
ar
X

iv
:1

41
0.

20
46

v1
  [

st
at

.A
P

]  
8 

O
ct

 2
01

4
1

Bayesian tracking and parameter learning for

non-linear multiple target tracking models
Lan Jiang∗a, Sumeetpal S. Singha, Sinan Yıldırımb

Abstract

We propose a new Bayesian tracking and parameter learning algorithm for non-linear non-Gaussian multiple

target tracking (MTT) models. We design a Markov chain MonteCarlo (MCMC) algorithm to sample from the

posterior distribution of the target states, birth and death times, and association of observations to targets, which

constitutes the solution to the tracking problem, as well asthe model parameters. In the numerical section, we present

performance comparisons with several competing techniques and demonstrate significant performance improvements

in all cases.

I. INTRODUCTION

The multiple target tracking (MTT) problem is to infer, as accurately as possible, the states or tracks of multiple

moving objects from noisy measurements. The problem is madedifficult by the fact that the number of targets is

unknown and changes over time due to the birth of new targets and the death of existing ones. Moreover, objects are

occasionally undetected, false non-target generated measures (clutter) may be recorded and the association between

the targets and the measurements is unknown.

Given observations recorded over a length of time, say from time 1 to n, our aim is to jointly infer the target

tracks and the MTT model parameters. We adopt a Bayesian approach and our main contribution in this paper is

a new Markov chain Monte Carlo (MCMC) algorithm to sample from the MTT posterior distribution, which is a

trans-dimensional distribution with mixed continuous anddiscrete variables. The discrete variables are comprised

of the number of targets, birth and death times, and association of observations to targets, while the continuous

variables are individual target states and model parameters.

For a linear Gaussian MTT model (see Section V-A) an MCMC method for tracking, excluding parameter

learning, was proposed in [1]. This MCMC algorithm samples in a much smaller space than we have to since the

continuous valued target states can be integrated out analytically; i.e. it amounts to sampling a probability mass

function on a discrete space. (Their method is referred to asMCMC-DA hereinafter.) However, this model reduction

cannot be done for a general non-linear and non-Gaussian MTTmodel, so the sampling space has to be enlarged to

include the continuous state values of the targets. Despitethis, our new algorithm is efficient in that it approaches

the performance of MCMC-DA for the linear Gaussian MTT model, which will be demonstrated in the numerical

section.

An MCMC algorithm for tracking in a non-linear non-GaussianMTT model, but excluding parameter learning,

was also recently proposed by [2]. Their method follows the MCMC-DA technique of [1] closely. Although the

likelihood of the non-linear non-Gaussian MTT model is not available when the continuous valued states of the
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targets are integrated out, an unbiased estimate of it can beobtained using a particle filter. The Metropolis-Hastings

algorithm can indeed be applied as long as the likelihood of the Bayesian posterior can be estimated in an unbiased

fashion and this has been the subject of many recent papers inBayesian computation; e.g. see [3, 4, 5]. This

property is exploited in [2] and their MCMC sampler for tracking is essentially the MCMC-DA method combined

with an unbiased estimate of the likelihood of the reduced model (i.e. continuous states integrated out) which is

given by the particle filter. (In the literature on Bayesian computation, this algorithm is known as the Particle

Marginal Metropolis Hastings (PMMH); see [3] for an extensive discussion in a non-MTT context.) Although

appealing because it is simple to implement, the method in [2] can result in an inefficient sampler as we show

when comparing with our method. This is because the likelihood estimate has a high variance and this will reduce

the overall average acceptance probability of the algorithm. When static parameters are taken into account, which

[2] did not do, the variance problem becomes far worse as manyproducts that form the MTT likelihood would have

to be simultaneously unbiasedly estimated for the acceptance probability of every proposed parameter change. An

elegant solution to this problem is the Particle Gibbs (PGibbs) algorithm of [3] for parameter learning in state-space

models; we extend this technique to the MTT model.

Our MCMC algorithm for tracking and parameter learning is a batch method and is suitable for applications

where real-time tracking is not essential; e.g. the recent surge in the use of tracking in Single Molecule Fluorescence

Microscopy [6, 7]. However, our technique can be incorporated into existing online trackers (e.g., the Multiple

Hypotheses Tracking (MHT) algorithm [8], the Joint Probabilistic Data Association Filter (JPDAF) [9], and the

Probability Hypothesis Density (PHD) filter [10, 11]) to correct past tracking errors in light of new observations

as well as for learning the parameters. There are numerous ways to effect this, for example, by applying MCMC

to tracks within a fixed window of time, which is a technique frequently used in theparticle filtering literature

for online inference in state-space models. See [12, 13] formore discussions on this. Note that, on-line trackers

mentioned above normally ignore parameter learning problem with a few exceptions discussed in [14] where an

online maximum likelihood method was proposed for calibrating linear Gaussian MTT model.

Additional contributions of this paper are several interesting comparisons with existing methods. (i) To quantify

the loss of efficiency of our new algorithm compared to MCMC-DA [1] that works on a reduced sampling space,

we compare them directly for linear Gaussian MTT model, and show that we do indeed perform almost comparably

to MCMC-DA. (ii) A comparison with [2] is given to show that our technique outperforms theirs with much less

particles. (iii) To demonstrate improvements over online tracking, we present a comparison with the MHT algorithm

[8]. As mentioned before, our technique is not a competitor to online tracking but can be incorporated into such

trackers to correct past errors. (iv) We compare our parameter estimates with those obtained by the approximate

maximum likelihood technique in [15] which is built on the Poisson approximation of the likelihood. While ours

is Bayesian, there should be, at least, agreement between the maximum likelihood estimate and the mode of the

posterior. We show that some parameter estimates obtained by [15] are significantly biased.

The remainder of the paper is organised as follows. In Section II, we describe the MTT model and formulate the

Bayesian target tracking and static parameter estimation problems for the MTT model. In Section III, we propose

a new MCMC tracking algorithm that combines a novel extension of MCMC-DA algorithm to non-linear MTT

models with a particle Gibbs move for effectively refreshing the samples for target tracks. In Section IV, we show

how to do Bayesian static parameter estimation based on the MCMC tracking algorithm presented in Section III.

Numerical examples are shown in Section V for the comparisons mentioned above.
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II. M ULTIPLE TARGET TRACKING MODEL

The hidden Markov model (HMM), or the state-space model (SSM), is a class of models commonly used for

modelling the physical dynamics of asingle target. In an HMM, a latent discrete-time Markov process{Xt}t≥1 is

observed through a process{Yt}t≥1 of observations such that

X1 ∼ µψ(·), Xt|(X1:t−1 = x1:t−1) ∼ fψ(·|xt−1)

Yt|
(

{Xi = xi}i≥1 , {Yi = yi}i 6=t
)

∼ gψ(·|xt).
(1)

whereXt ∈ X ⊂ R
dx , Yt ∈ Y ⊂ R

dy , dx > 0 anddy > 0 are the dimensions of the state and observation. In this

paper, a random variable (r.v.) is denoted by a capital letter, while its realisation is denoted by a small case. We

call µψ, fψ, gψ the initial, transition, and measurement densities respectively (resp.), and they are parametrised by

a real valued vectorψ ∈ Ψ ⊂ R
dψ .

In an MTT model, the state and the observation at each time arethe random finite sets (we use bold letters to

denote sets):

Xt =
(

Xt,1,Xt,2, . . . ,Xt,Kx
t

)

,Yt =
(

Yt,1, Yt,2, . . . , Yt,Ky
t

)

.

Each element ofXt is the state of an individual target. The number of targetsKx
t under surveillance changes over

time due to the death of existing targets and the birth of new targets. Independently from other targets, a target

survives to the next time with survival probabilityps and its state evolves according to the transition densityfψ,

otherwise it ‘dies’. In addition to the surviving targets, new targets are ‘born’ from a Poisson process with density

λb and each of their states is initialised by sampling from the initial densityµψ. The hidden states of the new

born targets and surviving targets from timet− 1 make upXt. We assume that at timet = 1 there are only new

born targets, i.e. no surviving targets from the past. Independently from other targets, each target inXt is detected

and generates an observation according to observation density gψ with probability pd. In addition to observations

generated from detected targets, false measurements (clutter) can appear from a Poisson process with the density

λf and are uniformly distributed overY. We denote byYt the superposition of clutter and measurements of the

detected targets.

