV according to a spatially NHPPP [10] with deterministicdensities{λ(v)}v∈V , whereλ(v)

is thedensityat locationv ∈ V. In an observation period, each sensor takes a local sample of the

random field and forwards it to the closest data-gathering node.The locations of data-gathering
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: Data-gathering node

x(v)[t]
V

: Sensor node

V

V
a(v)[t]

Fig. 1. Illustration of the sensor deployment, the energy arrival distribution and the field values for a specifict.

nodes can be arbitrary but are assumed to be fixed over time.The random field is denoted by

{x(v)[t]}v∈V , wherex(v)[t] is the value of the field at locationv ∈ V in the t-th observation

period. Following [15] and [28], we assume that the set of random field values{x(v)[t]}v∈V
is jointly Gaussian with zero mean and with covariancesE[x(vi)[t]x(vj)[t]] = σ2

xρ(vi,vj)[t],

for all vi,vj ∈ V, whereσ2
x is the variance ofx(v)[t], for all v ∈ V, and ρ(vi,vj)[t] is the

correlation coefficient betweenx(vi)[t] and x(vj)[t]. The random field is also assumed to be

stationary over time.Moreover, let{a(v)[t]}v∈V be the set of random energy arrivals, where

a(v)[t] is the energy arrival at locationv ∈ V in the t-th observation period. An example of

the sensor deployment, the field values, and the energy arrivals for a specifict are depicted in

Fig. 1. In practice, the set of sensordensities{λ(v)}v∈V to be derived in this work provides a

guideline for the numbers of sensors that should be scattered at different locations, e.g., from

an air vehicle.

To simplify our computations, let us partition the region ofinterest, i.e.,V, into M disjoint

subregionsV1, . . . ,VM with equal size. That is, we chooseV1, . . . ,VM such thatV =
⋃M

i=1 Vi

with areas|Vi| = ∆, for all i, and with Vi

⋂Vj = φ, for all i 6= j. We assume that∆ is

sufficiently small (compared to the variations of the randomfield) so that the sensordensities

remain approximately constant in each subregion (ı.e.,λ(v) ≈ λi, for all v ∈ Vi and for all i).

Then, by assuming thatλi∆ ≪ 1, the probability that exactly one sensor exists in subregion Vi

can be approximated ase
−λi∆λi∆

1!
≈ λi∆ and the probability that more than one sensor exists in

Vi is negligible. Moreover, with∆ sufficiently small, we can also approximate the field value
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and the energy arrival at a sensor in subregionVi by their respective values at the center of

the subregion, which are denoted byxi[t] andai[t], respectively. Therefore, if a sensor exists in

subregionVi, its local observation can be expressed as

x̃i[t] = xi[t] + ni[t], (1)

whereni[t] is the observation noise at the sensor located at the subregion Vi. The observation

noise is assumed to be independent and identically distributed (i.i.d.) across sensorsand over

time according to a Gaussian distribution with mean zero and varianceσ2
n, denoted byN (0, σ2

n).

To preserve energy at the sensors, we adopt a threshold-based energy-aware transmission

policy where a sensor transmits only if its accumulated energy exceeds a certain threshold,

but exhausts all its energy when doing so. This scheme is referred to in the literature as the

integrate-and-fire[33], [34] transmission policy. The energy threshold at thesensor in subregion

Vi is denoted byγi and is chosen to minimize the field reconstruction error in later sections.

The accumulated energy at each sensor, say, the sensor in subregionVi, varies over timet and

can be expressed as

ei[t] =







ei[t− 1] + ai[t], if ei[t− 1] ≤ γi

ai[t], if ei[t− 1] > γi.
(2)

at the beginning of thet-th observation period. By assuming that the process{ei[t]}∞t=0 is

stationary over time, the probability that the sensor transmits in a given time slot isF̄ei(γi) ,

Pr(ei[t] > γi), which is the complementary cumulative density function (ccdf) of ei[t]. An

example of the case where{ei[t]}∞t=0 is stationary is given in the following sections by considering

a Bernoulli energy arrival process.By the stationarity of the random field{xi[t]}∞t=0 and of the

accumulated energy process{ei[t]}∞t=0, for all i, we shall omit the time indext in later discussions

and focus on the field reconstruction performance at a particular instant in time.

Let us define a random variableoi to indicate the presence or absence of a signal transmitted

by a sensor in subregionVi. Specifically, we setoi = 1, if a sensor exists in subregionVi

and has energy above the thresholdγi, and setoi = 0, otherwise. In this case,oi can be

viewed as a Bernoulli random variable with probabilityPr(oi = 1) = λi∆F̄ei(γi) andPr(oi =

0) = 1 − λi∆F̄ei(γi). Moreover, letri be the signal received from the sensor in subregionVi

at the closest data-gathering node over a noisy channel. When oi = 1, the received signalri

depends on the the sensor’s observationx̃i, the accumulated energyei, the type of transmission
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scheme, and the quality of the channel towards the closest data-gathering node. Whenoi = 0,

nothing is receivedand, thus, we setri = null. Two types of sensor transmission schemes are

considered, namely, the AF and DF schemes. In the AF scheme, each sensor simply transmits

an amplified version of its received signal to the closest data-gathering node. In the DF scheme,

each sensor first quantizes its measurement into a binary representation vector and then forwards

it to the closest data-gathering node, where the binary vector is decoded and the quantized sensor

measurement is reconstructed.

The signals received at the data-gathering nodes are transmitted over the backhaul to the fusion

center where an estimate of the field values{x(v)}v∈V are computed. Leto , [o1, . . . , oM ]T

be the vector representing the sensors’ transmission status. The transmissions from the data-

gathering nodes to the fusion center are assumed to be error-free and, thus,{ri}Mi=1 are also the

observations available at the fusion center.By assuming that the fusion center is aware of the

sensors’ locations and transmission status2, i.e., {oi}Mi=1, it extracts only the set of field-bearing

observations{ri|1 ≤ i ≤ M, oi = 1} for field reconstruction. The linear minimum mean square

error (LMMSE) estimator is then adopted to obtain an estimate of each point in the field using

these observations. Interestingly, we show in Appendix A that the LMMSE estimate obtained

with the set of observations{ri|1 ≤ i ≤ M, oi = 1} is equivalent to that obtained with the

effective received signal vectory , [y1, . . . , yM ]T , where

yi =







ri, if oi = 1

0, if oi = 0,

for all i. Therefore, the estimate of the field valuex(v) at locationv can be written as

x̂(v) = Co
x(v)yC

o
yy

†y, (3)

whereCo
yy , E[yyT |o], Co

x(v)y , E[x(v)yT |o], and † represents the Moore-Penrose pseudo

inverse. The resulting MSE of the estimate onx(v) is then given by

ξ(v|o) = σ2
x − tr

(

Co
x(v)yC

o
yy

†Co
x(v)y

T
)

(4)

2Here, we assume that the fusion center is aware of the locations of the sensors once they have been deployed and the

transmission status of the existing sensors. The former canbe obtained through positioning techniques after deployment and

the latter can be obtained by appending the sensors’ IDs to their transmissions or by performing signal detection at the fusion

center. However, the proposed methodology can also be used for the case where no knowledge is assumed at the fusion center.

In this case, the received signal in the absence of a sensor transmission in subregionVi should beri = wi.



