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Abstract

In order to improve the performance of least mean square (LMS)-based adaptive

filtering for identifying block-sparse systems, a new adaptive algorithm called block-

sparse LMS (BS-LMS) is proposed in this paper. The basis of the proposed algorithm

is to insert a penalty of block-sparsity, which is a mixed l2,0 norm of adaptive tap-

weights with equal group partition sizes, into the cost function of traditional LMS

algorithm. To describe a block-sparse system response, we first propose a Markov-

Gaussian model, which can generate a kind of system responses of arbitrary average

sparsity and arbitrary average block length using given parameters. Then we present

theoretical expressions of the steady-state misadjustment and transient convergence

behavior of BS-LMS with an appropriate group partition size for white Gaussian input

data. Based on the above results, we theoretically demonstrate that BS-LMS has much

better convergence behavior than l0-LMS with the same small level of misadjustment.

Finally, numerical experiments verify that all of the theoretical analysis agrees well with

simulation results in a large range of parameters.

Keywords: adaptive filtering, block-sparse system identification, convergence be-

havior, performance analysis, Markov-Gaussian model.

1 Introduction

Adaptive filtering has been an important research area that attracts much interest in both

theoretical and applied issues for a long time [1]. In many scenarios, the unknown systems

to be identified are sparse, which means that most of the entries are zero and only a small

number of nonzero coefficients exist in the long impulse response (Fig. 1(a)). The typical

sparse systems are digital TV transmission channels [2] and echo paths [3]. Among all

kinds of sparse systems, there is a family called clustering-sparse systems or block-sparse

systems [4]. Distinguished from general sparse systems in which the nonzero coefficients

may be arbitrarily located, the impulse response of a block-sparse system consists of one
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Figure 1: (a) A general sparse system. (b) A block-sparse system with one nonzero block.

(c) A block-sparse system with two nonzero blocks. (d) The active regions are located

randomly in known partition groups. (e) (f) The location of each cluster is arbitrary and

unknown, and all of the group partition sizes are the same for practical implementation.

or more clusters, wherein a cluster is a gathering of nonzero coefficients (Fig. 1(b,c)). The

acoustic echo path is a typical example of single-clustering sparse systems. In satellite-

linked communications, the impulse response of the echo path consists of several long flat

delay regions and disperse active regions, which is a representative of multi-clustering sparse

systems.

The least mean square (LMS) algorithm [6] is widely used in various applications due

to its low computational cost, easy implementation, and high robustness. However, the

traditional LMS has no particular improvement on block-sparse system identification. Many

algorithms have been proposed to take advantage of the prior knowledge of block-sparsity.

In some algorithms, an auxiliary filter is needed to estimate the positions of the disperse

regions. Based on the location information, a number of short adaptive filters are centered

at these clusters. The auxiliary filter may be realized as an adaptive delay filter (ADF)

[7, 8] or a full-tap adaptive filter which is operated at a reduced sampling rate [9]. In

other algorithms, the dispersive regions are detected through the process of convergence.

Stochastic Taps NLMS (STNLMS) [10] and its two variants [11, 12] locate the active region

in a stochastic manner. Select and queue with a constraint (SELQUE) algorithm [13]

categorizes all taps into two groups: active taps and inactive taps, the latter of which

are kept in two queues. The active tap with the minimum absolute coefficient value is

replaced by a tap in the queue that is exclusively used for inactive tap indexes residing in

the constrained region. An improved M-SELQUE algorithm [14] is applicable to identify an

unknown number of multiple dispersive regions. Furthermore, region-based wavelet-packet
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adaptive algorithm (RBWP) [15] detects the active taps in transform domain and has been

shown to be specially effective. In the above mentioned algorithms, the active taps are first

located then estimated. The explicitly separated two steps may decelerate the convergence

rate and reduce the robustness.

Inspired by a sparsity constraint adaptive algorithm named l0-LMS [16], we propose

block-sparse LMS (BS-LMS) in this work to improve the performance of block-sparse sys-

tem identification. In l0-LMS, the gradient descent of filter tap-weights are adjusted by

approximated l0 norm constraint to learn a general sparse system response. However, it

does not utilize the prior knowledge of block-sparsity and has no particular gain when it is

applied to identify a clustering sparse system. Motivated by this, we improve l0 norm in

the cost function to mixed l2,0 norm with equal group partition sizes and exert the sparsity

constraint in partitions. We then propose a Markov-Gaussian (M-G) model to generate and

describe block-sparse systems. Based on this model, theoretical analysis on the proposed

algorithm is conducted. It is proved that BS-LMS outperforms l0-LMS, when the partition

size is appropriately chosen. Numerical experiments demonstrate that in block-sparse sys-

tem identification the proposed algorithm has a faster convergence rate than the reference

algorithms with the same steady-state deviation.

This paper is organized as follows. Related works are briefly reviewed in Section 2.

BS-LMS is proposed in Section 3. The theoretical results on steady-state performance

and convergence behavior of BS-LMS are presented in Section 4. The Markov-Gaussian

model for generating block-sparse system is proposed and studied in Section 5. The key

part of this work goes in Section 6, where the optimal group partition size is studied and

superior performance of BS-LMS compared to l0-LMS is theoretically explained based on

the proposed M-G model. Numerical experiments are implemented to verify the above

theoretical results in Section 7. The conclusion is drawn in Section 8.

2 Related Work

In this section, we briefly review the available (block)-sparsity-constraint-based adaptive

algorithms, which are highly relevant to the proposed BS-LMS, from various approaches.

2.1 Sparsity-Constraint LMS

The identification of an unknown system with sparse impulse response could be accelerated

and enhanced by introducing a sparsity constraint into the cost function of LMS, where

the sparsity constraint could be approximated l0 norm [16], l1 norm [17], reweighted l1

norm [17, 18], smoothed l0 norm [19, 20], lp norm [21, 22], or a convex sparsity penalty

[23]. However, literature on adaptive filtering algorithms benefiting from block-sparsity

is scarce. Thus, it is important to further improve the performance by utilizing block

structure. Among the above algorithms, l0-LMS [16] demonstrates rather good performance
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in experiments and has comprehensive theoretical guarantee [24]. Therefore, in this work

we generalize l0-LMS to BS-LMS by utilizing block-sparsity. Part of our derivations (mainly

in Section 4) are based on the approach in [24]. However, the main contribution of this

paper, including BS-LMS algorithm Section (3), the Markov-Gaussian block-sparse model

(Section 5), and superior performance analysis (Section 6), are brand-new compared to the

above references.

