
1

Spectral Super-resolution With Prior Knowledge
Kumar Vijay Mishra, Myung Cho, Anton Kruger, and Weiyu Xu

Abstract—We address the problem of super-resolution
frequency recovery using prior knowledge of the structure of
a spectrally sparse, undersampled signal. In many applications
of interest, some structure information about the signal spectrum
is often known. The prior information might be simply knowing
precisely some signal frequencies or the likelihood of a particular
frequency component in the signal. We devise a general
semidefinite program to recover these frequencies using theories
of positive trigonometric polynomials. Our theoretical analysis
shows that, given sufficient prior information, perfect signal
reconstruction is possible using signal samples no more than
thrice the number of signal frequencies. Numerical experiments
demonstrate great performance enhancements using our method.
We show that the nominal resolution necessary for the grid-free
results can be improved if prior information is suitably employed.

Keywords—super-resolution, atomic norm, probabilistic prior,
block prior, known poles.

I. INTRODUCTION

IN many areas of engineering, it is desired to infer the
spectral contents of a measured signal. In the absence of

any a priori knowledge of the underlying statistics or structure
of the signal, the choice of spectral estimation technique is
a subjective craft [1, 2]. However, in several applications,
the knowledge of signal characteristics is available through
previous measurements or prior research. By including such
prior knowledge during spectrum estimation process, it is
possible to enhance the performance of spectral analysis.

One useful signal attribute is its sparsity in spectral domain.
In recent years, spectral estimation methods that harness the
spectral sparsity of signals have attracted considerable interest
[3–6]. These methods trace their origins to compressed sensing
(CS) that allows accurate recovery of signals sampled at
sub-Nyquist rate [7]. In the particular context of spectral
estimation, the signal is assumed to be sparse in a finite discrete
dictionary such as Discrete Fourier Transform (DFT). As long
as the true signal frequency lies in the center of a DFT bin,
the discretization in frequency domain faithfully represents
the continuous reality of the true measurement. If the true
frequency is not located on this discrete frequency grid, then
the aforementioned assumption of sparsity in the DFT domain
is no longer valid [8, 9]. The result is an approximation error
in spectral estimation often referred to as scalloping loss [10],
basis mismatch [11], and gridding error [12].

Recent state-of-the-art research [5, 6, 13] has addressed the
problem of basis mismatch by proposing compressed sensing
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in continuous spectral domain. This grid-free approach is
inspired by the problems of total variation minimization [5]
and atomic norm minimization [6] to recover super-resolution
frequencies - lying anywhere in the continuous domain [0,1] -
with few random time samples of the spectrally sparse signal,
provided the line spectrum maintains a nominal separation.
A number of generalizations of off-the-grid compressed
sensing for specific signal scenarios have also been attempted,
including extension to higher dimensions [14–16].

However, these formulations of off-the-grid compressed
sensing assume no prior knowledge of signal other than
sparsity in spectrum. In fact, in many applications, where
signal frequencies lie in continuous domain such as radar
[17], acoustics [18], communications [19], and power systems
[20], additional prior information of signal spectrum might
be available. For example, a radar engineer might know the
characteristic speed with which a fighter aircraft flies. This
knowledge then places the engineer in a position to point
out the ballpark location of the echo from the aircraft in
the Doppler frequency spectrum. Similarly, in a precipitation
radar, the spectrum widths of echoes from certain weather
phenomena (tornadoes or severe storms) are known from
previous observations [21]. This raises the question whether
we can use signal structures beyond sparsity to improve the
performance of spectrum estimation.

There are extensive works in compressed sensing literature
that discuss recovering sparse signals using secondary
signal support structures, such as structured sparsity [22]
(tree-sparsity [23], block sparsity [24], and Ising models
[25]), spike trains [26, 27], nonuniform sparsity [28, 29],
and multiple measurement vectors (MMVs) [30]. However,
these approaches assume discrete-valued signal parameters
while, in the spectrum estimation problem, frequencies
are continuous-valued. Therefore, the techniques of using
prior support information in discrete compressed sensing
for structured sparsity do not directly extend to spectrum
estimation. Moreover, it is rather unclear as to how general
signal structure constraints can be imposed for super-resolution
recovery of continuous-valued frequency components.

In this paper, we focus on a more generalized approach to
super-resolution that addresses the foregoing problems with
line spectrum estimation. We propose continuous-valued line
spectrum estimation of irregularly undersampled signal in the
presence of structured sparsity. Prior information about the
signal spectrum comes in various forms. For example, in the
spectral information concerning a rotating mechanical system,
the frequencies of the supply lines or interfering harmonics
might be precisely known [31]. However, in a communication
problem, the engineer might only know the frequency band in
which a signal frequency is expected to show up. Often the
prior knowledge is not even specific to the level of knowing
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the frequency subbands precisely. The availability of previous
measurements, such as in remote sensing or bio-medicine,
can aid in knowing the likelihood of having an active signal
frequency in the neighborhood of a specific spectral band. In
this paper, we greatly broaden the scope of prior information
that can range from knowing only the likelihood of occurrence
of frequency components in a spectral subband to exactly
knowing the location of some of the frequencies.

In all these cases, we propose a precise semidefinite
program to perfectly recover all the frequency components.
When some frequencies are precisely known, we propose
to use conditional atomic norm minimization to recover the
off-the-grid frequencies. In practice, the frequencies are seldom
precisely known. However, as long as the frequency locations
are approximately known to the user, we show that the
spectrally sparse signal could still be perfectly reconstructed.
Here, we introduce constrained atomic norm minimization that
accepts the block priors - frequency subbands in which true
spectral contents of the signal are known to exist - in its
semidefinite formulation. When only the probability density
function of signal frequencies is known, we incorporate such
a probabilistic prior in the spectral estimation problem by
suggesting the minimization of weighted atomic norm. The
key is to transform the dual of atomic norm minimization
to a semidefinite program using linear matrix inequalities
(LMI). These linear matrix inequalities are, in turn, provided
by theories of positive trigonometric polynomials [32]. Our
methods boost the signal recovery by admitting lesser number
of samples for spectral estimation and decreasing reliance on
the minimum resolution necessary for super-resolution. If the
prior information locates the frequencies within very close
boundaries of their true values, then we show that it is possible
to perfectly recover the signal using samples no more than
thrice the number of signal frequencies.

Our work has close connections with a rich heritage of
research in spectral estimation. For uniformly sampled or
regularly spaced signals, there are a number of existing
approaches for spectral estimation by including known
signal characteristics in the estimation process. The classical
Prony’s method can be easily modified to account for
known frequencies [18]. Variants of the subspace-based
frequency estimation methods such as MUSIC (MUltiple
SIgnal Classification) and ESPRIT (Estimation of Signal
Parameters via Rotation Invariance Techniques) have also
been formulated [31, 33], where prior knowledge can
be incorporated for parameter estimation. For applications
wherein only approximate knowledge of the frequencies is
available, the spectral estimation described in [34] applies
circular von Mises probability distribution on the spectrum.

For irregularly spaced or non-uniformly sampled signal,
sparse signal recovery methods which leverage on prior
information have recently gained attention [28, 29, 35, 36].
Compressed sensing with clustered priors was addressed in
[37] where the prior information on the number of clusters
and the size of each cluster was assumed to be unknown.
In [38], MUSIC was extended to undersampled, irregularly
spaced sparse signals in a discrete dictionary, while [39]
analyzed the performance of snapshot-MUSIC for uniformly

sampled signals in a continuous dictionary. Our technique is
more general; it applies to irregularly sampled signals in a
continuous dictionary, and is, therefore, different from known
works on utilizing prior information for spectral estimation of
regularly sampled signals.

II. PROBLEM FORMULATION

In general, the prior information can be available for
any of the signal parameters such as amplitude, phase or
frequencies. However, in this paper, we restrict the available
knowledge to only the frequencies of the signal. We assume
that the amplitude and phase information of any of the spectral
component is not known, irrespective of the pattern of known
frequency information. Our approach is to first analyze the case
of a more nebulous prior information, that is the probabilistic
priors, followed by an interesting special case of block priors.
The case when some frequencies are precisely known is
considered in the end where, unlike previously considered
cases, we recover the signal using the semidefinite program
for the primal problem.

