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Generalized Labeled Multi-Bernoulli
Approximation of Multi-Object Densities

Francesco Papi, Ba-Ngu Vo, Ba-Tuong Vo, Claudio Fantacci, and Michael Beard

Abstract—In multi-object inference, the multi-object prob-
ability density captures the uncertainty in the number and
the states of the objects as well as the statistical dependence
between the objects. Exact computation of the multi-object
density is generally intractable and tractable implementations
usually require statistical independence assumptions between
objects. In this paper we propose a tractable multi-object density
approximation that can capture statistical dependence between
objects. In particular, we derive a tractable Generalized Labeled
Multi-Bernoulli (GLMB) density that matches the cardinali ty
distribution and the first moment of the labeled multi-object
distribution of interest. It is also shown that the proposedapprox-
imation minimizes the Kullback-Leibler divergenceover a special
tractable class of GLMB densities. Based on the proposed GLMB
approximation we further demonstrate a tractable multi-object
tracking algorithm for generic measurement models. Simulation
results for a multi-object Track-Before-Detect example using
radar measurements in low signal-to-noise ratio (SNR) scenarios
verify the applicability of the proposed approach.

Index Terms—RFS, FISST, Multi-Object Tracking, PHD.

I. I NTRODUCTION

I N multi-object inference the objective is the estimation of
an unknown number of objects and their individual states

from noisy observations. Multi-object estimation is a core
problem in spatial statistics [1], [2], and multi-target tracking
[3], [4], spanning a diverse range of applications. Important
applications of spatial statistics include agriculture/forestry
[5]–[7], epidemiology/public health [1], [2], [8], communi-
cations networks [9]–[11], while applications of multi-target
tracking include radar/sonar [12]–[14], computer vision [15]–
[18], autonomous vehicles [19]–[22], automotive safety [23],
[24] and sensor networks [25]–[28].The multi-object probabil-
ity density is fundamental in multi-object estimation because
it captures the uncertainty in the number and the states of
the objects as well as the statistical dependence between the
objects. Statistical dependence between objects transpires via
the data when we consider the multi-object posterior density,
or from the interactions between objects as in Markov point
processes [29], [30] or determinantal point processes [31]–
[33].
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Computing the multi-object density is generally intractable
and approximations are necessary. Tractable multi-objectden-
sities usually assume statistical independence between the
objects. For example, the Probability Hypothesis Density
(PHD) [34], Cardinalized PHD (CPHD) [35], and multi-
Bernoulli filters [36], are derived from multi-object densities in
which objects are statistically independent. On the other hand,
multi-object tracking approaches such as Multiple Hypotheses
Tracking (MHT) [13], [37], [38] and Joint Probabilistic Data
Association (JPDA) [14] are capable of modeling the statistical
dependence between objects. However, MHT does not have
the notion of multi-object density while JPDA only has the
notion of multi-object density for a known number of objects.
A tractable family of multi-object densities that can capture the
statistical dependence between the objects is the recentlypro-
posed Generalized Labeled Multi-Bernoulli (GLMB) family,
which is conjugate with respect to the standard measurement
likelihood function [39], [40].

The bulk of multi-object estimation algorithms in the lit-
erature, including those discussed above, are designed for
the so-called standard measurement model, where datahas
been preprocessed into point measurements or detections [12]–
[14], [35], [36]. For a generic measurement model the GLMB
density is not necessarily a conjugate prior, i.e. the multi-object
posterior density is not a GLMB. This is the case in Track-
Before-Detect (TBD) [41]–[46], tracking with superpositional
measurements [47], [48], merged measurements [49], and
video measurements [50], [17]. In general, the multi-object
density is numerically intractable in applications involving
non-standard measurement models. A simple strategy that
drastically reduces the numerical complexity is to approximate
the measurement likelihood by a separable likelihood [50] for
which Poisson, independently and identically distributed(IID)
cluster, multi-Bernoulli and GLMB densities are conjugate.
While this approximation can facilitate a trade off between
tractability and performance, biased estimates typicallyarise
when the separable assumption is violated.

Inspired by Mahler’s IID cluster approximation in the
CPHD filter [35], in this paper we consider the approximation
of a general labeled RFS density using a special tractable
class of GLMBs. In particular, we derive from this class of
GLMBs, an approximation to any labeled RFS density which
preserves the cardinality distribution and the first moment.
It is also established that our approximation minimizes the
Kullback-Leibler divergence (KLD) over this class of GLMB
densities. This approximation is then applied to develop an
efficient multi-object tracking filter for a generic measurement
model. As an example application, we consider a radar multi-

http://arxiv.org/abs/1412.5294v3


2

object TBD problem with low signal-to-noise ratio (SNR)
and closely spaced targets. Simulation results verify thatthe
proposed approximation yields effective tracking performance
in challenging scenarios.