A. The law of MTT model

In the following, we give a description of the generative model of the MTT problem, whereXt,Yt are treated

as ordered sets for convenience. A series of r.v.’s are now defined to give a precise characterisation of the MTT

model. LetCst be aKx
t−1 × 1 vector of1’s and0’s where1’s indicate survivals and0’s indicate deaths of targets

from time t− 1. For i = 1 : Kx
t−1,

Cst (i) =







1 i’th target at timet− 1 survives to timet

0 i’th target at timet− 1 does not survive tot
.

DenoteKs
t the number of surviving targets at timet, andKb

t the number of ‘birth’ at timet. We have

Ks
t =

Kx
t−1
∑

i=1

Cst (i), Kx
t = Ks

t +Kb
t .

At time t, the surviving targets from timet − 1 are re-labeled asXt,1, . . . ,Xt,Ks
t
, and the newly born targets

are denoted asXt,Ks
t+1, . . . ,Xt,Kx

t
(according to certain numbering rule specified by users as will be addressed



4

shortly). The order of the surviving targets at timet is determined by their ancestor order at timet−1. Specifically,

we define theKs
t × 1 ancestor vectorIst for Xt,i, i = 1 : Ks

t ,

Ist (i) = min
{

k :

k
∑

j=1

Cst (j) = i
}

, i = 1 : Ks
t .

Note thatIst (i) denotes the ancestor of targeti from time t−1, i.e.,Xt−1,Ist (i) evolves toXt,i for i = 1 : Ks
t . Next,

we defineIdt to be aKx
t × 1 vector showing the target to measurement association at time t. For j = 1 : Kx

t ,

Idt (j) =







k if Xt,j generatesYt,k,

0 Xt,j is not detected.

DenoteKd
t the number of detected targets at timet, andKf

t the number of false measurements at timet. We have

Kd
t = #{j : Idt (j) > 0}, Ky

t = Kf
t +Kd

t .

where# denotes the cardinality of the set. Sampling from the prior of Idt , amounts to first sampling a binary

Kx
t × 1 detection vector whose element is an independent and identically distributed (i.i.d.) Bernoulli r.v. with

success parameterpd (to decide which targets are detected, i.e, indices of non-zero entries inIdt ), then sample a

Kd
t × 1 association vector to determine the association between detected targets and observations uniformly from

all kdt -permutations ofkyt , i.e, with probability k
f
t !
kyt !

(to decide specific values for non-zeros entires ofIdt ).

The main difficulty in the MTT problem is that we do not know birth-death times of targets, whether they are

detected or not, and which measurement point inYt is associated to which detected target inXt. Now we define

data association

Zt =
(

Cst ,K
b
t ,K

f
t , I

d
t

)

(2)

to be the collection of the above mentioned unknown r.v.’s attime t, and

θ = (ψ, ps, pd, λb, λf ) ∈ Θ = Ψ× [0, 1]2 × [0,∞)2 (3)

be the vector of the MTT model parameters. Assuming survivaland detection probabilities are state independent,

we can write down the MTT model described literally above as

pθ(z1:n) =

n
∏

t=1

(

pk
s
t
s (1− ps)

kxt−1−k
s
tPO(kbt ;λb)PO(kft ;λf ) p

kdt
d (1− pd)

kxt−k
d
t
kft !

kyt !

)

(4)

pθ(x1:n|z1:n) =
n
∏

t=1

[ kst
∏

j=1

fψ(xt,j |xt−1,ist (j))k
b
t !1A(xt,kst+1:kxt )

kxt
∏

j=kst+1

µψ(xt,j)

]

(5)

pθ(y1:n|x1:n, z1:n) =

n
∏

t=1

[

|Y|−k
f
t

∏

j:idt (j)>0

gψ(yt,idt (j)|xt,j)
]

. (6)

Hereai:j, i ≤ j is used to denote a finite sequence{ai, ai+1 . . . aj}, PO(k;λ) denotes the probability mass function

of the Poisson distribution with meanλ, |Y| is the volume (the Lebesgue measure) ofY, and1A is the indicator

function of the numbering ruleA for the new born targets (e.g, if new-borns are ordered in an ascending order of

the first component, thenA is the set of states satisfyingxt,kst+1(1) < · · · < xt,kxt (1)).
1 So the joint density of all

the variables of the MTT is

pθ(z1:n,x1:n,y1:n) = pθ(z1:n)pθ(x1:n|z1:n)pθ(y1:n|x1:n, z1:n).

1A is introduced here to avoid the labelling ambiguity of new born targets. The labelling ambiguity also arises in other areas, e.g. Bayesian
inference of mixture distributions; see [16] for more details.
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Finally, the marginal likelihood of the datay1:n is given by

pθ(y1:n)=
∑

z1:n

pθ(z1:n)

∫

pθ(y1:n|x1:n, z1:n)pθ(x1:n|z1:n)dx1:n.

B. Two equivalent mathematical descriptions for MTT

Note that, conditional onZ1:n, (X1:n,Y1:n) may be regarded as a collection of HMMs (with different starting

and ending times and possible missing observations) and observations which are not relevant to any of these models.

In the MTT terminology, each HMM corresponds to a target, starting and ending times of HMMs correspond to

birth and death times of those targets, and missing and irrelevant observations correspond to mis-detections and

clutter.

Note that, each target has a distinct labelk ∈ {1, . . . ,K} whereK =
∑n

t=1 k
b
t , which is determined by its birth

time and the numbering of its initial state at the birth time (dependent on the numbering rule). Lettkb and tkd be

the birth and death time of the target with labelk, and denote its trajectory as

X̂(k) = (X̂
(k)
1 , . . . , X̂

(k)
lk

), Ŷ(k) = (Ŷ
(k)
1 , . . . , Ŷ

(k)
lk

)

whereX̂(k)
i is the i-th state of targetk; Ŷ (k)

i is the observation generated bŷX(k)
i provided detection, otherwise

we take Ŷ (k)
i = ∅; lk = tkd − tkb is its life span. In particular,̂X(k), Ŷ(k) form a HMM with initial and state

transition densitiesµψ andfψ and observation densitygψ as in (1) with the convention thatgψ(∅|x) = 1, x ∈ X
to handle mis-detections. In addition, we defineŶ(0) that contains all irrelevant observations during time1 : n with

X̂(0) = ∅.

To recover(Z1:n,X1:n,Y1:n) from {X̂(k), Ŷ(k)}Kk=0, we also need to knoŵZ(k) which contains2 the information

of the birth time, the death time and the indices of measurements assigned to targetk for k = 1 : K. Ẑ(0) is defined

for clutter so that it contains all clutter’s appearance times and their corresponding measurement indices. The point

we want to make here is that given ordering ruleA for new born targets, we have a one-to-one mapping between

the two equivalent descriptions of the MTT model, i.e.

Z1:n,X1:n,Y1:n ⇔ {Ẑ(k), X̂(k), Ŷ(k)}Kk=0. (7)

In Figure 1, we give a realisation of the MTT model to illustrate the r.v.’s introduced in both descriptions and show

the correspondence between these two descriptions. It can be seen that each target (HMM) evolves and generates

observations independently, with the only dependancy introduced by the target labels dependent on the numbering

rule.

Although it is more straightforward to write down the MTT probability model in terms of the first description,

see (4)-(6), the second description here is indispensable for our MCMC moves where we first propose change to

Ẑ(k), X̂(k) for some targetk or a set of targets, then we get the uniqueZ1:n,X1:n based on the equivalence of

these two descriptions.