8

and the average MSE over the entire sensor field is defined as

ξ̄ ,
1

|V|

∫

v∈V

∑

o∈O
ξ(v|o) Pr(o)dv, (5)

whereO is the set of all possible realizations ofo. Notice that the above expression involves the

summation over all possible realizations ofo, which can be intractable in practice. To simplify

our computations, we consider instead an upper bound of the average MSE given as follows:

ξ̄=
1

|V|

∫

v∈V
Eo

[

min
k∈RM

E
[

|x(v)− kTy|2 |o
]

]

dv (6)

≤ 1

|V|

∫

v∈V
min
k∈RM

Eo

[

E
[

|x(v)− kTy|2 |o
]]

dv (7)

=
1

|V|

∫

v∈V
min
k∈RM

E
[

|x(v)− kTy|2
]

dv (8)

=
1

|V|

∫

v∈V
σ2
x − tr

(

Cx(v)yC
−1
yyC

T
x(v)y

)

dv , ξ̄upper, (9)

whereCx(v)y , E[x(v)yT ] andCyy , E[yyT ] are computed by taking the expectation over all

possible realizations ofo, and thus, do not depend on the actual subset of transmittingsensors.

The vectork inside the expectation in (6) can be viewed as the linear estimator that should

be optimized separately for each given value ofv and o. The inequality in (7) follows since

the minimization over each term inside the expectation mustbe smaller than the minimization

over the entire expectation (which amounts to using the samek for eacho). The latter can be

interpreted as the minimum MSE attainable when the fusion center does not have knowledge of

the sensors’ locations and transmission status. This boundis tight only when the optimal linear

estimatork is approximately the same for all realizations ofo that occur with high probability.

Even though the sensors are deployed randomly, their locations are fixed once they are deployed

and do not change over time. The MSE in (6) provides a measure of the average performance

over all possible sets of sensor locations following an NHPPP with sensor densities{λi}Mi=1, but

is only an approximation of the actual MSE in practice, whichcorresponds to just one realization

of o.

The main objective of this work is to determine the optimal sensor densities{λi}Mi=1 and

the energy thresholds{γi}Mi=1 by minimizing the MSE upper bound in (9) for both the AF and

the DF systems. The optimized sensordensitiesshould achieve the optimal balance between the

energy arrival probability, the channel gain, and the sensor field correlation whereas the optimized
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Fig. 2. Illustration of filed reconstruction for the analog forwarding system.

energy thresholds should exploit the tradeoff between the sensor’s transmission probability and

the reception quality at the data-gathering nodes. The two systems are examined separately in

the following sections.

III. OPTIMIZED SENSORDENSITIES AND ENERGY THRESHOLDS FOR

ANALOG-FORWARDING SYSTEMS

In this section, we determine the optimal sensordensities{λi}Mi=1 and energy thresholds{γi}Mi=1

in AF systems based on the minimization of the average MSE upper bound in (9).

In the AF system, each sensor transmits an amplified version of its local observation to the

closest data-gathering node, as illustrated in Fig. 2. In this case, the signal transmitted by a

sensor in subregionVi can be written as

si =

√
κiei

√

σ2
x + σ2

n

x̃i, (10)

whereκi > 0 is the amplifying factor, ei is the energy available at the sensor inVi, and the

received signal at the closest data-gathering node is

yi =

(

hi

√
κiei

√

σ2
x + σ2

n

x̃i + wi

)

oi, (11)

where hi is the channel coefficient between the sensor and its closestdata-gathering node3,

andwi ∼ N (0, σ2
w) is the additive white Gaussian noise (AWGN). Here, we do not consider

3The signal model under consideration can also accommodate broadcast transmissions, where the signal transmitted by a

sensor in subregionVi may be received simultaneously by multiple data-gatheringnodes simultaneously. In this case,hi can be

viewed as the effective channel coefficient after signal combining at the fusion center.
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the effects of short-term fading and assume thathi is a constant that depends only on the

distance between the sensor and its data-gathering node. Therefore, by defininggi ,
hi

√
κiei√

σ2
x+σ2

n

as the effective channel gain experienced by the sensor inVi, the received signal is expressed

asyi = (gix̃i + wi)oi. For simplicity, we assume that the sensor depletes its battery every time

it transmits (i.e., any residual energy is dumped after eachtransmission). Notice that, since the

observationx̃i is random, the energy required to transmit the signal in (10)may exceed the

accumulated energyei with a certain probability. In this case, a saturation effect may occur,

causing additional distortion on the received signal. However, by choosingκi to be sufficiently

small, the probability that the saturation occurs is small and, thus, is omitted for simplicity.

Studies on the impact of this effect on the distributed estimation performance is beyond the

scope of this work, but can be found in [35].

For convenience, letαi , Pr(oi = 1) = F̄ei(γi)λi∆ be the probability that a sensor exists

in Vi and transmits in the given observation period. Moreover, let ḡi(γi) , E[gi(γi)|ei > γi]

and g2i (γi) , E[g2i (γi)|ei > γi] be the conditional first and second moments of the effective

channel gain given that the sensor transmits. In this case, we haveCx(v)y = Cx(v)xDḡDα, where

Dḡ , diag(ḡ1(γ1), . . . , ḡM(γM)) andDα = diag(α1, . . . , αM); thus, the MSE upper bound in

(9) can be written as

ξ̄upper,AF = σ2
x − tr

(

ΦDḡDαC
−1
yyDαDḡ

)

, (12)

whereΦ , 1
|V|
∫

v∈V C
T
x(v)xCx(v)xdv is defined such that

{Φ}i,j =
σ4
x

|V|

∫

v∈V
ρ(v,vi)ρ(v,vj)dv , φi,j, (13)

for all i, j, and the(i, j)-th element ofCyy can be derived as

{Cyy}i,j=







[g2i (γi)(σ
2
x + σ2

n) + σ2
w]αi, for i=j

ḡi(γi)ḡj(γj)σ
2
xρ(vi,vj)αiαj , for i 6=j,

(14)

for all i, j. Notice thatΦ is a matrix that depends only on the correlation of the sensorfield and

not on the optimizing parameters{λi}Mi=1 and{γi}Mi=1. Let us take the eigenvalue decomposition

of Φ so thatΦ = UΣUT , whereΣ is a diagonal matrix consisting of the eigenvalues ofΦ and

U is a unitary matrix consisting of the corresponding eigenvectors. In this case, the term in (12)

can be written as

ξ̄upper,AF = σ2
x − tr

(

Σ
1
2UTDḡDαC

−1
yyDαDḡUΣ

1
2

)

. (15)
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To further facilitate our derivations, we introduce the following lemma from [25], which is a

consequence of the Cauchy-Schwarz inequality.

Lemma 1 ([25]). For any G ∈ R
M×K and positive-definite matrixQ ∈ RM×M , the following

inequality holds:

tr(GTQ−1G) ≥
[

tr(GTG)
]2

tr(GTQG)
. (16)

The equality holds whenGTQ− 1
2 = cGTQ

1
2 , wherec is a constant.

By takingG = DαDḡUΣ
1
2 andQ = Cyy, it follows that

ξ̄upper,AF ≤ σ2
x−

[

tr
(

Σ
1
2UT (DḡDα)

2UΣ
1
2

)]2

tr
(

Σ
1
2UTDḡDαCyyDαDḡUΣ

1
2

) (17)

= σ2
x −

[tr (Φ(DḡDα)
2)]

2

tr (ΦDḡDαCyyDαDḡ)
, ξ̄obj,AF(λ,γ), (18)

where λ = [λ1, . . . , λM ]T is the vector of sensordensitiesand γ = [γ1, . . . , γM ]T is the

vector of energy thresholds.By Lemma 1, the bound is tight when(DαDḡUΣ
1
2 )TC

−(1/2)
yy =

c(DαDḡUΣ
1
2 )TC

1/2
yy , for some constantc. The upper bound̄ξobj,AF(λ,γ) is then utilized as the

objective function for optimizingλ and γ in the AF case. Even though the bound may not

be tight in general, it captures the essential behaviors of the MSE with respect to the sensor

densities and transmission thresholds and, thus, allow us to obtain a tractable solution to an

otherwise intractable problem. The effectiveness of the solution is demonstrated in Section V.

