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Bayesian tracking and parameter learning for
non-linear multiple target tracking models

Lan Jiang®, Sumeetpal S. SinghSinan Yildiring

Abstract

We propose a new Bayesian tracking and parameter learngagithim for non-linear non-Gaussian multiple
target tracking (MTT) models. We design a Markov chain Mo@trlo (MCMC) algorithm to sample from the
posterior distribution of the target states, birth and kidahes, and association of observations to targets, which
constitutes the solution to the tracking problem, as wethasmodel parameters. In the numerical section, we present
performance comparisons with several competing techsignd demonstrate significant performance improvements
in all cases.

. INTRODUCTION

The multiple target tracking (MTT) problem is to infer, acarately as possible, the states or tracks of multiple
moving objects from noisy measurements. The problem is nd#fieult by the fact that the number of targets is
unknown and changes over time due to the birth of new targetdhbee death of existing ones. Moreover, objects are
occasionally undetected, false non-target generateduresa&lutter) may be recorded and the association between
the targets and the measurements is unknown.

Given observations recorded over a length of time, say friome i to n, our aim is to jointly infer the target
tracks and the MTT model parameters. We adopt a Bayesiamagipand our main contribution in this paper is
a new Markov chain Monte Carlo (MCMC) algorithm to samplenirethe MTT posterior distribution, which is a
trans-dimensional distribution with mixed continuous ahskcrete variables. The discrete variables are comprised
of the number of targets, birth and death times, and assmtiaf observations to targets, while the continuous
variables are individual target states and model parasieter

For a linear Gaussian MTT model (see Section IV-A) an MCMC metfor tracking, excluding parameter
learning, was proposed inl[1]. This MCMC algorithm samplesimuch smaller space than we have to since the
continuous valued target states can be integrated out taoadlly; i.e. it amounts to sampling a probability mass
function on a discrete space. (Their method is referred td@sC-DA hereinafter.) However, this model reduction
cannot be done for a general non-linear and non-Gaussianiddel, so the sampling space has to be enlarged to
include the continuous state values of the targets. De#ge our new algorithm is efficient in that it approaches
the performance of MCMC-DA for the linear Gaussian MTT modehich will be demonstrated in the numerical
section.

An MCMC algorithm for tracking in a non-linear non-Gaussiii T model, but excluding parameter learning,
was also recently proposed by [2]. Their method follows th€WC-DA technique of [[1] closely. Although the
likelihood of the non-linear non-Gaussian MTT model is naaible when the continuous valued states of the
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targets are integrated out, an unbiased estimate of it cabtagned using a particle filter. The Metropolis-Hastings
algorithm can indeed be applied as long as the likelihoodhefBayesian posterior can be estimated in an unbiased
fashion and this has been the subject of many recent papeBsyiasian computation; e.g. see [3,l4, 5]. This
property is exploited in.[2] and their MCMC sampler for traud is essentially the MCMC-DA method combined
with an unbiased estimate of the likelihood of the reducedi@hdi.e. continuous states integrated out) which is
given by the particle filter. (In the literature on Bayesiammputation, this algorithm is known as the Particle
Marginal Metropolis Hastings (PMMH); see! [3] for an extermsidiscussion in a non-MTT context.) Although
appealing because it is simple to implement, the methodlircg® result in an inefficient sampler as we show
when comparing with our method. This is because the likelihestimate has a high variance and this will reduce
the overall average acceptance probability of the algorittWhen static parameters are taken into account, which
[2] did not do, the variance problem becomes far worse as mpergucts that form the MTT likelihood would have
to be simultaneously unbiasedly estimated for the acceptprobability of every proposed parameter change. An
elegant solution to this problem is the Particle Gibbs (BG)kalgorithm of|[3] for parameter learning in state-space
models; we extend this technique to the MTT model.

Our MCMC algorithm for tracking and parameter learning isach method and is suitable for applications
where real-time tracking is not essential; e.g. the recamesin the use of tracking in Single Molecule Fluorescence
Microscopy [6,.7]. However, our technique can be incorpeatainto existing online trackers (e.g., the Multiple
Hypotheses Tracking (MHT) algorithn[8], the Joint Probisbic Data Association Filter (JPDAF)[9], and the
Probability Hypothesis Density (PHD) filter [10,/11]) to cect past tracking errors in light of new observations
as well as for learning the parameters. There are numeroys wwaeffect this, for example, by applying MCMC
to tracks within a fixed window of time, which is a techniqueduently used in thearticle filtering literature
for online inference in state-space models. See |[[12, 13rfore discussions on this. Note that, on-line trackers
mentioned above normally ignore parameter learning probhth a few exceptions discussed [n [[14] where an
online maximum likelihood method was proposed for calibgaiinear Gaussian MTT model.

Additional contributions of this paper are several intérgscomparisons with existing methods. (i) To quantify
the loss of efficiency of our new algorithm compared to MCM@&-[1] that works on a reduced sampling space,
we compare them directly for linear Gaussian MTT model, drahsthat we do indeed perform almost comparably
to MCMC-DA. (ii) A comparison with [2] is given to show that otiechnique outperforms theirs with much less
particles. (iii) To demonstrate improvements over onlir@eking, we present a comparison with the MHT algorithm
[8]. As mentioned before, our technique is not a competibootiline tracking but can be incorporated into such
trackers to correct past errors. (iv) We compare our pamnestimates with those obtained by the approximate
maximum likelihood technique in_[15] which is built on theiBson approximation of the likelihood. While ours
is Bayesian, there should be, at least, agreement betweemakimum likelihood estimate and the mode of the
posterior. We show that some parameter estimates obtaingtEbare significantly biased.

The remainder of the paper is organised as follows. In Seffjove describe the MTT model and formulate the
Bayesian target tracking and static parameter estimatioblgms for the MTT model. In Sectidnlll, we propose
a new MCMC tracking algorithm that combines a novel extemsib MCMC-DA algorithm to non-linear MTT
models with a particle Gibbs move for effectively refreghthe samples for target tracks. In Secfion 1V, we show
how to do Bayesian static parameter estimation based on BEl®tracking algorithm presented in Section Ill.
Numerical examples are shown in Sectidn V for the compasisnantioned above.



Il. MULTIPLE TARGET TRACKING MODEL

The hidden Markov model (HMM), or the state-space model (338a class of models commonly used for
modelling the physical dynamics ofsingletarget. In an HMM, a latent discrete-time Markov proc¢ss };>; is
observed through a proce$s; };~; of observations such that

X1~ (), Xel(Xii—1 = 214—1) ~ fu(-lai—1)
Vil ({3 = 2idin 1% = 0kt ) ~ 00 ().

whereX; ¢ X c R%, Y, € Y c R%, d, > 0 and d, > 0 are the dimensions of the state and observation. In this
paper, a random variable (r.v.) is denoted by a capitalrlettbile its realisation is denoted by a small case. We
call vy, fy, gy the initial, transition, and measurement densities resdy (resp.), and they are parametrised by
a real valued vectop € U C R%,

In an MTT model, the state and the observation at each timehareandom finite sets (we use bold letters to
denote sets):

(1)

Xt = (Xt,laXt,Qy' e 7Xt,Kf) 7Yt = (Yt,bY;t,%- .. 7YVt7Kty) .