C. Bayesian tracking and parameter estimation for MTT

There are two main problems we are interested in this paper: assumingθ is known, the first one is to estimate the

data association and the states of the targets given the observationsy1:n. This problem is formalised as estimating

the posterior distribution

pθ(z1:n,x1:n|y1:n) =
pθ(z1:n,x1:n,y1:n)

pθ(y1:n)
(8)

2We can writeẐk = (tkb , t
k
d, I

k
y ) whereIky is a lk × 1 vector withIky (i) being the index of̂Y (k)

i in Yt (the collection of all observations
at its appearing timet) if Ŷ

(k)
i 6= ∅, otherwiseIky (i) = 0.
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X1,1 X2,1 X3,1 X4,1

Y1,3 Y3,2

X1,2 X2,2 X3,2 X4,2

Y1,1 Y2,1 Y3,3 Y4,1

X1,3 X2,3 X3,3

Y1,2 Y2,2 Y3,1

Fig. 1: A realisation from the MTT model: states of a targets are connected with arrows and with their observations when detected. Undetected

targets are coloured grey, and false measurements are in dashed lines. For this example,
cs1:4 = ([], [1, 1, 1], [1, 1, 0], [0, 1, 0]), is1:4 = ([0, 0, 0] , [1, 2, 3] , [1, 2] , [2]), kb

1:4 = (3, 0, 1, 1),

k
f
1:4 = (1, 0, 1, 0) , id1:4 = ([3, 1, 0] , [0, 1, 2] , [2, 3, 0] , [0, 1]);

x̂(1) = (x1,1, x2,1, x3,1), ŷ(1) = (y1,3,∅, y3,2), ẑ(1) = (1, 4, [3, 0, 2]);

x̂(2) = (x1,2, x2,2, x3,2, x4,1), ŷ(2) = (y1,1, y2,1, y3,3,∅), ẑ(2) = (1, 5, [1, 1, 3, 0]),

x̂(3) = (x1,3, x2,3), ŷ(3) = (∅, y2,2), ẑ(3) = (1, 3, [0, 2]);
x̂(4) = (x3,3), ŷ(4) = (∅), ẑ(4) = (3, 4, [0]); x̂(5) = (x4,2), ŷ(5) = (y4,1), ẑ(5) = (4, 5, [1]).

wherepθ(y1:n) serves as a normalising constant not depending on(z1:n,x1:n). We present a novel MCMC method

which samples from the posterior distribution (8) for non-linear MTT models in Section III.

The second problem we are interested is the static parameterestimation problem, that is estimatingθ from the

datay1:n. We regardθ as a r.v. taking values inΘ with a prior densityη(θ), and our goal is to estimate the posterior

distribution ofθ given data, that is

p(θ|y1:n) ∝ η(θ)pθ(y1:n) (9)

which is intractable for MTT models in general. In Section IV, we extend our MCMC tracking method in Section

III to get samples(θ,x1:n, z1:n) from the joint posterior distributionp(θ, z1:n,x1:n|y1:n).

III. T RACKING WITH KNOWN PARAMETERS

In this section we assume the parameterθ of the MTT model is known and we want to estimate the posterior

densitypθ(x1:n, z1:n|y1:n) defined in (8).

For a linear Gaussian MTT model, one can consider the following factorisation of the posterior density

pθ(z1:n,x1:n|y1:n) = pθ(z1:n|y1:n)pθ(x1:n|z1:n,y1:n)

and concentrate on sampling frompθ(z1:n|y1:n) ∝ pθ(z1:n)pθ(y1:n|z1:n), aspθ(y1:n|z1:n), the likelihood of the data

given the data association, can be calculated exactly. Similarly, once we have samples forz1:n, pθ(x1:n|z1:n,y1:n)

can be calculated exactly for every sample ofz1:n.3 This is indeed the case for the MCMC-DA algorithm of

[1], which is essentially an MCMC algorithm for sampling from pθ(z1:n|y1:n). However, when the MTT model

is non-linear, which is the case in this paper, MCMC-DA is notapplicable sincepθ(y1:n|z1:n) is not available.

[2] proposed to circumvent this by using an unbiased estimator p̂θ(y1:n|z1:n) in place ofpθ(y1:n|z1:n), which is

obtained by running a particle filter for each target. This isessentially the PMMH algorithm of [3] applied to the

MTT problem. However, this strategy mixes slowly due to the variance of the estimate ofp(y1:n|z1:n), especially

when the number of particles is small, which is demonstratedin Section V-A. It is also not efficient sinceX1:n is

3Strictly speaking, the closed forms are available when we ignore the ordering rule here.
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only a by-product of the PMMH algorithm, and not used to propose the change of data associationZ1:n. In this

paper, we first design an efficient sampler to changeZ1:n andX1:n together based on the old samples to avoid the

variance problem encountered in the PMMH when the particle number is small. Then, we refreshX1:n by applying

the particle Gibbs (PGibbs) algorithm proposed in [3] to accelerate mixing.

This section documents our MCMC algorithm for sampling(z1:n,x1:n) jointly from (8). Before going into the

details, it will be useful to have an insight into the distribution in (8). Notice that the dimension ofX1:n is

proportional to
∑n

t=1K
x
t which is determined by the data associationZ1:n. Therefore, the posterior distribution in

(8) is trans-dimensional and the standard Metropolis-Hastings (MH) algorithm is not applicable for this distribution.

A general method for sampling from a trans-dimensional distribution is the reversible jump MCMC (RJ-MCMC)

algorithm of [17]. Assume we have the target distributionπ(m,xm) wherem is discrete, andxm is a vector with

dimensiondm that changes withm. Here,m can be considered as a model index, whose dimensiondm is not

necessarily different fromdm′ for m′ 6= m. To move a sample(m,xm) from π(m,xm) to a subspace with a higher

dimension, we can first propose(m′, um,m′) ∼ q(·|m,xm), wherem′ is the model index such thatdm′ > dm, and

um,m′ ∈ Rdm,m′ are extra continuous r.v.’s such thatdm′ = dm+dm,m′ (dimension matching). Finally the candidate

sample is given by abijection: xm′ = βm,m′(xm, um,m′). For the reverse move, with probabilityq(m|m′, xm′)

propose to move to subspacem, and use the bijectionβm′,m = β−1
m,m′ to get (xm, um,m′) = β−1

m,m′(xm′). The

acceptance probability for the proposed sample(m′, xm′) is α(m′, xm′ ;m,xm) = min{1, r(m′, xm′ ;m,xm)} where

r(m′, xm′ ;m,xm) =
π(m′, xm′)

π(m,xm)
× q(m|m′, xm′)

q(m′, um,m′ |m,xm)

∣

∣

∣

∣

∂xm′

∂(xm, um,m′)

∣

∣

∣

∣

(10)

where the rightmost term is the Jacobian ofβm,m′ . The acceptance ratio of the reverse move is

r(m,xm;m
′, xm′) = r(m′, xm′ ;m,xm)

−1. (11)

In the MTT model, each data associationz1:n corresponds to a model indexm, x1:n corresponds to the continuous

variablexm, andpθ(z1:n,x1:n|y1:n) corresponds toπ(m,xm). From this perspective, we can devise a RJ-MCMC

algorithm for (8) which has two main parts: (i) MCMC moves that are designed to explore the data association

Z1:n, followed by (ii) an MCMC move that explores the continuous statesX1:n. While the later move aims to

exploreX1:n only, we also need to adaptZ1:n to respect the adopted ordering ruleA of new born targets. We

present a single iteration of the proposed MTT algorithm in Algorithm 1 referred to as MCMC-MTT.

Algorithm 1: MCMC-MTT
Input: Current sample(z1:n,x1:n), datay1:n, parameterθ, number of inner loopsn1, n2
Output: Updated sample(z1:n,x1:n)

for j = 1 : n1 do
Updatez1:n,x1:n by one of the MCMC moves in Algorithm 2 to explore the data associationZ1:n

for j = 1 : n2 do
Updatez1:n,x1:n by an MCMC move (Algorithm 3) to explore the continuous statespaceX1:n

Algorithm 1 can be viewed as an extension of MCMC-DA [1] to thenon-linear non-Gaussian case by incorpo-

rating X1:n into the sampling space. Designing the MCMC kernel for the first loop is demanding and we reserve

Section III-A for the description of this kernel. The secondloop uses a PGibbs kernel to refresh the samples ofX1:n

conditioned on the data association, which is an important factor for fast mixing when we enlarge our sampling

space. The PGibbs step is standard since given the data association, the MTT model can be decoupled into a set

of HMMs (as emphasised by the alternative description introduced in Section II-B).
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We have found that Algorithm 1 can work properly with any initialisation forz1:n, even with the all clutter case,

i.e. Kb
1:n = 0, henceKf

1:n = ky1:n, andX1:n = ∅, which is a convenient choice when no prior information is

available. We generally taken1 an order of magnitude larger thann2 (n2 = 1 typically) as the second loop takes

more time than the first one.

A. MCMC to explore the data association

Algorithm 2 proposes a new data association with one of the following six moves at random:

1) birth move: to create a new target and its trajectory;

2) death move: to randomly delete an existing target;

3) extension move: to randomly extend an existing track;

4) reduction move: to randomly reduce an existing track;

5) state move: to randomly modify the links between state variables at successive times;

6) measurement move: to randomly modify the links between state variables and observation variables.