Specifically, let us consider the optimization problem where the MSE upper bound̄ξobj,AF in

(18) is minimized subject to a constraint on the average total number of sensors, i.e.,

min
λ,γ

ξ̄obj,AF(λ,γ) (19a)

subject to
M
∑

i=1

λi∆ ≤ Λ̄, (19b)

0 < λi∆≤ ǫΛ, for i = 1, . . . ,M. (19c)

whereΛ̄ is the constraint on the average number of sensors in the network. Here, the approximate

probability that a sensor exists in subregionVi, i.e., λi∆, is restricted within[0, ǫΛ] and ǫΛ < 1

should be small enough to make the approximation accurate enough.The value ofλi is assumed
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to be positive to ensure thatCyy is invertible.Following the relation in (2), the energy threshold

γ determines the distribution of the accumulated energy process and, thus, affects the objective

function through the probabilitiesαi, for all i, which involve the event that a sensor exists and

transmits in each subregion.

Since the first term in (18) is a constant, the optimization problem can be equivalently

formulated as the maximization over the second term in (18).By the change of variableΛi = λi∆

and by definingΛ = [Λ1, . . . ,ΛM ]T , the optimization problem can be written explicitly as

follows:

max
Λ,γ

JAF(Λ,γ) =
Jnum
AF (Λ,γ)

Jden
AF(Λ,γ)

(20a)

subject to
M
∑

i=1

Λi ≤ Λ̄ (20b)

0 < Λi≤ ǫΛ, for i = 1, . . . ,M. (20c)

The term in the numerator of the objective function is

Jnum
AF (Λ,γ) =

(

M
∑

i=1

φi,i[ḡi(γi)]
2F̄ 2

ei
(γi)Λ

2
i

)2

(21)

and that in the denominator is

Jden
AF(Λ,γ) =

M
∑

i=1

φi,i

[

g2i (γi)σ
2
x̃ + σ2

w

]

F̄ 3
ei
(γi)Λ

3
i ḡ

2
i (γi)

+
M
∑

i=1

∑

j 6=i

φi,jσ
2
xρ(vi,vj)F̄

2
ei
(γi)Λ

2
i ḡ

2
i(γi)F̄

2
ej
(γj)Λ

2
j ḡ

2
j(γj). (22)

whereσ2
x̃ = σ2

x + σ2
n.

Notice that the solution to the optimization problem in (20)depends on the statistics of the

energy arrival. In the following, we provide an example of how such a problem can be solved

under the Bernoulli energy arrival model.

A. Solution for Bernoulli Energy Arrival Case

In this subsection, we apply the above techniques to cases where the energy arrival can be

modeled as an i.i.d. Bernoulli process.This model has been widely adopted in the literature,

e.g., in [36]–[39], due to its tractability and because of its ability to model sources with sporadic
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0 δ 2δ (Ni − 1)δ
pi

· · · · · ·

1− pi 1− pi

Niδ

1− pi1− pi

pi pi pi pi

pi

1− pi

Fig. 3. Energy harvesting model of Bernoulli energy arrival.

energy arrivals in discrete-time. Examples of such energy sources may include vibrational, RF

energy, or wind etc. It can also be used to approximate more stable energy sources, such as solar,

by choosing each time slot to be sufficiently small so that energy will arrive approximately at a

constant rate when viewed from a larger time-scale. Other energy arrival models can also fit into

our framework, but may require different optimization techniques from that to be introduced in

the following.

Suppose that the energy arrival process{ai[t]}∞t=0 consists of a sequence of i.i.d. Bernoulli

random variables withPr(ai[t] = δ) = pi andPr(ai[t] = 0) = 1− pi, ∀t. That is, the sensor in

Vi harvests energyδ in each observation period with probabilitypi and fails to harvest energy

with probability 1 − pi. Since the sensor expends all its energy once the energy thresholdγi is

exceeded4, the accumulated energy{ei[t]}∞t=0 forms a(Ni+1)-state Markov process, as illustrated

in Fig. 3, whereNi , min{n : nδ ≥ γi}. The stationary (or steady-state) distribution is given

by Pr(ei[t] = 0) = 1−pi
Ni

, Pr(ei[t] = Niδ) =
pi
Ni

, andPr(ei[t] = kδ) = 1
Ni

for k = 1, . . . , Ni − 1.

In this case, the probability that the sensor in subregionVi transmits (if it exists) is given by

F̄ei(γi) = Pr(ei[t] = Niδ). Notice that, in the Bernoulli energy arrival model (c.f. Fig. 3), the

accumulated energies are integer multiples ofδ and, thus, the energy thresholdγi can also be

set as a multiple ofδ, in which case, we haveγi =Niδ. Consequently, we havēFei(γi) =
piδ
γi

,

ḡi(γi) =
h̃i

√
γi

σx̃
, and g2i (γi) =

h̃2
i γi
σ2
x̃

, where h̃i ,
√
κihi. Notice that the stationary distribution as

well as these values change as the energy thresholdγi is adjusted. By substituting the above

into (21) and (22), we get

Jnum
AF (Λ,γ)=(

M
∑

i=1

φi,ih̃
2
i p

2
i δ

2Λ2
iγ

−1
i )2 (23)

4The accumulated energy may not be depleted after each transmission in the AF case since the required transmit power is

random. However, we assume for simplicity that the remaining energy is omitted after each transmission.
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and

Jden
AF(Λ,γ)=

M
∑

i=1

φi,i(h̃
2
iγi+σ2

w)h̃
2
iσ

2
x̃p

3
i δ

3Λ3
i γ

−2
i

+

M
∑

i=1

∑

j 6=i

φi,jσ
2
xρ(vi,vj)p

2
i δ

2h̃2
iΛ

2
iγ

−1
i p2jδ

2h̃2
jΛ

2
jγ

−1
j (24)

and, thus, the optimization problem in (20) can be written as

max
Λ,γ

M
∑

i=1

M
∑

j=1

Ai,j

Λ2
iΛ

2
j

γiγj

M
∑

i=1

Ci
Λ3

i

γi
+

M
∑

i=1

Di
Λ3

i

γ2
i

+
M
∑

i=1

∑

j 6=i

Gi,j

Λ2
iΛ

2
j

γiγj

(25a)

subject to
M
∑

i=1

Λi ≤ Λ̄, (25b)

0 < Λi≤ ǫΛ, i = 1, . . . ,M, (25c)

γi = Ziδ, Zi ∈ N, i = 1, . . . ,M, (25d)

where Ai,j , φi,iφj,jh̃
2
i h̃

2
jp

2
i p

2
jδ

4 , Ci , φi,ih̃
4
i p

3
i δ

3σ2
x̃ , Di , φi,iσ

2
wp

3
i δ

3h̃2
iσ

2
x̃ , and Gi,j ,

φi,jσ
2
xρ(vi,vj)p

2
i p

2
j h̃

2
i h̃

2
jδ

4.