2.2 Block-Sparse Signal Recovery

The idea of using mixed norm, such as l2,1 norm [25–27], approximated l2,0 norm [28],

lq,1 norm [29], to handle block-sparsity has been adopted in sparse signal recovery. By

exploiting block structure, recovery may be possible under more general conditions, which

demonstrates superior performance brought about by mixed norm. Furthermore, after

mixed norm is introduced, the reconstruction error in the presence of noise becomes smaller

compared with the conventional algorithms. Besides mixed norm, there are some other

approaches in block-sparse signal recovery, including greedy algorithms [30–33], Bayesian

CS framework-based algorithms [34, 35], the dynamic programming-based algorithm [36]

and the decoding-based algorithm [37].

2.3 Group Sparsity Cognizant RLS

Recursive least squares (RLS) is another important branch in adaptive filtering. Its faster

convergence rate compared to LMS makes RLS an intriguing adaptive paradigm. In [38],

group sparsity cognizant RLS is proposed by using various mixed norms, including l2,1 norm,

l1,1 norm, l2,0 norm, and l1,0 norm. Numerical experiments show that the novel group sparse

RLS is effective and robust for the block-sparse system identification problem, and provides

improved performance when compared to the references that only exploit sparsity.

2.4 Group Partition Selection

In some of above references [25–31, 33, 37, 38], it is assumed that the dispersive active

regions are located randomly in known partition groups (Fig. 1(d)). However, one may

readily accept that this assumption is impracticable in real scenarios. In fact, the location

of each cluster is arbitrary and totally unknown. In this paper, we utilize mixed l2,0 norm in

which all of the group partition sizes are the same for practice (Fig. 1(e, f)). Furthermore,

in order to avoid the confusion of blocks in unknown system response and the partition

blocks in adaptive tap-weights, we adopt block or cluster to indicate the system coefficient

blocks and group to denote the partitions in adaptive tap-weights. Based on the theoretical

analysis, we will further study the optimal group partition size and demonstrate that the

proposed algorithm with an appropriate group partition size achieves superior performance

than l0-LMS.
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3 Block-Sparse LMS

The proposed algorithm which exploits the block-sparsity of unknown system coefficients is

first introduced and then compared with the available works.

3.1 Algorithm Description

The unknown coefficients to be identified and the input signal at time instant n are denoted

by s = [s1, s2, · · · , sL]T and xn = [xn, xn−1, · · · , xn−L+1]T, respectively, where L is the

length of the unknown system and (·)T represents the transposition. The observed output

signal is

dn = xT
ns + vn, (1)

where vn denotes the measurement noise. The estimated error between the output of the

unknown system and that of the adaptive filter is

en = dn − xT
nwn, (2)

where wn = [w1,n, w2,n, · · · , wL,n]T denotes the adaptive tap-weights.

Motivated by the practical scenarios where the unknown coefficients appear in blocks

rather than being arbitrarily spread, we adopt mixed l2,0 norm to evaluate block-sparsity

of a vector u = [u1, u2, · · · , uL]T as

‖u‖2,0 ,

∥∥∥∥∥∥∥∥∥∥


‖u[1]‖2
‖u[2]‖2

...

‖u[N ]‖2


∥∥∥∥∥∥∥∥∥∥

0

, (3)

where u[i] =
[
u(i−1)P+1, u(i−1)P+2, · · · , uiP

]T
denotes the ith group of u, N and P denote

the number of groups and the group partition size, respectively. We further assume that L

can always be divided evenly by P as several zero taps can be added to the tail of u.

In order to learn the unknown system by utilizing the prior block-sparsity, we design a

new cost function, which combines the expectation of the estimated error and mixed l2,0

norm of tap-weight vector,

ξn , E
{
|en|2

}
+ λ ‖wn‖2,0 , (4)

where λ is a positive factor to balance the mean square error and the penalty of block-

sparsity. Considering that l0 norm optimization is computationally intractable, we approx-

imate l0 norm in (4) by a continuous function [39] and yield

ξn ≈ E
{
|en|2

}
+ λ

N∑
i=1

(
1− exp

(
−α

∥∥w[i],n

∥∥
2

))
, (5)
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where α is a positive constant. One may notice that (5) strictly holds when α approaches

infinity. By stochastic gradient descent approach and using the approximation

exp (−α|t|) ≈

1− α|t|, |t| 6 1/α;

0, elsewhere,
(6)

the new recursion of the adaptive tap-weights is

wn+1 = wn + µenxn + κg(wn), (7)

where µ denotes the step-size, κ = µλ/2 adjusts the intensity of block-sparse penalty for

given step-size, group zero-point attraction

g(u) ,
[
g1(u) , g2(u) , · · · , gL(u)

]T
,

and

gk(u),


2α2uk− 2αuk∥∥u[dk/P e]

∥∥
2

, 0<
∥∥u[dk/P e]

∥∥
2
61/α;

0, elsewhere,

(8)

where d·e denotes ceiling function. In order to avoid being divided by zero, a small positive

constant δ is inserted into the denominator of (8) in real implementation. The detailed

algorithm is described in Table 1.

3.2 Relationship with LMS and l0-LMS

First, one should notice that the group partition size P is a predefined parameter, which is

independent of the unknown system to be identified. Here we will discuss two special cases

where P = 1 and P = L.

In the case where P is equal to 1, mixed l2,0 norm in (3) is equivalent to

‖u‖2,0 =

∥∥∥∥∥∥∥∥∥∥


|u1|
|u2|

...

|uL|


∥∥∥∥∥∥∥∥∥∥

0

= ‖u‖0.

Consequently, the proposed BS-LMS degenerates to l0-LMS because their cost functions are

identical. On the other hand, when P is chosen as L, mixed l2,0 norm in (3) is equivalent

to

‖u‖2,0 =‖‖u‖2‖0 =

{
0, u = 0;

1, elsewhere.

Therefore, it is readily accepted that BS-LMS degenerates to traditional LMS in this case.

Based on the above discussion, one may find that BS-LMS is a generalization of LMS and

l0-LMS. Furthermore, the predefined group partition size controls the behavior of BS-LMS.

In the next section and afterward, we will discuss how to choose the group partition size

for the best performance.
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Table 1: The Procedure of BS-LMS.

Input: {xn, dn}n=0,1,2,···, L, P , µ, α, κ, δ;

Output: {wn}n=0,1,2,···.

