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Optimized Random Deployment of Energy
Harvesting Sensors for Field Reconstruction
Analog and Digital Forwarding Systems

Teng-Cheng Hsu, Y.-W. Peter Hong, and Tsang-Yi Wang

Abstract

This work examines the large-scale deployment of energyesting sensors for the purpose of
sensing and reconstruction of a spatially correlated Gamssandom field. The sensors are powered
solely by energy harvested from the environment and areogieglrandomly according to a spatially non-
homogeneous Poisson point process whiesasitydepends on the energy arrival statistics at different
locations. Random deployment is suitable for applicatitirag require deployment over a wide and/or
hostile area. During an observation period, each sensestakocal sample of the random field and
reports the data to the closest data-gathering node if mrffienergy is available for transmission.
The realization of the random field is then reconstructedchatfusion center based on the reported
sensor measurements. For the purpose of field reconsmyttie sensors should, on the one hand, be
more spread out over the field to gather more informative $esnput should, on the other hand, be
more concentrated at locations with high energy arrivadgatr large channel gains toward the closest
data-gathering node. This tradeoff is exploited in the rojtation of the random sensor deployment
in both analog and digital forwarding systems. More spedlific given the statistics of the energy
arrival at different locations and a constraint on the ayeraumber of sensors, the spatially-dependent
sensordensityand the energy-aware transmission policy at the sensordeteemined for both cases
by minimizing an upper bound on the average mean-squarestoaction error. The efficacy of the
proposed schemes are demonstrated through numericalasiomsl.

. INTRODUCTION

Wireless sensor networks (WSNSs) consist of spatially ithsted sensors that have the ability
to sense the physical environment, process the gatherednaftion, and communicate through

the wireless interface. In recent years, WSNs have beentediapa wide range of applications,
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such as environmental monitoring, disaster recovery, aattlefield surveillance, etd [1]. In
these applications, sensors are often deployed in la@e-snd in hostile areas making human
maintenance and battery-replacement impractical. Dubdset reasons, energy harvesting tech-
niques for sensor nodes| [2]+[4], which enable the conversfoambient energy (such as solar
[5], vibrational [6], or thermal energy [7]) to electric eqg, are being developed and used to
prolong sensor lifetime. By employing energy harvestinghtelogy, the characteristics of the
energy arrival and the efficiency of energy usage will havegaificant impact on the sensing
performance. It is therefore necessary to adapt the sergdoyanent and sensor operations to
spatial variations of the energy arrival process.

The main objective of this worls to determine optimal sensor deployment strategies, lyame
spatial densities of energy harvesting sensfinsthe purpose of sensing and reconstruction of
a spatially correlated Gaussian random field. The senserasaumed to be deployed randomly
and in large scale according to a spatially non-homogen@aisson point process (NHPPP)
[8]-[10]. During an observation period, each sensor takesa sample of the random field and
reports the observation to the closest data-gathering baded on a threshold-based energy-
aware transmission control policy. The policy allows thexsse to transmit only if it has
accumulated enough energy for transmission. We considbrémalog-forwarding (AF) systems,
where sensors transmit a scaled version of their analogurezagnts to the data-gathering node,
and digital-forwarding (DF) systems, where digital regrstions of their measurements are
forwarded instead. The random field is then reconstructethatfusion center based on the
information gathered from the sensors.

In this work, we assume that the sensors’ operations areosigapsolely by ambient energy
(i.e., energy harvested from the environment) and, thuesr thansmit powers and probabilities
depend strongly on the characteristics of their energyalrat their respective locations. To
reduce the field reconstruction error, the sensors shouldhe one hand, be more spread out
over the field to gather more informative samples, but shauidhe other hand, be concentrated
more at locations with large energy arrivals or with largaruel gains toward the closest data-

gathering node. This tradeoff is exploited to determinedp&mal random sensor deployment in



3

both AF and DF systems. In particular, givére locations of data-gathering noB,eme statistics

of the energy arrival at different locations and a constrainthe average number of sensors, we
determine the spatially-dependent serdemsitiesand the energy-aware transmission thresholds
at the sensors by minimizing an upper bound on the average-stere reconstruction error.
The energy-aware transmission policy allows a sensor twsiné only when its accumulated
energy (i.e., its battery level) is beyond a certain thr&slamd remains silent, otherwise, so
that energy can be preserved for use in later time slotscBldhat,in this work, we consider
only a simple threshold-based transmission policy anddamu the global effect of the sensor
deployment problem. In general, the optimal energy-awasasmission policy may involve
continuous power control in accordance with the data trétfiie transmission deadline, and queue
stability etc, but is not considered in this work to maintaiactability. Readers are referred to
[11]—[13] for further studies on this topiGhe efficacy of the proposed schemes are demonstrated
by numerical simulations.

In the past, sensor deployment problems have been examinstlynfor sensors without
energy harvesting capabilities (see|[14] for a survey orsahpics). In particular, without
energy harvesting considerations, sensor deploymentipslhave been proposed with the goal
of minimizing the field reconstruction error in_[15], of gaateeing connectivity in_[16], and
of maximizing sensor coverage ih_[17]. In these works, senseere assumed to be placed
at deterministic locations, in which case, the task of figdihe optimal sensor placement is
often NP hard [[14]. Therefore, heuristic or approximateusohs were proposed to reduce
the computational complexity. Due to advances in energydsding technology [2]+]4], similar
problems have also been examined recently, e.d., in [18]Edjdfor energy harvesting wireless
systems with considerations on the stochastic nature ofettexgy arrival at each node. In
particular, in [18] and[19], the deployment of energy hatirgy relay nodes in sensor networks
were examined with the goal of enhancing network througlapdt of guaranteeing connectivity,
respectively. However, they did not consider the cross#agmpact of the spatial dependencies

of the energy arrivals and sensor measurements on the fietthstuction performance. In

IHere, we assume that the locations of the data-gatheringsnack fixed and focus on the deployment of energy harvesting
sensors. This is often the case in practice since datafyyagheodes are typically grid-connected and, thus, theic@mnent can
be more restrictive. However, in certain cases, furtheiilflity may also be given to the deployment of data-gathgniodes.

Readers are referred to [20] for further discussions onttps.



our work, we consider the optimal random sendeploymentstrategy for field reconstruction
by taking into consideration the spatial correlation b&mwéehe sensor measurements and the
energy arrivals. Rather than designing a deterministidoyepent scheme which places sensors
at precise locations, we consider the random deploymen¢rgass and determine the optimal
sensordensitiesat different locations. We argue that random deploymeén}, [Z1] is more
practical when the number of sensors to be deployed is largghen the sensors are to be
deployed in a hostile environment. Comparisons betweesrmtistic and random deployment
schemes can also be found inJ[22] ahd![23].