Notice that this problem is a mixed integer nonlinear programming (MINLP) problem, which

is difficult to solve in general. To address this issue, we consider a relaxation where the integer

constraint onγi is replaced with the inequality constraintγi ≥ δ. Then, by definingf(Λ,γ) ,
∑M

i=1

∑M
j=1Ai,j

Λ2
iΛ

2
j

γiγj
, the optimization problem can be written equivalently as

min
Λ,γ

M
∑

i=1

Ci
Λ3

i

γi
+

M
∑

i=1

Di
Λ3

i

γ2
i

+

M
∑

i=1

∑

j 6=i

Gi,j

Λ2
iΛ

2
j

γiγj

f(Λ,γ)
(26a)

subject to
M
∑

i=1

Λi ≤ Λ̄, (26b)

0 < Λi≤ ǫΛ andγi ≥ δ , for i = 1, . . . ,M. (26c)

Notice that the relaxed problem is still non-convex, but canbe approximated by a series of

geometric programming (GP) problems using the condensation method [40].

Specifically, in each iteration of the condensation method,the functionf(Λ,γ) is replaced

by its monomial approximation so thatthe objective function in (26a)becomes a posynomial
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Algorithm 1 Optimized SensorDensitiesand Optimized Energy Thresholds (OI-OET) Scheme

in the AF System
Initialization: Set ℓ = 0 and a solution accuracyǫ > 0. Find a feasible solution
(

Λ̃
(0)
, γ̃(0)

)

.

Iteration:

(i) Computeβ(ℓ)
i,j , for i, j = 1, . . . ,M , by (28).

(ii) Replacef(Λ,γ) with f̂ (ℓ)(Λ,γ) and solve (26). Let the solution be
(

Λ̃
(ℓ+1)

, γ̃(ℓ+1)
)

.

(iii) Repeat (i) and (ii) until

|JAF(Λ̃
(ℓ+1)

, γ̃(ℓ+1))− JAF(Λ̃
(ℓ)
, γ̃(ℓ))|

JAF(Λ̃
(ℓ)
, γ̃(ℓ))

≤ ǫ.

and that the problem in (26) can be formulated as a standard GPproblem. More specifically,

let
(

Λ̃
(ℓ)
, γ̃(ℓ)

)

be the solution obtained in theℓ-th iteration of the condensation method. Then,

based on the inequality between arithmetic and geometric means [41], it follows that

f(Λ,γ) =
M
∑

i=1

M
∑

j=1

Ai,jΛ
2
iΛ

2
j

γiγj
≥

M
∏

i=1

M
∏

j=1





Ai,jΛ2
iΛ

2
j

γiγj

β
(ℓ)
i,j





β
(ℓ)
i,j

, f̂ (ℓ)(Λ,γ), (27)

where

β
(ℓ)
i,j = Ai,j

(Λ̃
(ℓ)
i )2(Λ̃

(ℓ)
j )2

γ̃
(ℓ)
i γ̃

(ℓ)
j

/

f
(

Λ̃
(ℓ)
, γ̃(ℓ)

)

. (28)

By approximatingf(Λ,γ) with f̂ (ℓ)(Λ,γ), the optimization problem in (26) becomes a standard

GP,which can be converted to a convex optimization problem and solved using the interior point

method [42].Note that solving the problem given in (26) by replacingf(Λ,γ) with f̂ (ℓ)(Λ,γ)

yields a solution that is also feasible in (26) and can be usedto find the solution in the next

iteration of the condensation method. By initiating with a feasible solution(Λ̃
(0)
, γ̃(0)), the above

process can be repeated until the objective value converges. The procedure is summarized in

Algorithm 1. An approximated solution to the original problem in (25) is thus obtained and the

optimized energy threshold is further rounded to the nearest multiple of δ. The effectiveness of

this scheme is demonstrated through Monte Carlo simulations in Section V.
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Following [42, Chapter 11], the GP problem in (26) can be converted to a convex optimization

problem withn , M2 + 4M parameters andm , 2M2 + 6M + 1 inequality constraints. The

objective and the constraints of this problem can be furtherused to synthesize a log-barrier

function that satisfies the self-concordant property, and Newton’s method can then be used to

solve it. The complexity of each Newton step grows asO(mn2 + n3) [43] and the number of

Newton steps required can be bounded by
√
m [42]. Hence, the computational complexity of

the problem grows asO(M7). Details are omitted due to space limitations, but can be obtained

following the steps in [42].

B. Complexity Reduction

It is necessary to note that, even though the above approach can yield good solutions to the

random sensor deployment problem, the complexity can be high when the number of subregions,

M , is large. This is not a problem in most cases since the sensordensities and energy thresholds

need only be computed offline. However, if it is necessary to reduce the complexity without

reducing the resolution of the subregions, one can further reduce the number of parameters

by assuming that the parameters in neighboring subregions are the same. This assumption is

reasonable since the dimensions of a subregion is assumed tobe much smaller than the spatial

variations of the sensor field and the energy arrivals.

Suppose that theM subregions are combined intoN clustersC1, C2, . . . , CN , each consisting of

MC = M/N subregions. LetΛC = [Λ(1),Λ(2), . . . ,Λ(N)] andγC = [γ(1), γ(2), . . . , γ(N)], where

Λ(n) andγ(n) are the values ofΛi andγi, respectively, for alli ∈ Cn. Then, by lettingA(n),(m) ,
∑

i∈Cn
∑

j∈Cm Ai,j, C(n) ,
∑

i∈Cn Ci, D(n) ,
∑

i∈Cn Di, andG(n),(m) ,
∑

i∈Cn
∑

j∈Cm,i 6=j Gi,j,

the optimization problem in (26) can be reduced

min
ΛC ,γC

N
∑

n=1

[

C(n)

Λ3
(n)

γ(n)
+D(n)

Λ3
(n)

γ2
(n)

+
N
∑

m=1

G(n),(m)

Λ2
(n)Λ

2
(m)

γ(n)γ(m)

]

fC(ΛC ,γC)
(29a)

subject to
N
∑

n=1

MCΛ(n) ≤ Λ̄, (29b)

0 < Λ(n)≤ ǫΛ, γ(n) ≥ δ , n = 1, . . . , N. (29c)

The problem can then be solved using the condensation method, similar to that in Algorithm 1,

and the complexity is reduced toO((M/MC)
7).
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x̃1
Q1(·)

m1
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{x̂(v)}v∈V
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b̂M m̂MDEC

Fig. 4. Illustration of filed reconstruction for the digitalforwarding system.

IV. OPTIMIZED SENSORDENSITIES AND ENERGY THRESHOLDS FORDIGITAL

FORWARDING SYSTEMS

In this section, we optimize the sensordensities{λi}Mi=1 and the energy thresholds{γi}Mi=1 in

DF systems based on the minimization of the average MSE upperbound in (9).

In the DF system, each sensor first quantizes its local measurement into a binary representation

vector and forwards it to the destination, where the measurement is reconstructed. An illustration

of the DF system is given in Fig. 4. Suppose thatBi is the number of quantization bits at a sensor

in subregionVi. The sensor measurements at the sensor are quantized into2Bi representation

levels given by the setMi , {mi,1, . . . , mi,2Bi} using the quantization functionQi defined by

Qi(x̃i) = min{mi ∈ Mi : |x̃i −mi| ≤ |x̃i −m′
i|, ∀m′

i ∈ Mi}. The index of the representation

level is then encoded into the binary vectorbi and transmitted to the closest data-gathering

node. Suppose thatmi = Qi(x̃i) is the quantized value of̃xi at the sensor inVi and m̂i is the

corresponding value reconstructed at the data-gathering node based on its received signal. In

this case, the effective received signal at the data-gathering node can be written asyi = m̂ioi

and, together with the quantized measurements from other sensors, is utilized to perform the

LMMSE estimate at the fusion center. The MSE and its upper bound can be written similarly

as (5) and (9), respectively. Notice that the MSE is affectedby both the quantization error that

appears when representingx̃i with mi and the channel error that causes the difference between

mi and m̂i.