Initialization: w0 = 0, N = L/P .

for n = 0, 1, 2, · · ·

en = dn − xT
nwn;

for i = 1, 2, · · · , N

Ei =

(
iP∑

j=(i−1)P+1

|wj,n|2
)1/2

;

end for

for k = 1, 2, · · · , L

gk = 2α2wk,n − 2αwk,nmax

(
1

Edk/P e + δ
, α

)
;

wk,n+1 = wk,n + µenxn−k+1 + κgk;

end for

end for

4 Performance of BS-LMS for General Sparse Systems

In this section, we follow the study in [24] and generalize the theoretical results of l0-

LMS to that of the proposed BS-LMS. All conclusions in this section share the similar

formulation as their counterparts of l0-LMS, though the constants inside the conclusions

are quit different. To save space, the details of assumptions and derivations are omitted,

while the new constants are listed in Appendix 9.1 for reference. However, it should be

emphasized that conducting the complicated derivations where the non-unit partition size

P is introduced is the main contribution of this section.
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4.1 Assumptions

Following the approach in [24], we classify the unknown coefficients, correspondingly, the

adaptive tap-weights, into three categories in group-partition-wise as

Large coefficients: CL(P ) ,
{
k
∣∣ ∥∥s[dk/P e]

∥∥
2
≥ 1/α

}
,

Small coefficients: CS(P ) ,
{
k
∣∣0 < ∥∥s[dk/P e]

∥∥
2
< 1/α

}
,

Zero coefficients: C0(P ) ,
{
k
∣∣ ∥∥s[dk/P e]

∥∥
2

= 0
}
.

We further denote the number of tap-weights belonging to the nonzero group partitions by

Q(P ) , |CL(P )∪CS(P )|, which is also termed the number of nonzero coefficients. However,

one should recognize that some zero coefficients may be counted as nonzero coefficients,

which is so called border effect (Fig. 1(e, f)) and will be studied in next section. Comparing

to those defined in [24], one may notice that the above introduced coefficients are closely

dependent on the group partition size. Without confusion, however, they are sometimes

abbreviated to CL, CS, C0, and Q.

We could demonstrate that all of the six assumptions in [24] still hold because the new

recursion does not destroy their validity. We further propose another assumption to make

the analysis of BS-LMS feasible.

7. The difference between the relative strength of wk,n and that of sk in CS is small

enough to ratify the following approximation,

wk,n∥∥w[dk/P e],n
∥∥

2

≈ sk∥∥s[dk/P e]
∥∥

2

, ∀k ∈ CS.

This assumption is considered proper due to the following reason. It is readily accepted

that in traditional LMS the tap-weights of wk,n uniformly converge to their optimal values

with i.i.d. white Gaussian input. In the proposed BS-LMS, because of group zero-point

attraction in (7), the uniform convergence may not exist in a global manner, but may

be available inside each group. Therefore, the temporary tap-weight and the unknown

coefficient with respect to their strengths in group are supposed very close. In fact, the

numerical experiment has verified that this assumption always remains valid, especially in

high SNR scenarios.

4.2 Steady-State Misalignment and Transient Behavior

Defining hn , wn−s as the misalignment of tap-weights and following the similar approach

in [24], the bias in steady state can be derived,

hk,∞ , lim
n→∞

hk,n =
κ

µσ2
x

gk (s) , ∀k = 1, 2, · · · , L, (9)

where overline denotes taking expectation and σ2
x denotes the variance of input signal.

According to (8), one may find that the tap-weights are unbiased for large and zero group

coefficients, while they are biased for small group coefficients.
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Lemma 1 (the counterpart of Theorem 1 in [24]) The steady-state mean square de-

viation (MSD) of BS-LMS is

D∞ , lim
n→∞

Dn , lim
n→∞

hT
nhn

=
µσ2

vL

∆L
+ β1κ

2 − β2κ
√
κ2 + β3, (10)

where σ2
v denotes the variance of measurement noise, ∆L is defined in (23), {βi}i=1,2,3 are

defined in (28), (29), and (30) in Appendix 9.1, respectively. The step-size should satisfy

0 < µ < µmax ,
2

(L+ 2)σ2
x

(11)

to guarantee convergence .

Lemma 2 (the counterpart of Corollary 1 in [24]) In order to make the steady-state

MSD be as small as possible, the best choice for κ is

κopt =

√
β3

2

(
4

√
β1 + β2

β1 − β2
− 4

√
β1 − β2

β1 + β2

)
(12)

and the minimum steady-state MSD is

Dmin
∞ =

µσ2
vL

∆L
+
β3

2

(√
β2

1 − β2
2 − β1

)
. (13)

Lemma 3 (the counterpart of Theorem 2 in [24]) For a given unknown system, the

closed form of instantaneous MSD is

Dn = c1λ
n
1 + c2λ

n
2 + c3λ

n
3 +D∞, (14)

where λ1 and λ2 are the eigenvalues of matrix A, which is defined in (32). c1 and c2 are

coefficients defined by initial value (please refer to Lemma 1 in [24]). The expressions of

constants λ3 and c3 are listed in (37) and (38), respectively, in Appendix 9.1.

Remark 1 Based on the above lemmas, we have successfully generalize the theoretical re-

sults of l0-LMS to BS-LMS. As we have mentioned, most of their formulations are exactly

identical, whereas the constants included are rather different. To totally understand the

above contents, the readers are recommended to refer to [24] and compare those constants

in Appendix A of [24] with those in Appendix A of this paper. Based on the foundation of

this section, we have prepared to comprehensively study the performance of BS-LMS.

5 Markov-Gaussian Model for Generating Block-Sparse Sys-

tems

Inspired by the characteristic of nonzero (or zero) coefficients clustering in blocks, we pro-

pose a Markov-Gaussian (M-G) model with parameter set, M(L, p1, p2, σ
2
s), to generate a
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p2p2

1− p21− p2

1− p11− p1
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1 2

1

2

p
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Figure 2: The proposed model for generating block-sparse impulse response.

wide range of block-sparse systems. One will notice that the proposed one is a simplified

Ising model that fits to the scenario in this study.

Utilizing the proposed model, the impulse response s of a block-sparse system is gener-

ated in two steps. In the first step, the zero and nonzero sets which contain the index of zero

coefficients and nonzero coefficients, respectively, are produced by a Markov process. From

1 to L, index k is iteratively and stochastically determined to fall into zero or nonzero sets

based on the class of index (k−1). Please refer to Fig. 2 for detail, where for k = 2, 3, · · · , L

P {sk = 0|sk−1 = 0} = p1,

P {sk 6= 0|sk−1 6= 0} = p2,

and the category of s1 is decided by s0, which is an imaginative scaler and fixed to zero. In

the second step, after the nonzero set is determined, the amplitudes of nonzero coefficients

are independently and identically drawn from a Gaussian distribution with zero mean and

variance σ2
s .