The paper is structured as follows: in Section II we recall
some definitions and results for Labeled random finite sets
(RFSs) and GLMB densities. In Section III we propose the
GLMB approximation to multi-object distributions via cardi-
nality, first moment matching and KLD minimization. In Sec-
tion IV we describe the application of our result to multi-object
tracking problems with non-standard measurement models.
Simulation results for challenging, low SNR, multi-targetTBD
in radar scenarios are shown in Section V. Conclusions and
future research directions are reported in Section VI.

II. BACKGROUND

This section briefly presents background material on multi-
object filtering and labeled RFS which form the basis for the
formulation of our multi-object estimation problem.

A. Labeled RFS

An RFS on a spaceX is simply a random variable taking
values inF(X ), the space of all finite subsets ofX . The
spaceF(X ) does not inherit the Euclidean notion of integra-
tion and density. Nonetheless, Mahler’s Finite Set Statistics
(FISST) provides powerful yet practical mathematical tools
for dealing with RFSs [3], [34], [51] based on a notion of
integration/density that is consistent with measure theory [52].

A labeled RFS is an RFS whose elements are assigned
unique distinct labels [39]. In this model, the single-object
state spaceX is the Cartesian productX×L, whereX is the
kinematic/feature space andL is the (discrete) label space.
Let L : X×L → L be the projectionL((x, ℓ)) = ℓ. A finite
subset setX of X×L has distinct labels ifX and its labels
L(X) , {ℓ : (x, ℓ) ∈ X} have the same cardinality. An RFS
on X×L with distinct labels is called alabeled RFS[39].

For the rest of the paper, we use the standard inner product
notation〈f, g〉 ,

´

f(x)g(x)dx, and multi-object exponential
notationhX ,

∏

x∈X
h(x), whereh is a real-valued function,

with h∅ = 1 by convention. We denote a generalization of the
Kroneker delta and the inclusion function which take arbitrary
arguments such as sets, vectors, etc, by

δY (X) ,

{

1, if X = Y
0, otherwise

1Y (X) ,

{

1, if X ⊆ Y
0, otherwise

We also write1Y (x) in place of1Y ({x}) when X = {x}.
Single-object states are represented by lowercase letters, e.g.
x, x, while multi-object states are represented by uppercase
letters, e.g.X , X, symbols for labeled states and their distri-
butions are bolded to distinguish them from unlabeled ones,
e.g.x, X, π, etc, spaces are represented by blackboard bold
e.g. X, Z, L, etc. The integral of a functionf on X×L is
given by

ˆ

f(x)dx =
∑

ℓ∈L

ˆ

f(x, ℓ)dx.

Two important statistics of an RFS relevant to this paper are
the cardinality distributionρ(·) and the PHDv(·) [3]:

ρ(n) =
1

n!

ˆ

π({x1, ...,xn})d(x1, ...,xn) (1)

v(x, ℓ) =

ˆ

π({(x, ℓ)} ∪X)δX (2)

where the integral is aset integraldefined for any functionf
on F(X ) by
ˆ

f(X)δX =

∞
∑

i=0

1

i!

ˆ

f({x1, ...,xi})d(x1, ...,xi).

The PHD in (2) and the unlabeled PHD in [39], i.e. the PHD
of the unlabeled version, are related byv(x) =

∑

ℓ∈L
v(x, ℓ).

Hence,v(·, ℓ) can be interpreted as the contribution from label
ℓ to the unlabeled PHD.

B. Generalized Labeled Multi-Bernoulli

An important class of labeled RFS is the generalized labeled
multi-Bernoulli (GLMB) family [39], which forms the basis
of an analytic solution to the Bayes multi-object filter [40].
Under the standard multi-object likelihood, the GLMB is a
conjugate prior, which is also closed under the Chapman-
Kolmogorov equation [39]. Thus if initial prior is a GLMB
density, then the multi-object prediction and posterior densities
at all subsequent times are also GLMB densities.