Field reconstruction and decentralized parameter estmate essential applications of WSNs
and have been studied extensively in the literature for W&Nsout energy harvesting capabil-
ities, e.g., in[[24]-4[2B]. For given sensor locations, thesrks focused on the design of sensor
transmission schemes under different centralized fusibesr Two transmission systems have
been considered the most in the literature, namely,[AF [28}-and DF [27]-[29] systemsIn
these systems, the amplifying gainsl[24]+[26] and the nurobguantization bits [27]+[29] used
for transmission by the sensors respectively can be chasannimize the field reconstruction
error. Both of AF and DF systems are examined in our work under amiditienergy harvesting
considerations. Decentralized estimation under energyebting constraints have also been
investigated recently in [30] and [31]. However, the sert@ploymenproblem and the impact of
the location-dependent sensor measurements and enenggisaon the estimation performance
have not been explored before. A preliminary version of oorkacan be found in[[32], but
only for the AF case.

The rest of this paper is organized as follows. A general rifggan of the system model is
presented in Sectidnl Il. The sensor deployment and trasgmisontrol policies are then derived
separately for AF and DF systems in Sectién$ Il IV, respely. Numerical results are
provided in Sectioll V and some concluding remarks are gimeBection??.

[I. SYSTEM MODEL AND PROBLEM DEFINITION

Let us consider a WSN that consists of a large number of semgployed randomly in the
region) according to a spatially NHPPP [10] with deterministensities{\(v) }, <y, where\(v)
is thedensityat locationv € V. In an observation period, each sensor takes a local sarhiile o

random field and forwards it to the closest data-gatherirdenbhe locations of data-gathering
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Fig. 1. lllustration of the sensor deployment, the energivalrdistribution and the field values for a specific

nodes can be arbitrary but are assumed to be fixed over Timeerandom field is denoted by
{z(v)[t]}vev, Wherez(v)[t] is the value of the field at locatiom € V in the ¢-th observation
period. Following [[15] and[[28], we assume that the set ofdaan field values{x(v)[t]}vey

is jointly Gaussian with zero mean and with covarianégis(v,)[t]x(v;)[t]] = o2p(vi, v;)[t],

for all v;,v; € V, whereo? is the variance ofc(v)[t], for all v € V, and p(v;,v;)[t] is the
correlation coefficient between(v;)[t] and z(v,)[t|. The random field is also assumed to be
stationary over timeMoreover, let{a(v)[t|}vey be the set of random energy arrivals, where
a(v)[t] is the energy arrival at locatiom € V in the ¢t-th observation period. An example of
the sensor deployment, the field values, and the energyalrrior a specifi¢ are depicted in
Fig.[d. In practice, the set of sensdensities{\(v)},cy to be derived in this work provides a
guideline for the numbers of sensors that should be scdtt@relifferent locations, e.g., from
an air vehicle.

To simplify our computations, let us partition the regionioferest, i.e.,), into M disjoint
subregions)y, ..., V,, with equal size. That is, we choosg, ..., V,, such thaty = Uf‘il V;
with areas|V;| = A, for all 7, and withV; "V, = ¢, for all i # j. We assume thaf\ is
sufficiently small (compared to the variations of the randiefd) so that the sensatensities
remain approximately constant in each subregion (Ae:) ~ \;, for all v € V; and for alls).
Then, by assuming that;A < 1, the probability that exactly one sensor exists in subregio
can be approximated afé% ~ \;A and the probability that more than one sensor exists in

V; is negligible. Moreover, withA sufficiently small, we can also approximate the field value



and the energy arrival at a sensor in subregiprby their respective values at the center of
the subregion, which are denoted kyt| and«;[t], respectively. Therefore, if a sensor exists in

subregiony;, its local observation can be expressed as

wheren,[t] is the observation noise at the sensor located at the sobréyi The observation
noise is assumed to be independent and identically disédb(.i.d.) across sensoend over
time according to a Gaussian distribution with mean zero andwmags?, denoted byV (0, o2).
To preserve energy at the sensors, we adopt a threshold-leasegy-aware transmission
policy where a sensor transmits only if its accumulated ggnexceeds a certain threshold,
but exhausts all its energy when doing so. This scheme isreefd¢o in the literature as the
integrate-and-fird33], [34] transmission policy. The energy threshold at $kesor in subregion
V; is denoted byy; and is chosen to minimize the field reconstruction error terlgections.
The accumulated energy at each sensor, say, the sensorregsu)/;, varies over time and

can be expressed as

.lt] = e[t — 1] 4+ a;[t], Iif et — 1] < @)
a;[t], if e[t —1] > .

at the beginning of the-th observation period. By assuming that the procés$|}:°, is
stationary over time, the probability that the sensor tmitsin a given time slot ig, (v;) =
Pr(e;[t] > 7;), which is the complementary cumulative density functiond of e;[t]. An
example of the case whefe;[t] }:2, is stationary is given in the following sections by considgr
a Bernoulli energy arrival procesBy the stationarity of the random fiel;[t]}:°, and of the
accumulated energy procegs|t]},, for all i, we shall omit the time indekin later discussions
and focus on the field reconstruction performance at a péaticnstant in time.

Let us define a random variabde to indicate the presence or absence of a signal transmitted
by a sensor in subregioW;. Specifically, we seb; = 1, if a sensor exists in subregio¥
and has energy above the thresheld and seto; = 0, otherwise. In this case); can be
viewed as a Bernoulli random variable with probabilRy(o; = 1) = \;AF, (v;) and Pr(o; =
0) = 1 — NAF, (7). Moreover, letr; be the signal received from the sensor in subregipn
at the closest data-gathering node over a noisy channelnWhe:- 1, the received signat;

depends on the the sensor’s observafigrthe accumulated energy, the type of transmission



scheme, and the quality of the channel towards the closeastgaghering node. Whety = 0,
nothing is receivednd, thus, we set; = null. Two types of sensor transmission schemes are
considered, namely, the AF and DF schemes. In the AF scheawh, sensor simply transmits
an amplified version of its received signal to the closesa-d@thering node. In the DF scheme,
each sensor first quantizes its measurement into a binarysemation vector and then forwards
it to the closest data-gathering node, where the binaryvésdecoded and the quantized sensor
measurement is reconstructed.