We consider a frequency-sparse signal x[l] expressed as a
sum of s complex exponentials,

x[l] =
s

∑

j=1
cje

i2πfj l
=

s

∑

j=1
∣cj ∣a(fj , φj)[l] , l ∈ N , (II.1)

where cj = ∣cj ∣eiφj (i =
√
−1) represents the complex

coefficient of the frequency fj ∈ [0,1], with amplitude ∣cj ∣ >
0, phase φj ∈ [0,2π), and frequency-atom a(fj , φj)[l] =
ei(2πfj l+φj). We use the index set N = {l ∣ 0 ≤ l ≤ n − 1},
where ∣N ∣ = n,n ∈ N, to represent the time samples of the
signal. We further suppose that the signal in (II.1) is observed
on the index set M⊆N , ∣M∣ =m ≤ n where m observations
are chosen uniformly at random. Our objective is to recover all
the continuous-valued the frequencies with very high accuracy
using this undersampled signal.

The signal in (II.1) can be modeled as a positive linear
combination of the unit-norm frequency-atoms a(fj , φj)[l] ∈
A ⊂ Cn where A is the set of all the frequency-atoms.
These frequency atoms are basic units for synthesizing
the frequency-sparse signal. This leads to the following
formulation of the atomic norm ∣∣x̂∣∣A - a sparsity-enforcing
analog of `1 norm for a general atomic set A:

∣∣x̂∣∣A = inf
cj ,fj

⎧
⎪⎪
⎨
⎪⎪
⎩

s

∑

j=1
∣cj ∣ ∶ x̂[l] =

s

∑

j=1
cje

i2πfj l , l ∈ M

⎫
⎪⎪
⎬
⎪⎪
⎭

. (II.2)

To estimate the remaining N ∖M samples of the signal
x, [40] suggests minimizing the atomic norm ∣∣x̂∣∣A among
all vectors x̂ leading to the same observed samples as
x. Intuitively, the atomic norm minimization is similar to
`1-minimization being the tightest convex relaxation of the
combinatorial `0-minimization problem. The primal convex
optimization problem for atomic norm minimization can be
formulated as follows,

minimize
x̂

∥x̂∥A

subject to x̂[l] = x[l], l ∈ M. (II.3)

Equivalently, the off-the-grid compressed sensing [6] suggests
the following semidefinite characterization for ∣∣x̂∣∣A:
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Definition II.1. [6] Let Tn denote the n × n positive
semidefinite Toeplitz matrix, t ∈ R+, Tr(⋅) denote the trace
operator and (⋅)∗ denote the complex conjugate. Then,

∣∣x̂∣∣A = inf
Tn,t

{
1

2∣N ∣

Tr(Tn) +
1

2
t ∶ [

Tn x̂
x̂∗ t

] ⪰ 0} . (II.4)

The positive semidefinite Toeplitz matrix Tn is related to
the frequency atoms through the following Vandermonde
decomposition result by Carathèodory [41]:

Tn = URU
∗, (II.5)

where

Ulj = a(fj , φj)[l], (II.6)
R = diag([b1,⋯, br]). (II.7)

The diagonal elements of R are real and positive, and r =
rank(Tn).

Consistent with this definition, the atomic norm
minimization problem for the frequency-sparse signal
recovery can now be formulated as a semidefinite program
(SDP) with m affine equality constraints:

minimize
Tn,x̂,t

1

2∣N ∣

Tr(Tn) +
1

2
t

subject to [
Tn x̂
x̂∗ t

] ⪰ 0 (II.8)

x̂[l] = x[l], l ∈ M.

When some information about the signal frequencies is known
a priori, then our goal is to find a signal vector x̂ in (II.8)
whose frequencies satisfy additional constraints imposed by
prior information. In other words, if C denotes the set of
constraints arising due to prior knowledge of frequencies, then
our goal is to find the infimum in (II.2) over fj ∈ C.

While framing the problem to harness the prior information,
a common approach in compressed sensing algorithms is to
replace the classical minimization program with its weighted
counterpart [28, 29]. However, signals with continuous-valued
frequencies do not lead to a direct application of the
weighted `1 approach. Rather, such an application leads to
a fundamental conundrum: the Vandermonde decomposition
of positive semidefinite Toeplitz matrices works for general
frequencies wherein the frequency atom in (II.6) can freely
take any frequency and phase values, and it is not clear how
to further tighten the positive semidefinite Toeplitz structure to
incorporate the known prior information. Thus, it is non-trivial
to formulate a computable convex program that can incorporate
general prior information to improve signal recovery.

III. PROBABILISTIC PRIORS

In the probabilistic prior model, the probability density
function of the frequencies is known. Let F be the
random variable that describes the signal frequencies. Let the
probability density function (pdf) of F be pF (f). The problem
of line spectrum estimation deals with a finite number of signal
frequencies in the domain [0, 1]. For example, we can assume
pF (f) to be piecewise constant as follows. Let the domain
[0,1] consist of p disjoint subbands such that [0,1] = ⋃pk=1 Bk

Figure III.1. The probability density function pF (f) of the frequencies
shown with the location of true frequencies in the spectrum X(f) of
the signal x[l].

where Bk denotes a subband or a subset of [0,1]. Then the
restriction pF (f)∣Bk

of pF (f) to Bk is a constant. Figure III.1
illustrates a simple case for p = 2, where the line spectrum
X(f) of a signal x is non-uniformly sparse over two frequency
subbands B1 and B2 = [0,1]/B1, such that the frequencies fj ,
j = 1,⋯, s, occur in the subinterval B2 more likely than in B1.

Intuitively, given probabilistic priors, one may think of
recovering the signal x by minimizing a weighted atomic norm
given by:

∣∣x̂∣∣wA = inf
cj ,fj

⎧
⎪⎪
⎨
⎪⎪
⎩

s

∑

j=1
wj ∣cj ∣ ∶ x̂[l] =

s

∑

j=1
cje

i2πfj l , l ∈ M

⎫
⎪⎪
⎬
⎪⎪
⎭

, (III.1)

where w = {w1,⋯,ws} is the weight vector, each element
wj of which is associated with the probability of occurrence
of the corresponding signal frequency fj . The weight vectors
are assigned using a weight function w(f). w(f) is a
piecewise constant function in the domain [0,1] such that the
restriction w(f)∣Bk

of w(f) to Bk is a constant. Therefore,
∀ {f1,⋯, fj} ∈ Bk, we have w1 = ⋯ = wj = w(f)∣f∈Bk

=
w(fBk

) (say). The w(f) is a decreasing function of the
sparsity associated with the corresponding frequency subband
so that the subband with higher (lower) value of pdf or lesser
(more) sparsity is weighted lightly (heavily).

The problem of line spectral estimation using probabilistic
prior can now be presented as the (primal) optimization
problem concerning the weighted atomic norm:

minimize
x̂

∥x̂∥wA

subject to x̂[j] = x[j], l ∈ M. (III.2)

But we now observe that, unlike weighted `1 norm [28],
a semidefinite characterization of the weighted atomic norm
does not evidently result from (II.8). Instead, we propose a
new semidefinite program for the weighted atomic norm using
theories of positive trigonometric polynomials, by looking at
its dual problem. For the standard atomic norm minimization
problem (II.3), the dual problem is framed in this manner:

maximize
q

⟨qM, xM⟩R

subject to ∥q∥∗A ≤ 1 (III.3)
qN∖M = 0,
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where ∥⋅∥∗ represents the dual norm. This dual norm is defined
as

∥q∥∗A = sup
∥x̂∥A≤1

⟨q, x̂⟩R = sup
f∈[0,1]

∣⟨q, a(f,0)⟩∣. (III.4)

For the weighted atomic norm minimization, the primal
problem (III.2) has only equality constraints. As a result,
Slater’s condition is satisfied and, therefore, strong duality
holds [42]. In other words, solving the dual problem also yields
an exact solution to the primal problem. The dual of weighted
atomic norm is given by

∥q∥∗wA = sup
∥x̂∥wA≤1

⟨q, x̂⟩R = sup
φ∈[0,2π],f∈[0,1]

⟨q,
1

w(f)
eiφa(f,0)⟩

R

= sup
f∈[0,1]

∣⟨q,
1

w(f)
a(f,0)⟩∣. (III.5)

The dual problem to (III.2) can be stated hence,

maximize
q

⟨qM, xM⟩R

subject to ∥q∥∗wA ≤ 1 (III.6)
qN∖M = 0,

which by substitution of (III.5) becomes,

maximize
q

⟨qM, xM⟩R

subject to sup
f∈[0,1]

∣⟨q,
1

w(f)
a(f,0)⟩∣ ≤ 1 (III.7)

qN∖M = 0.