A GLMB is an RFS ofX×L distributed according to

π(X) = ∆(X)
∑

c∈C

w(c)(L(X))
[

p(c)
]X

(3)

where∆(X) ,δ|X|(|L(X)|) denotes thedistinct label indica-
tor, C is a discrete index set, andw(c), p(c) satisfy:

∑

L⊆L

∑

c∈C

w(c)(L) = 1, (4)

ˆ

p(c)(x, ℓ)dx = 1. (5)

The GLMB density (3) can be interpreted as a mixture of
multi-object exponentials. Each term in (3) consists of a weight
w(c)(L(X)) that depends only on the labels ofX, and a
multi-object exponential

[

p(c)
]X

that depends on the labels
and kinematics/features ofX.

The cardinality distribution and PHD of a GLMB are,
respectively, given by [39]

ρ(n) =
∑

c∈C

∑

L⊆L

δn(|L|)w(c)(L), (6)

v(x, ℓ) =
∑

c∈C

p(c)(x, ℓ)
∑

L⊆L

1L(ℓ)w
(c)(L). (7)

A Labeled Multi-Bernoulli (LMB) density is a special case
of the GLMB density with one term (in which case the
superscript(c) is not needed) and a specific form for the only
weightw(·) [39], [53]:

w(L) =
∏

ℓ∈M

(

1− r(ℓ)
)

∏

ℓ∈L

1M(ℓ)r
(ℓ)

1− r(ℓ)
, (8)
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wherer(ℓ) for ℓ ∈ M ⊆ L represents the existence probability
of trackℓ, andp(·, ℓ) is the probability density of the kinematic
state of trackℓ conditional upon existence [39].Note that
the LMB density can always be factored into a product of
terms over the elements ofX. The LMB density can thus
be interpreted as comprising multiple independent tracks.The
LMB density is in fact the basis of the LMB filter, a principled
and efficient approximation of the Bayes multi-object tracking
filter, which is highly parallelizable and capable of tracking
large numbers of targets [53], [54].

III. M ULTI -OBJECTESTIMATION WITH GLMBS

In this section we discuss the multi-object estimation prob-
lem with GLMBs. In particular, in subsection III-A we present
a simple approximation through aseparable likelihoodfunc-
tion which exploits the conjugacy of the GLMB distributions,
while in subsection III-B we propose a more principled
approach for approximating a general labeled RFS density
with a special form GLMB that matches both the PHD and
cardinality distribution.

A. Conjugacy with respect to Separable Likelihoods

A separable multi-object likelihoodof the stateX given the
measurementz is one of the form [50]:

g(z|X) ∝ γX

z =
∏

x∈X

γz(x) (9)

whereγz(·) is a non-negative function defined onX.
It was shown in [50] that Poisson, IID cluster and multi-

Bernoulli densities are conjugate with respect to separable
multi-object likelihood functions. Moreover, this conjugacy is
easily extented to the family of GLMBs.

Proposition 1. If the multi-object prior densityπ is a GLMB
of the form (3) and the multi-object likelihood is separable
of the form (9), then the multi-object posterior density is a
GLMB of the form:

π(X|z) ∝ ∆(X)
∑

c∈C

w(c)
z (L(X))

[

p(c)(·|z)
]X

(10)

where

w(c)
z (L) = [ηz]

L
w(c)(L) (11)

p(c)(x, ℓ|z) = p(c)(x, ℓ)γz(x, ℓ)/ηz(ℓ) (12)

ηz(ℓ) =
〈

p(c)(·, ℓ), γz(·, ℓ)
〉

(13)

Proof:

π(X|z) ∝ γX

z π(X)

= ∆(X)
∑

c∈C

w(c)(L(X))γX

z [p(c)]X

= ∆(X)
∑

c∈C

w(c)(L(X)) [ηz]
L(X)

[

γzp
(c)
]X

[ηz]
L(X)

= ∆(X)
∑

c∈C

w(c)
z (L(X))

[

p(c)(·|z)
]X

. �

In general, the true multi-object likelihood is not separa-
ble, however the separable likelihood assumption can be a
reasonable approximation if the objects do not overlap in the
measurement space [50].

B. Labeled RFS Density Approximation

In this subsection we propose a tractable GLMB density
approximation to an arbitrary labeled multi-object density π.
Tractable GLMB densities are numerically evaluated via the
so-calledδ-GLMB form which involves explicit enumeration
of the label sets (for more details see [39], [40]). Since there
is no general information on the form ofπ, a natural choice
is the class ofδ-GLMBs of the form

π̄(X) = ∆(X)
∑

L∈F(L)

w̄(L)δL(L(X))
[

p̄(L)
]X

(14)

where each̄p(L)(·, ℓ) is a density onX, and each weight̄w(L)

is non-negative such that
∑

L⊆L
w(L) = 1. It follows from (6)

and (7) that the cardinality distribution and PHD of (14) are
given, respectively, by

ρ̄(n) =
∑

L⊆L

δn(|L|)w̄(L), (15)

v̄(x, ℓ) =
∑

L⊆L

1L(ℓ)w̄
(L)p̄(L)(x, ℓ). (16)

Note that suchδ-GLMB is completely characterised by the
parameter set{(w̄(L), p̄(L))}L∈F(L). Our objective is to seek
a density, via its parameter set, from this class ofδ-GLMBs,
which matches the PHD and cardinality distribution ofπ.