The signals received at the data-gathering nodes are tit@gmver the backhaul to the fusion
center where an estimate of the field valyegv)},cy are computed. Led £ [oy, ..., on]"
be the vector representing the sensors’ transmissionsstadite transmissions from the data-
gathering nodes to the fusion center are assumed to befexeoand, thus{r;}}., are also the
observations available at the fusion ceniy. assuming that the fusion center is aware of the
sensors’ locations and transmission status., {o;}},, it extracts only the set of field-bearing
observationgr;|1 <i < M, 0; = 1} for field reconstruction. The linear minimum mean square
error (LMMSE) estimator is then adopted to obtain an esenadteach point in the field using
these observations. Interestingly, we show in Appeidix &t the LMMSE estimate obtained
with the set of observation§r;|1 < i < M,o0; = 1} is equivalent to that obtained with the
effective received signal vecter = [y, ..., ya]?, where

ry, ifo =1

O, if 0; = 0,

Yi =

for all i. Therefore, the estimate of the field valuév) at locationv can be written as

JA}'(V) = Cg(v)yC;;y7 (3)
where Cy, £ Elyy”lo], C2,, = Elz(v)y"|o], and' represents the Moore-Penrose pseudo
inverse. The resulting MSE of the estimate «ofv) is then given by

§(vlo) = 02 — tr (C2)y Coy o0y ) (4)

y oYy

Here, we assume that the fusion center is aware of the |losatd the sensors once they have been deployed and the
transmission status of the existing sensors. The formerbeanbtained through positioning techniques after deploynaad
the latter can be obtained by appending the sensors’ IDsefo titansmissions or by performing signal detection at tsohn
center. However, the proposed methodology can also be vsdbe case where no knowledge is assumed at the fusion center

In this case, the received signal in the absence of a sermmntission in subregiol; should ber; = w;.



and the average MSE over the entire sensor field is defined as

= \V|/ ZS v|o) Pr(o (5)

OEO

where( is the set of all possible realizations @f Notice that the above expression involves the
summation over all possible realizations@fwhich can be intractable in practice. To simplify

our computations, we consider instead an upper bound ofvibege MSE given as follows:

Ivl/ Eo | iy 2 [Je(v) = K7y Flo] | ©
< i | min BB [lev) <Ky o] v @
= 1y | i B 1) - Ky av ©
:ﬁ / 72 =11 Cuuy CyClivn) ¥ 2 Euppe €)

whereC, ), = Elz(v)y?] andC,, = E[yy’] are computed by taking the expectation over all
possible realizations ab, and thus, do not depend on the actual subset of transmgéngors.
The vectork inside the expectation in(6) can be viewed as the lineamestir that should
be optimized separately for each given valuevoénd o. The inequality in[(I7) follows since
the minimization over each term inside the expectation rbassmaller than the minimization
over the entire expectation (which amounts to using the darfoe eacho). The latter can be
interpreted as the minimum MSE attainable when the fusieonecedoes not have knowledge of
the sensors’ locations and transmission status. This bautight only when the optimal linear
estimatork is approximately the same for all realizationsathat occur with high probability.
Even though the sensors are deployed randomly, their totafre fixed once they are deployed
and do not change over time. The MSE [ih (6) provides a meaduteecaverage performance
over all possible sets of sensor locations following an NAIR®th sensor densitieg\; }£,, but
is only an approximation of the actual MSE in practice, whednresponds to just one realization
of o.

The main objective of this work is to determine the optimahss® densities{);}, and
the energy thresholdsy; }£, by minimizing the MSE upper bound ifil(9) for both the AF and
the DF systems. The optimized sensensitiesshould achieve the optimal balance between the

energy arrival probability, the channel gain, and the sefisll correlation whereas the optimized
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Fig. 2. lllustration of filed reconstruction for the analagwarding system.

energy thresholds should exploit the tradeoff between #éms@’s transmission probability and
the reception quality at the data-gathering nodes. The gtems are examined separately in

the following sections.

IIl. OPTIMIZED SENSORDENSITIESAND ENERGY THRESHOLDS FOR

ANALOG-FORWARDING SYSTEMS

In this section, we determine the optimal serdemsities{ \; }, and energy thresholdsy; } M,
in AF systems based on the minimization of the average MSEuppund in[(D).

In the AF system, each sensor transmits an amplified verdiats ¢tocal observation to the
closest data-gathering node, as illustrated in Eig. 2. la tlase, the signal transmitted by a

sensor in subregiol; can be written as

Vi€ L
—— Ty, (10)
o2+ o2

wherek; > 0 is the amplifying factare; is the energy available at the sensorli and the

S; =

received signal at the closest data-gathering node is
I P

o2+ o2

where h; is the channel coefficient between the sensor and its clakdatgathering nogde
andw; ~ N(0,02) is the additive white Gaussian noise (AWGN). Here, we do ruotsider

Z; +w; | o, (11)

3The signal model under consideration can also accommodatitast transmissions, where the signal transmitted by a
sensor in subregiol’; may be received simultaneously by multiple data-gathenodes simultaneously. In this cade,can be

viewed as the effective channel coefficient after signal lmoing at the fusion center.



10

the effects of short-term fading and assume thats a constant that depends only on the
distance between the sensor and its data-gathering nogeefdre, by definingy; £ L/

Voiton

as the effective channel gain experienced by the sensby, ithe received signal is expressed

asy; = (¢:%; + w;)o;. For simplicity, we assume that the sensor depletes itsrigatteery time

it transmits (i.e., any residual energy is dumped after @emismission). Notice that, since the
observationz; is random, the energy required to transmit the signalin (b@y exceed the
accumulated energy; with a certain probability. In this case, a saturation dffe@y occur,
causing additional distortion on the received signal. Hmveby choosings; to be sufficiently
small, the probability that the saturation occurs is small,athus, is omitted for simplicity.
Studies on the impact of this effect on the distributed estiom performance is beyond the
scope of this work, but can be found in [35].

For convenience, let; = Pr(o; = 1) = F, (v;)\:A be the probability that a sensor exists
in V; and transmits in the given observation period. Moreovergley,) = Elgi(vi)les > il
and g2(v;) 2 E[g2(v:)|e; > ] be the conditional first and second moments of the effective
channel gain given that the sensor transmits. In this caséaneC, (), = C,)xD;D., where
D, £ diag(gi(11), - - -, du(var)) and D, = diag(ay, ..., ayr); thus, the MSE upper bound in
(@) can be written as

Eupper,ar = 02 — tr (8D;D,C; D,Dy) , (12)
where® £ 3 [, ), CT,) Cyvxdv is defined such that
O% A
{(P}Z,J = m . p(V7 Vi)p<v7 Vj>dv = (bi,j? (13)
ve

for all ¢, j, and the(, j)-th element ofC,, can be derived as

Cosfoy=d 0NN+ )+ oo, fori=) 1
9:(7)g; () ozp(vivy)auay, for iz,
for all 7, 7. Notice that® is a matrix that depends only on the correlation of the sefisla and
not on the optimizing parametefs,; }2, and{+;}},. Let us take the eigenvalue decomposition
of ® so that® = UX U7, whereX is a diagonal matrix consisting of the eigenvaluegboénd
U is a unitary matrix consisting of the corresponding eigetwes. In this case, the term in (12)

can be written as

Eupperar = 0% — tr (TFUTD;D,Cy DD, USH ) (15)
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To further facilitate our derivations, we introduce theldaling lemma from [25], which is a

consequence of the Cauchy-Schwarz inequality.