Let the probabilistic priors consist of distinct weights for p
different frequency subbands Bk ⊂ [0,1], k = 1,⋯, p such
that [0,1] = ⋃pk=1 Bk = ⋃pk=1[fLk

, fHk
], where fLk

and fHk

are, respectively, the lower and upper cut-off frequencies for
each of the band Bk (Figure III.2). If the probability density
function is constant within a frequency band, then the results
of the supremums in (III.7) need not depend on the weight
functions, and therefore, the inequality constraint in the dual
problem in (III.7) can be expanded as,

maximize
q

⟨qM, xM⟩R

subject to sup
f∈B1

∣⟨q, a(f,0)⟩∣ ≤ w(fB1)

sup
f∈B2

∣⟨q, a(f,0)⟩∣ ≤ w(fB2)

⋮

sup
f∈Bp

∣⟨q, a(f,0)⟩∣ ≤ w(fBp)

qN∖M = 0. (III.8)

We now map each of the inequality constraints in the foregoing
dual problem to a linear matrix inequality, leading to the
semidefinite characterization of the weighted atomic norm
minimization. We recognize that the constraints in (III.8) imply
Q(f) = ⟨q, a(f,0)⟩ is a positive trigonometric polynomial [32]
in f ∈ Bk, since

Q(f) = ⟨q, a(f,0)⟩ =
n−1
∑

l=0
qle

−i2πfl. (III.9)

Such a polynomial can be parameterized by a particular type
of positive semidefinite matrix. Thus, we can transform the
polynomial inequality, such as the ones in (III.8), to a linear
matrix inequality.

fL1
fL2

fL3
fLp

1

Normalized Frequency, f

p
F
(
f
)

0
fL1 fH2

fH3
fH4

fHp−1

⋯

Figure III.2. The individual frequencies of spectrally parsimonious
signal are assumed to lie in known frequency subbands within the
normalized frequency domain [0,1]. We assume that all subbands
are non-overlapping so that when fHk−1 = fLk , then Bk−1 =

[fLk−1 , fHk−1] and Bk = (fLk , fHk ].

A. Gram Matrix Parametrization

A trigonometric polynomial R(z) =
n−1
∑

k=−(n−1)
rkz

−k, which

is also nonnegative on the entire unit circle, can be
parametrized using a positive semidefinite, Hermitian matrix
G (called the Gram matrix) that identifies the polynomial
coefficients rk as a function of its elements [43, p. 23]:

rk = tr[ΘkG], (III.10)

where Θk is an elementary Toeplitz matrix with ones on its
kth diagonal and zeros elsewhere. Here, k = 0 corresponds to
the main diagonal, and k takes positive and negative values
for upper and lower diagonals respectively.

For the trigonometric polynomial that is nonnegative only
over an arc of the unit circle, we have the following theorem:

Theorem III.1. [43, p. 12] A trigonometric polynomial

R(z) =
n−1
∑

k=−(n−1)
rkz

−k, r−k = r
∗
k, (III.11)

where R ∈ Cn−1[z] for which R(ω) ≥ 0, for any z = eiω ,
ω ∈ [ωL, ωH] ⊂ [−π,π], can be expressed as

R(z) = F (z)F ∗
(z−1) +DωLωH (z).G(z)G∗

(z−1), (III.12)

where F (z), and G(z) are causal polynomials with complex
coefficients, of degree at most n − 1 and n − 2, respectively.
The polynomial

DωLωH (z) = d1z
−1
+ d0 + d

∗
1z (III.13)

where

d0 = −
αβ + 1

2
(III.14)

d1 =
1 − αβ

4
+ j

α + β

4
(III.15)

α = tan
ωL
2

(III.16)

β = tan
ωH
2
, (III.17)

is defined such that DωLωH
(ω) is nonnegative for ω ∈

[ωL, ωH] and negative on its complementary.1

1cf. Errata to [43] available online. The 2007 print edition of [43] has an
error in the expression (III.15).
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Since F (z) and G(z) are causal polynomials, the products
F (z)F ∗(z−1) and G(z)G∗(z−1) are positive trigonometric
polynomials that can each be separately parameterized with
Gram matrices G1 and G2 respectively.

Proposition III.2. A trigonometric polynomial R in (III.11)
that is nonnegative on the arc [ωL, ωH] ⊂ [−π,π]
or, alternatively, the subband [fL, fH] ⊂ [0,1], can be
parameterized using the Gram matrices G1 ∈ Cn×n and
G2 ∈ C(n−1)×(n−1) as follows:

rk = tr[ΘkG1] + tr [(d1Θk−1 + d0Θk + d
∗
1Θk+1) ⋅G2]

≜ Lk,fL,fH (G1,G2), (III.18)

where we additionally require the elementary Toeplitz matrix
Θk in the second argument to be a nilpotent matrix of order
n − k for ∣k∣ > 0. The translation of frequencies between the
two domains is given by:

ωL = {

2πfL : 0 ≤ fL ≤ 0.5
2π(fL − 1) : 0.5 < fL < 1

(III.19)

ωH = {

2πfH : 0 < fH ≤ 0.5
2π(fH − 1) : 0.5 < fH ≤ 1

. (III.20)

Proof of Proposition III.2.: Let F (z) and G(z) be
causal polynomials such that, F (z) = fTψ(z−1), and G(z)
= gTφ(z−1), where f = [f0 f1 ⋯ fn−1]T ∈ Cn, and g

= [g0 g1 ⋯ gn−2]T ∈ Cn−1 are vectors of coefficients
of the causal polynomials F (z) and G(z) respectively,
and ψ(z−1) = [1 z−1 ... z−(n−1)]T , and φ(z−1) =
[1 z−1 ... z−(n−2)]T , are the canonical basis vectors of
the corresponding polynomials. Let

R(z) =
(n−1)
∑

k=−(n−1)
rkz

−k, r−k = r
∗
k

A(z) =
n−1
∑

k=−(n−1)
akz

−k
= F (z)F ∗

(z−1), a−k = a
∗
k

B(z) =
n−2
∑

k=−(n−2)
bkz

−k
= G(z)G∗

(z−1), b−k = b
∗
k

B̃(z) =
n−1
∑

k=−(n−1)
b̃kz

−k
=DωLωH (z).G(z)G∗

(z−1), b̃−k = b̃
∗
k.

From the above, rk = ak + b̃k. Let G1 ∈ Cn×n and G2 ∈
C(n−1)×(n−1) be the Gram matrices. Then, as shown in (III.10),
the parameterization process yields, ak = tr[ΘkG1]. Also,
by definition, if the Gram matrix G2 is associated with a
trigonometric polynomial B(z), then we have

B(z) = φT (z−1) ⋅G2 ⋅ φ(z) = tr [φ(z) ⋅ φT (z−1) ⋅G2]

= tr [Φ(z) ⋅G2], (III.21)

where

Φ(z) = [
1
z
⋮

zn−2
][ 1 z−1 ... z−(n−2) ] =

⎡⎢⎢⎢⎢⎣

1 z−1 ⋯ z−(n−2)

z 1 ⋱ z−(n−3)

⋮ ⋱ ⋱ ⋮
zn−2 zn−3 ⋯ 1

⎤⎥⎥⎥⎥⎦
.