The strategy of matching the PHD and cardinality distribu-
tion is inspired by Mahler’s IID cluster approximation in the
CPHD filter [35], which has proven to be very effective in
practice [4], [55], [56]. While our result is used to develop
a multi-object tracking algorithm in the next section, it isnot
necessarily restricted to tracking applications, and can be used
in more general multi-object estimation problems.

Our result follows from the following representation for
labeled RFS.

Definition 1. Given a labeled multi-object densityπ on
F(X×L), and any positive integern, we define thejoint
existence probabilityof the label set{ℓ1, ..., ℓn} by

w({ℓ1, ..., ℓn})
,

ˆ

π({(x1, ℓ1), ..., (xn, ℓn)})d(x1, ..., xn) (17)

and thejoint probability density(on Xn) of x1, ..., xn, condi-
tional on their corresponding labelsℓ1, ..., ℓn, by

p({(x1, ℓ1), ..., (xn, ℓn)}) ,
π({(x1, ℓ1), ..., (xn, ℓn)})

w({ℓ1, ..., ℓn})
(18)

For n = 0, we definew(∅) , π(∅) and p(∅) , 1. It is
implicit that p(X) is defined to be zero wheneverw(L(X))
is zero. Consequently, the labeled multi-object density can be
expressed as

π(X) = w(L(X))p(X) (19)
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Remark1. Note that
∑

L∈F(L)w(L) = 1, and sinceπ is
symmetric in its arguments it follows from Lemma 1 that
w(·) is also symmetric inℓ1, ..., ℓn. Hencew(·) is indeed a
probability distribution onF(L).

Lemma 1. Let f : (X × Y)n → R be symmetric. Theng :
X

n → R given by

g(x1, ..., xn) =

ˆ

f((x1, y1), ..., (xn, yn))d(y1, ..., yn)

is also symmetric onXn.

Proof: Let σ be a permutation of{1, ..., n}, then

g(xσ(1), ..., xσ(n))

=

ˆ

f((xσ(1), yσ(1)), ..., (xσ(n), yσ(n)))d(yσ(1), ..., yσ(n))

=

ˆ

f((x1, y1), ..., (xn, yn))d(yσ(1), ..., yσ(n))

=

ˆ

f((x1, y1), ..., (xn, yn))d(y1, ..., yn)

where the last step follows from the fact that the order of
integration is interchangeable.

Proposition 2. Given any labeled multi-object densityπ, the
δ-GLMB density in the class defined by (14) which preserves
the cardinality distribution and PHD ofπ, and minimizes the
Kullback-Leibler divergence fromπ, is given by

π̂(X) = ∆(X)
∑

I∈F(L)

ŵ(I)δI(L(X))
[

p̂(I)
]X

(20)

where

ŵ(I) = w(I), (21)

p̂(I)(x, ℓ) = 1I(ℓ)pI−{ℓ}(x, ℓ), (22)

p{ℓ1,...,ℓn}(x, ℓ) =
ˆ

p({(x, ℓ), (x1, ℓ1), ..., (xn, ℓn)})d (x1, ..., xn) . (23)

Remark2. Note from the definition of̂p(I)(x, ℓ) in (22) that

p̂({ℓ,ℓ1,...,ℓn})(x, ℓ)

=

ˆ

p({(x, ℓ), (x1, ℓ1), ..., (xn, ℓn)})d(x1, ..., xn) (24)

Hence, p̂({ℓ1,...,ℓn})(·, ℓi), i = 1, ..., n, defined in (22)
are the marginals of the label-conditioned joint density
p({(·, ℓ1), ..., (·, ℓn)}) of π.

Proposition 2 states that replacing the label-conditioned
joint densities, of a labeled multi-object densityπ, by the
products of their marginals yields aδ-GLMB of the form (14),
which minimises the Kullback-Leibler divergence fromπ, and
matches its PHD and cardinality distribution.