The first four of the moves change the dimension ofX1:n, and hence they will be called trans-dimensional moves

where RJ-MCMC needs to be applied. Specifically, the dimension matching here is done by introducing new states

or deleting existing ones, and the bijections are such that the Jacobian in (10) is always1. Reversibility is ensured

by pairing the birth (resp. extension) move with the death (resp. reduction) move. The last two moves, i.e., the state

move and the measurement move, leave the dimension ofX1:n unchanged, so called as dimension-invariant moves,

and a normal MH step can be applied. We will see later that these two moves are self-reversible, i.e., they are

paired with themselves. In the following subsection, we describe the essence of each move included in Algorithm

2.

Algorithm 2: MCMC moves to update data association

Input: Current sample(z1:n,x1:n), datay1:n, parameterθ, window parameterτ

Output: Updated sample(z1:n,x1:n)

Samplej ∈ {1, . . . , 6} randomly.

switch j do
case 1 propose(z′1:n,x

′
1:n) by thebirth movecase 2 propose(z′1:n,x

′
1:n) by thedeath movecase 3

propose(z′1:n,x
′
1:n) by theextension movecase 4 propose(z′1:n,x

′
1:n) by the reduction movecase 5

propose(z′1:n,x
′
1:n) by thestate movecase 6 propose(z′1:n,x

′
1:n) by themeasurement move

Calculate the MCMC acceptance probability for movej

αj = min{1, rj(z′1:n,x′
1:n; z1:n,x1:n)}

(See (12), (13), (15), (16), (11) for the calcatuion ofrj).

Changez1:n = z′1:n, x1:n = x′
1:n with probabilityαj, otherwise reject the proposal.

1) Trans-dimensional moves:Two pairs of moves (birth/death, extension/reduction) are designed to jump between

different dimensions forX1:n.

a) Birth and death moves:Assume the current sample of our MCMC algorithm forZ1:n impliesK existing

targets. We propose a new target with randomly chosen birth and death times and randomly assigned observations

from the clutter, i.e. observations unassigned to any of theexisting targets. We give a sketch of the birth move

here.

We first propose a random birth timetb and sample death timetd ≤ (n+1) based onps (note,td can be changed

later during this birth process) for the new target, then extend the trajectory of the target forward in time in a
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recursive way untiltd. Each extension step proceeds as follows. Assume the latestobservationyp we assigned to

the new target is observed at timetp. (For the first iteration,tp = tb − 1, yp takes the mean of the initial position.)

We define the time blockB = {tp + 1, . . . ,min{tp + tm, td − 1}} where

tm = min{t : (1− pd)
t < (1− pm)},

given a user defined probabilitypm (close to 1). The logic behind this is that within{tp+1, . . . , tp+ tm} the next

measurement would appear witha priori probability larger thanpm. Among all the unassigned observations in this

time blockB, we form a set of candidate observations whose distance toyp (which depends on both time and

space) is less than a certain threshold set by users. Notepm should be big enough so that blockB contains most

possible candidates. (i) With probabilitypm, we decide that the next observation to be assigned to the newtarget is

located inB and choose it randomly from the set of candidate observations with probability inversely proportional

to the distance toyp, provided that the set is non-empty. If the set of candidate measurements is empty, however, we

terminate the target either attd if td ≤ tp+ tm, or at some random time in the block (proposed by takingps, pd, tp

into account) otherwise. The termination time is the final proposed death timetd for the target. (ii) If (i) is not

performed, i.e. with probability(1− pm), we decide that the target is not detected during the whole blockB. Then

we recommence the process above from the end of the block, unlesstd ≤ tp + tm + 1. We refer to this iterative

observation assignment procedure as grouping measurementstep, at the end of which, we obtain̂zb containing

the birth time, the death time and measurement indices of thenew born target, and we denoteqb,θ(ẑb|z1:n,y1:n)

the probability induced in this step. The new target’s states x̂b are proposed by running unscented Kalman filter

(UKF) [18] followed by backwards sampling [19], which is essentially a Gaussian proposal for the target states

(see Appendix A for more on UKF and backwards sampling). Denote qb,θ(x̂b|ẑb,y1:n) the probability density

induced in this step. The sampled hidden states will serve asdimension matching parameters of the RJ-MCMC

algorithm. Given the set{ẑ(k), x̂(k)}Kk=1 ∪ {ẑb, x̂b}, new data associationz′1:n can be obtained deterministically by

the one-to-one mapping (7) mentioned in section II-B according to the ordering rule. Finally, we get new states

x′
1:n = βz1:n,z′1:n(x1:n, x̂b), whereβz1:n,z′1:n is to insertx̂b into x1:n at the corresponding positions indicated byz′1:n.

The resulting Jacobian is1.

The death move, which is the reverse move of the birth move, isdone by randomly deleting one of the existing

tracks. The acceptance ratio of the birth move is

r1(z
′
1:n,x

′
1:n; z1:n,x1:n) =

pθ(z
′
1:n,x

′
1:n,y1:n)

pθ(z1:n,x1:n,y1:n)
× qd,θ(z1:n|z′1:n)
qb,θ(ẑb|z1:n,y1:n)qb,θ(x̂b|ẑb,y1:n)

(12)

whose reciprocal is the acceptance ratio for the corresponding death move. Here,qd,θ(z1:n|z′1:n) is the probability,

induced by the death move. Note that,qb,θ(ẑb|z1:n,y1:n) depends onps, pd and the distance between the last assigned

observation of the target and all clutter in the next few timesteps. Thus, in some sense, the move exploits a pseudo-

posterior distribution of the life time of the target and thetarget-observation assignments given the unassigned data

points.

Compared to the birth move in [1], our birth move allows any number of consecutive mis-detections (note the

parameterpm) and improves the efficiency of the target-observation assignments. Also, our birth move proposes

the continuous state components of the new born target whichare integrated out in [1].

b) Extension and reduction moves:In this move, we choose one of theK existing targets, and extend its

track either forwards or backwards in time. The idea of forward extension is outlined as follows, and the backward

one can be executed in a similar way. First decide how long we will extend the target based onps, and decide the

detection at each time for the extended part, based onpd and the number of clutter at that time. To extend from

time t to t+1, if the target is detected, we assign to it an observation chosen from the clutter at timet+1 with a
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probability inversely proportional to its distance to the predicted (prior) mean of the state att+1. (Here, we mean

g−1
θ (y|x) by the ‘distance’ betweenx ∈ X andy ∈ Y.) Then we calculate the Gaussian approximation of the state

posterior by applying the unscented transformation [18] using the chosen observation. The forward extension step

is repeated forwards in time until we reach the extension length. Denoteqe,θ(ẑe|z1:n,y1:n) the probability induced

here, wherêze consists of the new death time and the observation information of the extended part. Then, backwards

sample the extended part statesx̂e by Gaussian proposals denoted byqe,θ(x̂e|ẑe,x1:n,y1:n) that is calculated based

on the forward filtering density (the Gaussian approximation of the posteriors) used in proposingẑe. Finally, z′1:n
andx′

1:n can be obtained similarly to the birth move based on the one-to-one mapping in (7), and the Jacobian

term in (10) is1.

The reduction move paired with the extension move is implemented as follows. We randomly choose target

k among theK existing targets, then choose the reduction type and the reduction time point, eithert ∈ {tkb +
1, . . . , tkd − 1} to discard{t, . . . , tkd − 1} part of the track, ort ∈ {tkb , . . . , tkd − 2} to discard its{tb, . . . , t} part.

Denoteqr,θ(z1:n|z′1:n) the probability induced here. The acceptance ratio of the extension move is

r3(z
′
1:n,x

′
1:n; z1:n,x1:n) =

pθ(z
′
1:n,x

′
1:n,y1:n)

pθ(z1:n,x1:n,y1:n)
× qr,θ(z1:n|z′1:n)
qe,θ(ẑe|z1:n,y1:n)qe,θ(x̂e|ẑe,x1:n,y1:n)

(13)

whose reciprocal is the acceptance ratio for the corresponding reduction move.

Compared to the extension/reduction move in [1], our extension/reduction move is done in both ways instead of

merely forward extension. Also the extension move makes useof the hidden states to add in measurements instead

of using the last assigned measurement. Again, the continuous state variables are proposed here instead of being

marginalised as in [1].