This leads to the following expressions:

Φ(z) =
n−2
∑

k=−(n−2)
Θkz

−k, (III.22)

z−1Φ(z) = z−1
n−2
∑

k=−(n−2)
Θkz

−k
=

n−1
∑

k=−(n−3)
Θk−1z

−k, (III.23)

zΦ(z) = z
n−2
∑

k=−(n−2)
Θkz

−k
=

n−3
∑

k=−(n−1)
Θk+1z

−k. (III.24)

Substitution of (III.22)-(III.24) in (III.21) gives the following
matrix-parametric expression,

B̃(z) = (d1z
−1
+ d0 + d

∗
1z) tr [Φ(z) ⋅G2]

= tr [(d1z
−1Φ(z) + d0Φ(z) + d∗1zΦ(z)) ⋅G2]

= tr [(d1
n−1
∑

k=−(n−3)
Θk−1z

−k
+ d0

n−2
∑

k=−(n−2)
Θkz

−k

+ d∗1
n−3
∑

k=−(n−1)
Θk+1z

−k
) ⋅G2]

=

n−1
∑

k=−(n−1)
tr [(d1Θk−1 + d0Θk + d

∗
1Θk+1) ⋅G2]z

−k.

Then,

b̃k = tr [(d1Θk−1 + d0Θk + d∗1Θk+1) ⋅G2]. (III.25)

Substitution of matrix parameterizations of ak and b̃k in the
expression of rk completes the proof.

The dual polynomial Q(f) in (III.9) is nonnegative on
multiple non-overlapping intervals, and can therefore be
parameterized by as many different pairs of Gram matrices
{G1, G2} as the number of subbands p. In the following
subsection, we relate this parametrization to the corresponding
probabilistic weights of the subbands.

B. SDP Formulation
Based on the Bounded Real Lemma [43, p. 127] (which,

in turn, is based on Theorem III.1), a positive trigonometric
polynomial constraint of the type ∣R(ω)∣ ≤ 1 can be expressed
as a linear matrix inequality [43, p. 143]. Stating this result for
the dual polynomial constraint over a single frequency band,
such as those in (III.8), we have

sup
f∈[fL,fH ]

∣⟨q, a(f,0)⟩∣ ≤ γ, (III.26)

if and only if there exist positive semidefinite Gram matrices
G1 ∈ Cn×n and G2 ∈ C(n−1)×(n−1) such that,

γ2δk = Lk,ωL,ωH (G1,G2), k ∈ H

[
G1 q
q∗ 1

] ⪰ 0, (III.27)

where H is a halfspace, δ0 = 1, and δk = 0 if k ≠ 0. This linear
matrix inequality representation using positive semidefinite
matrix G1 paves way for casting the new dual problem in
(III.8) as a semidefinite program. This above formulation
shows that we have changed the inequality form in the convex
optimization problem to an equality form allowing semidefinite
programming for the weighted atomic norm minimization.
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If the cutoff-frequencies ωL or ωH (in [−π,π] domain) are
equal to ±π, then we can write [ωL, ωH] = [ω′

L+τ, ω
′

H+τ] such
that [ω′

L, ω
′

H] ⊂ [−π,π]. For the translated subband [ω′

L, ω
′

H],
let the corresponding subband in the domain [0,1] be [f ′L, f

′

H].
Then, the LMI formulation given by (III.18) becomes valid
for this subband. However, the polynomial q is now evaluated
in the domain e−iωe−iτ instead of e−iω . The SDP for this
frequency translation employs a scaled version of LMI in
(III.27),

δk = Lk,f ′
L
,f
′

H
(G1,G2), k ∈ H

⎡
⎢
⎢
⎢
⎢
⎢
⎢
⎣

G1
1

γ
q̃τ

1

γ
q̃∗τ 1

⎤
⎥
⎥
⎥
⎥
⎥
⎥
⎦

⪰ 0, (III.28)

where

q̃τ [j] = q[j]e
−iτj . (III.29)

We now state the semidefinite program for weighted
atomic norm minimization with the probabilistic
priors. We use the LMI representation for each
of the inequality constraints in (III.8) as follows:

maximize
q,

G11,G12,⋯,G1p,
G21,G22,⋯,G2p

⟨qM, xM⟩R

subject to qN∖M = 0 (III.30)
δk1 = Lk1,fL1

′,fH1
′(G11,G21),

k1 = 0,⋯, (n − 1)
⎡
⎢
⎢
⎢
⎢
⎢
⎢
⎣

G11
1

w1
q̃τ1

1

w1
q̃∗τ1 1

⎤
⎥
⎥
⎥
⎥
⎥
⎥
⎦

⪰ 0,

δk2 = Lk2,fL2
′,fH2

′(G12,G22),

k2 = 0,⋯, (n − 1)
⎡
⎢
⎢
⎢
⎢
⎢
⎢
⎣

G12
1

w2
q̃τ2

1

w2
q̃∗τ2 1

⎤
⎥
⎥
⎥
⎥
⎥
⎥
⎦

⪰ 0,

⋮

δkp = Lkp,fLp
′,fHp

′(G1p,G2p),

kp = 0,⋯, (n − 1)

⎡
⎢
⎢
⎢
⎢
⎢
⎢
⎣

G1p
1

wp
q̃τp

1

wp
q̃∗τp 1

⎤
⎥
⎥
⎥
⎥
⎥
⎥
⎦

⪰ 0,

where q̃τk [j] = q[j]e
−iτkj , k = 1,⋯, p,

G11,G12,⋯,G1p ∈ Cn×n,
and G21,G22,⋯,G2p ∈ C(n−1)×(n−1).

The unknown frequencies in x̂ can be identified by the
frequency localization approach [6] based on computing the
dual polynomial, that we state for the weighted atomic norm
problem in Algorithm III.1. We state that this characterization
of the spectral estimation is a general way to integrate given
knowledge about the spectrum. If the engineer is able to

Algorithm III.1 Frequency localization for probabilistic priors
1: Solve the dual problem (III.30) to obtain the optimum solution q⋆.
2: LetF = {f1,⋯, fj ,⋯, fs} be the unknown frequencies of signal x. The unknown

frequencies fj , identify as ∣⟨q⋆, a(fj ,0)⟩∣ = wk , where fj ∈ Bk ⊆ [0,1]. For
f ∈ (Bk ∖F) ⊂ [0,1], ∣⟨q⋆, a(f,0)⟩∣ < wk .

3: The corresponding complex coefficients can be recovered by solving a system of

simultaneous linear equations x̂[l] −
s

∑
j=1

cja(fj ,0)[l] = 0.

fL1
fH1

fL2
fH2

fL3
fH3

fLp
fHp

1

Normalized Frequency, f

A
m

pl
itu

de

0

⋯

Figure IV.1. The individual frequencies of spectrally sparse signal are
assumed to lie in known non-overlapping frequency subbands within
the normalized frequency domain [0,1].

locate the signal frequency in a particular subband with a
very high degree of certainty, better results can be obtained
using the optimization (III.30). Also, information about signal
frequency bands is frequently available through previous
research and measurements, especially in problems pertaining
to communication, power systems and remote sensing. We
consider this more practical case in the following section.