Proof: Since p{ℓ1,...,ℓn}(x, ℓ) is symmetric inℓ1, ..., ℓn,
via Lemma 1,p̂(I)(x, ℓ) is indeed a function of the setI.
The proof uses the fact (14) can be rewritten asπ̄(X) =
w̄(L(X))p̄(X) where

w̄(L) = w̄(L),

p̄(X) = ∆(X)
[

p̄(L(X))
]X

.

To show thatπ̂ preserves the cardinality ofπ, observe that
the cardinality distribution of any labeled RFS is completely
determined by the joint existence probabilities of the labels
w(·), i.e.

ρ(n) =
1

n!

∑

(ℓ1,...,ℓn)∈Ln

ˆ

w({ℓ1, ..., ℓn})×

p({(x1, ℓ1), ..., (xn, ℓn)})d(x1, ..., xn)

=
∑

L⊆L

δn(|L|)w(L)

Since botĥπ andπ have the same joint existence probabilities,
i.e. ŵ(L) = ŵ(L) = w(L), their cardinality distributions are
the same.

To show that the PHDs of̂π andπ are the same, note from
(16) that the PHD of̂π can be expanded as

v̂(x, ℓ) =

∞
∑

n=0

1

n!

∑

(ℓ1,...,ℓn)∈Ln

ŵ({ℓ,ℓ1,...,ℓn})p̂({ℓ,ℓ1,...,ℓn})(x, ℓ)

=

∞
∑

n=0

1

n!

∑

(ℓ1,...,ℓn)∈Ln

w({ℓ, ℓ1, ..., ℓn})×
ˆ

p({(x, ℓ), (x1, ℓ1), ..., (xn, ℓn)})d(x1, ..., xn)

where the last step follows by substituting (21) and (24).
The right hand side of the above equation is the set integral
´

π({(x, ℓ)} ∪X)δX. Hencev̂(x, ℓ) = v(x, ℓ).
The Kullback-Leibler divergence fromπ and anyδ-GLMB

of the form (14) is given by

DKL(π; π̄)

=

ˆ

log

(

w(L(X))p(X)

w̄(L(X))p̄(X)

)

w(L(X))p(X)δX

=
∞
∑

n=0

1

n!

∑

(ℓ1,...,ℓn)∈Ln

log

(

w({ℓ1, ..., ℓn})
w̄({ℓ1, ..., ℓn})

)

×

w({ℓ1, ..., ℓn})
ˆ

p({(x1, ℓ1), ..., (xn, ℓn)})d(x1, ..., xn)

+

∞
∑

n=0

1

n!

∑

(ℓ1,...,ℓn)∈Ln

ˆ

log

(

p({(x1, ℓ1), ..., (xn, ℓn)})
∏n

i=1 p̄
({ℓ1,...,ℓn})(xi, ℓi)

)

×

w({ℓ1, ..., ℓn})p({(x1, ℓ1), ..., (xn, ℓn)})d(x1, ..., xn)

Noting thatp({(·, ℓ1), ..., (·, ℓn)}) integrates to 1, we have

DKL(π; π̄) =

DKL(w; w̄) +

∞
∑

n=0

1

n!

∑

(ℓ1,...,ℓn)∈Ln

w({ℓ1, ..., ℓn})×

DKL

(

p({(·, ℓ1), ..., (·, ℓn)});
n
∏

i=1

p̄({ℓ1,...,ℓn})(·, ℓi)
)

Settingπ̄ = π̂ we haveDKL (w; ŵ) = 0 sinceŵ(I) = w(I).
Moreover, for eachn and each{ℓ1, ..., ℓn}, p̂({ℓ1,...,ℓn})(·, ℓi),
i = 1, ..., n, are the marginals ofp({(·, ℓ1), ..., (·, ℓn)}).
Hence, it follows from [57] that each Kullback-Leibler diver-
gence in the above sum is minimized. Therefore,DKL(π; π̂)
is minimized over the class ofδ-GLMB of the form (14).
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The cardinality and PHD matching strategy in the above
Proposition can be readily extended to the approximation of
any labeled multi-object density of the form

π(X) = ∆(X)
∑

c∈C

w(c)(L(X))p(c)(X) (25)

where the weightsw(c)(·) satisfy (4) and
ˆ

p(c)({(x1, ℓ1), ..., (xn, ℓn)})d(x1, ..., xn) = 1 (26)

by approximating eachp(c)({(·, ℓ1), ..., (·, ℓn)}) by the product
of its marginals. This is a better approximation than directly
applying Proposition 2 to (25), which only approximates the
label-conditioned joint densities of (25). However, it is difficult
to establish any results on the Kullback-Leibler divergence for
this more general class.