Each element oK, is the state of an individual target. The number of targéfsunder surveillance changes over
time due to the death of existing targets and the birth of rengets. Independently from other targets, a target
survives to the next time with survival probabilipy and its state evolves according to the transition dengity
otherwise it ‘dies’. In addition to the surviving targetgw targets are ‘born’ from a Poisson process with density
Ay and each of their states is initialised by sampling from thiéal density ;... The hidden states of the new
born targets and surviving targets from time- 1 make upX;. We assume that at time= 1 there are only new
born targets, i.e. no surviving targets from the past. ledeently from other targets, each targefXn is detected
and generates an observation according to observationtylgnswith probability p,. In addition to observations
generated from detected targets, false measurementie(kloan appear from a Poisson process with the density
Ar and are uniformly distributed ovey. We denote byY; the superposition of clutter and measurements of the
detected targets.

A. The law of MTT model

In the following, we give a description of the generative mlodf the MTT problem, wher&;, Y, are treated
as ordered sets for convenience. A series of r.v.'s are ndimatbto give a precise characterisation of the MTT
model. LetC;? be aK}" ; x 1 vector of1’'s and0’'s where1’s indicate survivals an@’s indicate deaths of targets
from timet¢ — 1. Fori=1: K} ,

2 (i) = 1 ¢'th target at timet — 1 survives to timet .
0 7'th target at timet — 1 does not survive t@

Denote K} the number of surviving targets at timgand K the number of ‘birth’ at timet. We have
K
Kj =) Ci(i), Kf=K+K.
i=1

At time ¢, the surviving targets from time — 1 are re-labeled as(;,..., X; x;, and the newly born targets
are denoted as(; k;41,..., Xy, ke (according to certain numbering rule specified by users disbeiaddressed



shortly). The order of the surviving targets at timis determined by their ancestor order at titnel. Specifically,
we define theK] x 1 ancestor vectof; for X, ;, i =1: K},

k
:min{k:ZCf(j) =i}, i=1:K;.

Note that/; (i) denotes the ancestor of targe‘tom timet—1,i.e., X;_y js(;) evolves toX;; fori = 1: K;. Next,

we definel{ to be aK7 x 1 vector showing the target to measurement association atttiffor j = 1 : K7,

) k if X;; generates; i,

I}(j) = !
0 X;; is not detected

Denoteth the number of detected targets at timeanthf the number of false measurements at timé/e have
=#{j: I{() >0}, K} =K]+K.

where # denotes the cardinality of the set. Sampling from the pribdg amounts to first sampling a binary
K} x 1 detection vector whose element is an independent and addigtidistributed (i.i.d.) Bernoulli r.v. with
success parametey (to decide which targets are detected, i.e, indices of rwn-entries inff), then sample a
K x 1 association vector to determine the association betwetattee targets and observations uniformly from
all k¢-permutations of?, i.e, with probability%;f (to decide specific values for non-zeros entired Bt

The main difficulty in the MTT problem is that we do not knowthideath times of targets, whether they are
detected or not, and which measurement poinYinis associated to which detected targetXin. Now we define
data association

= (Cy, Kp K] L 1) 2)

to be the collection of the above mentioned unknown r.v.'8mé ¢, and
0= (T/%Pmpdﬁ\m)\f) €O =Vx [07 1]2 X [0700)2 (3)

be the vector of the MTT model parameters. Assuming sunava detection probabilities are state independent,
we can write down the MTT model described literally above as

Ly o K
po(z1m) = H( B (1 — po) MR PO (KD M) PO (K] 3 Ap) e (1 — pa)i =4 ﬁ) (4)
t=1 ’
Po(Xin|21m) = [ | [H Fo(@e|me—1 ;) ke A (@ ks 11:mz) H fp (21, ] (5)
t=1 j=ki+1
n _.f
Po(Y1n|X1ims 21:n) = H[D’\ | yt,ig(j)!wt,j)]- (6)

t=1 Jrid(5)>0
Herea;.;, i < j is used to denote a finite sequer{eg, a;11 . ..a;}, PO(k; \) denotes the probability mass function
of the Poisson distribution with meaxy |)| is the volume (the Lebesgue measureDyfand1 4 is the indicator
function of the numbering rulel for the new born targets (e.g, if new-borns are ordered insaerading order of
the first component, thed is the set of states satisfying ,:1(1) < --- < xt,k:(l))ﬂ So the joint density of alll
the variables of the MTT is

p@(zlzn> X1 YI:n) = p6(21:n)p9(X1:n|21:n)p9(Y1:n|X1;m Zl:n)-

1A is introduced here to avoid the labelling ambiguity of newrbtargets. The labelling ambiguity also arises in otheasye.g. Bayesian
inference of mixture distributions; see [16] for more distai



Finally, the marginal likelihood of the datg., is given by

pe(}’m) - ZP@(len)/Pe(YLn\XLn, Zl:n)p@(xlznyzlzn)dxlzn-

Z1:n

B. Two equivalent mathematical descriptions for MTT

Note that, conditional orf;.,,, (X1.,, Y1.,) may be regarded as a collection of HMMs (with different start
and ending times and possible missing observations) arehadifons which are not relevant to any of these models.
In the MTT terminology, each HMM corresponds to a targetrtstg and ending times of HMMs correspond to
birth and death times of those targets, and missing andcevuaiat observations correspond to mis-detections and
clutter.

Note that, each target has a distinct labet {1,..., K} whereK = Y7, k?, which is determined by its birth
time and the numbering of its initial state at the birth tindegendent on the numbering rule). Ltétand t’; be
the birth and death time of the target with latieland denote its trajectory as

o o (k c(k)y < o (k o (k
X0 = (X LX), YW = ™)

wheref(i(k) is thei-th state of target; Yi(k) is the observation generated biyf’“) provided detection, otherwise
we takeV¥) = @; 1, = tk — tF is its life span. In particularX®, Y(*) form a HMM with initial and state
transition densitieg.,, and f,, and observation density,, as in [1) with the convention thai,(o|z) =1, z € X
to handle mis-detections. In addition, we defti€) that contains all irrelevant observations during titnen with
X0 = g,

To recover(Zy.,, X1.n, Y1.,,) from {X®) Y ELE ' we also need to know (¥) which containd the information
of the birth time, the death time and the indices of measunésrassigned to targétfor k = 1: K. Z(© is defined
for clutter so that it contains all clutter’'s appearanceenand their corresponding measurement indices. The point
we want to make here is that given ordering rdldor new born targets, we have a one-to-one mapping between

the two equivalent descriptions of the MTT model, i.e.
Zl:n; Xl:n7 Yl:n <~ {Z(k)’X(k)7 YAv(k)}lf:O (7)

In Figure[1, we give a realisation of the MTT model to illusérahe r.v.’s introduced in both descriptions and show
the correspondence between these two descriptions. It €a@eén that each target (HMM) evolves and generates
observations independently, with the only dependancydhiced by the target labels dependent on the numbering
rule.

Although it is more straightforward to write down the MTT jpability model in terms of the first description,
see [(#){(6), the second description here is indispensabledr MCMC moves where we first propose change to
Z®) X*) for some target: or a set of targets, then we get the unigég,, X;., based on the equivalence of
these two descriptions.