IV. BLOCK PRIORS

Of particular interest to spectral estimation are spectrally
block sparse signals where certain frequency bands are known
to contain all the spectral contents of the signal. Let us
assume that all the s frequencies fj of the spectrally sparse
signal x are known a priori to lie only in a finite number
of non-overlapping frequency bands or intervals within the
normalized frequency domain [0,1]. Here, the known set C
is defined as the set B of all frequency bands in which signal
frequencies are known to reside. The prior information consists
of the precise locations of all the frequency bands - the lower
and upper cut-off frequencies fLk

and fHk
respectively for

each of the band Bk - as shown in the Figure IV.1. We,
therefore, have fj ∈ B, B = ⋃pk=1 Bk = ⋃

p
k=1[fLk

, fHk
], where

p is the total number of disjoint bands known a priori. This
block prior problem could easily be considered as a special
case of probabilistic priors where the probability of a frequency
occurring in known subbands is unity while it is zero for all
other subbands. When the frequencies are known to reside in
the set of subbands B a priori, we propose to minimize a
constrained atomic norm ∣∣x̂∣∣A,B for perfect recovery of the
signal:

∣∣x̂∣∣A,B = inf
cj ,fj∈B

⎧
⎪⎪
⎨
⎪⎪
⎩

s

∑

j=1
∣cj ∣ ∶ x̂[l] =

s

∑

j=1
cje

i2πfj l , l ∈ M

⎫
⎪⎪
⎬
⎪⎪
⎭

. (IV.1)

As noted earlier, to recover all of the off-the-grid frequencies
of the signal x given the block priors, the direct extension of a
semidefinite program from (II.8) to minimize the constrained
atomic norm is non-trivial. We address this problem by
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working with the dual problem of the constrained atomic norm
minimization, and then transforming the dual problem to an
equivalent semidefinite program by using theories of positive
trigonometric polynomials. We note that in the case of block
priors, (III.4) can be written as ∥q∥∗A,B = supf∈B ∣⟨q, a(f,0)⟩∣ =
supf∈B ∣Q(f)∣, where Q(f) is the dual polynomial. The primal
problem of constrained atomic norm minimization is given by

minimize
x

∥x∥A,B

subject to x̂[l] = x[l], l ∈ M, (IV.2)

and, similar to (III.3), we can formulate the corresponding dual
problem as

maximize
q

⟨qM, xM⟩R

subject to qN∖M = 0 (IV.3)
∥q∥∗A,B ≤ 1,

where ∥q∥∗A,B = supf∈B ∣⟨q, a(f,0)⟩∣. Since B is defined as a
union of multiple frequency bands, the inequality constraint
in (IV.3) can be expanded to p separate inequality constraints.
It can be easily observed that (IV.3) is a special case of (III.7)
with all the weights being unity and B ⊆ [0,1] (i. e. the set of
bands B need not necessarily cover the entire frequency range).
While framing the semidefinite program for this problem, we
use a linear matrix inequality similar to that in (III.27) with
γ = 1 for each of the inequality constraint in (IV.3), to cast the
dual problem constraint into a semidefinite program. So, when
all the frequencies are known to lie in p disjoint frequency
bands, then the semidefinite program for the dual problem in
(IV.3) can be constructed by using p equality-form constraints:

maximize
q,

G11,G12,⋯,G1p,
G21,G22,⋯,G2p

⟨qM, xM⟩R

subject to qN∖M = 0 (IV.4)
δk1 = Lk1,fL1

,fH1
(G11,G21),

k1 = 0,⋯, (n − 1)

[
G11 q
q∗ 1

] ⪰ 0,

δk2 = Lk2,fL2
,fH2

(G12,G22),

k2 = 0,⋯, (n − 1)

[
G12 q
q∗ 1

] ⪰ 0,

⋮

δkp = Lkp,fLp ,fHp
(G1p,G2p),

kp = 0,⋯, (n − 1)

[
G1p q
q∗ 1

] ⪰ 0,

where G11,G12,⋯,G1p ∈ Cn×n,
and G21,G22,⋯,G2p ∈ C(n−1)×(n−1).

In the extreme case when any of the known frequency bands
Bk have ωLk

or ωHk
lying exactly on either −π or π, then the

dual-polynomial in IV.4 should be appropriately translated as
noted in (III.29).

In many applications, the location of some of the signal
frequencies might be precisely known. One could think of
this known poles problem as a probabilistic prior problem
where the cardinality of some sets Bk is exactly unity
(and the associated probability be unity as well), while the
remaining frequency subbands have a non-unity probability.
However, there are a few differences. For probabilistic
priors, the probability distribution function is known for the
entire interval [0,1] while, in case of known poles, the
probability distribution of the bands of unknown frequencies
is unavailable. Also, unlike block prior formulation, known
poles problem does not have zero probability associated with
the remaining subbands.

V. KNOWN POLES

We now consider the case when some frequency components
are known a priori but their corresponding amplitudes and
phases are not. Let the index set of all the frequencies
be S, ∣S∣ = s. Let P be the index set of all the known
frequencies, and ∣P∣ = p. Namely, we assume that the
signal x contains some known frequencies fj , j ∈ P ⊆ S ,
∣P∣ = p. For known frequencies, let us denote their complex
coefficients as dj and their phaseless frequency atoms as
aj[l] = a(fj ,0)[l] = ei2πfj l. We define the conditional atomic
norm ∣∣x̂∣∣A,P for the known poles as follows:

∣∣x̂∣∣A,P = inf
cj ,dj ,fj

⎧
⎪⎪
⎨
⎪⎪
⎩

s−p
∑

j=1
∣cj ∣ ∶ x̂[l] =

s−p
∑

j=1
cje

i2πfj l

+

s

∑

j=s−p+1
dje

i2πfj l , l ∈ M

⎫
⎪⎪
⎬
⎪⎪
⎭

. (V.1)

Unlike previously mentioned a priori counterparts of the
atomic norm, the semidefinite formulation for ∣∣x̂∣∣A,P easily
follows from (II.4).

Proposition V.1. The conditional atomic norm for a vector x̂
is given by

∣∣x̂∣∣A,P = inf
Tn,x̃,t,dj

{
1

2∣N ∣

Tr(Tn) +
1

2
t ∶ [

Tn x̃
x̃∗ t

] ⪰ 0} , (V.2)

where x̃[l] = x̂[l] − ∑
j∈P

aj[l]dj represents the positive

combination of complex sinusoids with unknown poles.

Proof of Proposition V.1.: From (V.1), we simply have

x̃[l] = x̂[l] − ∑
j∈P

aj[l]dj =
s−p
∑
j=1

cje
i2πfj l, meaning the value of

the semidefinite program in (V.2) is same as ∣∣x̃∣∣A = ∣∣x̂∣∣A,P .

The conditional atomic norm minimization problem can be
posed as the following semidefinite formulation in a similar
way as in (II.8):

minimize
Tn,x̂,x̃,t,dj

1

2∣N ∣

Tr(Tn) +
1

2
t

subject to [
Tn x̃
x̃∗ t

] ⪰ 0 (V.3)

x̂[l] = x[l], l ∈ M

x̂[l] = x̃[l] + ∑
j∈P

aj[l]dj , l ∈ M.
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Algorithm V.1 Known poles algorithm
1: Solve the semidefinite program (V.3) to obtain x̃.
2: Solve the following dual problem to obtain the optimum solution q⋆

maximize
q

⟨q, x̃⟩R

subject to ∣∣q∣∣∗
A
≤ 1 (V.4)

q[l] = 0, l ∈ N ∖M.

3: The unknown frequencies fj , j ∈ P , identify as ∣⟨q⋆, aj⟩∣ = 1. For j ∉ S ∖ P ,
∣⟨q⋆, aj⟩∣ < 1.

4: Solve the following system of simultaneous linear equations to recover the complex
coefficients of unknown frequencies: x̃[l] − ∑

j∈S∖P
cjaj[l] = 0.

x̃ can be viewed as the signal filtered of the known poles.
The remaining unknown frequencies in x̃ can be identified by
the frequency localization approach that we restate for x̃ in
Algorithm V.1.

VI. PERFORMANCE ANALYSIS

To identify the true frequencies of the signal from
the solution of the dual problem, we now establish the
conditions for finding the dual-certificate of support when
prior information is available. We additionally show that the
dual polynomial requirements can be slackened if the prior
information gives the approximate location of each of the
signal frequencies. We further put our result in the context
of minimum number of signal samples required for the
reconstruction of the signal x.

Since the primal problem (III.2) has only equality
constraints, Slater’s condition is satisfied. As a consequence,
strong duality holds [42]. This allows us to present the
dual-certificate of support for the optimizer of (III.2). In the
following theorems, sign(cj) = cj/∣cj ∣, and R(⋅) denotes the
real part (of a complex number).