Lemma 1 ([25]). For any G € RM*K and positive-definite matriQ € RM*M | the following

inequality holds:

r(G7G)]?
Q'g) > [7 16
The equality holds wheG7Q 3 = ¢GTQz, wherec is a constant.
By taking G = DaDgUE% and Q = C,,, it follows that
1 1 2
i [tr (EEUT(DgDa)QUEEH
guppor,AF < Ui_ 1 1 (17)
tr (2}UTD;D,C,,D.D,US} )
2
2 [tr (2(DgD.))]” 4 -
_ 2 2 ¢ 1
where A = [\,...,A\y]T is the vector of sensodensitiesand v = [y,...,vu]? is the

vector of energy threshold®y Lemmall, the bound is tight whefD,D,UX?)TCyi/? =
¢(D,D,UX2)7Cy,?, for some constant. The upper bound.; ar(X,~) is then utilized as the
objective function for optimizing\ and ~ in the AF case. Even though the bound may not
be tight in general, it captures the essential behaviorh@®fMSE with respect to the sensor
densities and transmission thresholds and, thus, allowo usbtain a tractable solution to an
otherwise intractable problem. The effectiveness of tHetem is demonstrated in Secti¢d V.
Specifically, let us consider the optimization problem vehttre MSE upper boung,p,; ar in

(@18) is minimized subject to a constraint on the averagd tateber of sensors, i.e.,

min  Eobjar(X, ) (19a)
Ay
M
subjectto Y " MA <A, (19b)
=1
0 < MA<ep, fori=1,... M. (19c¢)

whereA is the constraint on the average number of sensors in theorletidere, the approximate
probability that a sensor exists in subregidn i.e., \;A, is restricted within0,ey] andey < 1

should be small enough to make the approximation accurategénThe value of)\; is assumed
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to be positive to ensure thét,, is invertible.Following the relation in[(2), the energy threshold

~ determines the distribution of the accumulated energygs®@nd, thus, affects the objective

function through the probabilities;, for all 7, which involve the event that a sensor exists and
transmits in each subregion.

Since the first term in[{18) is a constant, the optimizationbfgm can be equivalently
formulated as the maximization over the second ter ih @$}he change of variablg; = \;A
and by definingA = [A;,..., Ay, the optimization problem can be written explicitly as
follows:

Jar (A, )

Jar(A,y) = 50— 20a
e Jarlh ) = Gy ) (202
M
subjectto Y A; <A (20b)
i=1
0<ANi<ep, fore=1,..., M. (20c)
The term in the numerator of the objective function is
M 2
JAr (A, y) = (Z Giil3i (7)) F2, (%)A12> (21)
=1
and that in the denominator is
M
JA(AL ) = Zcbu [93(%‘)0% + Ui} F2 ()N g7 ()
=1
M — —
0N Giionp(viv) Fo(vi) NG ) F2 (1) A5 (22)

i=1 j#i
whereo? = o2 + o2,
Notice that the solution to the optimization problem [in](2@pends on the statistics of the
energy arrival. In the following, we provide an example ofvhsuch a problem can be solved

under the Bernoulli energy arrival model.

A. Solution for Bernoulli Energy Arrival Case

In this subsection, we apply the above techniques to casesevithe energy arrival can be
modeled as an i.i.d. Bernoulli proceskhis model has been widely adopted in the literature,

e.g., in [36]-139], due to its tractability and because sfability to model sources with sporadic
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Fig. 3. Energy harvesting model of Bernoulli energy arrival

energy arrivals in discrete-time. Examples of such enemyces may include vibrational, RF
energy, or wind etc. It can also be used to approximate maldesenergy sources, such as solar,
by choosing each time slot to be sufficiently small so thatgnevill arrive approximately at a
constant rate when viewed from a larger time-scale. Otherggrarrival models can also fit into
our framework, but may require different optimization tefues from that to be introduced in
the following.

Suppose that the energy arrival procdsgt]}:°, consists of a sequence of i.i.d. Bernoulli
random variables witlr(a;[t] = §) = p; andPr(a;[t] = 0) = 1 — p;, Vt. That is, the sensor in
V; harvests energy in each observation period with probability and fails to harvest energy
with probability 1 — p;. Since the sensor expends all its energy once the energshtiidey; is
exceede& the accumulated enerdy;[t]}:°, forms a(N;+1)-state Markov process, as illustrated
in Fig.[3, whereN; £ min{n : nd > +;}. The stationary (or steady-state) distribution is given

by Pr(e;[t] = 0) = 352, Pr(e;[t] = Nid) = £, andPr(e;[t] = ké) = 5~ for k=1,..., N; — L.

In this case, the probability that the sensor in subregiptransmits (if it exists) is given by

F.,(vi) = Pr(ei[t] = N;0). Notice that, in the Bernoulli energy arrival model (c.fgHB), the

accumulated energies are integer multiples) @nd, thus, the energy threshojd can also be

set as a multiple o/, in which case, we have; = N;6. Consequently, we have,, (v;) = pf,

Gi(y:) = "5 and g2(y,) = hz; whereh; £ \/r;h;. Notice that the stationary distribution as

o

well as these values change as the energy threshoisl adjusted. By substituting the above

into (21) and[(2R), we get

M
TR ) =0 diahipio® Ayt (23)
i=1

“The accumulated energy may not be depleted after each tissismin the AF case since the required transmit power is

random. However, we assume for simplicity that the remairénergy is omitted after each transmission.
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and

Jden 77 Z¢ZZ h271+0' )hz xp363A3

=1

Y0 bioip(vivi)pi 6 hI Ny R0t Ay (24)
i=1 ji
and, thus, the optimization problem in_{20) can be written as
M M A2A2

2> AT

lel i3

max (25a)
A?A?
ZC +ZD2 2 +ZZG” i
i= i= Vi i=1 j#i TiT5
subject toZAi <A, (25b)
i=1
0< M<en i=1,... M, (25¢)
=76, ZiEN, i=1,.... M, (25d)

where A;; £ ¢;,0;;0202p2p30" , C; & ¢ihipisio? | Di & ¢;02p30°h202 , and G;; =
G1,502p(Vi, v;)pip N3,

Notice that this problem is a mixed integer nonlinear pragrang (MINLP) problem, which
is difficult to solve in general. To address this issue, wesaer a relaxation where the integer
constraint ony, is replaced with the inequality constraint> 6. Then, by definingf(A,~) £

M M AZA? .. . . .
Dim1 D=1 Al-vj%_—%?, the optimization problem can be written equivalently as