C. Bayesian tracking and parameter estimation for MTT
There are two main problems we are interested in this papsunaingd is known, the first one is to estimate the
data association and the states of the targets given thevaktisesy.,. This problem is formalised as estimating
the posterior distribution
p@(zlzrwxlzru y1:n)
(8)
pe(}’m)

p@(zlnu Xl:nb’l:n) =

We can writeZ* = (tf, t%, 1) where ! is alx x 1 vector with I¥ (i) being the index of’,*’ in Y (the collection of all observations
at its appearing time) if f/i““) + @, otherwise]j (i) =0.
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Fig. 1: A realisation from the MTT model: states of a targets are ected with arrows and with their observations when detetiedetected
targets are coloured grey, and false measurements arehieditines. For this example,

clu = ([]7 [17 1, 1]7 [17 1, 0]7 [07 1, 0])! 11 = ([07 0, 0] ) [17 2, 3] ) [17 2] ) [2])1 kll):4 = (37 0,1, 1)!
k., =(1,0,1,0),i¢s = ([3,1,0],[0,1,2],[2,3,0], [0, 1]);

W = (w11, 220, m51), Y = (41,3, 9, u3,2), 2 = (1,4,[3,0,2]);

x® = (212,222, 232,24,1), ¥ = (y1,1,92,1, 3,3, 9), 22 = (1,5,[1,1,3,0]),

O = (z1,3,223), ¥ = (2,12,2), 2% = (1,3,[0,2));

W = (233), yW = (@), 2@ = (3,4,(0); %®) = (212), ¥ = (gu), 2® = (4,5, [1)).

wherepy(y1.,) serves as a normalising constant not dependinz9R, x1.,,). We present a novel MCMC method
which samples from the posterior distributidnd (8) for namelr MTT models in Section Il

The second problem we are interested is the static paramstieration problem, that is estimatiigfrom the
datay;.,. We regard as a r.v. taking values i® with a prior density(6), and our goal is to estimate the posterior
distribution of§ given data, that is

p(9|YI:n) X 77(9)299(3’1;n) (9)

which is intractable for MTT models in general. In Section We extend our MCMC tracking method in Section
[Mto get sampleq#, x1.,,, z1.,) from the joint posterior distributiop(6, z1.,,, X1.1 |y 1:1)-

[1l. TRACKING WITH KNOWN PARAMETERS

In this section we assume the paramétaf the MTT model is known and we want to estimate the posterior
densitypg(x1.n, 21:n|y1:n) defined in [(8).
For a linear Gaussian MTT model, one can consider the fofigWactorisation of the posterior density

p@(zlzrw xl:n’ylzn) - p@(zlzn‘yl:n)pe(xlzn"zl:n; yl:n)

and concentrate on sampling fram(z1.,|y1.n) & Po(21:n)P0 (Y1:n|21:n)s @8SPe(Y1:n|21:1 ), the likelihood of the data
given the data association, can be calculated exactly.l&@lgionce we have samples for.,,, po(X1:n|21:n, Y1:n)
can be calculated exactly for every samplez@l‘nﬁ This is indeed the case for the MCMC-DA algorithm of
[1], which is essentially an MCMC algorithm for sampling finopy (21.,,|y1.). However, when the MTT model
is non-linear, which is the case in this paper, MCMC-DA is applicable sincepy(yi.,|z1.n) iS not available.
[2] proposed to circumvent this by using an unbiased estimat(yi.,|z1.,) in place ofpy(y1.,|21.n), Which is
obtained by running a particle filter for each target. Thigssentially the PMMH algorithm of |[3] applied to the
MTT problem. However, this strategy mixes slowly due to tlagiance of the estimate @f(y;.,|z1.,), especially
when the number of particles is small, which is demonstrate8Section V-A. It is also not efficient sincK;.,, is

3Strictly speaking, the closed forms are available when vmerig the ordering rule here.



only a by-product of the PMMH algorithm, and not used to ps®the change of data associatiépn,,. In this
paper, we first design an efficient sampler to chafigg and X.,, together based on the old samples to avoid the
variance problem encountered in the PMMH when the partialaber is small. Then, we refrest;.,, by applying

the particle Gibbs (PGibbs) algorithm proposedLin [3] toedemte mixing.

This section documents our MCMC algorithm for sampling.,, x1.,,) jointly from (8). Before going into the
details, it will be useful to have an insight into the distiion in (8). Notice that the dimension &;., is
proportional toy ;' ; K which is determined by the data association,. Therefore, the posterior distribution in
(@) is trans-dimensional and the standard MetropolisiHgst(MH) algorithm is not applicable for this distribution

A general method for sampling from a trans-dimensionalithistion is the reversible jump MCMC (RJ-MCMC)
algorithm of [17]. Assume we have the target distributiofn, x,,,) wherem is discrete, and:,, is a vector with
dimensiond,,, that changes withm. Here,m can be considered as a model index, whose dimengjptis not
necessarily different from,,, for m’ # m. To move a samplém, x.,,) from =(m, z,,,) to a subspace with a higher
dimension, we can first propoge:’, w,, /) ~ q(-|m, z,,), wherem’ is the model index such that,, > d,,, and
Umn,m’ € Rim.m' are extra continuous r.v.'s such that, = dm +dm, m (dimension matching). Finally the candidate
sample is given by dijectiont z,,,, = By ' (Tm, Um,m'). FOr the reverse move, with probabilitm|m’, )
propose to move to subspaee, and use the bijectiom,, ,, = ﬁ,;}m, to get (zp, umm') = ;}m/(xm/). The
acceptance probability for the proposed santptg z,,, ) is a(m/, 2, ; m, T4) = min{1, r(m/, 2, m, T, ) } Where

w(m', xpm) gm|m’, ) | Ozp

r(m, Ty m, Tm) = (10)
( " m) ﬂ'(mrxm) Q(m/aum,m"m7xm)|a(wm7um,m’)
where the rightmost term is the Jacobian3f ,,.. The acceptance ratio of the reverse move is

(1, Ty M T ) = (M s My ) 7L (11)

In the MTT model, each data associatigr, corresponds to a model index, x;.,, corresponds to the continuous
variablex,,,, andpy(z1.n, X1.n|y1.n) COrresponds tar(m, z,,). From this perspective, we can devise a RJ-MCMC
algorithm for [8) which has two main parts: (i) MCMC movesttlaae designed to explore the data association
Z1.n, followed by (ii) an MCMC move that explores the continuodatesX;.,. While the later move aims to
explore X;.,, only, we also need to adapf;.,, to respect the adopted ordering ruleof new born targets. We
present a single iteration of the proposed MTT algorithm Igotithm[1 referred to as MCMC-MTT.

Algorithm 1: MCMC-MTT
Input: Current samplézy.,, x;.,), datay;.,, parametef), number of inner loops, ny
Output: Updated sampléz.,,, x1.,,)

for j =1:n; do
| Updatezi.,,x1., by one of the MCMC moves in Algorithia] 2 to explore the data agg®n 7.,

for j =1:n9 do
| Updatezi.,,x1., by an MCMC move (Algorithni13) to explore the continuous stspaceX;.,

Algorithm[1 can be viewed as an extension of MCMC-DA [1] to ti@n-linear non-Gaussian case by incorpo-
rating X;.,, into the sampling space. Designing the MCMC kernel for thet foop is demanding and we reserve
Sectior 1II-A for the description of this kernel. The secdadp uses a PGibbs kernel to refresh the samplé§of
conditioned on the data association, which is an importaatof for fast mixing when we enlarge our sampling
space. The PGibbs step is standard since given the dataa&sgahe MTT model can be decoupled into a set
of HMMs (as emphasised by the alternative description thtoed in Sectiof I[-B).



We have found that Algorithrin] 1 can work properly with anyiaisation forz;.,,, even with the all clutter case,
ie. Kb, =0, henceK{:n = k{.,, and X, = @, which is a convenient choice when no prior information is

available. We generally take; an order of magnitude larger than (n, = 1 typically) as the second loop takes
more time than the first one.