According to Fig. 2, for the sake of producing a sparse system response, it should be

guaranteed that (1−p2) is far larger than (1−p1). Furthermore, both p1 and p2 need to be

very close to 1 in order to generate a clustering impulse response. The proposed model has

several properties that demonstrate its advantages and will be used to analyze the proposed

BS-LMS in the following section.

Property 1 ( Sparsity and block size) For givenM(L, p1, p2, σ
2
s), the average percentage of

nonzero coefficients, the average block size of nonzero and zero coefficients of the generated

impulse responses, which are denoted by S,Bnz, and Bz, respectively, follow

S =
1− p1

2− p1 − p2
, Bnz =

1

1− p2
, and Bz =

1

1− p1
.

Several examples of block-sparse systems generated by L = 800, σ2
s = 1, and various

(p1, p2) are showed in Fig. 3. Inside every row and every column, the average block size of

zero and nonzero coefficients increase, respectively, with respect to p1 and p2. Moreover,

the three responses located on the diagonal subplots satisfy S = 0.1 and have 80 expected

nonzero coefficients.

Next we will study the border effect quantitatively based on the proposed model.
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0.82

0.91

0.955

Figure 3: The examples of block-sparse impulse responses generated by the proposed M-G

model with L = 800, σ2
s = 1 and various (p1, p2). (S,Bnz, Bz) with corresponding parameter

set is listed below each subfigure. The three systems located on the diagonal subplots share

the same sparsity.

Property 2 ( Border effect) For given M(L, p1, p2, σ
2
s) and a predefined group partition

size P , we can calculate the average number of tap-weights belonging to nonzero groups, Q,

to describe the intensity of the border effect,

Q = L
(

1− (1− S)pP−1
1

)
. (15)

Proof The proof is postponed to Appendix 9.2.

According to this property, one may find that Q becomes larger when P increases, which

shows the border effect is heavier.

At last, we will show the relationship between the proposed M-G model and the Ising

model [40], which is a prototypical Markov random field.

Property 3 ( Relation with Ising model) The proposed Markov model for determining zero

and nonzero coefficients sets is a special case of the Ising model. Specifically, for the Ising

model, its probability density function is

p(sp(s); ζ, ζ′) = exp

{
L∑
i=1

ζisi +
L−1∑
i=1

ζ ′isisi+1 − Zs(ζ, ζ
′)

}
,

where sp(s) denotes the support of s,

sp(si) =

{
1, si 6= 0;

−1, si = 0,

11



M-G model

 2

1 2, , , sL p p 

Unknown block-
sparse system

BS-LMS

+

+
++



nx nv

nd
ne

GenerateGenerate

Figure 4: The framework of studying the average performance of BS-LMS in identifying

block-sparse systems generated by a M-G model.

and Zs(ζ, ζ
′) is a strictly convex function with respect to ζ and ζ′ that normalizes the

distribution so that it integrates to one. When

ζi =


1
4 ln

p2(1− p1)
p1(1− p2)

, i = 1, L;

1
2 ln

p2
p1
, i = 2, · · · , L− 1,

ζ ′i =
1

4
ln

p1p2

(1− p1)(1− p2)
, i = 1, · · · , L− 1,

the Ising model degenerates to the proposed Markov model, which is equipped by concise and

meaningful parameters.

As far as we know, this is the first time that Markov process is used to describe block-

sparsity. Besides the scenarios of system identification, the proposed M-G model may be

utilized in various research area to generate arbitrary system response with given block-

sparse constraint.

6 Performance of BS-LMS for Block-Sparse Systems

The behavior of BS-LMS in block-sparse scenario is further studied in this section by uti-

lizing the proposed M-G model. New assumptions are adopted as follows.

8. For a given unknown system, which is supposed to be long and sparse, the partition

size P is small with respect to the filter length to guarantee that the system response

in group-partition-wise is still sparse, i.e., 2� Q� L.

9. The unknown system response to be identified is generated by the proposed M-G

model, M(L, p1, p2, σ
2
s). Please refer to Fig. 4 for illustration.
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Assumption 8) makes sense because P is an important predefined parameter that need

to be elaborately selected. Furthermore, it can be accepted that BS-LMS penalizes sparsity

in group-partition-wise and an overlarge P definitely destroys the sparsity.

The introduction of M-G model by Assumption 9) makes it feasible to analyze BS-LMS

with respect to block-sparse systems. As a consequence, we will study the performance of

BS-LMS in the sense of expected unknown system response, which is generated by the given

M-G model with specified parameters. Therefore, the average minimum steady-state MSD

(AMS-MSD), the optimal group partition size, and the average minimum transient MSD

(AMT-MSD), denoted as Dmin
∞ , Popt, and Dmin

n , respectively, will be derived in the following

text.

Finally we demonstrate that BS-LMS outperforms l0-LMS in convergence rate signifi-

cantly when the group partition size is chosen close to its optimum.

6.1 Steady-State Performance and Optimal Group Partition Size

The following theorem presents the effect of the group partition size on the AMS-MSD and

the selection of the optimal partition size.

Theorem 1 For given block-sparse systems generated by the proposed M-G model, the

AMS-MSD of BS-LMS is

Dmin
∞ ≈ µσ2

v

∆Q

Q+

√
2π(L−Q)G(s)

αθ(P )∆Q

 . (16)

where Q,∆Q, and G(s) are defined in (15), (48), and (51), respectively. The optimal group

partition size could be numerically found by

Popt = arg min
P
Dmin
∞ . (17)

Proof The proof is postponed to Appendix 9.3.

Corollary 1 The AMS-MSD monotonically increases with respect to the step-size.

Corollary 1 is coincident with the intuition and the theory on l0-LMS. This can be

readily seen from (16) because ∆Q monotonically decreases with respect to µ.

Remark 2 As l0-LMS is a special case of BS-LMS when P equals 1, we expect that the

AMS-MSD of BS-LMS with Popt is no larger than that of l0-LMS when all the other param-

eters are same. Considering the high complexity of the closed form of Popt, it is not derived

here for the sake of simplicity.
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6.2 Superior Performance of BS-LMS

Based on Lemma 3 and Theorem 1, we could demonstrate that the averaged transient

behavior of BS-LMS with an appropriate group partition size is better than that of l0-LMS.