Theorem VI.1. Let the set of atoms
{aM(f1,0),⋯, aM(fs,0)} supported on subset M of
N be linearly independent. Then, x̂ = x is the unique solution
to the primal problem (III.2), if there exists a polynomial

Q(f) = ⟨q, a(f,0)⟩ =
n−1
∑

l=0
qle

−i2πfl, (VI.1)

such that

Q(fj) = wksign(cj),∀fj ∈ Bk ⊆ [0,1] (VI.2)
∣Q(f)∣ < wk,∀f ∈ (Bk ∖F) ⊂ [0,1] (VI.3)
qN∖M = 0. (VI.4)

Proof of Theorem VI.1.: The proof follows from the
dual polynomial for the standard atomic norm minimization
problem. We refer the reader to [6] for details. Briefly, it can be
concluded that strong duality holds and we have ⟨qM, xM⟩R =
s

∑
j=1

wj ∣cj ∣ = ∣∣x∣∣wA, where the vector q satisfies the conditions

(VI.2), (VI.3), and (VI.4), and is dual feasible. As for the
uniqueness, let x†[l] = ∑

j
c†
je
i2πf †

j l, l ∈ M, be an alternative

minimizer of (III.2) such that x† contains frequencies outside
the set F of oracle frequencies. Then,

∣∣x∣∣wA = ⟨qM, xM⟩R = ⟨qM, x†
M⟩R = ⟨qM,∑

j

c†
je
i2πf†

j
l
⟩R

= ⟨qM,∑
k

∑

fj∈F⊂Bk

c†
je
i2πfj l

+∑

k

∑

f†
h
∈(Bk∖F)

c†
he
i2πf†

h
l
⟩

R

< ∑

fj∈F⊂Bk

wj ∣c
†
j ∣ + ∑

f†
h
∈(Bk∖F)

wh∣c
†
h∣

= ∣∣x†
∣∣wA,

resulting in a contradiction that x† is not a minimizer of (III.2).
If x† contains only the oracle frequencies and the same sign
pattern cj/∣cj ∣ as that of x, then x† also has the same complex
coefficients as x since the set {aM(f1,0),⋯, aM(fs,0)} is
linearly independent. Therefore, the optimal solution is unique.

As a corollary to Theorem VI.1, we can arrive at the dual
polynomial for the block prior problem as follows.

Corollary VI.2. The x̂ = x is the unique solution to the primal
problem (IV.2), if there exists a polynomial Q(f) such that

Q(fj) = sign(cj),∀fj ∈ F ⊂ B (VI.5)
∣Q(f)∣ < 1,∀f ∈ (B ∖ F) (VI.6)
qN∖M = 0. (VI.7)

When the prior information is available to such a generous
extent that each of the individual frequencies are known
within close boundaries, as we present next, an interesting
consequence of this relaxation is that the number of samples
required to reconstruct the signal could be bounded.

Theorem VI.3. Let the signal x as in (II.1) be sampled on a
subset M of N . If there exists a polynomial Q(f) such that
∀fj ∈ F ⊂ B,

Q(fj) = sign(cj) (VI.8)

Q
′

(fj) =
n−1
∑

l=0
lqle

−i2πfj l
= 0 (VI.9)

Q
′′

(fj) =
n−1
∑

l=0
−(2πl)2qle

−i2πfj l
= −sign(R(cj)), (VI.10)

and, if each of the frequencies is known within a sufficiently
small frequency subband, then x̂ = x is the unique optimizer
of the primal problem (IV.2). Further, assuming fjs are
distributed uniformly at random in [0,1], such a dual
polynomial exists with probability 1 when m ≥ 3s.

Proof of Theorem VI.3.: The polynomial that we seek
can be written as Q(f) = QR(f) + iQI(f), where QR(f)
and QI(f) are the real and imaginary parts respectively. As
per Theorem VI.1, Q(f) should also satisfy the conditions
(VI.2) and (VI.3). Therefore, (VI.8) is a restatement of (VI.2)
as follows:

Q(fj) =
n−1
∑

l=0
qle

−i2πfj l
= sign(cj) =

cj
∣cj ∣

∀fj ∈ F ⊂ B. (VI.11)

For the dual polynomial to achieve an extremum at fj ∈ F ⊂ B
as specified by (VI.3), the following is a sufficient condition
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for its first derivative leading to (VI.9):

Q
′

(fj) =
n−1
∑

l=0
−i2πlqle

−i2πfj l
= 0 ∀fj ∈ F ⊂ B. (VI.12)

The condition for a maximum at fj ∈ F ⊂ B requires the
second derivative ∣Q(fj)∣

′′

to be strictly negative. We have,

∣Q(fj)∣
′′

= −
[QR(fj)Q

′

R(fj) +QI(fj)Q
′

I(fj)]
2

∣Q(fj)∣3

+
∣Q

′

(fj)∣
2
+QR(fj)Q

′′

R(fj) +QI(fj)Q
′′

I (fj)

∣Q(fj)∣

∀fj ∈ F ⊂ B. (VI.13)

Therefore, for ∣Q(fj)∣
′′

to be strictly negative, it is sufficient
to require,

∣Q
′

(fj)∣
2
+QR(fj)Q

′′

R(fj) +QI(fj)Q
′′

I (fj) < 0 ∀fj ∈ F ⊂ B.
(VI.14)

Under the condition (VI.14), when the frequencies fj are
known to lie in a very small frequency band Bk such that
(fHk

− fLk
) ≪ 1, then the polynomial constraints are valid

within such a sufficiently small interval.
To satisfy the constraint (VI.14), we impose an additional

constraint that requires Q
′′

I(fj) to vanish, reducing (VI.14) to

QR(fj)Q
′′

R(fj) < 0 ∀fj ∈ F ⊂ B. (VI.15)

Using the definition of dual polynomial from (VI.1), we can
now cast (VI.15) as the condition (VI.10).

Let xfj = ei2πfj . We show that the linear system (VI.8),
(VI.9), and (VI.10) results in a unique solution, given at least
3s equations as follows:

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

x
l0
f1

x
l1
f1

⋯ x
l3s−1
f1

l0x
l0
f1

l1x
l1
f1

⋯ l3s−1x
l3s−1
f1

−(2πl0)2xl0
f1

−(2πl1)2xl1
f1

⋯ −(2πl3s−1)2xl3s−1
f1

x
l0
f2

x
l1
f2

⋯ x
l3s−1
f2

l0x
l0
f2

l1x
l1
f2

⋯ l3s−1x
l3s−1
f2

−(2πl0)2xl0
f2

−(2πl1)2xl1
f2

⋯ −(2πl3s−1)2xl3s−1
f2

⋮ ⋮ ⋱ ⋮
x
l0
fs

x
l1
fs

⋯ x
l3s−1
fs

l0x
l0
fs

l1x
l1
fs

⋯ l3s−1x
l3s−1
fs

−(2πl0)2xl0
fs

−(2πl1)2xl1
fs

⋯ −(2πl3s−1)2xl3s−1
fs

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶

=A

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

ql0

ql0

ql0

ql1

ql1

ql1

⋮

ql3s−1

ql3s−1

ql3s−1

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

= [ c1
∣c1 ∣

0 −sign(R(c1)) c2
∣c2 ∣

0 −sign(R(c2)) ⋯ cs
∣cs ∣

0 −sign(R(cs)) ]T ,
(VI.16)

where l0, l1,⋯, l3s−1 are the indices of the samples of the signal
x. Proposition VI.4 completes the proof by showing that the
system matrix A in (VI.16) is invertible with probability 1,
provided the frequencies in the set F = {f1,⋯, fj ,⋯, fs} are
distributed uniformly at random.