A. MCMC to explore the data association

Algorithm [2 proposes a new data association with one of tHewog six moves at random:

1) birth move to create a new target and its trajectory;

2) death moveto randomly delete an existing target;

3) extension movedo randomly extend an existing track;

4) reduction moveto randomly reduce an existing track;

5) state moveto randomly modify the links between state variables ateasive times;

6) measurement mové randomly modify the links between state variables anskeolation variables.
The first four of the moves change the dimensiorXaf,,, and hence they will be called trans-dimensional moves
where RJ-MCMC needs to be applied. Specifically, the dintensiatching here is done by introducing new states
or deleting existing ones, and the bijections are such tiemtlacobian i (10) is alwayls Reversibility is ensured
by pairing the birth (resp. extension) move with the deagisi§r reduction) move. The last two moves, i.e., the state
move and the measurement move, leave the dimensidt gfunchanged, so called as dimension-invariant moves,
and a normal MH step can be applied. We will see later thatethe® moves are self-reversible, i.e., they are
paired with themselves. In the following subsection, wecdbs the essence of each move included in Algorithm
2.

Algorithm 2: MCMC moves to update data association

Input: Current sampléz;.,, x;.,), datay;.,, parametef), window parametet

Output: Updated sampléz.,,, x1.,,)

Samplej € {1,...,6} randomly.

switch 5 do
case 1 propose(z}.,,,x}.,,) by thebirth movecase 2 propose(z}.,,,x}.,,) by thedeath movecase 3
propose(z1.,, X;.,) by the extension movease 4 propose(z1.,,x}.,) by thereduction movecase 5
propose(z}.,,, x}.,) by the state movecase 6 propose(z}.,,x}.,,) by the measurement move

Calculate the MCMC acceptance probability for mgve

a5 = min{lv ] (Zi:rw Xll:n; 21y Xl:n)}

(See [(1R),[(IB) [(I5)[(16)._(1L1) for the calcatuionrof.

Changez., = z}.,, x1., = X.,, With probability «;, otherwise reject the proposal.

1) Trans-dimensional move3wo pairs of movestiirth/death extension/reductigrare designed to jump between
different dimensions foiX;.,,.

a) Birth and death movesAssume the current sample of our MCMC algorithm f6r,, implies K existing
targets. We propose a new target with randomly chosen hirthdgath times and randomly assigned observations
from the clutter, i.e. observations unassigned to any ofetkisting targets. We give a sketch of the birth move
here.

We first propose a random birth timg and sample death timg < (n+1) based orp, (note,t; can be changed
later during this birth process) for the new target, thereedtthe trajectory of the target forward in time in a



recursive way untit,;. Each extension step proceeds as follows. Assume the fattestvationy, we assigned to
the new target is observed at timg (For the first iteration, = ¢, — 1, y, takes the mean of the initial position.)
We define the time bloclB = {t, + 1, ..., min{t, + t,,,tq4 — 1}} where

tm =min{t : (1 -pa)’ < (1 —pm)},

given a user defined probabilipy, (close to 1). The logic behind this is that with{m, + 1, ... ¢, +t,,} the next
measurement would appear wahpriori probability larger tharp,,,. Among all the unassigned observations in this
time block B, we form a set of candidate observations whose distangg, (@vhich depends on both time and
space) is less than a certain threshold set by users. fhpthould be big enough so that bloék contains most
possible candidates. (i) With probabilipy,, we decide that the next observation to be assigned to thearget is
located inB and choose it randomly from the set of candidate obsenaiidth probability inversely proportional
to the distance tg,, provided that the set is non-empty. If the set of candidaasurements is empty, however, we
terminate the target either gt if t; < ¢, +t,,, or at some random time in the block (proposed by takingg, ¢,
into account) otherwise. The termination time is the finalpgwsed death time; for the target. (i) If (i) is not
performed, i.e. with probabilityl — p,,), we decide that the target is not detected during the whalekhB. Then
we recommence the process above from the end of the blockssml < ¢, + ¢, + 1. We refer to this iterative
observation assignment procedure as grouping measurestegtat the end of which, we obtafly containing
the birth time, the death time and measurement indices ohéve born target, and we dencigy(2s|1.n, Y1:n)

the probability induced in this step. The new target’s staigare proposed by running unscented Kalman filter
(UKF) [18] followed by backwards sampling [19], which is egsially a Gaussian proposal for the target states
(see Appendix A for more on UKF and backwards sampling). Dergg(x,|2,y1.n) the probability density
induced in this step. The sampled hidden states will servéiragnsion matching parameters of the RJ-MCMC
algorithm. Given the sefz2(*), #(®)}K U {2, %,}, new data associatior{,, can be obtained deterministically by
the one-to-one mappin@l(7) mentioned in secfionlll-B adogrdo the ordering rule. Finally, we get new states
Xy = Barn 2t (X1, %p), Wheres, .. s to insertx, into x;.,, at the corresponding positions indicated 4y, .
The resulting Jacobian it

The death move, which is the reverse move of the birth moveoie by randomly deleting one of the existing

tracks. The acceptance ratio of the birth move is
;o D0 (2.5 X1, Y1) 9d.0(21:0121.,)

1(Z1m: Xim) Zms Xiin) = p0(21:Z7X1:Z7y1:n) 8 @,0(Z6|21:m, Y1:m) 06,0 (Xb |26, Y1:m) (12)
whose reciprocal is the acceptance ratio for the correspgrakath move. Herey; o(z1:,|21.,,) is the probability,
induced by the death move. Note thaty(2|21.n, y1.») depends op, pq and the distance between the last assigned
observation of the target and all clutter in the next few tsteps. Thus, in some sense, the move exploits a pseudo-
posterior distribution of the life time of the target and theget-observation assignments given the unassigned data
points.

Compared to the birth move inl[1], our birth move allows anynier of consecutive mis-detections (note the
parameterp,,) and improves the efficiency of the target-observationgassents. Also, our birth move proposes
the continuous state components of the new born target wdrighintegrated out in [1].

b) Extension and reduction move# this move, we choose one of th€ existing targets, and extend its
track either forwards or backwards in time. The idea of fadhwaxtension is outlined as follows, and the backward
one can be executed in a similar way. First decide how long leextend the target based gn, and decide the
detection at each time for the extended part, based,;oand the number of clutter at that time. To extend from
time ¢ to ¢t + 1, if the target is detected, we assign to it an observatiosehdrom the clutter at time+ 1 with a




10

probability inversely proportional to its distance to thregticted (prior) mean of the stateiat 1. (Here, we mean
ge_l(y\x) by the ‘distance’ betweem € X andy € )).) Then we calculate the Gaussian approximation of the state
posterior by applying the unscented transformation [1&)agishe chosen observation. The forward extension step
is repeated forwards in time until we reach the extensiogtierDenoteg. ¢(Z|z1.n, y1:») the probability induced
here, where, consists of the new death time and the observation infoomaitf the extended part. Then, backwards
sample the extended part statesby Gaussian proposals denoteddy (X.|Z¢, X1.n, ¥1:n) that is calculated based
on the forward filtering density (the Gaussian approxinratib the posteriors) used in proposidg Finally, 2/ .,
andx/)., can be obtained similarly to the birth move based on the orme mapping in[{7), and the Jacobian
term in [10) is1.

The reduction move paired with the extension move is implaeee as follows. We randomly choose target
k among theK existing targets, then choose the reduction type and thectieth time point, eithet € {t’g +
1,...,tk — 1} to discard{t,...,tk — 1} part of the track, ot € {t,...,tk — 2} to discard its{t,,...,t} part.
Denoteg;, ¢(21.,|%}.,,) the probability induced here. The acceptance ratio of thersion move is

;o P6(21.0s X1 Y1in) qro(21:n121.,)
3(2im: X1on 21ins X1in) = pe(zizz,xizz,}’m) 8 Qe,0(Ze| 21:my Y1:n)e,0(Xe| Zes X1:n, Yiim) (13)
whose reciprocal is the acceptance ratio for the correspgnéduction move.