Following the procedure in [27], we adopt a uniform quantizer, wheremi,l =
(2l−1−2Bi )∆Qi

2
,



18

for l = 1 . . . , 2Bi, and∆Qi
= 2W

2Bi−1
, for W chosen sufficiently large such thatPr(|x̃i| ≥ W ) ≈

0. In this case, the quantization errorǫi = mi − x̃i is bounded in[−∆Qi

2
,
∆Qi

2
] and can be

approximated as a uniform random variable over this region when∆Qi
is sufficiently small. In

this case, the variance ofǫi is given byσ2
ǫi
= W 2

3(2Bi−1)2
. Moreover, it has been shown in [27] and

[44] that, for Bi sufficiently large, for alli, the quantization errors{ǫi}Mi=1 are approximately

uncorrelated and independent of the sensor measurements{x̃i}Mi=1. Once the quantized value

mi is obtained, it is converted into aBi-bit vectorbi using a natural binary code (wherebi

is taken as the binary representation of the quantization index) and transmitted to the data-

gathering node. By adopting BPSK modulation [27], the bit-error probability of the transmission

is εi=Q(
√

h2
i ei

σ2
wBi

), wherehi is the channel coefficient to the closest data-gathering node, ei/Bi

is the energy per bit, andQ(u)= 1√
2π

∫∞
u

e−
u2

2 du. By assuming that̂bi = [b̂i,1, . . . , b̂i,Bi
] is the

binary vector received by the data-gathering node, the reconstructed quantization level is then

m̂i = [2(
∑Bi

k=1 b̂i,k2
Bi−k + 1)− 1− 2Bi]

∆Qi

2
since

∑Bi

k=1 b̂i,k2
Bi−k + 1 is the integer value of the

binary vectorb̂i. Properties of the quantization and channel errors are utilized to obtain explicit

expressions of the MSE upper bound.

In obtaining a tractable upper bound, letȳ , [ȳ1, . . . , ȳM ]T , whereȳi = mioi, be the vector

of received signals at the data-gathering node when the channel is noiseless. By also letting

ỹ = [ỹ1, . . . , ỹM ]T , where ỹi , ȳi − yi, the MSE upper bound in (8) can be further upper-

bounded as

ξ̄upper,DF =
1

|V|

∫

v∈V
min
k∈RM

E[|x(v)− kT ȳ + kT ȳ − kTy|2]dv (30)

≤ 2

|V|

∫

v∈V
min
k∈RM

{

E
[

|x(v)− kT ȳ|2
]

+ E
[

|kT ȳ − kTy|2
]}

dv (31)

≤ 2

[

σ2
x −

(tr (ΦDαDα))
2

tr (ΦDα(Cȳȳ +Cỹỹ)Dα)

]

(32)

, ξ̄obj,DF(λ,γ), (33)

whereCȳȳ , E[ȳȳT ] and Cỹỹ , E
[

ỹỹT
]

. The first inequality follows from the fact that

(a + b)2 ≤ 2(a2 + b2) and the second inequality is shown in Appendix B. The first inequality

splits the MSE into two terms, one contributed by quantization error and the other by channel

noise. The bound is tight whena is approximately equal tob, that is, when the two MSE

contributions are approximately the same. Furthermore, the upper bound in (32) follows similar
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to (7) and (17) and, thus, are tight under similar conditions. Similar to the AF case, even though

the upper bounds may not be tight in general, they exhibit similar behaviors as the actual MSE

with respect to the sensor densities and transmission thresholds and, thus, are used as objective

functions in our problem.

To further analyzēξobj,DF(λ,γ) in (32), we note that the elements inCȳȳ andCỹỹ can be

derived as

{Cȳȳ}i,j=







(σ2
x + σ2

n + σ2
ǫi
)αi, for i = j

σ2
xρ(vi,vj)αiαj , for i 6= j,

(34)

and

{Cỹỹ}i,j=







22Bi∆2
Qi
qi

(

1−4−Bi

3
+qiηi,i

)

αi, for i=j

2Bi+Bj∆Qi
∆Qj

qiqjηi,jαiαj, for i 6=j,
(35)

where

qi , Pr(b̂i,k = 0|bi,k = 1, oi = 1), (36)

ηi,j ,







∑Bi

k=1

∑

l 6=k π{i,k},{i,l}2
−k2−l, for i = j

∑Bi

k=1

∑Bj

l=1 π{i,k},{j,l}2
−k2−l, for i 6= j,

(37)

with

π{i,k},{j,l},1−2[Pr(bi,k=1, bj,l=0|oi=1, oj=1)+Pr(bi,k=0, bj,l=1|oi=1, oj=1)] (38)

for k = 1, . . . , Bi, l = 1, . . . , Bj, i, j = 1, . . . ,M . The derivation ofCỹỹ and a more explicit

expression ofπ{i,k},{j,l} can be found in Appendices C and D, respectively. By takingξ̄obj,DF(λ,γ)

as the objective function, the search for the optimal sensordensitiesand energy thresholds can

be formulated as

min
λ,γ

ξ̄obj,DF(λ,γ) (39a)

subject to
M
∑

i=1

λi∆ ≤ Λ̄, (39b)

0 < λi∆≤ ǫΛ, for i = 1, . . . ,M. (39c)

For the reasons that will be evident later, we perform the change of variables whereλi is

replaced withαi = F̄ei(γi)λi∆, for all i = 1, . . . ,M . Then, by omitting the terms that are not
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relevant to the optimization, the problem can be written as

min
α,γ

JDF(α,γ) (40a)

subject to
M
∑

i=1

αi

F̄ei(γi)
≤ Λ̄, (40b)

0 < αi ≤ ǫΛF̄ei(γi), for i = 1, . . . ,M, (40c)

where

JDF(α,γ) =

(

(tr (ΦDαDα))
2

tr (ΦDα(Cȳȳ +Cỹỹ)Dα)

)−1

. (41)

Notice that, inJDF(α,γ), the dependence onα lies in Dα, Cȳȳ, and Cỹỹ whereas the

dependence onγ lies only inCỹỹ. The optimal solution of this problem is still difficult to find

due to the non-convexity of the problem. However, an approximate solution can be found by

using an alternating optimization algorithm [45], whereα and γ are optimized in turn while

keeping the other fixed and the process is repeated iteratively until there is no appreciable

decrease in the objective function.The algorithm is guaranteed to converge since the objective

is bounded below and is minimized in each step of the algorithm, but may converge to only a

local minimum in general.Details of the optimization ofα andγ are described in the following

subsection using the Bernoulli energy arrival model as an example.

A. Solution for the Bernoulli Energy Arrival Case

Recall that, in the Bernoulli energy arrival case, the energy thresholdγi can be set, without loss

of generality, as a multiple ofδ. In this case, we haveqi = Q
(

√

h2
i γi

σ2
wBi

)

and F̄ei(γi) = piδ/γi.