Proposition 3. Given any labeled multi-object density of
the form (25) a δ-GLMB which preserves the cardinality
distribution and the PHD ofπ is given by

π̂(X) = ∆(X)
∑

(c,I)∈C×F(L)

δI(L(X))ŵ(c,I)
[

p̂(c,I)
]X

(27)

where

ŵ(c,I) = w(c)(I), (28)

p̂(c,I)(x, ℓ) = 1I(ℓ)p
(c)
I−{ℓ}(x, ℓ), (29)

p
(c)
{ℓ1,...,ℓn}

(x, ℓ) =
ˆ

p(c)({(x, ℓ), (x1, ℓ1), ..., (xn, ℓn)})d(x1, ..., xn). (30)

The proof follows along the same lines as Proposition 2.

Remark3. Note that in [49, Sec. V] aδ-GLMB was proposed
to approximate a particular family of labeled RFS densities
that arises from multi-target filtering with merged measure-
ments. Our results show that the approximation used in [49,
Sec. V] preserves the cardinality distribution and the PHD.

In multi-object tracking, the matching of the cardinality
distribution and PHD in Proposition 2 is a stronger result than
simply matching the PHD alone. Notice that this property does
not hold for the LMB filter, as shown in [53] (Section III),
due to the imposed multi-Bernoulli parameterization of the
cardinality distribution.

IV. A PPLICATION TO MULTI-TARGET TRACKING

In this section we propose a multi-target tracking filter
for generic measurement models by applying the GLMB
approximation result of Proposition 2. Specifically, we present
the prediction and update of the Bayes multi-target filter (32)-
(33) for the standard multi-target dynamic model as well as a
generic measurement model.

A. Multi-target Filtering

Following [39], [40], to ensure distinctlabels we assign
each target an ordered pair of integersℓ = (k, i), wherek is
the time of birth andi is a unique index to distinguish targets
born at the same time. The label space for targets born at time

k is denoted byLk, and the label space for targets at timek
(including those born prior tok) is denoted asL0:k. Note that
Lk andL0:k−1 are disjoint andL0:k = L0:k−1 ∪ Lk.

A multi-target stateXk at time k, is a finite subset of
X = X×L0:k. Similar to the standard state space model, the
multi-target system model can be specified, for each time step
k, via the multi-target transition densityfk|k−1(·|·) and the
multi-target likelihood functiongk(·|·), using the FISST notion
of integration/density. Themulti-target posterior density(or
simply multi-target posterior) contains all information on
the multi-target states given the measurement history. The
multi-target posterior recursion generalizes directly from the
posterior recursion for vector-valued states [58], i.e. for k ≥ 1

π0:k(X0:k|z1:k) ∝
gk(zk|Xk)fk|k−1(Xk|Xk−1)π0:k−1(X0:k−1|z1:k−1), (31)

whereX0:k = (X0, ...,Xk) is the multi-target state history,
and z1:k = (z1, ..., zk) is the measurement history withzk
denoting the measurement at timek. Target trajectories or
tracks are accommodated in this formulation through the
inclusion of a distinct label in the target’s state vector [3],
[39], [51], [59]. The multi-target posterior (31) then contains
all information on the random finite set of tracks, given the
measurement history.

In this work we are interested in themulti-target filtering
densityπk, a marginal of the multi-target posterior, which can
be propagated forward recursively by themulti-target Bayes
filter [3], [34]

πk(Xk|zk) =
gk(zk|Xk)πk|k−1(Xk)
´

gk(zk|X)πk|k−1(X)δX
, (32)

πk+1|k(Xk+1) =

ˆ

fk+1|k(Xk+1|X)πk(X|zk)δX, (33)

whereπk+1|k is the multi-target prediction densityto time
k+1 (the dependence on the data is omitted for compactness).
An analytic solution to the multi-target Bayes filter for labeled
states and track estimation from the multi-target filtering
density is given in [39]. Note that a large volume of work
in multi-target tracking is based on filtering, and often the
term "multi-target posterior" is used in place of "multi-target
filtering density". In this work we shall not distinguish between
the filtering density and the posterior density.