ZC _+ZDZ v +ZZ i

Vi =1 j#i

min — 26a
Ay f(A,7) (262)
M
subject to ) " A; < A, (26b)
i=1
0<A;<epyandy; >6 ,fori=1,..., M. (26¢)

Notice that the relaxed problem is still non-convex, but tenapproximated by a series of
geometric programming (GP) problems using the condensatiethod [[40].
Specifically, in each iteration of the condensation mettibd, function f(A,~) is replaced

by its monomial approximation so th#te objective function in[(26apecomes a posynomial
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Algorithm 1 Optimized SensobDensitiesand Optimized Energy Threshold®IEOET) Scheme

in the AF System
Initialization: Set ¢ = 0 and a solution accuracy > 0. Find a feasible solution

(A(O) 7 ,7(0))_

| teration:

0] Computeﬁw, fori,5=1,..., M, by (28).
(i) Replacef(A,~) with fO(A ,7) and solve[(ZB). Let the solution t(m ~(“1))
(i) Repeat (i) and (ii) until

e+1) _ ~(0)
(A 500) — gy (A, 50
JAF(A(@v ;5/(6))

and that the problem if_(26) can be formulated as a standargrGftem. More specifically,
let <[X(Z),’y“)) be the solution obtained in theth iteration of the condensation method. Then,

based on the inequality between arithmetic and geometransgtl], it follows that

Ay jAZA2 8l

M M AZ A2A2 M M 7'] N

=2y === =) =/ (27)
=1 j=1 T =1 j=1

where AOy2/ 7 (02
Al Al -
ﬁz'(? = Az‘J'( Z ()z)((zj) _) /f (A(Z)a’?(@)- (28)
’ Y

By approximatingf (A, ~) with f()(A,~), the optimization problem ifi{26) becomes a standard
GP,which can be converted to a convex optimization problem ahekd using the interior point
method [42].Note that solving the problem given in{26) by replacifg\,~) with f©(A, )
yields a solution that is also feasible in 126) and can be ue€fihd the solution in the next
iteration of the condensation method. By initiating witheagible solutiorﬁfx(o), ), the above
process can be repeated until the objective value conveldes procedure is summarized in
Algorithm[d. An approximated solution to the original prebi in (25) is thus obtained and the
optimized energy threshold is further rounded to the neanestiple of §. The effectiveness of

this scheme is demonstrated through Monte Carlo simulsfiorSectior V.
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Following [42, Chapter 11], the GP problem in26) can be estad to a convex optimization
problem withn £ M? + 4M parameters andh £ 2M? + 6M + 1 inequality constraints. The
objective and the constraints of this problem can be furtiesd to synthesize a log-barrier
function that satisfies the self-concordant property, amevfidn’s method can then be used to
solve it. The complexity of each Newton step grows(gnn? + n?) [43] and the number of
Newton steps required can be bounded.py. [42]. Hence, the computational complexity of
the problem grows a®(M"). Details are omitted due to space limitations, but can bainbtl

following the steps in[[42].

B. Complexity Reduction

It is necessary to note that, even though the above appraaclyield good solutions to the
random sensor deployment problem, the complexity can bdewigen the number of subregions,
M, is large. This is not a problem in most cases since the selesmities and energy thresholds
need only be computed offline. However, if it is necessaryeuce the complexity without
reducing the resolution of the subregions, one can furteduce the number of parameters
by assuming that the parameters in neighboring subregimsha same. This assumption is
reasonable since the dimensions of a subregion is assumss rauch smaller than the spatial
variations of the sensor field and the energy arrivals.

Suppose that th&/ subregions are combined indo clustersC;, C, . .., Cy, each consisting of
Mg = M/N subregions. Lef\¢ = [Aq), Ay, ..., Apy] andye = [vay, Y2), - - - Yav)), where
Ay andry, are the values of\; and~;, respectively, for ali € C,,. Then, by lettingA,, () £
Yice, 2jecy Aidr Coy = Liee, Cin Diny = Lice, Div @A Gy m) = Fice, Xjecnizi G
the optimization problem i (26) can be reduced

N A3 AQ A2
Z C( )’}/(n +D ,y(m
. on=1 (n) m=1 V()7 (m)
min 29a
Acve fC(AC7 70) ( )
N
subject to Y ~ Mg, < A, (29b)
n=1
0<A(n)§ €A, ’}/(n)Z(S, n=1,...,N. (29C)

The problem can then be solved using the condensation methoiliar to that in AlgorithniL
and the complexity is reduced t((M/Mc)7).
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Sensor located in V; Data-Gathering Node(s)

Fusion {j(v) }VEV
Center

mys

ENC

Fig. 4. lllustration of filed reconstruction for the digitldrwarding system.

IV. OPTIMIZED SENSORDENSITIESAND ENERGY THRESHOLDS FORDIGITAL

FORWARDING SYSTEMS

In this section, we optimize the senstensities{);}Z, and the energy thresholds;}}, in
DF systems based on the minimization of the average MSE upmeand in [(9).

In the DF system, each sensor first quantizes its local meamant into a binary representation
vector and forwards it to the destination, where the measen¢ is reconstructed. An illustration
of the DF system is given in Figl 4. Suppose tBais the number of quantization bits at a sensor
in subregionV;. The sensor measurements at the sensor are quantized”intepresentation
levels given by the seM; = {m,,... ,m; 95, } USing the quantization functio@; defined by
Qi(Z;) = min{m; € M, : |z; —my| < |z; — m}|,Vm! € M;}. The index of the representation
level is then encoded into the binary veclor and transmitted to the closest data-gathering
node. Suppose that; = Q;(7;) is the quantized value of; at the sensor iV; andm; is the
corresponding value reconstructed at the data-gatheiag mased on its received signal. In
this case, the effective received signal at the data-gatherode can be written ag = m;o0;
and, together with the quantized measurements from othesos® is utilized to perform the
LMMSE estimate at the fusion center. The MSE and its uppentatan be written similarly
as [®) and[{9), respectively. Notice that the MSE is affedtgdoth the quantization error that
appears when representiiigwith m; and the channel error that causes the difference between
m; andm,;.

_1_98;
Following the procedure i [27], we adopt a uniform quantizeherem,, = w,
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fori=1...,25 andAg, = % for W chosen sufficiently large such thBt(|z;| > W) ~

0. In this case, the quantization errex = m; — &; is bounded in[—%,%} and can be
approximated as a uniform random variable over this regibemA, is sufficiently small. In
this case, the variance efis given byafi = % Moreover, it has been shown in_[27] and
[44] that, for B; sufficiently large, for alli, the quantization errorge;}, are approximately
uncorrelated and independent of the sensor measurerfigfjt¥,. Once the quantized value
m; IS obtained, it is converted into &;-bit vector b; using a natural binary code (whelg

is taken as the binary representation of the quantizatidexyand transmitted to the data-
gathering node. By adopting BPSK modulation/[27], the biteprobability of the transmission
IS g;= Q(@), whereh; is the channel coefficient to the closest data-gatheringe nedB;

) . .

is the energy per bit, an@(u) == fuoo e‘%du. By assuming thab,; = [bix, ..., big] is the

binary vector received by the data-gathering node, thenstoacted quantization level is then
s = 2000 bip2B 1) -1 — 232‘]% since> P, b; x2% % 41 is the integer value of the
binary vectorb,. Properties of the quantization and channel errors arizedilto obtain explicit
expressions of the MSE upper bound.