Theorem 2 For given block-sparse systems generated by the proposed M-G model, the

closed form of the AMT-MSD of BS-LMS is

Dmin
n = c′1(λ′1)n + c′2(λ′2)n + c′3(λ′3)n +Dmin

∞ , (18)

where

λ′1 ,1− 2µσ2
x, (19)

λ′2 ,1− 2µσ2
xαθ(P )

√
2
(
L−Q

)
πG(s)

, (20)

λ′3 ,1− µσ2
x, (21)

and the expressions of {c′i}i=1,2,3 share the same forms with {ci}i=1,2,3 in Lemma 3 except

for that Q,G(s), ‖s‖22, and G′(s)are replaced by their means defined by (15), (51), (65), and

(66), respectively.

Proof The proof is postponed to Appendix 9.4.

The difference of Theorem 2 from Lemma 3 is that the former provides an averaged

minimum behavior of the best κ with respect to a given unknown system generation model.

As a consequence, the close form of {λ′i} are provided to reveal the detail of convergence in

BS-LMS.

In order to compare the convergence behavior of BS-LMS and l0-LMS fairly, it is assumed

that the final steady-state MSDs of both algorithms are equal. According to Corollary 1

and Remark 2, we know that the step-size in BS-LMS is larger than that in l0-LMS when

the two algorithms demonstrate the same steady-state performance. Then we have the

following corollary.

Corollary 2 For a given M-G model M(L, p1, p2, σ
2
s) satisfying

1− p1

(1− p2)2
≥ 1

3(1− e−1)
, (22)

{λ′i}i=1,2,3 in (18) with Popt are smaller than, respectively, those of l0-LMS, which means

that BS-LMS with Popt always converges more quickly than l0-LMS.

Proof The proof is postponed to Appendix 9.5.

Though we further restrict the selection of p1 and p2 to facilitate the proof, it is found

that (22) is not necessary. In fact, Corollary 2 is usually valid even when (22) is violated,

as shown in numerical results.
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Figure 5: The block-sparse systems tested in the first experiment.

7 Numerical Simulations

Five experiments are designed to verify the contents in this paper, where the first two

demonstrate the performance of BS-LMS and the M-G model, and the last three test the

theoretical analysis. The reference algorithms include STNLMS [10], SELQUE [13], M-

SELQUE [14], and l0-LMS [16]. In all the experiments, the unknown systems are of length

L = 800. For those generated with the proposed M-G model, σ2
s is set as 1. The input signal

and measurement noise are independent zero mean Gaussian series. For both BS-LMS and

l0-LMS, α is chosen as 1. For BS-LMS, δ = 1e-8. The Signal-to-Noise Ratio (SNR) is 40dB

and 20dB in the fifth experiment, while it is 40dB in the others. Simulation results are

averaged by 10 independent trials for each unknown system. To get the average MSD, 100

unknown systems are generated and identified, and then the MSDs of these systems are

averaged.

7.1 On the Performance of BS-LMS and M-G Model

In the first experiment, the proposed algorithm is tested and compared with the references

by identifying two block-sparse systems which have the same sparsity. The impulse re-

sponses of these systems are displayed in Fig. 5, where the first has a single cluster of

nonzero coefficients at [405, 451] and the second has two clusters at [405, 429] and [569, 590],

respectively. The simulation results are plotted in Fig. 6. For the proposed algorithm, the

parameters are set as µ = 1/L, κ = 1.55e-6 and P = 5. For all reference algorithms, the

step-sizes are selected to make their steady-state MSDs equal to that of BS-LMS, and other

parameters are elaborately tuned to produce their fastest convergence.

According to Fig. 6, when there is only one cluster in the system response, the conver-

gence performance of BS-LMS is still lightly inferior to other block algorithms. SELQUE

converges the fastest among all the algorithms. Nonetheless, when there exists two clus-
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Figure 6: The learning curves of the proposed algorithm and the references when identifying

the two block-sparse systems displayed in Fig. 5, where (top) and (bottom) correspond to

the single-cluster and multi-cluster system respectively.

ters, BS-LMS shows its advantage. Because BS-LMS need not detect the active regions,

its performance is nearly not affected by the number of clusters. The convergence rates

of STNLMS and SELQUE deteriorate significantly, because all of the active regions, along

with flat delays between the two clusters, are considered as a long active region. Although

M-SELQUE can obviate this problem, its convergence behavior still becomes worse when

the unknown system has multi-clusters.

In the second experiment, BS-LMS and the proposed M-G model are tested. The

simulation results are plotted in Fig. 11, where (a), (b), and (c) correspond to the unknown

systems plotted in the diagonal subfigures of Fig. 3, respectively, from left-top to right-

bottom. For BS-LMS, the parameters µ, κ, and P are set as 0.6/L, 3.90e-7, and 3 for (a),

1/L, 1.07e-6, and 4 for (b), 1/L, 1.60e-6, and 5 for (c). For the reference algorithms, the

step-size and other parameters are properly adjusted to get their fastest convergence rate

and equal steady-state MSD with BS-LMS.

According to the simulation results, BS-LMS and l0-LMS are always among the best

when identifying various block-sparse systems, which are generated by the proposed M-G

model with various parameter sets. BS-LMS converges faster than l0-LMS, because the
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Figure 7: Steady-state MSD of BS-LMS of different group partition size with respect to κ.

The solid square denotes the theoretical κopt.

former utilizes the block-sparsity prior. Among all the algorithms based on active region

detection, M-SELQUE behaves the best but still converges slower than l0-LMS, because it

takes more iterations to identify the locations of nonzero coefficients and thus reduces the

convergence rate when there are more and dispersed clusters, which is highly likely to be

produced by utilizing the M-G model. SELQUE and STNLMS get the worst performance

because they are not suitable to the multi-cluster system, which has been demonstrated in

the first experiment. Above all, we can conclude that BS-LMS has a superior robustness

than all reference algorithms, especially in the scenarios of multiple-scattered-cluster sparse

systems.

7.2 On the Theoretical Results

In the third experiment, the steady-state performance of BS-LMS of different group parti-

tion size P with respect to κ is tested. The unknown system response is shown in the center

of Fig. 3. P is chosen as 1, 5, 10, and 20, respectively. For each P , κ varies from 10−9 to

10−5, and µ = 0.8/L.

Referring to Fig. 7, we can see that the theoretical steady-state MSD of BS-LMS agrees

well with the simulation result. For every group partition size, as κ increases from 10−9, the

steady-state MSD decreases at first, which means that proper GZA is useful to reduce the

amplitudes of coefficients in C0. However, when κ continues to increase, more intense GZA

enhances the bias of coefficients in CS. For different group partition size, the minimum

steady-state MSD and its corresponding optimal κ varies. One may recognize that the

simulation result of the optimal κ tallies with theoretical κopt very well.