By relaxing the integer constraint onγi into the linear constraintγi ≥ δ, the optimization problem

becomes

min
α,γ

JDF(α,γ) =
Jnum
DF (α,γ)

Jden
DF(α,γ)

(42a)

subject to
M
∑

i=1

αiγi
piδ

≤ Λ̄, (42b)

0 < αi ≤ ǫΛpiδ/γi, for i = 1, . . . ,M, (42c)

γi ≥ δ, for i = 1, . . . ,M, (42d)
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where the term in the numerator is

Jnum
DF (α,γ)=

M
∑

i=1

φi,i

[

σ2
x+σ2

n+σ2
ǫi
+ζi,i(γi)

]

α3
i +

M
∑

i=1

∑

j 6=i

φi,j

[

σ2
xρ(vi,vj)+ζi,j(γi,γj)

]

α2
iα

2
j (43)

with

ζi,i(γi),
4W 24Bi

(2Bi−1)2
Q
(
√

h2
i γi

σ2
wBi

)[

1−4−Bi

3
+Q

(
√

h2
i γi

σ2
wBi

)

ηi,i

]

(44)

and

ζi,j(γi, γj) ,
4W 22Bi+Bj

(2Bi− 1)(2Bj− 1)
Q
(
√

h2
i γi

σ2
wBi

)

Q





√

h2
jγj

σ2
wBj



ηi,j, (45)

for i 6= j, and the term in the denominator is

Jden
DF(α,γ) =

M
∑

i=1

M
∑

j=1

φi,iφj,jα
2
iα

2
j . (46)

Let α(ℓ) andγ(ℓ) be the solutions obtained in theℓ-th iteration of the proposed algorithm. In

the (ℓ+ 1)-th iteration, we perform the optimization in the followingtwo steps.

Step 1 (Optimization of α): In Step 1, we first find the optimal value ofα givenγ = γ(ℓ).

That is, we find

α(ℓ+1) = argmin
α∈F(ℓ+1)

α

JDF(α,γ(ℓ)), (47)

where

F (ℓ+1)
α =

{

α

∣

∣

∣

∣

∣

M
∑

i=1

γ
(ℓ)
i

piδ
αi ≤ Λ̄ and0 < αi ≤ ǫΛ

piδ

γ
(ℓ)
i

, ∀i
}

(48)

is the constraint set onα in iterationℓ+ 1. By (43)-(45), the optimization problem in (47) can

be written explicitly as

min
α

∑M
i=1 C̃

(ℓ)
i α3

i +
∑M

i=1

∑

j 6=i D̃i,jα
2
iα

2
j

∑M
i=1

∑M
j=1 Ãi,jα2

iα
2
j

(49a)

subject to
M
∑

i=1

γ
(ℓ)
i

piδ
αi ≤ Λ̄, (49b)

0 < αi ≤ ǫΛpiδ/γ
(ℓ)
i , for i = 1, . . . ,M, (49c)

where Ãi,j , φi,iφj,j, C̃
(ℓ)
i , φi,i[σ

2
x + σ2

n + σ2
ǫi
+ ζi,i(γ

(ℓ)
i )] and D̃i,j , φi,j[σ

2
xρ(vi,vj) +

ζi,j(γ
(ℓ)
i , γ

(ℓ)
j )]. The optimization problem is nonconvex but can be solved approximately using
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the condensation method, similar to that in Algorithm 1, with monomial approximations of the

denominator of (49a).

Step 2 (Optimization of γ): In Step 2, we find the optimal value ofγ given α = α(ℓ+1),

i.e., we find

γ(ℓ+1) = argmin
γ∈F(ℓ+1)

γ

JDF(α
(ℓ+1),γ), (50)

where

F (ℓ+1)
γ =

{

γ

∣

∣

∣

∣

∣

M
∑

i=1

α
(ℓ+1)
i

piδ
γi≤ Λ̄ andδ≤γi≤

ǫΛpiδ

α
(ℓ+1)
i

, ∀i
}

(51)

is the constraint set onγ in iterationℓ+1. SinceJDF(α,γ) depends onγ only through{ζi,j}Mi,j=1,

the optimization overγ can be formulated equivalently as

min
γ∈F(ℓ+1)

γ

M
∑

i=1

φi,iζi,i(γi)
(

α
(ℓ+1)
i

)3

+
M
∑

i=1

∑

j 6=i

φi,jζi,j(γi, γj)
(

α
(ℓ+1)
i

)2 (

α
(ℓ+1)
j

)2

. (52)

Notice that the objective function is not a convex function of γ. However, by applying the upper

boundQ(u) ≤ 1
2
exp

(

−u2

2

)

, for u > 0, and by taking the high SNR approximation, we have

ζi,i(γi) .
2W 2(2Bi + 1)

3(2Bi − 1)
e
− h2i γi

2σ2
wBi (53)

and

ζi,j(γi, γj).
W 22Bi+Bj

(2Bi − 1)(2Bj − 1)
ηi,je

−
h2i γi
Bi

+
h2jγj
Bj

2σ2
w , (54)

for i 6= j. Then, the optimization problem in (52) can then be approximated as the problem

below:

min
γ

M
∑

i=1

φi,i

(

α
(ℓ+1)
i

)3

2(2Bi + 1)

3(2Bi − 1)
e
− h2i γi

2σ2
wBi

+

M
∑

i=1

∑

j 6=i

φi,j

(

α
(ℓ+1)
i α

(ℓ+1)
j

)2

2Bi+Bj

(2Bi − 1)(2Bj − 1)
ηi,je

−
h2i γi
Bi

+
h2j γj
Bj

2σ2
w (55a)

subject to
M
∑

i=1

α
(ℓ+1)
i

piδ
γi ≤ Λ̄ (55b)

δ ≤ γi ≤ ǫΛpiδ/α
(ℓ+1)
i , for i = 1, . . . ,M, (55c)
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Algorithm 2 Alternating Optimization Algorithm ofα andγ

Initialization: Set ℓ = 0, ǫ > 0 and find a feasible initial solution(α(0),γ(0)).

Iteration ℓ+ 1:

(i) Find α(ℓ+1) by solving (49) in Step 1 using the condensation method.

(ii) Find γ(ℓ+1) by solving (55) in Step 2.

(iii) Repeat (i)-(ii) until

|JDF(α
(ℓ+1),γ(ℓ+1))− JDF(α

(ℓ),γ(ℓ))|
JDF(α(ℓ),γ(ℓ))

≤ ǫ.

Takeα(ℓ+1) andγ(ℓ+1) as the desired solution.

which is convex and can be solved efficiently using standard numerical approaches, such as the

interior point method [42].

By alternating between the optimization problems in Steps 1and 2 until convergence, the

desired approximate solution ofα andγ can be obtained. The alternating optimization algorithm

is summarized in Algorithm 2.

B. Extension to DF Systems with Parity Check Bits

In this section, we have so far investigated DF systems whereraw bits are transmitted for field

reconstruction. In practice, the addition of parity bits tothe transmitted signal is often considered

to allow for error detection at the data-gathering node. In this case, the message transmitted by

the sensor can be treated as an erasure if an error has been detected and as error-free, otherwise.

The sensor deployment strategy can then be derived similarly in this case.