In obtaining a tractable upper bound, t= (7, ..., 7]", whereg; = m,o0;, be the vector
of received signals at the data-gathering node when thenehas noiseless. By also letting

Yy = [iJ1,..., 9", wherej; = §; — y;, the MSE upper bound if](8) can be further upper-

bounded as
_ 1 . _ _
§upper,DF = - Juin Elz(v) —kK'y +k'y —k"y[*ldv (30)
ve
2 . _ _
< ] [, on, {E[|lz(v) - K'y’| + E[|k"y — k"y|*] } dv (31)
ve
tr (®DoDy))?
<202 — ( 32
=% 7 % (®D(Cyy + Cyy)Da) (32)
= Eong.or(A, ), (33)

where Cyy; £ Elyy”’] and Cy; £ F [yy”]. The first inequality follows from the fact that
(a + b)? < 2(a® + b*) and the second inequality is shown in Appendix B. The firstjiradity

splits the MSE into two terms, one contributed by quantaratrror and the other by channel
noise. The bound is tight whea is approximately equal té, that is, when the two MSE

contributions are approximately the same. Furthermoreugiper bound in_(32) follows similar
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to (7) and [(1F7) and, thus, are tight under similar conditi@imilar to the AF case, even though
the upper bounds may not be tight in general, they exhibitlairbehaviors as the actual MSE
with respect to the sensor densities and transmissionhiblicss and, thus, are used as objective
functions in our problem.

To further analyz€,; pr(A, ) in 32), we note that the elements @y, and C;; can be

derived as
o2+ 02 +0)y, fori=j
{Cystii= (72 + 00+ 7 . j (34)
oap(vi, vj)esey,  fori s j,
and
. _4—B; . .
Cod = 22B'LAZ)Z~QZ‘<1 5 +Qini,i>aia for i=j (35)
yyJeu,g —
25BN G N giqmi iy, for i,
where
4 2 Pr(byy, = Olbyy, = 1,0, = 1), (36)
B; Cka— . .
il D ket Dotk ik} i1} 2 27l fori= 37)
2V i B.: L~ . .
S S a2 27 for i # g,
with

W{i,k},{j,l} é 1—2[Pr(b27k: 1, bj,l :0|0i = 1, Oj = 1)+Pr(bl7k :0, bj,l = 1|0i = 1, Oj = 1)] (38)

fork=1,....,B,,l=1,...,Bj,4,j = 1,..., M. The derivation ofCy; and a more explicit
expression ofr(; 1y (;.1 can be found in Appendicés C andl D, respectively. By takipgor(X, )
as the objective function, the search for the optimal sedsositiesand energy thresholds can

be formulated as

min - oy pr(A, ) (39a)
Ay
M
subjectto ) ~MA < A, (39b)
i=1
0 < MA<ep, fori=1,..., M. (39¢)

For the reasons that will be evident later, we perform thengkaof variables wherg,; is

replaced witha; = F,. (v;,)\A, for all i = 1,..., M. Then, by omitting the terms that are not
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relevant to the optimization, the problem can be written as

min Jpr(a, ) (40a)
oy . _
subject to; 7 (27 5 <A, (40b)
0<a; <enFp(v), fori=1,...., M, (40c)
where
9 —1
Jorlecy) = (t@g((in ?J)y)yma)) ' D

Notice that, inJpp(a, ), the dependence oo lies in D,, Cyy, and Cyy; whereas the
dependence oty lies only in Cyy. The optimal solution of this problem is still difficult to fin
due to the non-convexity of the problem. However, an appnax¢ solution can be found by
using an alternating optimization algorithin_[45], whaxeand ~ are optimized in turn while
keeping the other fixed and the process is repeated itdsativeil there is no appreciable
decrease in the objective functiofhe algorithm is guaranteed to converge since the objective
is bounded below and is minimized in each step of the algorithut may converge to only a
local minimum in generalDetails of the optimization oé&x and~ are described in the following

subsection using the Bernoulli energy arrival model as amgle.

A. Solution for the Bernoulli Energy Arrival Case

Recall that, in the Bernoulli energy arrival case, the epéngesholdy; can be set, without loss

of generality, as a multiple aof. In this case, we have = Q ( :;VB) and F,. (v;) = pid /i

By relaxing the integer constraint eninto the linear constraing; > ¢, the optimization problem

becomes
Jpr (e, )

in J = =7 42a

min pr(a, ) T, ~) (42a)
subject to <A 42b
: ; pid — ( )
O<Oéi§€Api5/’yi, for’izl,...,M, (42C)

v >0, fori=1,..., M, (42d)
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where the term in the numerator is

A qu” o2+ 02402 +Cialv)] o +ZZ¢” 02p(viv;)+Gis (i) ] afa? (43)

1=1 j#i
with
a 4W24B h?% 1—4-5i h?%
and

AW 228+ B h#y; hi
Ci,j(’Yi,’Yj) é(232_ 1)(23J_ 1)Q< 2 >Q - UNE (45)

for ¢ # 7, and the term in the denominator is
M M
Jor(eny) = DD diidisaia (46)
=1 j=1
Let ol and~® be the solutions obtained in tHeth iteration of the proposed algorithm. In

the (¢ + 1)-th iteration, we perform the optimization in the followitgyo steps.

Step 1 (Optimization of «): In Step 1, we first find the optimal value of given~ = ~.

That is, we find
o't — arg min JDF(a7 7(6))7 (47)

ae]—'ngl)

where

M ()
1) Vi A pio .
}“éJr)_{a E_ pz5ai§AandO<ai§€AW’ Vz} (48)

=1 £ i
is the constraint set oa in iteration? + 1. By (43)-(45), the optimization problem if_(47) can

be written explicitly as

M~
>ict Ci( )a? + Z Zﬁéz ”a?af

min (49a)
* Zf\il 23{1 Ai,jai j
MO
subject to Ly <A, 49b
ubjectto 3 5 < (49b)
O<ai§eAp,-5/%(Z), fori=1,..., M, (49c¢)

Gii(1”, 7)) The optimization problem is nonconvex but can be solved@pmately using
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the condensation method, similar to that in Algorithim 1,hwitonomial approximations of the
denominator of[(49a).