Compared to the extension/reduction move. in [1], our exteriseduction move is done in both ways instead of
merely forward extension. Also the extension move makesfifiee hidden states to add in measurements instead
of using the last assigned measurement. Again, the contiatate variables are proposed here instead of being
marginalised as in [1].

2) Dimension invariant movesthese moves leave the dimensiornXf.,, invariant and are dedicated to changing
the links between the existing target states at successies f(state move) and the assignments between the target
states and measurements (measurement move). The tangevaizes are also modified in order to increase the
acceptance rate. These two moves are specially designedwieere the state move can be considered as certain
combinations of the splitymerge and switch moves In [1], levlihe measurement move corresponds to the update
move in [1], but with more choice of modification to the obsdion assignment. The diversity of the modification
choice is enhanced by introducing the state variables mtosampling space.

a) State Move:ln this move, we randomly choose tinte< » and locally changé/, ,, i.e. the links between
X; and X, 1. Figure[2a is given to illustrate the move. Assume we woute lio change the descendant link
of X;,. When X, ; has descendant,;; ,, we can propose to change its descendanktp; , which originally
evolved fromX; ; (sub-moved, 2, 3 in Figure[24), or to linkX,; to the initial stateX,, j of a target born at time
t + 1 (sub-movest, 5), or to delete the link (sub-mov§). Sub-movesdl, 2,3 have different arrangements for the
old descendank, 4, who becomes clutter in sub-movgor the descendant of; ; in sub-move2 (i.e. switches
its ancestor withX,,, 5), or the new descendant of; ; in sub-move3. Sub-movest, 5 differ in a similar way in
terms of the old descendant arrangement. WKgnhas no descendant, it can be merged with a new-born target at
time ¢t + 1 by linking to its initial state (sub-mov&), or steal another surviving target’s descendant (subemspv
Reversibility is ensured by paring sub-moveand5, 6 and7, and the remaining ones with themseﬁld‘sote that,
the new link, e.g, the one betweéh ; and X, ; in sub-movel, meansX,; , and all its descendants together with
their observations will becom&, ;'s descendants and the corresponding observations inttee tie. Essentially,
by changing’;, ; the step described above propoged)’, %)} for each targek in setS whose state links are
modified. Denotey(2%, Xs|21.,, X1.,) the probability induced here, whegé = {2}, cq, X5 = {(xF)'} 5.

“For the reversible move &f, we chooseX; ; to have the descendant link changed. For the other movestilvehsose X ;.
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Note that, when the state noise is small, the state move valttiyn be rejected if we only modify the state
links. Thus, local modification ok’ is necessary to get state moves accepted. For this reasopropese new
X = (&, cs, wherex is the parts of&®)’ within the time windowwy, = {¢*, ..., t*} centred at: with
window size parameter where

t* =min(tf t — 7+ 1), t*F =max(th —1,t 4+ 7), (14)

=

by Gaussian proposals, i.e., running UKF and backward sagfir each targek conditioned on its observations

in w; and its states right before and after the window at tirtfes- 1 and t* + 1 resp., if they exist. Denote

4s,6(XY |26, X5, ¥1.n) the probability density of proposing new local target statfter updating{z(*),x(*)} for

eachk € S, the uniquez|.,, can be obtained by the one-to-one mapping, ®ng can be obtained bx].,,, Xs ) =

lemzim(xl;n,&;,w), which takes out the old statés ,, in the updating windows fronx;.,,, and insertst’s,w into

x1., at the corresponding positions indicateddjy, . It can be seen that,, .,/ is invertible with the Jacobian being

1 as well.

The acceptance ratio of the state move is

P3Gt ¥ 2t 1) = Lo X V) e X8l s Xt Rl 26 X5 )

P0(21:ns X1:n, Y1im) Qs,e(zs>Xs|21:n,Xl:n)Qs,e(Xs,w|Zs>Xs,Y1:n)

(15)

b) Measurement Moven this move, we randomly choose timeand locally changé?, i.e. the links between

X; andy;. Unlike the state move which modifie§, ; followed by modifying local states, the move here first
modifies the states and then proposes the chandg. @pecifically, first randomly pick € {1,..., K} to decide
this move mainly aims at changing the measurement linkKpf. Assuming the target label ot ; is k, propose
%/ for targetk within the windoww;, = {t*,... t*} similarly as in the state move, but with the modification to
disregard the observation df; ; (if it exists) to remove its influence oX; ;. Denoteg,, o(X},|#1:n, X1:n, y1:n) fOr
the proposal density induced here. Then we propose the ehainthe measurement link based on the distance
between newX,, and all measurements at timePossible proposals are illustrated in Figuré 2b with tineilar
idea as the state move. First, we set up the measurementflik oif it is not detected (sub moves and9),
or choose to modify or delete the measurement linKjf; is detected (sub movelsto 7). Then decide how to
deal with the original observation if it exists, making itteir clutter or new observation of one of the mis-detected
targets. Reversibility is ensured by paring sub-movesnd 5, 6 and 8, 7 and 9, and the remaining ones with
themselves. Denotg,, o(z1.,,|X.,, Z1:n, X1:n, Y1:n) fOr the probability induced here.

The acceptance ratio of the measurement move, which is dioremvariant like the state move, can be calculated
as

T6(Zi;n,X/1;n;Z1:mX1:n) _ pe(ziznxllznvylm) quﬂ({(juyzizn?w/l:n?ylin)qmﬂ('ziin‘}:{jwZi:nﬂxi:n7ylin) (16)
pB(lenXI:naylzn) Qm,e(Xw|Z1;n,X1:n,Y1:n)Qm,6(zlm|Xw,Z1;n,X1;n,Y1;n)

B. Update hidden states by particle Gibbs

Given a joint samplgz;.,, X1.,) Obtained via the first loop of Algorithrnl 1, we may update theyeés states
x1., by an MCMC move designed to explore the space of the contmstates. As mentioned in section II-B,
given Zi.,, {Xi.m, Yi.n} is equivalent to{X*) Y 1K  ~a set of HMMs evolving independently but with the
constraint that the target labels need to satisfy the nuimipeuleE In this move, we do the following(1) first
ignore the labelling constraint, and get new samifé ~ py(-|y*)) independently for each targét=1: K; (2)
Get a new sampléz;.,, x1.,,) deterministically from{z(*), x(®!)1K _py the one-to-one mappingl(7) according to

SMore precisely, it is the numbering of states at each timdéchvhas a one-to-one mapping with the target labels, thadseefulfil the
numbering rule.
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the ordering rule. However, stép) can not be done directly for non-linear models, so an MCMC enloas to be
considered. When targets live for long time, prohibitivelpw mixing speed prevents us from using MH to update
components, even blocks, &*). Fortunately, the particle MCMC (PMCMC) framework, in peular particle
Gibbs, [3] provides an efficient way to update the whole tajgy %, for eachk while leaving eachy, (x*) |y ()
invariant. The principal idea of PGibbs is to perform a Gilshspler on an extended state space whose invariant
distribution admitgy(x*)|y*)) as marginal. This can be done by applying a conditional SM@eg3] for x(*),
which is followed by backward sampling [20,/21]. The appiica of this idea for the second loop of Algorithm

[l is given in Algorithm(3B.