Specifically, let us consider the simple case where only an even parity is used. In this case,

the bit sequence transmitted by a sensor in subregionVi can be written ašbi = [bi bi,Bi+1],

wherebi,Bi+1 is chosen such that
∑Bi+1

k=1 bi,k is even and is referred to as the even parity bit. By

assuming that an error is always detected and treated as an erasure when it occurs, the effective

received signal at the fusion center can be written as

yi = miõi (56)



24

where

õi =







0, an error is detected

oi, otherwise.
(57)

Following similar procedures as in the previous scheme, an MSE upper bound of DF systems

with a one-bit parity can be derived as

ξ̄ ≤ σ2
x − tr

(

ΦDαDq̃C
−1
yyDq̃Dα

)

(58)

≤ σ2
x −

(

tr
(

ΦD2
αD

2
q̃

))2

tr (ΦDαDq̃CyyDq̃Dα)
, ξ̄obj,PB(Λ,γ) (59)

whereDq̃ , diag((1− q1)
B1+1, . . . , (1− qM )BM+1) and

{Cyy}i,j =







(1−qi)
Bi+1(σ2

x + σ2
n + σ2

ǫi
)αi, for i=j,

σ2
xρ(vi,vj)(1−qi)

Bi+1(1−qj)
Bj+1αiαj , for i 6=j.

(60)

For sufficiently small bit error probability, i.e., forqi ≈ 0 ∀i, the objective function can be

approximated as

ξ̄obj,PB ≈ σ2
x −

Jnum
PB (Λ,γ)

Jden
PB(Λ,γ)

(61)

where

Jnum
PB (Λ,γ) =

(

M
∑

i=1

φi,iα
2
i

)2

(62)

and

Jden
PB(Λ,γ) =

M
∑

i=1

φi,i(σ
2
x + σ2

n + σ2
ǫi
)α3

i +
M
∑

i=1

∑

j 6=i

φi,jσ
2
xρ(vi,vj)α

2
iα

2
j . (63)

By further adopting the Bernoulli energy arrival model, theoptimization problem can be written

explicitly as

max
Λ,γ

M
∑

i=1

M
∑

j=1

Ǎi,j

Λ2
iΛ

2
j

γ2
i γ

2
j

M
∑

i=1

Či
Λ3

i

γ3
i

+

M
∑

i=1

∑

j 6=i

Ǧi,j

Λ2
iΛ

2
j

γ2
i γ

2
j

(64a)

subject to
M
∑

i=1

Λi ≤ Λ̄, (64b)

0 < Λi ≤ ǫΛ < 1, i = 1, . . . ,M, (64c)

γi = Ziδ, Zi ∈ N, i = 1, . . . ,M, (64d)
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whereǍi,j , φi,iφj,jp
2
i p

2
jδ

4, Či , φi,i(σ
2
x+σ2

n+σ2
ǫi
)p3i δ

3 andǦi,j , φi,jσ
2
xρ(vi,vj)p

2
i p

2
jδ

4. Notice

that the problem is similar to that obtained in the AF case and, thus, can be solved following

similar procedures as in Section III-A.

V. SIMULATIONS AND PERFORMANCE COMPARISONS

APPENDIX A

EQUIVALENCE OF THE LMMSE ESTIMATOR IN (3)

Let O1 = {i|oi = 1} and O0 = {i|oi = 0} be the index sets of the subregions with and

without a transmitting sensor, respectively, and let|O1| = r and |O0| = M − r. Moreover, let

z = [z1, . . . , zr]
T be ther × 1 vector obtained by removing the entries iny that correspond to

the indices inO0. In this case,Co
x(v)z , E[x(v)zT |o] is equivalent to the vectorCo

x(v)y with

the entries inO0 removed, andCo
zz , E[zzT |o] is equivalent to the matrixCo

yy with the rows

and columns inO0 removed. The eigenvalue decomposition ofCo
zz can be written as

Co
zz =

r
∑

k=1

̺kuku
T
k , (65)

where̺k, for k = 1, . . . , r, is thek-th eigenvalue, labelled such that̺1 ≥ ̺2 ≥ . . . ≥ ̺r > 0,

anduk = [uk,1, . . . , uk,r]
T is the corresponding eigenvector. Then, by constructing the vectors

vk = [vk,1, . . . , vk,M ]T , for k = 1, . . . , r, such that

vk,i =







uk,
∑i

j=1 oj
, if oi = 1

0, if oi = 0,
(66)

(i.e., by padding zeros into the vectoruk at locations corresponding to the indices inO0), we

have

Co
yy =

r
∑

k=1

̺kvkv
T
k . (67)

Notice thatv1, . . . ,vr are linearly independent and, thus, are eigenvectors corresponding to the

non-zero eigenvalues̺1, . . . , ̺r of Co
yy.

Therefore, the LMMSE estimator obtained by using only the received signalsri, for i ∈ O1,
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can be written as

x̂(v) = Co
x(v)zC

o
zz
−1z (68)

=

r
∑

i=1

r
∑

j=1

{Co
x(v)z}i{Co

zz
−1}i,jzj (69)

=
r
∑

i=1

r
∑

j=1

{Co
x(v)z}i

(

r
∑

k=1

̺−1
k uk,iuk,j

)

zj (70)

=

M
∑

i=1

M
∑

j=1

{Co
x(v)y}i

(

r
∑

k=1

̺−1
k vk,ivk,j

)

yj (71)

=
M
∑

i=1

M
∑

j=1

{Co
x(v)y}i

{

r
∑

k=1

̺−1
k vkv

T
k

}

i,j

{y}i (72)

= Co
x(v)yC

o
yy

†
y, (73)

where the equality in (71) follows from the fact thatvk,i = 0, ∀k for i ∈ {i|oi = 0}.

APPENDIX B

DERIVATION OF THE INEQUALITY IN (32)

To derive the inequality in (32), let us define the term insidethe integral of (31) as

L(k,v) ,E
[

|x(v)− kT ȳ|2
]

+E
[

|kT ȳ− kTy|2
]

(74)

= σ2
x − 2Cx(v)ȳk + kT (Cȳȳ +Cỹỹ)k (75)

whereCx(v)ȳ , E[x(v)ȳT ]. To minimizeL(k,v), we set∂L(k,v)
∂k

= 0, which yields

k⋆(v) = argmin
k∈RM

L(k,v) = (Cȳȳ +Cỹỹ)
−1Cx(v)ȳ

T , (76)

and the corresponding minimum value is

L(k∗(v),v) = σ2
x −Cx(v)ȳ(Cȳȳ +Cỹỹ)

−1Cx(v)ȳ
T (77)

where

Cx(v)ȳ = Cx(v)mDα ≈ Cx(v)xDα (78)

and Cx(v)m , E[x(v)mT ] with m = [m1, . . . , mM ]T being the vector of quantized sensor

measurements. The approximation in (78) is made by assumingthat the quantization errorǫi is
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uniformly distributed and is uncorrelated with its inputx̃i. By substituting (77) into (31), the

upper bound of the average MSE becomes

ξ̄upper,DF ≤ 2

|V|

∫

v∈V
σ2
x −Cx(v)ȳ(Cȳȳ +Cỹỹ)

−1Cx(v)ȳ
Tdv (79)

= 2
[

σ2
x−tr

(

ΘDα(Cȳȳ+Cỹỹ)
−1Dα

)]

, ξ̄approx,DF, (80)

where

Θ ,
1

|V|

∫

v∈V
CT

x(v)mCx(v)mdv (81)

≈ 1

|V|

∫

v∈V
CT

x(v)xCx(v)xdv = Φ, (82)

andΦ is defined in (13). Moreover, using Lemma 1 and the procedure similar to that of (15)-(18),

the average MSE can be further upper-bounded by

ξ̄upper,DF ≤ 2

[

σ2
x −

(tr (ΦDαDα))
2

tr (ΦDα(Cȳȳ +Cỹỹ)Dα)

]

. (83)

APPENDIX C

DERIVATION OF {Cỹỹ}i,j :

Let us definẽbi,k , bi,k − b̂i,k andΩi , {oi = 1} as the event thatoi = 1 for i = 1, . . . ,M .