In the fourth experiment, for given M-G model, the effect of group partition size on the

average steady-state MSD is investigated. The model parameter set (p1, p2) is chosen as
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Figure 8: Average steady-state MSD of BS-LMS with respect to different group partition

size for given M-G model. κ is chosen as the theoretical optimal and the solid square denotes

Popt.

(0.98, 0.82), (0.99, 0.91), and (0.995, 0.955), respectively. Three typical system responses are

plotted in the diagonal subfigures of Fig. 3. P varies from 1 to 50. For each P , κ is chosen

as the theoretical optimal, and µ = 0.4/L.

Please refer to Fig. 8 for the result. According to Fig. 3, with the growth of p1 and

p2, the average block size of nonzero coefficients increase from 5.6, 11.1, to 22.2. As a

consequence, the optimal group partition size Popt also increases from 3, 4, to 5. One may

find that for all block-sparse systems, when P initially increases from 1, the minimum MSD

decreases quickly at first, which means that treating nonzero coefficients in groups really

improves the identification of block-sparse system. However, the minimum MSD increases

after P exceeds its optimum, which is much smaller than the average block size, and becomes

larger than that of P = 1, which demonstrates the severe consequence of border effect. The

above results accord well with the intuition. Furthermore, simulation results tally with

analytical values, especially when P is small.

In the last experiment, for given M-G model, the theoretical transient behavior of BS-

LMS with the optimal group partition size is verified by simulation and compared with that

of l0-LMS. The model parameter set (p1, p2) is chosen as (0.99, 0.91). A typical unknown

system response is shown in the center of Fig. 3. The SNR are selected as 40dB and 20dB

to test the performance in various noisy scenarios. For BS-LMS and l0-LMS, µ is chosen as

0.637/L and 0.4/L, respectively, to make their average steady-state MSDs equal. For both

algorithms, P and κ are chosen as their corresponding optimal values.

Please refer to Fig. 9 and Fig. 10. One may readily see that the convergence rate

of BS-LMS is always faster than that of l0-LMS. Furthermore, the theoretical analysis of

transient behavior accords with simulation in a tolerable error, which origins mainly from

large step-size and the independence assumption.
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Figure 9: Average learning curves of BS-LMS and l0-LMS with given M-G model (p1 = 0.99

and p2 = 0.91). P and κ are chosen as the optimal. The SNR is 40dB.

0 0.5 1 1.5 2 2.5

x 10
4

10
−4

10
−2

10
0

10
2

Iteration times

M
ea

n 
M

S
D

 

 
l0−LMS;Simu

l0−LMS;Theory

BS−LMS;Simu
BS−LMS;Theory

Figure 10: Average learning curves of BS-LMS and l0-LMS with given M-G model (p1 = 0.99

and p2 = 0.91). P and κ are chosen as the optimal. The SNR is 20dB.

8 Conclusion

In order to improve the performance of block-sparse system identification, a new algorithm

based on l0-LMS is proposed in this paper by changing l0 norm to mixed l2,0 norm with equal

group partition sizes in the cost function. Also, a M-G model is put forward to describe

the block-sparse system. Furthermore, the theoretical analysis on performance of BS-LMS

compared to l0-LMS is presented based on the expressions of mean square misalignment,

which shows that BS-LMS is better than l0-LMS theoretically. Finally, simulations are

designed to verify the theoretical results and confirm superior performance of our proposed

algorithm.
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9 Appendix

9.1 Expressions of Constants

All through this paper, we have

∆L , 2− (L+ 2)µσ2
x, ∆Q , 2− (Q+ 2)µσ2

x, (23)

∆0 , 1− µσ2
x, ∆′0 , 2− µσ2

x, (24)

G(s) ,〈g(s),g(s)〉 =
∑
k∈CS

g2
k(s), (25)

G′(s) ,〈s,g(s)〉 =
∑
k∈CS

skgk(s). (26)

In Lemma 1, the constants {βi} are

β0,µσ
2
x∆′0∆LG(s)+4α2∆Q

(
µσ2

x∆L

P
+

∆0∆Qθ
2(P )

π

)
, (27)

β1,
∆′0G(s)+4(L−Q)α2

(
µσ2

x
P +

2∆0∆Qθ
2(P )

π∆L

)
µ2σ4

x∆L
, (28)

β2,
4α (L−Q) θ(P )

µ2σ4
x∆2

L

√
∆0β0

π
, (29)

β3,2µ3σ4
xσ

2
v∆0∆L/β0, (30)

where θ(P ) is defined as

θ(P ) ,


[((P − 1)/2)!]2 2P−1

P !
, P is odd;

(P − 1)!π
(P/2)!(P/2− 1)!2P

, P is even.
(31)

In the proof of Lemma 3, A = {aij} is defined as

A,

1− µσ2
x∆L −θ(P )

√
8
π
κα∆0
ω

(L−Q)µ2σ4
x 1− 2µσ2

x∆0 − θ(P )
√

8
π
κα∆0
ω

 (32)

and bn is also used in the derivation (please refer to [24]),

bn , [b0,n, b1,n]T, (33)

where

b0,n , Lµ2σ2
xσ

2
v+(L−Q)

(
4α2κ2

P
−θ(P )

√
8

π
κ∆0αω

)

+
κ2
(
∆′0 − 2∆n+1

0

)
µσ2

x

G(s)− 2κ∆n+1
0 G′(s), (34)

b1,n , (L−Q)

(
µ2σ2

xσ
2
v+

4α2κ2

P
− θ(P )

√
8

π
κ∆0αω

)
. (35)
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Please notice that in (32), (34), and (35), ω is the solution of

2µσ2
x∆0∆Lω

2 +
8καθ(P )∆0∆Q√

2π
ω − 2µ2σ2

xσ
2
v∆0

− κ2

(
4α2∆Q

P
+G(s)∆′0

)
= 0. (36)

In Lemma 3, the constants λ3 and c3 are

λ3 ,∆0, (37)

c3 ,− 2κ∆0

µσ2
x

µσ2
x − 2µ2σ4

x + θ(P )
√

8
π
κα∆0
ω

det (λ3I−A)

·
(
κG(s) + µσ2

xG
′(s)
)
. (38)

9.2 Proof of Property 2

When we choose a group partition size P to divide the unknown system coefficients, L/P

groups are obtained. For simplicity, we consider every group independently. Here we denote

the number of nonzero coefficients in a group as a random variable M and the probability

that M equals m, 0 ≤ m ≤ L, as P {M = m}. Based on the definition of transfer matrix

and the fact that the Markov process is in steady-state distribution, we can get the solution

of m = 0 as

P {M=0} =
1− p2

2− p1 − p2
pP−1

1 .