Algorithm 3: MCMC move to update target states
Input: Current samplézy.,, x1.,), datay;.,, parametep (in particular,i))
Output: Updated sampléz.,,, x1.,,)
Extract {z*), x®) y(FIVE from (21, X1, Y1)
for k=1:K do
Run a conditional particle filter for the HMM,,, f,,, g, with N particles conditional on the patti*) and
L the observationg*); perform backwards sampling to obtain a new sample gé&th

A

Get updated sampley.,,, x1.,) from {2®) %)} K  py (@) according to the ordering rule.

The PGibbs algorithm with backward sampling has favourabieing properties, see [3, 21] for theoretical
analysis and routines of conditional SMC and backward sagpised in Algorithn B for a general HMM. We
also present the routines in Appendix B.

IV. STATIC PARAMETER ESTIMATION

In this section, we will show how to extend Algorithimh 1 to abt@osterior samples of the parametein the
MTT model. To do this, we use the conjugate priors for the congmts ofé wherever possible and execute an
MCMC algorithm for (Z;.,,, X1.,,0) Which is obtained by adding an additional step for sampfirtg Algorithm
given a joint sample ofZ7;.,,Xy.,) and the datay,.,. Specifically, starting with an initia(6, z1.,,, x1.,), We
iteratively perform MCMC sweeps given in Algorithinh 4.

Algorithm 4: MCMC for static parameter estimation

Input: Current sampléé, z;.,,, x1.,), datayi.,, number of inner loop®, ng, n3
Output: Updated sampléd, z1.,,, X1.1,)
for j =1:n; do

| Updatez.,,x1., by MCMC moves (Algorithm R) to explor¢;.,, conditioned ory.
for j =1:ny do

| Updatezi.,,x1., by an MCMC move (Algorithn13) to explorX,., conditioned ord
for j =1:ng do

| Updated by an MCMC move conditioned ogy.,, andzy.,

When we have conjugate priors for all the component#,at is possible to implement a Gibbs move fér
(n3 = 1) at the last step of Algorithmh]4. Otherwise, one can run an Mgbrithm with invariant distribution
P(0)21:m, X1, Y1:0) X P(0)Do(21:0, X1:m, Y1:0)- IN this work, the MTT model used allows us to have a Gibbs move
here.
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Recall that in [(B),)) is the vector of HMM parameter for each target, andps, Ay, Ay are the parameters
governing the data association of the MTT model. Givgy, the posterior of(p,, p4, As, A¢) is independent of
x1., andyy.,, SO we refer to them adata association parameters the following section, we present the conjugate
priors and their corresponding posteriors of the data dstoc parameters and the HMM parameters of a non-linear
MTT model.

A. Data association paramete(s;, pq, Ao, Af)

Based on the MTT model in sectid Il, the conjugate priorp9h4, Ay, Ay can be chosen as
Ps, Pd I'IE Unlf(07 1)7 /\b7 >\f l'l\d" g(Oéo, 50)7

where Unifa,b) andG(«, 5) represent resp. the uniform distribution overb) and the gamma distribution with
shape parameter and scale parametgt. Note that, we setyy < 1,5y > 1 as is commonly done to make the
prior less informative, while a different choice of), 5y can be made when prior knowledge is available. /&5
and K¢ are Binomial r.v.s resp. with success parametersp, and number of trialsk? ,, K¥, the posteriors
distributions ofp, andp, are

ps"zlznayl:n ~ B<1 + Zkf7 1+ Z(ktm—l - kf)),

t=1 t=2
n n

pd|zlzn7 Yin ~ B<1 + Z kf» 1+ Z(k‘if - kg))a
t=1 t=1

whereB(a, b) is Beta distribution with parametets b. As the number of birthk? and number of cIutteth are
Poisson r.v.'s with rateg, and A, resp., the posteriors of,, Ay are

>\b|z1:m3’1:n ~ g<OZO + Z ]{71{)7 (Bo_l + ’I’L)_1>

t=1

)\f"zlzru}’l:n ~ g<a0 + Zktfa (/80_1 + n)_1> :
t=1

B. HMM parameters): an example

The choice of conjugate priors af depends on the parametrisation of the HMM model. In the falig we
adopt the nearly constant velocity model for the state dyosiend the bearing-range model for the measurements
as an example.

1) The model:We assume the state of a target is comprised of its positionvatocity in thezy plane, i.e.,

X = (Sx,S'x,Sy,S'y)T. The target moves independently in each direction at a neanstant velocity with the
line of sight measurement including the measured range aadryg from the observer to the target. The described
HMM can be written as follows:

Xe=FXi 1+ U, Yi=9(Set, )+ Vi (17)

with ¢ : R> — R? defined as

T
9(8z, 8y) = [(si +s2)1/2, tan_l(sy/sx)} ,

O2x2 A 0 1
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where0,, «,, denotes: x m matrix of zeros and\ is the known sampling interval. The state ndigeand observation
noiseV; are independent zero-mean Gaussian r.v.’s with covariangeand X, defined as

2 3 2 2
2, = 0% 022X2 = A2/3 A=/2 5= foge O2 .
02><2 O'yE A /2 A 0 O'b

The initial hidden state is assumed to be Gaussian distbutth meanu, = (ubx,o,uby,O)T and covariance
S = diag(07,,, Tines Tipy» Ty )- (We set the mean of the initial velocity asn the absence of more information.)
2) Posterior ofy: The parameters of the HMM in the example above are

2 2 2 2 2 2 2 2
¢ = ( :c?0y70r7Ub7abpx7abpy7Ubvmaabvyaubxauby)'

The priors of all variance componentsignare chosen to be inverse gamma distribution with shape Edeam,
and scale parametey.

2 2 2 2 2 2 2 2 id

O290ys0r, 05 Obpas Obpy:r Obwz s Tbuy ™ Ig(a07 /80)

Again, we can setyy < 1, fy < 1 for all to have less informative priors. Givm’fpx, agpy, the priors ofyi,, 11,
are

2 N 2 2 N 2

lu’bSL‘|O-bp:c ~ (#07 prx/”())? /Lby|o-bpy ~ (#07 pry/nO)

where we can sety andngug small enough to make the prior uninformative. We only disdhe z-direction here

for the posteriors of the state parameters astiirection can be deduced in a similar way. Fdr, we get the
posterior

n
1 -
0-;%|X1:n7 21m, Y1in ~ IG (OZO + Z k‘f, Bo + 5”(2 IE(I))> ,
t=1

K -1
50351, (@Ei)l B Fx(k)) (@5@1 _ Fﬁclﬁk))T 17,
k=1 i=1

where [, =

1 0 0 0 ) A B .
0 1 0 o) O (O Ohu ), denotingsy = S (a7(1) — (1)) B2 = el (o
2?2 B =Y W2 2=+ YK &, we have

Ul%p:c|xlzm 21m, Y1n ~ IG (Oé() + 0.5K, By + 0.5(ﬁ1 + ﬁ2)) ,

O'l%vmyxlzm Rl Yim Ig(ao + 05K, By + 0.553),

_ 2
nopo + KZ1(1)  Ohpg

ng + K "ng+ K
For measurement parameters and o2, their posteriors can be obtained by calculating the sunmofied range
noise and that of the bearing noise as follows

2
lubx|0-bpm7 X1iny 2lins Y1m ™ N(

7 [X1ns 21m, Yim ~ IG <a0 +0.5) K, Bo+0.5%,(1, 1)>,
t=1

n
O-I?|X1:na 21, Yiin ™ Ig <Oé(] + 0.5 Z kz(tia BO + 0521}(27 2)> )
t=1
whereXl, = 3771 3 saiy50 As (Aye) s Ay = yeani) — 9(w(1), 245(3)).