Step 2 (Optimization of ~): In Step 2, we find the optimal value of given o = a“*),

i.e., we find
4D = arg min Jpp (a7 5), (50)
'ye]-'ffﬂ)
where
M (z+1) APl
(6+1) __ . .
FD = {7 > = 5 <A andd<~; < <~ ,vz} (51)
=1 7

is the constraint set of in iteration/+1. Since.Jpr(cx, ) depends ory only through{¢; ;} ” 1

the optimization overy can be formulated equivalently as

I;Igil)z@bué}z i) ( Zé+1) +ZZ B1.5Cos (Vs ) ( Zé+1)) (a§é+1))2‘ (52)

i=1 j#i
Notice that the objective function is not a convex functidryo However, by applying the upper

boundQ(u) < —exp< ) for v > 0, and by taking the high SNR approximation, we have

QW2(2B:i 1) _ i

Gii(vi) S 3025 — 1) ¢ 2035, (53)
and
W2oB:+B) ety
B (54)

() < o
CZ,](VMVJ)N (232 _ 1)(233 _ 1)7727j6 ’

for i # j. Then, the optimization problem i (52) can then be apprexéd as the problem

below:
3
i (o) 208 4 1) i
mi : 203 B;
o ; 325 — 1) ¢
(bzg( (t+1) §£+1)>22Bi+BJ' _hz’%+h§s’%
+ZZ (2B —1)(2B1 — 1) nge (55a)
i=1 j#i
M (e+1) B
subject to ) A (55b)
=1

§ <~ < eapid/altY fori=1,... M, (55¢)
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Algorithm 2 Alternating Optimization Algorithm o and~y
Initialization: Set/ = 0, ¢ > 0 and find a feasible initial solutiof®, v©)).

lteration ¢ + 1:

(i) Find o'tV by solving [49) in Step 1 using the condensation method.
(i) Find ~“*Y by solving [B5) in Step 2.
(i) Repeat (i)-(ii) until
(+1) ~(C+1)y _ ) ~©
| Jor( Y ) — Jor(a'™,y'7)]| <e
JDF(a(Z); fy(ﬁ)) -

Take o'tV and~*1) as the desired solution.

which is convex and can be solved efficiently using standarderical approaches, such as the
interior point method([42].

By alternating between the optimization problems in Stepsnd 2 until convergence, the
desired approximate solution of and~ can be obtained. The alternating optimization algorithm

is summarized in Algorithra]2.

B. Extension to DF Systems with Parity Check Bits

In this section, we have so far investigated DF systems wiagvebits are transmitted for field
reconstruction. In practice, the addition of parity bitghie transmitted signal is often considered
to allow for error detection at the data-gathering node hia tase, the message transmitted by
the sensor can be treated as an erasure if an error has beetedeind as error-free, otherwise.
The sensor deployment strategy can then be derived siynilathis case.

Specifically, let us consider the simple case where only &m @arity is used. In this case,
the bit sequence transmitted by a sensor in subrefjocan be written adh; = [b; i p,+1],
whereb; p, 11 is chosen such th@f:{l b, is even and is referred to as the even parity bit. By
assuming that an error is always detected and treated agssuwremwhen it occurs, the effective

received signal at the fusion center can be written as

Yi = m;0; (56)
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where
~ 0, an error is detected
0;, otherwise.
Following similar procedures as in the previous scheme, &EMpper bound of DF systems

with a one-bit parity can be derived as

£ <02 — tr (PDD4C,;DgD.) (58)
tr (®D2D2))’ _
< 02 . ( r( a q)) A fobj,PB(A/)’) (59)

=" tr(®D,DgCyyDgDy)

whereDg = diag((1 — ¢1)B %, ... (1 — qu)P¥+1) and
(1—gq;)B (02 + 02 + afi)a,-, for i=y,
o2p(vi,vi)(1—q;) Pt (1—¢;)) P vy, for iy
For sufficiently small bit error probability, i.e., faf; ~ 0 Vi, the objective function can be

{ny }zy = (60)

approximated as
Jpg (A, )

Eovj.pn A 0% — g (61)
e TE(A, )
where
M 2
TEEN(A, ) = (Z @,ia?) (62)
=1
and
M M
TR Y) =) diilol +on+02)al + > dijorp(vi,vy)alal. (63)
i=1 i=1 j#i
By further adopting the Bernoulli energy arrival model, tgimization problem can be written
explicitly as
M M A2A2
> A
im1 g1 YiY;
max (64a)
Ay Mo a3 M . AZAZ
Ci_; + Z Gi 2.2
im1 i i=1 j#i S
M
subject to ) " A; < A, (64b)
=1
O< A, <ex<l,i=1,..., M, (64c)



25

whered, ; £ ¢;:6;p?p?6*, C; 2 ¢;:(02+02+02)p3s® andGi; £ ¢; j02p(v;, v;)pip3s*. Notice
that the problem is similar to that obtained in the AF case, éimadls, can be solved following
similar procedures as in Sectibn 1II-A.

V. SIMULATIONS AND PERFORMANCE COMPARISONS

APPENDIX A

EQUIVALENCE OF THELMMSE ESTIMATOR IN (3)

Let O, = {ilo; = 1} and Oy = {i|lo; = 0} be the index sets of the subregions with and
without a transmitting sensor, respectively, and|@t| = » and |Oy| = M — r. Moreover, let
z = [z1,...,2]7 be ther x 1 vector obtained by removing the entriesymnthat correspond to
the indices inO,. In this caseC?,,, = E[z(v)z"|o] is equivalent to the vecto€sy,, with

the entries inO, removed, andCg, £ E[zz”|o] is equivalent to the matrixCS,, with the rows

and columns in0, removed. The eigenvalue decompositionCf, can be written as

Co. = Z okuy (65)
k=1

where g, for k = 1,...,r, is the k-th eigenvalue, labelled such that > 0, > ... > o, > 0,

andu; = [ug1,...,ux,]7 is the corresponding eigenvector. Then, by constructimgvictors

Vi = [k, .-, uem)’, for k=1,... r, such that
u i Ly if 0; = 1
Vg =4 (66)
0, if 0; = 0,
(i.e., by padding zeros into the vectay at locations corresponding to the indicesdy), we
have
Cyy = Z 0kViVE . (67)
k=1
Notice thatvy, ..., v, are linearly independent and, thus, are eigenvectors sponeling to the
non-zero eigenvalues, . .., o, of CJ, .

Therefore, the LMMSE estimator obtained by using only theeneed signals:;, for i € Oy,
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can be written as

i(v) = C3),Cs, 'z (68)

= Z Z{Cxw )2 s Yis (69)
M M

= Z Z{ z(v)y <Z Qk 'Uk iUk ]) (71)
M M r

=D AChuyi {Z @Elvk\f} {v}i (72)
2 k=1 i

where the equality in_(71) follows from the fact that, = 0, V& for i € {i|o; = 0}.