Proposition VI.4. Let M = {l0, l1,⋯, l3s−1} be the set of
indices for 3s samples of the signal x. Let hfj = ei2πfj , then
the 3s × 3s matrix

As =

⎡
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

hl0f1 hl1f1 ⋯ hl3s−1f1

l0 ⋅ h
l0
f1

l1 ⋅ h
l1
f1

⋯ l3s−1 ⋅ h
l3s−1
f1

l20 ⋅ h
l0
f1

l21 ⋅ h
l1
f1

⋯ l23s−1 ⋅ h
l3s−1
f1

hl0f2 hl1f2 ⋯ hl3s−1f2

l0 ⋅ h
l0
f2

l1 ⋅ h
l1
f2

⋯ l3s−1 ⋅ h
l3s−1
f2

l20 ⋅ h
l0
f2

l21 ⋅ h
l1
f2

⋯ l23s−1 ⋅ h
l3s−1
f2

⋮ ⋮ ⋱ ⋮

hl0fs hl1fs ⋯ hl3s−1fs

l0 ⋅ h
l0
fs

l1 ⋅ h
l1
fs

⋯ l3s−1 ⋅ h
l3s−1
fs

l20 ⋅ h
l0
fs

l21 ⋅ h
l1
fs

⋯ l23s−1 ⋅ h
l3s−1
fs

⎤
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

, (VI.17)

is full rank with probability 1 if the frequencies f1,⋯, fj ,⋯, fs
are drawn uniformly at random in [0,1].

Proof of Proposition VI.4.: We show As is full-rank by
proving that its determinant, det(As) = ∣As∣ is a non-zero
polynomial. For s = 1, we have the matrix,

A1 =

⎡
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

hl0f1 hl1f1 hl2f1

l0 ⋅ h
l0
f1

l1 ⋅ h
l1
f1

l2 ⋅ h
l2
f1

l20 ⋅ h
l0
f1

l21 ⋅ h
l1
f1

l22 ⋅ h
l2
f1

⎤
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

. (VI.18)

We note that ∣As∣ easily reduces to a Vandermonde determinant
(of order 3), so that ∣As∣ = (l2 − l1)(l2 − l0)(l1 − l0)hl0+l1+l2f1

,
which is a non-zero polynomial because l0, l1, and l2 are
distinct sample indices.

Let us now assume that, for s > 1, ∣As∣ is a non-zero
polynomial. We would like to show that ∣As+1∣ is also a
non-zero polynomial. We have,

As+1 = [
As B
C D

] , (VI.19)

where

D =

⎡⎢⎢⎢⎢⎢⎢⎢⎣

hl3sfs+1 hl3s+1fs+1
hl3s+2fs+1

l3sh
l3s
fs+1

l3s+1h
l3s+1
fs+1

l3s+2h
l3s+2
fs+1

l23sh
l3s
fs+1

l23s+1h
l3s+1
fs+1

l23s+2h
l3s+2
fs+1

⎤⎥⎥⎥⎥⎥⎥⎥⎦3×3

. (VI.20)

Noting that the determinant of row echelon form is same as
the original matrix, we obtain the row echelon form (REF) for
the matrix D as follows:

REF (D) =

⎡⎢⎢⎢⎢⎢⎢⎢⎣

h
l3s
fs+1

h
l3s+1
fs+1

h
l3s+2
fs+1

0 (l3s+1−l3s)h
l3s+1
fs+1

(l3s+2−l3s)h
l3s+2
fs+1

0 0 (l3s+2−l3s)(l3s+2−l3s+1)h
l3s+2
fs+1

⎤⎥⎥⎥⎥⎥⎥⎥⎦

.

(VI.21)

Let ai,j be the element of the matrix As+1 in ith row and jth
column, then by the Leibniz formula for determinants,

∣As+1∣ = ∑

σ∈S3s+3

sgn(σ)a1,σ(1)a2,σ(2)...a3s+3,σ(3s+3) (VI.22)

= Pl3s+l3s+1+l3s+2(hfs+1)∣As∣ + P (hf1 ,⋯, hfs , hfs+1),
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(a) Without any priors (b) With probabilistic priors

Figure VII.1. Frequency localization using dual polynomial
for {n, s,m} = {64,5,64}. The probabilistic priors are
pF (f)∣B1=[0,0.2] = 4.9801 and pF (f)∣B2=(0.2,1] = 0.005. The
insets show the same plot on a smaller scale.

where sgn is the sign function of permutations in the
permutation group Ss+1, Pl3s+l3s+1+l3s+2(hfs+1) is a non-zero
univariate monomial in hfs+1 of degree l3s + l3s+1 + l3s+2, and
P (hf1 ,⋯, hfs , hfs+1) is a multivariate polynomial. From the
row echelon form in (VI.21), we recognize that the highest
degree of the variable hfs+1 in the expansion (VI.22) is l3s +
l3s+1 + l3s+2. Note that the polynomial P (hf1 ,⋯, hfs , hfs+1)
has lower degree in hfs+1 than Pl3s+l3s+1+l3s+2(hfs+1). Since
∣As∣ is a non-zero polynomial, the coefficient of hl3s+l3s+1+l3s+2fs+1
is also a non-zero polynomial. Therefore, ∣As+1∣ is a non-zero
polynomial. Further, the probability that one randomly picks
the frequencies over [0,1] such that each hfj is a root of
this non-zero polynomial is zero.2 Thus, by induction, ∣As∣ is
non-zero with probability 1.

The formulation in (III.30) generalizes the prior information.
As the cases of block priors and known poles indicate, the more
we know about the spectral structure of the signal, precise
formulations of atomic norm minimization can be evaluated
to boost signal recovery. If all poles are known in the sense of
known poles algorithm (i.e., the amplitudes and phases of all
known poles are unknown), then the signal x can be uniquely
reconstructed using the randomly sampled support xM where
∣M∣ = s. Further, it is well known that if the signal is uniformly
sampled, then the Prony’s method can uniquely reconstruct the
signal x using no more than 2s samples. In comparison, our
results from Theorem VI.3 show that if each of the poles are
approximately known, then the unique reconstruction of the
signal x requires no more than 3s samples.

VII. NUMERICAL EXPERIMENTS

We evaluated our algorithms through numerical experiments
using the SDPT3 [47] solver for the semidefinite programs. In
all experiments, for a particular realization of the signal, the
phases of the signal frequencies were sampled uniformly at
random in [0,2π). The amplitudes ∣cj ∣, j = 1,⋯, s were drawn
randomly from the distribution 0.5 + χ2

1 where χ2
1 represents

the chi-squared distribution with 1 degree of freedom.

2An analogous argument for a polynomial with roots over a finite field can
be found in Schwartz-Zippel-DeMillo-Lipton lemma [44–46].

Figure VII.2. The probability P of perfect recovery over
1000 trials for {n, s} = {64,5}. The probabilistic priors are
pF (f)∣B1={[0,0.3]⋃(0.7,1]} = 0.0025 and pF (f)∣B2=(0.3,0.7] = 2.4963.

(a) Without any priors (b) With block priors

Figure VII.3. Frequency localization using dual polynomial for
{n, s,m} = {64,5,20}. The block priors are B = [0.3500,0.4800]
⋃ [0.6000,0.8000] ⋃ [0.8500,0.9000].

A. Probabilistic Priors

We evaluated the semidefinite program (III.30) for the
case when p = 2. Here, B1 = [0,0.2] and B2 = (0.2,1]
so that B1⋃B2 = [0,1]. We consider the situation when
the probability of occurrence of signal frequency in B1 is
1000 times higher than B2. This results in the pdf values
of pF (f)∣B1 = 4.9801 and pF (f)∣B2 = 0.005. A suitable
sub-optimal choice of w(f) could be simply w(f) = 1/pF (f),
so that the associated weights are given by w1 = 0.2008 and
w2 = 200.8000. For each random realization of the signal,
the signal frequencies are drawn randomly based on the given
probability density function.
Experiment A.1. A simple illustration of the signal recovery
using (III.30) is shown through frequency localization in
Figure VII.1. For a signal of dimension n = 64 and number
of frequencies s = 5, Figure VII.1a shows that even when
all samples are observed (m = 64), the standard atomic norm
minimization (II.8) is unable to recover any of the frequencies,
for the maximum modulus of the dual polynomial assumes
a value of unity at many other frequencies. However, given
the probabilistic priors, semidefinite program (III.30) is able
to perfectly recover all the frequencies as shown in Figure
VII.1b. Here, ∣Q(fj)∣ = w1 = 0.2008 for fj ∈ F ⊂ B1, and
∣Q(fj)∣ = w2 = 200.8 for fj ∈ F ⊂ B2.
Experiment A.2. A comparison of the statistical performance
of (III.30) with the standard atomic norm for n = 64 is
shown in Figure VII.2 over 1000 trials. Here, the pdf pF (f)
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is 1000 times higher in the subband (0.3,0.7] than the rest
of the spectrum. We note that the weighted atomic norm is
about twice more successful than the standard atomic norm in
recovering the signal frequencies.