Utilizing Property 1, we then have

Q =
L

P
(P · P {M > 0}) = L

(
1− (1− S)pP−1

1

)
. (39)

9.3 Proof of Theorem 1

Proof In order to get the mean steady-state MSD of BS-LMS, we need to simplify the

result in Lemma 2. Before giving out approximations, we will prove a useful inequality

G(s) < 4α2Q/P. (40)

For small group coefficients, according to (8), we know that

|gk(s)| <
2α|sk|∥∥s[dk/P e]

∥∥
2

. (41)

As the number of small groups is no larger than Q/P and the sum of squares of gk(s), which

belongs to the same small group, is less than 4α2, we get the inequality (40).

21



Then we will present some approximations. Utilizing ∆0 ≈ 1, ∆′0 ≈ 2, which are derived

from Assumption 8), and (40) in (27), (28), (29), and (30), we have

β0 ≈4α2∆0∆2
Qθ

2(P )/π ≈ 4α2∆2
Qθ

2(P )/π, (42)

β1 ≈
1

πµ2σ4
x∆2

L

8(L−Q)α2∆0∆Qθ
2(P )

≈ 1

πµ2σ4
x∆2

L

8(L−Q)α2∆Qθ
2(P ), (43)√

β2
1 − β2

2 ≈
1

µ2σ4
x∆2

L

[ (
8(L−Q)α2∆Qθ

2(P )/π+2∆LG(s)
)2

−16α2(L−Q)2θ2(P )
(
4α2∆2

Qθ
2(P )/π+2µσ2

x∆LG(s)
)
/π

] 1
2

≈
4αθ(P )

√
2(L−Q)G(s)/π

µ2σ4
x∆L

, (44)

β3 ≈
πµ3σ4

xσ
2
v∆L

2α2∆2
Qθ

2(P )
. (45)

Utilizing (43), (44), and (45) in (13), one achieves a temporary result that

Dmin
∞ ≈ µσ2

v

∆L

(
L− 2(L−Q)

∆Q

)
+
µσ2

v

√
2π(L−Q)G(s)

αθ(P )∆2
Q

. (46)

The first item in the RHS of (46) could be further approximated by adopting Assumption

8) and we finally arrive

Dmin
∞ ≈ µσ2

v

∆Q

(
Q+

√
2π(L−Q)G(s)

αθ(P )∆Q

)
. (47)

For the sake of mathematical tractability, we replace Q and G(s) in the above equation

with their means, respectively, to yield the final average steady-state MSD of (16). One

may accept that there is no other choice because the formula of (47) is highly sophisticated.

However, simulation result will verify that the approximation produces acceptable errors.

What remains in finishing the proof is to derive the expression of Q and G(s). The

former could be gotten based on Property 2 of M-G model, and we define

∆Q , 2− (Q+ 2)µσ2
x. (48)

In the following, we will conduct the derivations of G(s).

Assuming that there are m nonzero unknown coefficients in a certain small group, we

have
m∑
k=1

g2
k(s) = 4α4

m∑
k=1

s2
k − 8α3

(
m∑
k=1

s2
k

) 1
2

+ 4α2. (49)

We denote the mean of the LHS of (49) as Fα(m). According to the M-G model that the

nonzero coefficients follow i.i.d. Gaussian distribution and the property of χ2 distribution,
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Fα(m) is obtained as

Fα(m) =
4α2

Γ(m/2)

[
2α2σ2

sγ

(
m+ 2

2
,

1

2α2

)
+γ

(
m

2
,

1

2α2

)
− 2
√

2ασsγ

(
m+ 1

2
,

1

2α2

)]
, (50)

where Γ(·) and γ(·, ·) denote the ordinary gamma function and the lower incomplete func-

tion, respectively. Then we know that

G(s) =
L

P

P∑
m=1

P {M = m}Fα(m). (51)

where P{M = m} follows the definition in Appendix 9.2 and is further solved as

P {M=m}

=



1− p2
2− p1 − p2

pP−1
1 , m=0;(

1− (1− p2)pP−1
1 + (1− p1)pP−1

2
2− p1 − p2

)
·

1− p2
p1

1− (
p2
p1

)P−1
(
p2
p1

)m−1, 0<m<P ;

1− p1
2− p1 − p2

pP−1
2 , m=P.

(52)

Then the AMS-MSD is finally achieved.

Considering its sophisticated shape of expression (16), we prefer to numerically solve

the optimal parameter by (17). Thus the proof of Theorem 1 is completed.

9.4 Proof of Theorem 2

Proof From Lemma 3, we have already gotten the close forms of instantaneous MSD, c3,

and λ3. Here we will show how to get the approximate close forms of λ1, λ2, c1, and c2.

Note that all expressions of {ci, λi} are attached by (·)′ here to distinguish them from those

in Lemma 3.

We will first present the sketch of our proof. Based on Lemma 3, we know that λ1

and λ2 are the eigenvalues of matrix A, which is defined by (32). Utilizing Assumption 8),

which derives ∆0 ≈ 1 and ∆Q ≈ 2, in (32), we could simplify det(λI−A) = 0 by

(λ′)2 −
(
2− 2µσ2

x − µC(µ, ω)
)
λ′

+ 1− 2µσ2
x − µC(µ, ω) + 2µ2σ2

xC(µ, ω) = 0, (53)

where

C(µ, ω) , σ2
x∆L +

√
8

π

κα

µω
θ(P ). (54)

We then solve the quadratic equation of (53) and get the close forms of

λ′1 , 1− 2µσ2
x, λ′2 , 1− µC(µ, ω).
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As a consequence, c′1 and c′2 are obtained by satisfying initial values,

c′1,2 ,
(1− µσ2

x∆L) ‖s‖22 + b0,0 −D∞ − c′3λ′3
λ′1,2 − λ′2,1

−
λ′2,1

(
‖s‖22 − c′3 −D∞

)
λ′1,2 − λ′2,1

, (55)

where λ′3 and c′3 are defined in (37) and (38), respectively. If we could prove that

C(µ, ω) ≈ 2σ2
xαθ(P )

√
2 (L−Q)

πG(s)
, (56)

Thoerem 2 is ready to be proved.