APPENDIX B

DERIVATION OF THE INEQUALITY IN ([32)

To derive the inequality in_(32), let us define the term ingide integral of [(3ll) as

L(k,v) 2E[|z(v) - K'y| +E[[k"y — k'y[’] (74)
=02 — 2C,wyk + k' (Cyy + Cyy) k (75)
A =T T ac(kv . .
whereC, )y = Elz(v)y" ]. To minimize £L(k, V), we set = 0, which yields
k*(v) = argmin L(k,v) = (Cyy + ny)‘lcx(v)yT, (76)
keRM
and the corresponding minimum value is
L(k*(v),v) = 0} = Ca(yy(Cyy + Cs5) ' Capyy” (77)
where
C:v(v)y = Cm(v)mDa ~ C:v(v)xDa (78)
and C,(vym = E[z(v)m”] with m = [m4,...,my]” being the vector of quantized sensor

measurements. The approximation[inl(78) is made by assuth@ighe quantization erras; is



27

uniformly distributed and is uncorrelated with its inpéit By substituting [(7]7) into[(31), the

upper bound of the average MSE becomes

Supper,DF < |V| / Cavyy(Cyy + Cyy)~ 1C:c(v Tdv (79)
=2 [UI_tr(@Da(CS’}_’_I_CS’S')_lDa)] £ gapprox,DFa (80)
where
CJ— cr mdv 81
|V| / z(v) mC (81)
C Covxdv = @, 82

and® is defined in[(IB). Moreover, using Lemﬂﬂa 1 and the proceduories to that of [15){(18),
the average MSE can be further upper-bounded by

(tr (®DaDg))”
tr (‘I)Da(ny + CS’S’)DOL)

gupper,DF S 2 [O-g - (83)

APPENDIX C
DERIVATION OF {Cyy }; ;-
Let us defineb; , £ b; ), — b, and€); 2 {o; = 1} as the event that, = 1 for i = 1,..., M.

The diagonal element d@y; can be written as

B 2
Elgi)=E (Z (i s, — gz,k)QBi_kAQi) 0?] (84)
k=1
B; B;
g, ( BB [Rutlo]]| 27 + 303 B8 [hubuctlo] m—z) 5)
k=1 k=1 £k
= 92BiA2 (ZE[Zk\Q]Pr )2 2k+ZZE[2ka\Q]Pr( )2 2—1). (86)
k=1 I£k

By adopting BPSK modulation with transmit powey/ B; per bit, the bit error probability of

the sensor located iw; is

= Pr([;i,k =1|b;,=0,8;)= Pr(i)z’,k =0lb; =1, ), (87)
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fork=1,...,B;, i=1,..., M. The expectation inside the first term 6f186) is

E B,

Q] = 1 Pr(big # bis|Q) + 0 Pr(biy = bkl Q)
= Pr(bij = Olbig = 1, %) Pr(b;y = 1|%) + Pr(bij, = 1)bis = 0,) Pr(b; = 0]€2)
— g
The expectation inside the second term[ofl (86) is
E [@,k@,lmi] —Pr(bip=1,b:y=1]0)+Pr(b = —1,b;,=—1|)
—Pr(bip=1,biy=—1|) —Pr(bp=—1,b;,; =1|Q)
= @ [Pr(bip=1,b;;=1|Q;)+Pr(b;, =0, b, =0|€;)
— Pr(bip=1,b;;=0[) —Pr(b; 1, =0, b;; = 1/8,)]
= ¢?[1-2(Pr(b; =1, b;; =0|%) +Pr(b; x =0, by, = 1|))],

where the last equality follows from properties of the nakinary code. By substituting the

above into[(8b), we get

B;
E[g}] = 2P A7, (Z ;27 + Q?Th‘,j@i> (88)
k=1
2B; A2 1 — 475
=2 AQ,L-C]@' 3 +qinij | (89)

The off-diagonal elements i@y can be obtained similarly.

APPENDIX D
EVALUATION OF 7y; 11 45}
To evaluatery; x ;1 in (38), the joint probabilitie®r(b; . = 1,b,; = 0[€2;, ;) andPr(b; , =
0,b;, = 1|8, ;) are required. To do this, let us define

Iiz,k é{fi € R|b;x = z} (90)
k k

~ U [(Z ;2% = 23i_1> Aq,, (Z bi 2Pt 2Pk — 2Bi‘1>AQi (91)
bi,1,bi —1 t=1 —1

€{0,1},b; k=2
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as the set of measurement valugsat sensor; that yieldsb; , = z, wherez € {0,1}. The
approximation follows the fact thd®r(|7;| > W) ~ 0. Notice thatZ?, can be written as the

union of 2! disjoint intervals. Therefore, for= j andk < [, we have
Pr(bix = 1,bj; = 0|9, ) = Pr(z; € I}, N I7,|<%) (92)

) Q (Tiba2? =27 Ag
bi1ybik—1, \% O-% + U72L

bi ft1,--505,1—1€{0,1}
bi k=21,b; =22

(i bia2Bet 2Bt = 9B 1) A,
o+ o2

The result is similar fork > [. Moreover, sincer; and z;, for i # j, are jointly Gaussian

—Q

(93)

random variables with meaf, variances? = o2 + o2, and correlation coefficient(v,, v;) =
2

% p(vi,v;), we have, fori # j,
Pr(bm = 1, bj,l = O|Q“ Qj)

=Pr(z; € )}, 7, € I3)) (94)

2 —2p(v; WV )Z; z; +1

202<1 92(vz J))
/ / didz, (95)
T;€1), J T €L}, 27T0-~ —p (Vza Vj)

atz &2

xr
e 2 —3T -
dz}| e *°%di; (96)
. /972 / / t $
Z;€I7, 2705 wieTl, 2m

Bj—t, oBj—l_oB—1 .
2y /Zt e )AQZZ /—g
—t_ oBi—1 2

bj 150011 1=1b3,027%9” I7)Ag, bi 1yeebi k—1 271—0-

€{0,1},b;,=0 €{0,1},b; =1
0 <Zf:1 b; 28—t — 2B~ ) Ao, — p(vi, v;)T;
\/O' 1- VZ? VJ))
( le b; 2Bt 4-2Bi=k _ 9Bi= )AQZ p(Vi, V)T,
Vo2 (1=p2(vi,v;))

where (a) follows from the change of variable

—

a

N
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with I}, £ {LVJ“’J) € R|b;x = 1} and (b) follows from the definition of?, andZ},

(vi,vj))

The probabilityPr(b; , = 0,b;; = 1|€2;, ;) can be evaluated similarly.
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