B. Block Priors

We evaluated the performance of spectrum estimation
with block priors through numerical simulations for the
semidefinite program in (IV.4). While generating signals in
these simulations, the frequencies are drawn uniformly at
random in the set of subbands B = ⋃pk=1 Bk ⊂ [0,1].
Experiment B.1. We first illustrate our approach through an
example in Figure VII.3. Here for n = 64, we drew s = 5
frequencies uniformly at random within p = 3 subbands in
the domain [0,1] without imposing any minimum separation
condition. Here, B = (0.3500,0.4800) ⋃ (0.6000,0.8000)
⋃ (0.8500,0.9000). A total of m = 20 observations were
randomly chosen from n regular time samples to form the
sample set M. In the absence of any prior information, we
solve (III.3) and show the result of frequency localization in
Figure VII.3a. Here, it is difficult to pick a unique set of s = 5
poles for which the maximum modulus of the dual polynomial
is unity (which will actually correspond to recovered frequency
poles). On the other hand, when block priors are given, Figure
VII.3b shows that solving (IV.4) provides perfect recovery of
all the frequency components, where the recovered frequencies
correspond to unit-modulus points of the dual polynomial.
Experiment B.2. We then give a statistical performance
evaluation of our new method, compared with atomic norm
minimization without any priors (III.3). The experimental
setup and block priors are the same as in Figure VII.3
and no minimum separation condition was assumed while
drawing frequencies uniformly at random in the set B. Figure
VII.5a shows the probability P of perfect recovery for the
two methods for fixed n = 64 but varying values of m
and s. For every value of the pair {s,m}, we simulate
100 trials to compute P . We note that if the frequencies
are approximately known, our method greatly enhances the
recovery of continuous-valued frequencies.
Experiment B.3. To illustrate our theoretical result of
Theorem VI.3, we now consider the block prior problem
when each of the frequencies are known to lie in extremely
small subintervals. For the triplet {n, s,m} = {64,7,18},
Figure VII.4 depicts the frequency localization for a random
realization of the signal x. In the absence of any prior
knowledge, the standard atomic norm minimization of (II.8)
fails in locating any of the signal frequencies (Figure VII.4a).
However, as shown in Figure VII.4b, if the frequencies
are approximately known (or, in other words, the frequency
subband of the block prior is very small), then the semidefinite
program in perfectly recovers the signal requiring not more
than 3s number of samples (m = 18 < 21 = 3s). In Figure
VII.4b, the block priors consist of small frequency bands
around each true pole fj such that B = ⋃sk=1 Bk = ⋃sk=1[fj −
0.001, fj + 0.001].
Experiment B.4. For the same signal dimension, size and
number of blocks as in the previous experiment, Figure VII.5b

(a) Without any priors (b) With block priors

Figure VII.4. Frequency localization using dual polynomial for
{n, s,m} = {64,7,18}. The block priors consist of small frequency
bands around each true pole fj such that B = ⋃

s
k=1 Bk = ⋃

s
k=1[fj −

0.001, fj + 0.001]. The bottom plot has been magnified in the inset
to show the size of the block prior.

(a) Three block priors (b) One block prior per pole

Figure VII.5. The probability P of perfect recovery over 100 trials
for n = 64. The performance of standard atomic norm is compared
with the block prior setups of Figure VII.3 (left) and Figure VII.4
(right).

Figure VII.6. The probability P of recovering the unknown spectral
content. The probability is computed for 1000 random realizations of
the signal for the triple (n,m, s) = (32,9,4). (For k > 0, k ≤ p being
the invalid cases, the corresponding bars have been omitted.) (b) A
higher probability P of recovering all the unknown frequency content
can be achieved with a smaller number m of random observations
using the known poles algorithm. The probability is computed for 100
random realizations with (n, s) = (80,6).

shows a comparison of statistical performance of block prior
method with the standard atomic norm minimization over 100
trials. For every value of s, the parameter m was varied until
m was at least 3s. We note a considerably higher success rate
of block prior method. Please note that the perfect recovery is
guaranteed only when the block prior is arbitrarily small.
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C. Known Poles

We evaluated the known poles algorithm through a number
of simulations to solve the semidefinite program (V.3). In all
our experiments, the s frequencies of the artificially generated
signal were drawn at random in the band [0,1]. Except for
Experiment 4, the sampled frequencies were also constrained
to have the minimum modulo spacing of ∆f = 1/⌊(n−1)/4⌋
between the adjacent frequencies. This is the theoretical
resolution condition for the results in [6], although numerical
experiments suggested that frequencies could be closer, i.e.,
∆f could be 1/(n−1). While working with the known poles,
we draw the first known frequency uniformly at random from
the set of s frequencies. As the number p of known poles
increases, we retain the previously drawn known frequencies
and draw the next known frequency uniformly at random from
the remaining set of existing signal frequencies.
Experiment C.1. We simulated a low-dimensional model
with the triple (n,m, s) = (32,9,4) and first solved the
semidefinite program (II.8) which does not use any prior
information, i.e., p = 0. For the same realization of the
signal, we then successively increase p up to s − 1, and
solve the optimization (V.3) of the known poles algorithm.
At every instance of solving an SDP, we record the number
k of successfully recovered frequencies along with their
complex coefficients. This number also includes the known
frequencies if the recovery process returns exact values of
their complex coefficients. k = s corresponds to complete
success, i.e., recovering all of the unknown spectral content.
k = 0 is complete failure, including the case when the complex
coefficients of the known frequencies could not be recovered.
Figure VII.6a shows the probability P of recovering k
frequencies over 1000 trials. Although the complex coefficients
of the known frequencies were unknown, the known poles
algorithm increases the probability of accurately recovering
all or some of the unknown spectral content.
Experiment C.2. We repeat the first experiment for the
higher-dimensional pair (n,m) = (256,40) and vary s. The
probability P over 100 random realizations of the signal is
shown in Figure VII.7 for selected values of s. We observe that
the probability of successfully recovering all the frequencies
using the known poles Algorithm V.1 increases with p.
Experiment C.3. Figure VII.6b shows the probability P of
complete success as a function of m over 100 trials for the
twin (n, s) = (80,6). We note that the known poles algorithm
achieves the same recovery probability when compared to
(II.8) with a smaller number of random observations.
Experiment C.4. We now consider these two cases: (a)
when ∆f = 1/(n−1), the resolution limit for the numerical
experiments in [6], and (b) when the frequencies are drawn
uniformly at random and do not adhere to any minimum
resolution conditions. Figure VII.8 shows the probability P
of recovering k frequencies over 1000 trials for the triple
(n,m, s) = (40,15,7). We note that the probability of
complete success with known poles suffers relatively little
degradation for the random frequency resolutions. These trials
include instances when the minimum resolution condition does
not hold, formulation in (II.8) shows complete failure but the

Figure VII.7. The probability P of recovering the unknown spectral
content for selected values of s. The probability is computed for 100
random realizations of the signal with (n,m) = (256,40). (The lower
diagonal cases when k > 0, k ≤ p are invalid, and do not contribute
to the result.)

Figure VII.8. Performance of the known poles algorithm when the
frequencies do not satisfy any nominal resolution conditions. The
probability P of successfully recovering k frequencies is computed
for 1000 realizations of the signal with dimensions (n,m, s) =

(40,15,7). (a) ∆f = 1/(n−1) (b) Frequencies are selected uniformly
at random in the band [0,1].

known poles algorithm recovers the unknown spectral content
with complete success.
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