The diagonal element ofCỹỹ can be written as

E[ỹ2i ] = E





(

Bi
∑

k=1

(bi,k − b̂i,k)2
Bi−k∆Qi

)2

o2i



 (84)

= 22Bi∆2
Qi

(

Bi
∑

k=1

E
[

E
[

b̃2i,ko
2
i |oi
]]

2−2k +

Bi
∑

k=1

∑

l 6=k

E
[

E
[

b̃i,k b̃i,lo
2
i |oi
]]

2−k2−l

)

(85)

= 22Bi∆2
Qi

(

Bi
∑

k=1

E
[

b̃2i,k|Ωi

]

Pr(Ωi)2
−2k +

Bi
∑

k=1

∑

l 6=k

E
[

b̃i,k b̃i,l|Ωi

]

Pr(Ωi)2
−k2−l

)

. (86)

By adopting BPSK modulation with transmit powerei/Bi per bit, the bit error probability of

the sensor located inVi is

qi,Pr(b̂i,k=1|bi,k=0,Ωi)=Pr(b̂i,k=0|bi,k=1,Ωi), (87)
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for k = 1, . . . , Bi, i = 1, . . . ,M . The expectation inside the first term of (86) is

E
[

b̃2i,k

∣

∣

∣
Ωi

]

= 1 · Pr(bi,k 6= b̂i,k|Ωi) + 0 · Pr(bi,k = b̂i,k|Ωi)

= Pr(b̂i,k = 0|bi,k = 1,Ωi) Pr(bi,k = 1|Ωi) + Pr(b̂i,k = 1|bi,k = 0,Ωi) Pr(bi,k = 0|Ωi)

= qi.

The expectation inside the second term of (86) is

E
[

b̃i,k b̃i,l|Ωi

]

=Pr(b̃i,k=1, b̃i,l=1|Ωi)+Pr(b̃i,k=−1, b̃i,l=−1|Ωi)

−Pr(b̃i,k=1, b̃i,l=−1|Ωi)−Pr(b̃i,k=−1, b̃i,l=1|Ωi)

= q2i [Pr(bi,k=1, bi,l=1|Ωi)+Pr(bi,k=0, bi,l=0|Ωi)

− Pr(bi,k=1, bi,l=0|Ωi)−Pr(bi,k=0, bi,l=1|Ωi)]

= q2i [1−2(Pr(bi,k=1, bi,l=0|Ωi)+Pr(bi,k=0, bi,l=1|Ωi))],

where the last equality follows from properties of the natural binary code. By substituting the

above into (86), we get

E[ỹ2i ] = 22Bi∆2
Qi

(

Bi
∑

k=1

αiqi2
−2k + q2i ηi,jαi

)

(88)

= 22Bi∆2
Qi
qi

(

1− 4−Bi

3
+ qiηi,j

)

αi (89)

The off-diagonal elements inCỹỹ can be obtained similarly.

APPENDIX D

EVALUATION OF π{i,k},{j,l}:

To evaluateπ{i,k},{j,l} in (38), the joint probabilitiesPr(bi,k = 1, bj,l = 0|Ωi,Ωj) andPr(bi,k =

0, bj,l = 1|Ωi,Ωj) are required. To do this, let us define

Iz
i,k ,{x̃i ∈ R|bi,k = z} (90)

≃
⋃

bi,1,...,bi,k−1

∈{0,1},bi,k=z

[(

k
∑

t=1

bi,t2
Bi−t − 2Bi−1

)

∆Qi
,

(

k
∑

t=1

bi,t2
Bi−t+2Bi−k − 2Bi−1

)

∆Qi

]

(91)
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as the set of measurement valuesx̃i at sensori that yieldsbi,k = z, wherez ∈ {0, 1}. The

approximation follows the fact thatPr(|x̃i| > W ) ≈ 0. Notice thatIz
i,k can be written as the

union of 2k−1 disjoint intervals. Therefore, fori = j andk < l, we have

Pr(bi,k = 1, bj,l = 0|Ωi,Ωj) = Pr(x̃i ∈ I1
i,k ∩ I0

i,l|Ωi) (92)

=
∑

bi,1,...,bi,k−1,
bi,k+1,...,bi,l−1∈{0,1}

bi,k=z1,bi,l=z2



Q





(

∑l
t=1

bi,t2
Bi−t − 2Bi−1

)

∆Qi

√

σ2
x + σ2

n





−Q





(

∑l
t=1 bi,t2

Bi−t + 2Bi−l − 2Bi−1
)

∆Qi

√

σ2
x + σ2

n







 . (93)

The result is similar fork > l. Moreover, sincẽxi and x̃j , for i 6= j, are jointly Gaussian

random variables with mean0, varianceσ2
x̃ = σ2

x + σ2
n, and correlation coefficient̃ρ(vi,vj) =

σ2
x

σ2
x+σ2

n
ρ(vi,vj), we have, fori 6= j,

Pr(bi,k = 1, bj,l = 0|Ωi,Ωj)

= Pr(x̃i ∈ I1
i,k, x̃j ∈ I0

j,l) (94)

=

∫

x̃j∈I0
j,l

∫

x̃i∈I1
i,k

e
−

x̃2i−2ρ̃(vi,vj )x̃ix̃j+x̃2j

2σ2
x̃
(1−ρ̃2(vi,vj ))

2πσ2
x̃

√

1− ρ̃2(vi,vj)
dx̃idx̃j (95)

(a)
=

∫

x̃j∈I0
j,l

1
√

2πσ2
x̃





∫

x′

i∈I1′
i,k

e−
x′2i
2√
2π

dx′
i



 e
−

x̃2j

2σ2
x̃ dx̃j , (96)

(b)
=

∑

bj,1,...,bj,l−1

∈{0,1},bj,l=0

∫ (
∑l

t=1bj,t2
Bj−t+2Bj−l−2Bj−1)∆Qi

(
∑l

t=1bj,t2
Bj−t−2Bj−1)∆Qj

∑

bi,1,...,bi,k−1

∈{0,1},bi,k=1

e
−

x̃2j

2σ2
x̃

√

2πσ2
x̃



Q





(

∑k
t=1 bi,t2

Bi−t − 2Bi−1
)

∆Qi
− ρ̃(vi,vj)x̃j

√

σ2
x̃ (1− ρ̃2(vi,vj))



−

Q





(

∑k
t=1 bi,t2

Bi−t+2Bi−k− 2Bi−1
)

∆Qi
−ρ̃(vi,vj)x̃j

√

σ2
x̃ (1−ρ̃2(vi,vj))







dx̃j (97)

where (a) follows from the change of variable

x′
i =

x̃i−ρ̃(vi,vj)x̃j
√

σ2
x̃(1−ρ̃2(vi,vj))
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with I1′

i,k ,
{ x̃i−ρ̃(vi,vj)x̃j√

σ2
x̃
(1−ρ̃2(vi,vj))

∈ R
∣

∣bi,k = 1
}

and (b) follows from the definition ofI0
j,l andI1′

i,k.

The probabilityPr(bi,k = 0, bj,l = 1|Ωi,Ωj) can be evaluated similarly.
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