B. Update

In this section we apply the proposedδ-GLMB approx-
imation to multi-target tracking with a generic measurement
model. We do not assume any particular structure for the multi-
target likelihood functiong(·|·) and hence the approach in
this section is applicable to any measurement model including
point detections, superpositional sensors and imprecise mea-
surements [3], [60]. If the multi-target prediction density is a
δ-GLMB of the form

πk|k−1(X) = ∆(X)
∑

I∈F(L0:k)

δI(L(X))w
(I)
k|k−1

[

p
(I)
k|k−1

]X

, (34)
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then the multi-target posterior density (32) becomes

πk(X|zk) = ∆(X)
∑

I∈F(L0:k)

δI(L(X))w
(I)
k (zk)p

(I)
k (X|zk), (35)

where

w
(I)
k (zk) ∝ w

(I)
k|k−1ηzk(I), (36)

p
(I)
k (X|z) = g(zk|X)[p

(I)
k|k−1]

X/ηzk(I), (37)

ηzk({ℓ1, ..., ℓn}) =
ˆ

g(zk|{(x1, ℓ1), ..., (xn, ℓn)})×
n
∏

i=1

p
({ℓ1,...,ℓn})
k|k−1 (xi, ℓi)d(x1, ..., xn). (38)

Note from (37) that after the update each multi-object
exponential [p(I)k|k−1]

X from the prior δ-GLMB becomes

p
(I)
k (X|zk), which is not necessarily a multi-object exponen-

tial. Hence, in general, (35) is not a GLMB density.
1) Separable Likelihood:If targets are well separated in the

measurement space, we can approximate the likelihood by a
separable one, i.e.g(zk|X) ≈ γX

zk , and obtain an approximate
GLMB posterior from Proposition 1:

π̂k(X|zk) = ∆(X)
∑

I∈F(L0:k)

δI(L(X))ŵ
(I)
k (zk)

[

p̂
(I)
k (·|zk)

]X

, (39)

where

ŵ
(I)
k (zk) ∝ w

(I)
k|k−1 [ηzk ]

I
, (40)

p̂
(I)
k (x, ℓ|zk) = p

(I)
k|k−1(x, ℓ)γzk(x, ℓ)/ηzk(ℓ), (41)

ηzk(ℓ) =
〈

p
(I)
k|k−1(·, ℓ), γzk(·, ℓ)

〉

. (42)

2) General Case:If instead targets are closely spaced, the
separable likelihood assumption is violated, then it becomes
necessary to directly approximate the multi-target posterior in
(35) which can be rewritten as:

πk(X|zk) = w
(L(X))
k (zk)∆(X)p

(L(X))
k (X|zk) (43)

It follows from Proposition 2 that an approximateδ-GLMB
of the form (14), which matches the cardinality and PHD of
the above multi-target posterior, as well as minimizing the
Kullback-Leibler divergence from it, is given by

π̂k(X|zk) = ∆(X)
∑

I∈F(L0:k)

δI(L(X))w
(I)
k (zk)

[

p̂
(I)
k (·|zk)

]X

, (44)

where for each label setI = {ℓ1, ..., ℓn}, the densi-
ties p̂

({ℓ1,...,ℓn})
k (·, ℓi|zk), i = 1, ..., n are the marginals of

p
({ℓ1,...,ℓn})
k {(·, ℓ1), ..., (·, ℓn)}|zk). Notice that we retained the

weightsw(I)
k (zk), given by (36), from the true posterior (35).

C. Prediction

The standard multi-target dynamic model is described as
follows. Given the current multi-target stateX′, each state
(x′, ℓ′) ∈ X

′ either continues to exist at the next time step
with probability pS(x

′, ℓ′) and evolves to a new state(x, ℓ)
with probability densityfk+1|k(x|x′, ℓ′)δℓ(ℓ

′), or dies with
probability 1 − pS(x

′, ℓ′). The multi-target state at the next

time is the superposition of surviving and new born targets.
The set of new targets born at the next time step is distributed
according to a birth densityfB on F(X× Lk+1), given by

fB(Y) = ∆(Y)wB(L(Y)) [pB]
Y (45)

This birth model covers labeled Poisson, labeled IID cluster
and LMB. We use an LMB birth model with

wB(L) =
∏

i∈Lk

(

1− r
(i)
B

)

∏

ℓ∈L

1Lk
(ℓ)r

(ℓ)
B

1− r
(ℓ)
B

, (46)

pB(x, ℓ) = p
(ℓ)
B (x). (47)

Following [39], if the current multi-target posterior has the
following δ-GLMB form

πk(X) = ∆(X)
∑

I∈F(L0:k)

δI(L(X))w
(I)
k

[

p
(I)
k

]X

, (48)

then the multi-target prediction (33) is also aδ-GLMB:

πk+1|k(X) = ∆(X)
∑

I∈F(L0:k+1)