2) Dimension invariant moves:These moves leave the dimension ofX1:n invariant and are dedicated to changing

the links between the existing target states at successive times (state move) and the assignments between the target

states and measurements (measurement move). The target state values are also modified in order to increase the

acceptance rate. These two moves are specially designed here, where the state move can be considered as certain

combinations of the split/merge and switch moves in [1], while the measurement move corresponds to the update

move in [1], but with more choice of modification to the observation assignment. The diversity of the modification

choice is enhanced by introducing the state variables into the sampling space.

a) State Move:In this move, we randomly choose timet < n and locally changeIst+1, i.e. the links between

Xt and Xt+1. Figure 2a is given to illustrate the move. Assume we would like to change the descendant link

of Xt,i. WhenXt,i has descendantXt+1,g, we can propose to change its descendant toXt+1,h which originally

evolved fromXt,j (sub-moves1, 2, 3 in Figure 2a), or to linkXt,i to the initial stateXt+1,h of a target born at time

t + 1 (sub-moves4, 5), or to delete the link (sub-move6). Sub-moves1, 2, 3 have different arrangements for the

old descendantXt+1,g, who becomes clutter in sub-move1, or the descendant ofXt,j in sub-move2 (i.e. switches

its ancestor withXt+1,h), or the new descendant ofXt,l in sub-move3. Sub-moves4, 5 differ in a similar way in

terms of the old descendant arrangement. WhenXt,i has no descendant, it can be merged with a new-born target at

time t+ 1 by linking to its initial state (sub-move7), or steal another surviving target’s descendant (sub-move 8).

Reversibility is ensured by paring sub-moves1 and5, 6 and7, and the remaining ones with themselves4. Note that,

the new link, e.g, the one betweenXt,i andXt+1,h in sub-move1, meansXt+1,h and all its descendants together with

their observations will becomeXt,i’s descendants and the corresponding observations in the latter time. Essentially,

by changingIst+1 the step described above proposes{ẑ(k)′ , x̂(k)′} for each targetk in setS whose state links are

modified. Denoteq(ẑ′S , x̂
′
S |z1:n,x1:n) the probability induced here, wherêz′S = {ẑ(k)′}k∈S , x̂′

S = {x̂(k)′}k∈S.

4For the reversible move of8, we chooseXt,j to have the descendant link changed. For the other moves, we still chooseXt,i.
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Fig. 2: Graphical illustration of the state move and the measurement move
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Note that, when the state noise is small, the state move will mostly be rejected if we only modify the state

links. Thus, local modification of̂x′
S is necessary to get state moves accepted. For this reason, wepropose new

x̂′
S,w = {x̂(k)′

w }k∈S , wherex̂(k)′

w is the parts of̂x(k)′ within the time windowwk = {tks , . . . , tke} centred att with

window size parameterτ where

tks = min(tkb , t− τ + 1), tke = max(tkd − 1, t+ τ), (14)

by Gaussian proposals, i.e., running UKF and backward sampling for each targetk conditioned on its observations

in wk and its states right before and after the window at timestks − 1 and tke + 1 resp., if they exist. Denote

qs,θ(x̂
′
S,w|ẑ′S , x̂′

S ,y1:n) the probability density of proposing new local target states. After updating{ẑ(k), x̂(k)} for

eachk ∈ S, the uniquez′1:n can be obtained by the one-to-one mapping, andx′
1:n can be obtained by(x′

1:n, x̂s,w) =

βz1:n,z′1:n(x1:n, x̂
′
s,w), which takes out the old stateŝxs,w in the updating windows fromx1:n, and insertŝx′

s,w into

x1:n at the corresponding positions indicated byz′1:n. It can be seen thatβm,m′ is invertible with the Jacobian being

1 as well.

The acceptance ratio of the state move is

r5(z
′
1:n,x

′
1:n; z1:n,x1:n) =

pθ(z
′
1:n,x

′
1:n,y1:n)

pθ(z1:n,x1:n,y1:n)
× qs,θ(ẑS , x̂S |z′1:n,x′

1:n)qs,θ(x̂S,w|ẑS , x̂S ,y1:n)

qs,θ(ẑ
′
S , x̂

′
S |z1:n,x1:n)qs,θ(x̂

′
S,w|ẑ′S , x̂′

S ,y1:n)
(15)

b) Measurement Move:In this move, we randomly choose timet and locally changeIdt , i.e. the links between

Xt and yt. Unlike the state move which modifiesIst+1 followed by modifying local states, the move here first

modifies the states and then proposes the change ofIdt . Specifically, first randomly picki ∈ {1, . . . ,Kx
t } to decide

this move mainly aims at changing the measurement link ofXt,i. Assuming the target label ofXt,i is k, propose

x̂′
w for targetk within the windowwk = {tks , . . . , tke} similarly as in the state move, but with the modification to

disregard the observation ofXt,i (if it exists) to remove its influence onXt,i. Denoteqm,θ(x̂′
w|z1:n,x1:n,y1:n) for

the proposal density induced here. Then we propose the change of the measurement link based on the distance

between newXt,i and all measurements at timet. Possible proposals are illustrated in Figure 2b with the similar

idea as the state move. First, we set up the measurement link of Xt,i if it is not detected (sub moves8 and 9),

or choose to modify or delete the measurement link ifXt,i is detected (sub moves1 to 7). Then decide how to

deal with the original observation if it exists, making it either clutter or new observation of one of the mis-detected

targets. Reversibility is ensured by paring sub-moves1 and 5, 6 and 8, 7 and 9, and the remaining ones with

themselves. Denoteqm,θ(z′1:n|x̂′
w, z1:n,x1:n,y1:n) for the probability induced here.

The acceptance ratio of the measurement move, which is dimension invariant like the state move, can be calculated

as

r6(z
′
1:n,x

′
1:n; z1:n,x1:n) =

pθ(z
′
1:nx

′
1:n,y1:n)

pθ(z1:nx1:n,y1:n)
×qm,θ(x̂w|z

′
1:n, x

′
1:n,y1:n)qm,θ(z1:n|x̂w, z′1:n,x′

1:n,y1:n)

qm,θ(x̂′
w|z1:n,x1:n,y1:n)qm,θ(z

′
1:n|x̂′

w, z1:n,x1:n,y1:n)
(16)

B. Update hidden states by particle Gibbs

Given a joint sample(z1:n,x1:n) obtained via the first loop of Algorithm 1, we may update the target states

x1:n by an MCMC move designed to explore the space of the continuous states. As mentioned in section II-B,

given Z1:n, {X1:n,Y1:n} is equivalent to{X̂(k), Ŷ(k)}Kk=1, a set of HMMs evolving independently but with the

constraint that the target labels need to satisfy the numbering rule.5 In this move, we do the following:(1) first

ignore the labelling constraint, and get new samplex̂(k) ∼ pθ(·|ŷ(k)) independently for each targetk = 1 : K; (2)

Get a new sample(z1:n,x1:n) deterministically from{ẑ(k), x̂(k)}Kk=1 by the one-to-one mapping (7) according to

5More precisely, it is the numbering of states at each time, which has a one-to-one mapping with the target labels, that needs to fulfil the
numbering rule.
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the ordering rule. However, step(1) can not be done directly for non-linear models, so an MCMC move has to be

considered. When targets live for long time, prohibitivelyslow mixing speed prevents us from using MH to update

components, even blocks, of̂x(k). Fortunately, the particle MCMC (PMCMC) framework, in particular particle

Gibbs, [3] provides an efficient way to update the whole trajectory x̂k for eachk while leaving eachpθ(x̂(k)|ŷ(k))

invariant. The principal idea of PGibbs is to perform a Gibbssampler on an extended state space whose invariant

distribution admitspθ(x̂(k)|ŷ(k)) as marginal. This can be done by applying a conditional SMC kernel [3] for x̂(k),

which is followed by backward sampling [20, 21]. The application of this idea for the second loop of Algorithm

1 is given in Algorithm 3.

Algorithm 3: MCMC move to update target states

Input: Current sample(z1:n,x1:n), datay1:n, parameterθ (in particular,ψ)

Output: Updated sample(z1:n,x1:n)

Extract{ẑ(k), x̂(k), ŷ(k)}Kk=1 from (z1:n,x1:n,y1:n)

for k = 1 : K do
Run a conditional particle filter for the HMMµψ, fψ, gψ with N particles conditional on the patĥx(k) and

the observationŝy(k); perform backwards sampling to obtain a new sample pathx̂(k).