Next we will prove (56). By taking the approximation of ∆0 ≈ 1,∆′0 ≈ ∆Q ≈ 2 and

utilizing the optimal κ in (36), we get

µσ2
x∆Lω

2 +
8κoptαθ(P )ω√

2π
− µ2σ2

xσ
2
v − κ2

opt

(
4α2

P
+G(s)

)
=0. (57)

Solving (57) to get the closed form of ω and inserting it into κopt/(µω), we get

κopt

µω
=

σ2
x∆L

−
√

8
παθ(P ) +

√
t1 + t2 + t3

, (58)

where

t1 , 8α2θ2(P )/π, (59)

t2 , µ3σ4
xσ

2
v∆L/κ

2
opt ≈ 16α2θ2(P )/(πt4), (60)

t3 , µσ2
x∆L

(
4α2/P +G(s)

)
, (61)

t4 ,

√
L−Q
2πG(s)

4αθ(P )

∆L
− 1. (62)

Please note that the approximation in (60) is produced by utilizing (42), (43), (44), (45),

and ∆Q ≈ 2 in (12).

If it can be proved that

G(s)� Lα2/P, (63)

we see that t1 is much larger than t3. Inserting (59) and (60) in (58) and omitting t3, we

get
κopt

µω
=

σ2
x∆L√

8
παθ(P )

(
−1 +

√
1 + 2/t4

) ≈√π

8

σ2
x∆Lt4
αθ(P )

, (64)

where t4 � 1, which can be derived based on (62) and (63), is adopted in (64). Utilizing

(62) and (64) in (54), we finally prove (56).

Now we will prove (63). According to the empirical hypothesis that max(Fα(m)/α2) ∼
O(1) and two properties that P {M = m} � 1 with 1 ≤M ≤ P and that Fα(m) decreases
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dramatically with the increase of m based on the property of γ(·, ·), we get that G(s) �
Lα2/P . Finally we adopt the method used in the proof of Theorem 1 by replacing the

random variables in Lemma 3 by their expectations to produce an average result.

In Theorem 2, ‖s‖22 and G′(s) are defined as, respectively,

‖s‖22 =LSσ2
s , (65)

G′(s) =
L

P

P∑
m=1

P {M = m}F ′α (m) , (66)

where F ′α(m) is defined as

1

Γ(m/2)

[
4α2σ2

sγ

(
m+2

2
,

1

2α2

)
− 2
√

2ασsγ

(
m+1

2
,

1

2α2

)]
.

9.5 Proof of Corollary 2

Proof Because the step-size in BS-LMS with Popt is larger than that in l0-LMS, it is

obvious that λ′1 and λ′3 in BS-LMS with Popt is smaller. In order to compare λ′2 between

BS-LMS and l0-LMS, we investigate (L−Q)θ2(P )/G(s) in (20).

According to the property of γ(a, x), F ′α(n) decreases dramatically with the increase of

n. Thus
∑P

m=1 P {M = m}F ′α(m) is mainly determined by its first item. We then have

(L−Q)θ2(P )

G(s)
≈ (1− p2)θ2(P )Pf(P )

(1− p2/p1)Fα(1)
,

where f(P ) is defined as

f(P ),


1− p2/p1

1− p1
, P = 1;

pP−1
1 − pP−1

2

(1− p2)(1− pP−1
1 ) + (1− p1)(1− pP−1

2 )
, P ≥ 2.

First, we show that θ2(P )P is no less than θ2(1) · 1. When P is odd, θ2(P )P can be

expressed as

θ2(P )P =


(P − 1)!!(P − 1)!!
P !!(P − 2)!!

, P is odd and P > 1;

1, P = 1.

We see that θ2(P )P increases when P becomes larger. Similarly, the same conclusion is

reached when P is even. Moreover, we can see that θ2(2) · 2 = π2/8 > 1 = θ2(1) · 1.

Therefore θ2(P )P ≥ θ2(1) · 1 is gotten.

Next, we prove f(Popt) ≥ f(1) by utilizing the condition that Q(Popt)/L = 1 − (1 −
p2)p

Popt−1
1 /(2− p1 − p2)� 1. f(Popt) ≥ f(1) is equivalent to

L(Popt) =
1− p1

1− p2

(
1− (p2/p1)Popt

)
≥ R(Popt) =

Q(Popt)/L

1−Q(Popt)/L
(1− p2/p1). (67)
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If 2 ≤ Popt ≤ p1/(p1 − p2), we just need to prove L(2) ≥ R(2) and L(p1/(p1 − p2)) ≥
R(p1/(p1−p2)) because L(P ) and R(P ) are concave and convex respectively. When P = 2,

we have

L(2)=
1− p1

1− p2
(1− p2

p1
)(1 +

p2

p1
)>R(2)=

1− p1

1− p2
(1− p2

p1
)
2− p2

p1
,

based on that p1 and p2 are close to 1. When P = p1/(p1 − p2), we take the first-order

Taylor expansion of L(P ) and R(P ). If the Taylor expansion of L(P ) is far larger than that

of R(P ), (67) is valid. we know that

L(
p1

p1−p2
)≈1−p1

1−p2
(1−p2

p1
)(1 +

p2

p1 − p2
)

�R(
p1

p1−p2
)≈1−p1

1−p2
(1−p2

p1
)

(
1+

(2−p1−p2) p2
p1−p2

1− 1−p1
p1−p2 p2

)
, (68)

based on that p2/(p1− p2)� 1, 2− p1− p2 � 1 and (1− p1)/(p1− p2)� 1. Therefore (67)

is satisfied when 2 ≤ Popt ≤ p1/(p1 − p2). If Popt > p1/(p1 − p2), we have that

L(Popt) >
1− p1

1− p2

(
1− (p2/p1)p1/(p1−p2)

)
>

1− p1

1− p2
(1− 1/e) ≥ 1

3
(1− p2) >

1

3
(1− p2/p1)

>
Q(Popt)/L

1−Q(Popt)/L
(1− p2/p1) = R(Popt).

Thus the conclusion that f(Popt) ≥ f(1) is reached.

Above all, it can be seen that (L −Q)θ2(P )/G(s) is larger when P is Popt. Therefore,

λ′2 in BS-LMS with optimal P is smaller than that in l0-LMS. Thus the proof of Corollary

2 is arrived.
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Figure 11: The learning curves of the proposed algorithm and the references when identi-

fying three different unknown systems whose impulse response are plotted in the diagonal

subfigures of Fig. 3, where (top), (middle), and (bottom) corresponding to, respectively,

the left-top, the middle, and the right-bottom.
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