V. NUMERICAL EXAMPLES

In this section, we give some numerical results to demotesthee performance of our methods. All simulations
were run in Matlab on a PC with an Inté} 2.8 GHZ x 2 processor.
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A. Comparison with MCMC-DA for the linear Gaussian model

In the linear Gaussian MTT model used here, we assume a tawgétes as the first equation ih_{17), but
generates observations according to

1 0 00

Vi=GX;+V,, G=
0 010

) y Vi~ N([()?O]Ta Ev)'

The linear observation model is needed by MCMC-DA [1] so ttiegt marginal likelihoodpy(y1.,|21.,) can be
calculated exactly (i.e, the continuous state varialXgs, are integrated out). We synthesised data of lerigth
with ps = 0.95,pg = 0.9, Ay = 0.5, \; = 3, 14, = (80,0,100,0), %, = diag49,9,49,9),0, = 0.7,0, = 1.5, %, =

diag(4,4).

Assuming all static parameters are known, we compare tHerpgance of MCMC-MTT in Algorithnill, MCMC-
DA [1] and PMMH—MTTH [2]. All three methods were initialised by taking all obsatiens as clutter. One iteration
of Algorithm[1l includes a loop of; = 50 MCMC moves to updatéZ;.,,, X1.,,) jointly (with window sizer = 5 in
moves5 and6 of Algorithm[2), and a loop ofi; = 1 PGibbs move to updatX,.,,, while one iteration of MCMC-
DA and PMMH-MTT containss50 MCMC moves to update;.,,. Figure[3 shows the plot df)gpg(zgzl,ylzn) for
the three algorithms, Whelze(lle is the sample at theth iteration of each algorithm. It can be seen that MCMC-DA
outperforms Algorithni 1L withi 0 particles used for each target in the PGibbs step. This isa&d since Algorithm
[l samples from a larger spa¢X,.,, Z1.,) than Z;.,, alone in MCMC-DA. But its performance almost matches
that of MCMC-DA when30 particles are used. Two lines at the bottom of Figure 3 shavpérformance of
PMMH-MTT with 10 and 30 particles. We can see that PMMH-MTT converges much slowan thlgorithm[1
especially when the number of particles is small. The slowemence can be explained by the low acceptance
rate (values reported below) due to the high variance of stienated likelihood.

In terms of computation time, far0? iterations, MCMC-DA cost§ min; Algorithm[1 costs around (resp.12)
min for 10 (resp.30) particles per target (including PGibbs step eveyiterations); PMMH-MTT costs arountB
(resp.17) min for 10 (resp.30) particles per target. The average acceptance rate of thd®@oves that explore
the data association is aboitl% for Algorithm [1 which was almost the same as MCMC-DA, and’3% and
0.3% for PMMH-MTT with 30 and 10 particles respectively.

The overall comparison here shows the efficiency of our pgeddVICMC moves on the larger sampling space
of (z1.n,X1.): it can work with much less particles than PMMH-MTT algonthin [2] and can achieve the
performance of MCMC-DA[[1] within reasonable computatiame.

B. Comparison with MHT for the bearing-range model

In this experiment, the model described in Secfion 1V-B1ssumed and we set,,, = o, = 04, T4, =

bozx
Tiny = Tiye TNUS,0 = (D5, Dty Moy Af, flbws Hbys Ty Ty 05 05 07, 07 ). We synthesised data of lengB0 with the
parameter vectof* = (0.95,0.9,0.4, 3,80, 100,64, 9,0.3,0.7,2,2.5 x 1073) and the sensor located {0, 0] in

the window [—20, 310] x [—50,210] including all the observations inside. The synthetic dadaduhere ha®4
targets whose trajectories are plotted in the upper halfigifirfe[5 where each line of (blue) connected stars shows
connected measurements of one target over the time, andetie dircles are clutter. We compare Algorithih 1
with the MHT [8] with L = 5 for L-best assignment anl = 3 for N-scan back. To deal with the non-linearity,
we replace the Kalman filter in MHT with the unscented Kalmadterfi[1&] which is also used in the MCMC

kernels in Algorithm[ll. For the MHT, we ran a particle filterti300 particles per target conditioned on the

®For simplicity, we only implemented the same moves as in tH@ME-DA [11] by substituting the estimate @f(y1.,,|z1.,) obtained by
particle filters into the acceptation ratio.
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data association output of MHT and perform backwards sargi9] to get more accurate state samples. We ran
Algorithm [I with 15 particles per target and; = 30,n, = 1. Two window parameters = 3 andr = 2 are
used for comparison. In Figuteé 4(a), we show the joint logsity of py(21.,, X1.n,y1.n) Of the output samples of
Algorithm[1 compared with the ground truth and the averag# jog-density ofpg(21.,, X1.n, ¥1.n) Obtained using
the MHT estimate forz;., and 500 SMC samples for;., conditioned on the MHT estimate of.,. It can be
seen thatog py(21.n, X1, y1.n) fOr Algorithm [1 converges to a vicinity of the log-densityadwated at the ground
truth, while MHT’s output has an apparent gap with the grotmth. We can also see that Algoritih 1 converges
around1000 and 1500 iterations forr = 3 and2 resp., which indicates that the mixing speed of Algorithmat c
be improved by the window parameterAdditionally, to show the PGibbs step plays a necessagyiroAlgorithm

[, we plot the log-density obtained by excluding the secammp I(PGibbs step) from Algorithil 1, which is still
far from convergence afte3000 iterations.

In Figure[4(b), we compare the tracking performance by théS8fistance [22]. The OSPA distance is a
distance between two sets of points, and it is defined roughlthe sum of a penalty term for the difference in
the cardinality of the two sets (OSPA-card) and the minimwm of distances between the points of those sets
(OSPA-loc). These two terms are separately compared inrélig(c, d) for Algorithm(l and the MHT algorithm.

It can be seen that MCMC outperforms MHT in both distancesiciwlagrees with Figurél4(a). However, this
better performance comes at the price of longer computétion For the experiment shown hei®? iterations of
Algorithm[1 took around minutes while the MHT took arountl minute. Note that, Algorithrh]1 has the potential
of being accelerated by introducing parallel computindhtégues which are not used here.

The comparison here shows the better tracking accuracy gériédhm[d over MHT for the non-linear MTT
model. The convergence in Figure 4(a) suggests that Algofll is a good choice for batch tracking algorithm for
off-line applications. An alternative view would be thaetmMCMC moves can be used to refine the initial MHT
estimate, or that of any other online tracker. Additionaltyalso shows the influence of the PGibbs step and the
window parameter on the mixing property of the MCMC kernel. The PGibbs stepasassary for the fast mixing
property and we find that settinglarge than3 is normally enough to get good performance.

C. Parameter estimation for the bearing-range model

Here we demonstrate the joint tracking and parameter estimperformance of Algorithmil4 using simulated
data so that the ground truth is known. The same data set a®iSBEB] is used here. We initialisé® =
(0.6,0.6,1, 8,50, 60, 50, 25,1,1.5,16,0.02), and run2 x 10 iterations of Algorithni# withn; = 60,179 = 1,n3 =1
and 15 particles. The data association result is shown in Figurth&,upper half of which is the ground truth,
and the lower half is one sample of MCMC tracking results. filstograms of the sampled parameters at#0
iterations (burn-in time) are shown in Figure 6 where thel\@ashed lines show the MLE estimdte** given
the true data associatioff., and true hidden states;.,,. %7 is defined as follows.