Get updated sample(z1:n,x1:n) from {ẑ(k), x̂(k)}Kk=1 by (7) according to the ordering rule.

The PGibbs algorithm with backward sampling has favourablemixing properties, see [3, 21] for theoretical

analysis and routines of conditional SMC and backward sampling used in Algorithm 3 for a general HMM. We

also present the routines in Appendix B.

IV. STATIC PARAMETER ESTIMATION

In this section, we will show how to extend Algorithm 1 to obtain posterior samples of the parameterθ in the

MTT model. To do this, we use the conjugate priors for the components ofθ wherever possible and execute an

MCMC algorithm for (Z1:n,X1:n, θ) which is obtained by adding an additional step for samplingθ to Algorithm

1 given a joint sample of(Z1:n,X1:n) and the datay1:n. Specifically, starting with an initial(θ, z1:n,x1:n), we

iteratively perform MCMC sweeps given in Algorithm 4.

Algorithm 4: MCMC for static parameter estimation

Input: Current sample(θ, z1:n,x1:n), datay1:n, number of inner loopsn1, n2, n3
Output: Updated sample(θ, z1:n,x1:n)

for j = 1 : n1 do
Updatez1:n,x1:n by MCMC moves (Algorithm 2) to exploreZ1:n conditioned onθ.

for j = 1 : n2 do
Updatez1:n,x1:n by an MCMC move (Algorithm 3) to exploreX1:n conditioned onθ

for j = 1 : n3 do
Updateθ by an MCMC move conditioned onz1:n andx1:n

.

When we have conjugate priors for all the components ofθ, it is possible to implement a Gibbs move forθ

(n3 = 1) at the last step of Algorithm 4. Otherwise, one can run an MH algorithm with invariant distribution

p(θ|z1:n,x1:n,y1:n) ∝ p(θ)pθ(z1:n,x1:n,y1:n). In this work, the MTT model used allows us to have a Gibbs move

here.
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Recall that in (3),ψ is the vector of HMM parameter for each target, andps, pd, λb, λf are the parameters

governing the data association of the MTT model. Givenz1:n, the posterior of(ps, pd, λb, λf ) is independent of

x1:n andy1:n, so we refer to them asdata association parameters. In the following section, we present the conjugate

priors and their corresponding posteriors of the data association parameters and the HMM parameters of a non-linear

MTT model.

A. Data association parameters(ps, pd, λb, λf )

Based on the MTT model in section II, the conjugate priors ofps, pd, λb, λf can be chosen as

ps, pd
iid∼ Unif(0, 1), λb, λf

iid∼ G(α0, β0),

where Unif(a, b) andG(α, β) represent resp. the uniform distribution over(a, b) and the gamma distribution with

shape parameterα and scale parameterβ. Note that, we setα0 ≪ 1, β0 ≫ 1 as is commonly done to make the

prior less informative, while a different choice ofα0, β0 can be made when prior knowledge is available. AsKs
t

andKd
t are Binomial r.v.’s resp. with success parametersps, pd and number of trialsKx

t−1, K
x
t , the posteriors

distributions ofps andpd are

ps|z1:n,y1:n ∼ B
(

1 +

n
∑

t=1

kst , 1 +

n
∑

t=2

(kxt−1 − kst )

)

,

pd|z1:n,y1:n ∼ B
(

1 +

n
∑

t=1

kdt , 1 +

n
∑

t=1

(kxt − kdt )

)

,

whereB(a, b) is Beta distribution with parametersa, b. As the number of birthKb
t and number of clutterKf

t are

Poisson r.v.’s with ratesλb andλf , resp., the posteriors ofλb, λf are

λb|z1:n,y1:n ∼ G
(

α0 +

n
∑

t=1

kbt , (β
−1
0 + n)−1

)

λf |z1:n,y1:n ∼ G
(

α0 +

n
∑

t=1

kft , (β
−1
0 + n)−1

)

.

B. HMM parametersψ: an example

The choice of conjugate priors ofψ depends on the parametrisation of the HMM model. In the following we

adopt the nearly constant velocity model for the state dynamics and the bearing-range model for the measurements

as an example.

1) The model:We assume the state of a target is comprised of its position and velocity in thexy plane, i.e.,

X = (Sx, Ṡx, Sy, Ṡy)
T . The target moves independently in each direction at a nearly constant velocity with the

line of sight measurement including the measured range and bearing from the observer to the target. The described

HMM can be written as follows:

Xt = FXt−1 + Ut, Yt = g(Sx,t, Sy,t) + Vt (17)

with g : R
2 → R

2 defined as

g(sx, sy) =
[

(s2x + s2y)
1/2, tan−1(sy/sx)

]T
,

F =

(

A 02×2

02×2 A

)

, A =

(

1 ∆

0 1

)

(18)
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where0n×m denotesn×m matrix of zeros and∆ is the known sampling interval. The state noiseUt and observation

noiseVt are independent zero-mean Gaussian r.v.’s with covariances Σu andΣv defined as

Σu=

(

σ2xΣ 02×2

02×2 σ2yΣ

)

,Σ=

(

∆3/3 ∆2/2

∆2/2 ∆

)

,Σv=

(

σ2r 0

0 σ2b

)

.

The initial hidden state is assumed to be Gaussian distributed with meanµb = (µbx, 0, µby, 0)
T and covariance

Σb = diag(σ2bpx, σ
2
bvx, σ

2
bpy, σ

2
bvy). (We set the mean of the initial velocity as0 in the absence of more information.)

2) Posterior ofψ: The parameters of the HMM in the example above are

ψ = (σ2x, σ
2
y , σ

2
r , σ

2
b , σ

2
bpx, σ

2
bpy, σ

2
bvx, σ

2
bvy, µbx, µby).

The priors of all variance components inψ are chosen to be inverse gamma distribution with shape parameterα0

and scale parameterβ0.

σ2x, σ
2
y , σ

2
r , σ

2
b , σ

2
bpx, σ

2
bpy, σ

2
bvx, σ

2
bvy

iid∼ IG(α0, β0).

Again, we can setα0 ≪ 1, β0 ≪ 1 for all to have less informative priors. Givenσ2bpx, σ
2
bpy, the priors ofµx, µy

are

µbx|σ2bpx ∼ N (µ0, σ
2
bpx/n0), µby|σ2bpy ∼ N (µ0, σ

2
bpy/n0)

where we can setn0 andn0µ0 small enough to make the prior uninformative. We only discuss thex-direction here

for the posteriors of the state parameters as they-direction can be deduced in a similar way. Forσ2x, we get the

posterior

σ2x|x1:n, z1:n,y1:n ∼ IG
(

α0 +

n
∑

t=1

kst , β0 +
1

2
tr(Σ−1Σ̂(x))

)

,

Σ̂(x) =

K
∑

k=1

lk−1
∑

i=1

Ix

(

x̂
(k)
i+1 − Fx̂

(k)
i

)(

x̂
(k)
i+1 − Fx̂

(k)
i

)T
ITx ,

where Ix =

(

1 0 0 0

0 1 0 0

)

. For (σ2bpx, σ
2
bvx, µbx), denotingβ1 =

∑K
k=1(x̂

(k)
1 (1) − x̄1(1))

2, β2 = n0K
n0+K

(µ0 −

x̄1(1))
2, β3 =

∑K
k=1[x̂

(k)
1 (2)]2, x̄1 =

1
K

∑K
k=1 x̂

(k)
1 , we have

σ2bpx|x1:n, z1:n,y1:n ∼ IG (α0 + 0.5K, β0 + 0.5(β1 + β2)) ,

σ2bvx|x1:n, z1:n,y1:n ∼ IG(α0 + 0.5K, β0 + 0.5β3),

µbx|σ2bpx,x1:n, z1:n,y1:n ∼ N
(

n0µ0 +Kx̄1(1)

n0 +K
,
σ2bpx

n0 +K

)

For measurement parametersσ2r andσ2b , their posteriors can be obtained by calculating the sum of squared range

noise and that of the bearing noise as follows

σ2r |x1:n, z1:n,y1:n ∼ IG
(

α0 + 0.5

n
∑

t=1

kdt , β0 + 0.5Σ̂v(1, 1)

)

,

σ2b |x1:n, z1:n,y1:n ∼ IG
(

α0 + 0.5

n
∑

t=1

kdt , β0 + 0.5Σ̂v(2, 2)

)

,

whereΣ̂v =
∑n

t=1

∑

j:idt (j)>0 ∆yt,j (∆yt,j)
T , ∆yt,j = yt,idt (j) − g

(

xt,j(1), xt,j(3)
)

.

V. NUMERICAL EXAMPLES

In this section, we give some numerical results to demonstrate the performance of our methods. All simulations

were run in Matlab on a PC with an Inteli5 2.8 GHZ× 2 processor.
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A. Comparison with MCMC-DA for the linear Gaussian model

In the linear Gaussian MTT model used here, we assume a targetevolves as the first equation in (17), but

generates observations according to

Yt = GXt + Vt, G =

(

1 0 0 0

0 0 1 0

)

, Vt ∼ N ([0, 0]T ,Σv).

The linear observation model is needed by MCMC-DA [1] so thatthe marginal likelihoodpθ(y1:n|z1:n) can be

calculated exactly (i.e, the continuous state variablesX1:n are integrated out). We synthesised data of length50

with ps = 0.95, pd = 0.9, λb = 0.5, λf = 3, µb = (80, 0, 100, 0),Σb = diag(49, 9, 49, 9), σx = 0.7, σy = 1.5,Σv =

diag(4, 4).

Assuming all static parameters are known, we compare the performance of MCMC-MTT in Algorithm 1, MCMC-

DA [1] and PMMH-MTT 6 [2]. All three methods were initialised by taking all observations as clutter. One iteration

of Algorithm 1 includes a loop ofn1 = 50 MCMC moves to update(Z1:n,X1:n) jointly (with window sizeτ = 5 in

moves5 and6 of Algorithm 2), and a loop ofn2 = 1 PGibbs move to updateX1:n, while one iteration of MCMC-

DA and PMMH-MTT contains50 MCMC moves to updateZ1:n. Figure 3 shows the plot oflog pθ(z
(i)
1:n,y1:n) for

the three algorithms, wherez(i)1:n is the sample at thei-th iteration of each algorithm. It can be seen that MCMC-DA

outperforms Algorithm 1 with10 particles used for each target in the PGibbs step. This is expected since Algorithm

1 samples from a larger space(X1:n, Z1:n) thanZ1:n alone in MCMC-DA. But its performance almost matches

that of MCMC-DA when30 particles are used. Two lines at the bottom of Figure 3 show the performance of

PMMH-MTT with 10 and 30 particles. We can see that PMMH-MTT converges much slower than Algorithm 1

especially when the number of particles is small. The slow convergence can be explained by the low acceptance

rate (values reported below) due to the high variance of the estimated likelihood.

In terms of computation time, for103 iterations, MCMC-DA costs7 min; Algorithm 1 costs around7 (resp.12)

min for 10 (resp.30) particles per target (including PGibbs step every50 iterations); PMMH-MTT costs around13

(resp.17) min for 10 (resp.30) particles per target. The average acceptance rate of the MCMC moves that explore

the data association is about2.1% for Algorithm 1 which was almost the same as MCMC-DA, and0.48% and

0.3% for PMMH-MTT with 30 and10 particles respectively.

The overall comparison here shows the efficiency of our proposed MCMC moves on the larger sampling space

of (z1:n,x1:n): it can work with much less particles than PMMH-MTT algorithm in [2] and can achieve the

performance of MCMC-DA [1] within reasonable computation time.

B. Comparison with MHT for the bearing-range model

In this experiment, the model described in Section IV-B1 is assumed and we setσ2bpx = σ2bpy = σ2bp, σ
2
bvx =

σ2bvy = σ2bv. Thus,θ = (ps, pd, λb, λf , µbx, µby, σ
2
bp, σ

2
bv, σ

2
x, σ

2
y , σ

2
r , σ

2
b ). We synthesised data of length50 with the

parameter vectorθ∗ = (0.95, 0.9, 0.4, 3, 80, 100, 64, 9, 0.3, 0.7, 2, 2.5 × 10−3) and the sensor located in[0, 0] in

the window [−20, 310] × [−50, 210] including all the observations inside. The synthetic data used here had24

targets whose trajectories are plotted in the upper half of Figure 5 where each line of (blue) connected stars shows

connected measurements of one target over the time, and the (red) circles are clutter. We compare Algorithm 1

with the MHT [8] with L = 5 for L-best assignment andN = 3 for N -scan back. To deal with the non-linearity,

we replace the Kalman filter in MHT with the unscented Kalman filter [18] which is also used in the MCMC

kernels in Algorithm 1. For the MHT, we ran a particle filter with 300 particles per target conditioned on the

6For simplicity, we only implemented the same moves as in the MCMC-DA [1] by substituting the estimate ofp(y1:n|z1:n) obtained by

particle filters into the acceptation ratio.
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data association output of MHT and perform backwards sampling [19] to get more accurate state samples. We ran

Algorithm 1 with 15 particles per target andn1 = 30, n2 = 1. Two window parametersτ = 3 and τ = 2 are

used for comparison. In Figure 4(a), we show the joint log-density of pθ(z1:n,x1:n,y1:n) of the output samples of

Algorithm 1 compared with the ground truth and the average joint log-density ofpθ(z1:n,x1:n,y1:n) obtained using

the MHT estimate forz1:n and 500 SMC samples forx1:n conditioned on the MHT estimate ofz1:n. It can be

seen thatlog pθ(z1:n,x1:n,y1:n) for Algorithm 1 converges to a vicinity of the log-density evaluated at the ground

truth, while MHT’s output has an apparent gap with the groundtruth. We can also see that Algorithm 1 converges

around1000 and1500 iterations forτ = 3 and2 resp., which indicates that the mixing speed of Algorithm 1 can

be improved by the window parameterτ . Additionally, to show the PGibbs step plays a necessary role in Algorithm

1, we plot the log-density obtained by excluding the second loop (PGibbs step) from Algorithm 1, which is still

far from convergence after8000 iterations.

In Figure 4(b), we compare the tracking performance by the OSPA distance [22]. The OSPA distance is a

distance between two sets of points, and it is defined roughlyas the sum of a penalty term for the difference in

the cardinality of the two sets (OSPA-card) and the minimum sum of distances between the points of those sets

(OSPA-loc). These two terms are separately compared in Figure 4(c, d) for Algorithm 1 and the MHT algorithm.

It can be seen that MCMC outperforms MHT in both distances, which agrees with Figure 4(a). However, this

better performance comes at the price of longer computationtime. For the experiment shown here,103 iterations of

Algorithm 1 took around5 minutes while the MHT took around1 minute. Note that, Algorithm 1 has the potential

of being accelerated by introducing parallel computing techniques which are not used here.

The comparison here shows the better tracking accuracy of Algorithm 1 over MHT for the non-linear MTT

model. The convergence in Figure 4(a) suggests that Algorithm 1 is a good choice for batch tracking algorithm for

off-line applications. An alternative view would be that the MCMC moves can be used to refine the initial MHT

estimate, or that of any other online tracker. Additionally, it also shows the influence of the PGibbs step and the

window parameterτ on the mixing property of the MCMC kernel. The PGibbs step is necessary for the fast mixing

property and we find that settingτ large than3 is normally enough to get good performance.

C. Parameter estimation for the bearing-range model

Here we demonstrate the joint tracking and parameter estimation performance of Algorithm 4 using simulated

data so that the ground truth is known. The same data set as Section V-B is used here. We initialiseθ(0) =

(0.6, 0.6, 1, 8, 50, 60, 50, 25, 1, 1.5, 16, 0.02), and run2×104 iterations of Algorithm 4 withn1 = 60, n2 = 1, n3 = 1

and 15 particles. The data association result is shown in Figure 5,the upper half of which is the ground truth,

and the lower half is one sample of MCMC tracking results. Thehistograms of the sampled parameters after5000

iterations (burn-in time) are shown in Figure 6 where the (red) dashed lines show the MLE estimateθ∗,z,x given

the true data associationz∗1:n and true hidden statesx∗
1:n. θ∗,z,x is defined as follows.

(ps, pd, λb, λf )
∗,z,x = arg max

ps,pd,λb,λf
pθ(z

∗
1:n),

ψ∗,z,x = argmax
ψ

pψ(x
∗
1:n,y1:n|z∗1:n).