)75 —arg max pg(s,),
DssPdsAb A g (19)
Yoot = arg mfxpw(X’{;mylznlzin)-

(psvpcb >\b7 /\f

Note that, the histograms are an approximatiorp@fy;.,). When an uninformative prior is used, the posterior
mode should be consistent with maximum likelihood estinfistieE) given datay.,,. Since the MLE is not available
due to the intractable likelihood, we ugée* defined in [(18) instead.

As a final comparison, we compare with the approximate MLEobbtained by the method in_[15], which
proposes to maximise a poisson approximatiopgf.,) derived similarly as the PHD filter of [10]. We refer to
it as the PHD-MLE algorithm. For PHD-MLE, we estimated ak tharameters except the survival probabifity
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and the state noise parameteﬁso—g (the same as [15]). This is a beneficial setting for the PHDEMilgorithm as
those three parameters are known to it. As seen in Figure@®HD-MLE estimates have biases due to the Possion
approximation of the data likelihood, especially for thegmaeters\,, p4, 02, oZ. In computation time, PHD-MLE
took 4 hours to converge (with properly chosen step size), whileroethod took40 min.
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Fig. 5: Plots of data association in thedirection over time: upper figure shows the ground truth #redlower figure posts one sample
of data association obtained by Algorithdnin the main paper. Each line of (blue) connected stars showsected measurements of one
target along the time, and the (red) circles are clutterovsr (black) indicate where sampled.,, differs from z7.,,

VI. CONCLUSIONS

We have proposed a new batch tracking algorithm for the MToblem with non-linear non-Gaussian dynamics
and developed it further for the case when the parametefeifT T model are unknown. From our experiments,
we can see that our MCMC method (Algoritith 1) can approachp#rérmance of MCMC-DA![1], outperforms
PMMH-MTT [2], and obtains better tracking results compatedMHT [8]. Bayesian estimates of parameters of
the non-linear MTT model were also obtained by running Allifpon [4 which includes an MCMC step for updating
the parameters, and outperforms PHD-MLE| [15].

APPENDIX A
UNSCENTEDKALMAN FILTER AND BACKWARDS SAMPLING

Here, we give a short description of the Unscented Kalmaerfiit8] and backwards sampling [19] which
are both used in our MCMC proposals for moves across the dsacition. The Unscented Transformation
(UT) [23] is a method to calculate the statistics of a randariable undergoing a nonlinear transformations. In
UT, a d-dimensional random variabl& is represented by a set of weighted sigma pofms, W/, W£}i—o.24
deterministically chosen to capture its true meap and covariancd’,, where

Xo=mg, X =my+ (VP i=1:4d,
Xi:mx—(\/ch),-, i=d+1:2d

(v/cPy); is thei-th row of the matrix square root a?, multiplied by a scaling parameterwhose value can be
set according to [18] together with the mean weiglif” and the covariance weighW?. After undergoing the
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Fig. 6: Histograms of estimated parameters with (red) dashed howisg the MLE estimat@****, and the black solid lines showing the
estimate using PHD-MLE algorithm iﬂlS] with initial valseot shown due to zoom in aroufid. Vertical axis shows the parameter value,
and bottom horizontal axis shows the normalised histograighth and top horizontal axis shows the iteration step of RMILE algorithm.

nonlinear function” = g(X), the mean and covariance for Y are approximated by the wesigbample mean and
covariance of the transformed sigma points

2L 2L
my =Y WY, Pya Y W —my) (Vi —my)"
1=0 1=0

where); = g(&;). It is proved in IL_ZE] that the estimates of, and P, are accurate to thérd order for Gaussian
input and at least thend order for the other distributed inputs. To introduce Ufbifiltering, UKF augments the
hidden stateX; to include the state noise and measurement noise, and eagsdabhe extended hidden states by a
set of sigma points. The posterior mean and covariance ofiitteen state can be obtained by approximating the
likelihood p(y|z) as a Gaussian with the weighted sample mean and covariartbe tfansformed sigma points.
A detailed description of UKF can be found in [18].

Using the Gaussian approximatiofs(z1.¢|y1.+) }+=1.., produced by UKF, we can do the backwards sampling to
get samples fromr(x1.,|y1.,) based on decomposition of the joint smooth density

n—1

7'['(:171:n|y1:n) = 7T(xn|y1:n) H 7T(xt|xt-|—1a yl:t)
t=1

which suggests to first samplg, ~ 7 (x,|y1.n), then fort =n —1: —1: 1, samplez; according to

f(@ig1|zg)m(ze|yie)
7T(l’t+1 ‘yl:t)

7T(113t|33t+1,y1:t) =

APPENDIX B
PARTICLE FILTER AND CONDITIONAL PARTICLE FILTER

Here, we give a short description of the techniques usederM@MC move that exploreX;., i.e., Algorithm
3. The particle filter approximates the sequence of postefemsities{p(xi.+|yi.+) }+>1 by a set of N (N > 1)
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weighted random samples called particles
N
pe(dz1e|yre) = ZWt (dzyy), WE>0, ZWtk =1

whereW} is called as the importance weight for partisd§,, andd,, (dr) denotes the Dirac delta mass located at
xg. These particles are propagated in time using an importsatgling and resampling mechanism. At titne 1,
r+V consist of N independence samples from(-). To propagate from time — 1 to ¢, the pair(A}Y, X} V) is

proposed from
N

P(xt 1>dat 1) H at (‘T?t 1 x)

n=1

conditioned on the value of ;| = 21V |. Here A" |,n € 1: N is the ancestor index of partic‘reof timet, i.e.,

.y = (xlzt—l’wt) and A} are jointly sampled from the resampling distributiefx; ¥y, da}y). The multinomial
resampling is one common choice of resampling, where we pavg", da} V) = ]_[n:1 Wt Y™y, and
. a;y_y
wp (™) n( 1Ny _ 9(yelxd) f (2|2,
@) = :

Wi (™) =

Zl L wi(xf N) Qt(w?ET,w?)
Forward particle filtering can be followed by the backwardauation in Algorithm[% which makes use of the
approximated marginal filtering densiffz;|y:.¢) to get a path sample from(z1.7|yi.7).

Particle Gibbs (PGibbs) sampler [3] is a valid particle apgmation to the Gibbs sampler of(0, x1.,|y1.1)
with 6 being some parameter variables of HMM models, where the stegampling fromp(z1.,|y1.,) IS done
by running aconditional particle filter(also called conditional SMC) [3] shown in Algorithimd 6. Givene path
(say the first pathXi, = x},, of a particle filter, the conditional particle filter will repulate theN — 1 paths
conditioned on the first path. It is suggested.in [20, 21] thedter mixing property can be achieved by a conditional
particle filter followed by a backwards simulator.

Algorithm 5: Backward simulator

1 samplebr according to the multinomial distribution with parametector (N, W%N);
2fort=T-1:—-1:1do
m bt41 m
3 for m=1: N do calculateW, = Mﬁfm
T ™ o, Wi f (i |2

distribution with parameter vectdtV, th‘TN )

, given xfjjf sampleb; according to the multinomial

Algorithm 6: Conditional particle filter

1 setX] = i, sampIeX{ ~q(-), for j =2: N, and calculateV*;
2 fort=2:ndo

3 | setX}! =z}, Al | =1, sampleA?} ~ p(.|A}_; = 1);

4 | forj=2:N, sampleXi ~ ¢ (| X ");

calculateW,V;

o
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