(19)

Note that, the histograms are an approximation ofp(θ|y1:n). When an uninformative prior is used, the posterior

mode should be consistent with maximum likelihood estimate(MLE) given datay1:n. Since the MLE is not available

due to the intractable likelihood, we useθ∗,z,x defined in (19) instead.

As a final comparison, we compare with the approximate MLE ofθ∗ obtained by the method in [15], which

proposes to maximise a poisson approximation ofpθ(y1:n) derived similarly as the PHD filter of [10]. We refer to

it as the PHD-MLE algorithm. For PHD-MLE, we estimated all the parameters except the survival probabilityps,
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and the state noise parametersσ2x, σ
2
y (the same as [15]). This is a beneficial setting for the PHD-MLE algorithm as

those three parameters are known to it. As seen in Figure 6, the PHD-MLE estimates have biases due to the Possion

approximation of the data likelihood, especially for the parametersλb, pd, σ2r , σ
2
b . In computation time, PHD-MLE

took 4 hours to converge (with properly chosen step size), while our method took40 min.
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Fig. 5: Plots of data association in they-direction over time: upper figure shows the ground truth andthe lower figure posts one sample

of data association obtained by Algorithm4 in the main paper. Each line of (blue) connected stars shows connected measurements of one
target along the time, and the (red) circles are clutter. Arrows (black) indicate where sampledz1:n differs from z∗1:n

VI. CONCLUSIONS

We have proposed a new batch tracking algorithm for the MTT problem with non-linear non-Gaussian dynamics

and developed it further for the case when the parameters in the MTT model are unknown. From our experiments,

we can see that our MCMC method (Algorithm 1) can approach theperformance of MCMC-DA [1], outperforms

PMMH-MTT [2], and obtains better tracking results comparedto MHT [8]. Bayesian estimates of parameters of

the non-linear MTT model were also obtained by running Algorithm 4 which includes an MCMC step for updating

the parameters, and outperforms PHD-MLE [15].

APPENDIX A

UNSCENTEDKALMAN FILTER AND BACKWARDS SAMPLING

Here, we give a short description of the Unscented Kalman filter [18] and backwards sampling [19] which

are both used in our MCMC proposals for moves across the data association. The Unscented Transformation

(UT) [23] is a method to calculate the statistics of a random variable undergoing a nonlinear transformations. In

UT, a d-dimensional random variableX is represented by a set of weighted sigma points{Xi,Wm
i ,W

c
i }i=0:2d

deterministically chosen to capture its true meanmx and covariancePx, where

X0 = mx, Xi = mx + (
√

cPx)i, i = 1 : d,

Xi = mx − (
√

cPx)i, i = d+ 1 : 2d

(
√
cPx)i is the i-th row of the matrix square root ofPx multiplied by a scaling parameterc whose value can be

set according to [18] together with the mean weightWm
i and the covariance weightW c

i . After undergoing the
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Fig. 6: Histograms of estimated parameters with (red) dashed line showing the MLE estimateθ∗,z,x, and the black solid lines showing the

estimate using PHD-MLE algorithm in [15] with initial values not shown due to zoom in aroundθ∗. Vertical axis shows the parameter value,
and bottom horizontal axis shows the normalised histogram height and top horizontal axis shows the iteration step of PHD-MLE algorithm.

nonlinear functionY = g(X), the mean and covariance for Y are approximated by the weighted sample mean and

covariance of the transformed sigma points

my ≈

2L
∑

i=0

Wm
i Yi, Py ≈

2L
∑

i=0

W c
i (Yi −my)(Yi −my)

T

whereYi = g(Xi). It is proved in [23] that the estimates ofmy andPy are accurate to the3rd order for Gaussian

input and at least the2nd order for the other distributed inputs. To introduce UT into filtering, UKF augments the

hidden stateXt to include the state noise and measurement noise, and represents the extended hidden states by a

set of sigma points. The posterior mean and covariance of thehidden state can be obtained by approximating the

likelihood p(y|x) as a Gaussian with the weighted sample mean and covariance ofthe transformed sigma points.

A detailed description of UKF can be found in [18].

Using the Gaussian approximations{π(x1:t|y1:t)}t=1:n produced by UKF, we can do the backwards sampling to

get samples fromπ(x1:n|y1:n) based on decomposition of the joint smooth density

π(x1:n|y1:n) = π(xn|y1:n)
n−1
∏

t=1

π(xt|xt+1, y1:t)

which suggests to first samplexn ∼ π(xn|y1:n), then fort = n− 1 : −1 : 1, samplext according to

π(xt|xt+1, y1:t) =
f(xt+1|xt)π(xt|y1:t)

π(xt+1|y1:t)

APPENDIX B

PARTICLE FILTER AND CONDITIONAL PARTICLE FILTER

Here, we give a short description of the techniques used in the MCMC move that exploresX1:n i.e., Algorithm

3. The particle filter approximates the sequence of posteriordensities{p(x1:t|y1:t)}t≥1 by a set ofN (N ≥ 1)
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weighted random samples called particles

p̂t(dx1:t|y1:t) =
N
∑

k=1

W k
t δxk1:t(dx1:t), W k

t ≥ 0,

N
∑

k=1

W k
t = 1

whereW k
t is called as the importance weight for particlexk1:t, andδx0

(dx) denotes the Dirac delta mass located at

x0. These particles are propagated in time using an importancesampling and resampling mechanism. At timet = 1,

x1:N1 consist ofN independence samples fromq1(·). To propagate from timet− 1 to t, the pair(A1:N
t−1 ,X

1:N
t ) is

proposed from

ρ(x1:Nt−1,da
1:N
t−1)

N
∏

n=1

qt(x
ant−1

t−1 , x
n
t )

conditioned on the value ofX1:N
1:t−1 = x1:N1:t−1. HereAnt−1, n ∈ 1 : N is the ancestor index of particlen of time t, i.e.,

xn1:t = (x
ant−1

1:t−1, x
n
t ), andA1:N

t−1 are jointly sampled from the resampling distributionρ(x1:Nt−1,da
1:N
t−1). The multinomial

resampling is one common choice of resampling, where we haveρ(x1:Nt ,da1:Nt ) =
∏N
n=1W

ant
t (x1;Nt ), and

W n
t (x

1:N
t ) =

wnt (x
1:N
t )

∑N
l=1 w

n
t (x

1:N
t )

, wnt (x
1:N
t ) =

g(yt|xnt )f(xnt |x
ant−1

t−1 )

qt(x
ant−1

t−1 , x
n
t )

.

Forward particle filtering can be followed by the backwards simulation in Algorithm 5 which makes use of the

approximated marginal filtering densitŷp(xt|y1:t) to get a path sample from̂p(x1:T |y1;T ).
Particle Gibbs (PGibbs) sampler [3] is a valid particle approximation to the Gibbs sampler ofp(θ, x1:n|y1:n)

with θ being some parameter variables of HMM models, where the stepof sampling fromp(x1:n|y1:n) is done

by running aconditional particle filter(also called conditional SMC) [3] shown in Algorithm 6. Given one path

(say the first path)X1
1:n = x1

1:n of a particle filter, the conditional particle filter will repopulate theN − 1 paths

conditioned on the first path. It is suggested in [20, 21] thatbetter mixing property can be achieved by a conditional

particle filter followed by a backwards simulator.

Algorithm 5: Backward simulator

1 samplebT according to the multinomial distribution with parameter vector(N,W 1:N
T );

2 for t = T − 1 : −1 : 1 do

3 for m = 1 : N do calculateWm
t|T =

Wm
t f(x

bt+1

t+1 |xmt )
∑
l
W l
tf(x

bt+1

t+1 |xlt)
, givenxbt+1

t+1 samplebt according to the multinomial

distribution with parameter vector(N,W 1:N
t|T );

Algorithm 6: Conditional particle filter

1 setX1
1 = x11, sampleXj

1 ∼ q1(·), for j = 2 : N , and calculateW 1:N
1 ;

2 for t = 2 : n do

3 setX1
t = x1t , A

1
t−1 = 1, sampleA2:N

t−1 ∼ ρ(.|A1
t−1 = 1);

4 for j = 2 : N , sampleXj
t ∼ qt(·|XAjt−1

t−1 );

5 calculateW 1:N
t ;
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