δI(L(X))w
(I)
k+1|k

[

p
(I)
k+1|k

]X

(49)

where

w
(I)
k+1|k = w

(I)
S (I ∩ L0:k)wB(I ∩ Lk+1),

w
(I)
S (L) = [η

(I)
S ]L

∑

J⊆L0:k

1J(L)[1− η
(I)
S ]J−Lw

(I)
k (J),

p
(I)
k+1|k(x, ℓ) = 1L0:k

(ℓ)p
(I)
S (x, ℓ) + (1 − 1L0:k

(ℓ))pB(x, ℓ),

p
(I)
S (x, ℓ) =

〈

pS(·, ℓ)fk+1|k(x|·, ℓ), p(I)k (·, ℓ)
〉

η
(I)
S (ℓ)

,

η
(I)
S (ℓ) =

〈

pS(·, ℓ), p(I)k (·, ℓ)
〉

.

The above Eqs. explicitly describe the calculation of the
parameters of the predicted multi-target density from the
parameters of the previous multi-target density [40].

V. NUMERICAL RESULTS

In this section we verify the proposed GLMB approximation
technique via an application to recursive multi-target tracking
with radar power measurements. Target tracking is usually
performed on data that have been preprocessed into point
measurements or detections. The bulk of multi-target tracking
algorithms in the literature are designed for this type of data
[3], [12], [61], [62]. Compressing information from the raw
measurement into a finite set of points is very effective for a
wide range of applications. However, for applications withlow
SNR, this approach may not be adequate as the information
loss incurred in the compression becomes significant. Conse-
quently, it becomes necessary to make use of all information
contained in the pre-detection measurements, which in turn
requires more advanced sensor models and algorithms.

We first describe the single-target dynamic model and
multi-target measurement equation used to simulate the radar
power measurements. We then report numerical results for the
separable likelihood approximation and GLMB posterior ap-
proximation. Throughout this section our recursive multi-target
tracker is implemented with a particle filter approximation
[58], [63] of the GLMB density given in [40].
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A. Dynamic Model

The kinematic part of the single-target statexk = (xk, ℓk)
at time k comprises the planar position, velocity vectors
in 2D Cartesian coordinates, and the unknown modulus of
the target complex amplitudeζk, respectively, i.e.xk =
[px,k, ṗx,k, py,k, ṗy,k, ζk]

T . A Nearly Constant Velocity (NCV)
model is used to describe the target dynamics, while a zero-
mean Gaussian random walk is used to model the fluctuations
of the target complex amplitude, i.e.

xk+1 = Fxk + vk, vk ∼ N (0;Q)

whereF = diag(F1, F1, 1), Q = diag(qQ1, qQ1, aζTs),

F1 =

[

1 Ts

0 1

]

, Q1 =

[

T 3
s

3
T 2
s

2
T 2
s

2 Ts

]

with Ts, q, and aζ denoting the radar sampling time, the
power spectral density of the process noise, and the amplitude
fluctuation in linear domain, respectively.

B. TBD Measurement Equation

A targetx ∈ X illuminates a set of cellsC(x), usually re-
ferred to as thetarget template. A radar positioned at the Carte-
sian origin collects a vector measurementz = [z(1), ..., z(m)]

consisting of the power signal returnsz(i) = |z(i)A |2, where

z
(i)
A =

∑

x∈X

1C(x)(i)A(x)h
(i)
A (x) + w(i)

is the complex signal in celli, with:
• w(i) denoting zero-mean white circularly symmetric com-

plex Gaussian noise with variance2σ2
w;

• h
(i)
A (x) denoting the point spread function value in celli

from a target with statex

h
(i)
A (x) = exp

(

−

(ri − r(x))2

2R
−

(di − d(x))2

2D
−

(bi − b(x))2

2B

)

whereR, D, B are resolutions for range, Doppler, bear-
ing; r(x) =

√

p2x + p2y, d(x) = −(ṗxpx + ṗypy)/r(x),

b(x) = atan2(py, px) are range, Doppler, bearing, given
the target statex; andri, di, bi are cell centroids;

• A(x) denoting the complex echo of targetx, which for
a Swerling0 model is constant in modulus

A(x) = Āejθ, θ ∼ U[0,2π).

Let ẑ(i) = |ẑ(i)A |2 be the noiseless power return in celli, where

ẑ
(i)
A =

∑

x∈X

1C(x)(i)Āh
(i)
A (x).

The measurementz(i) in each cell follows a non-central chi-
squared distribution with2 degrees of freedom and non-
centrality parameter̂z(i)A , and simplifies to a central chi-
squared distribution with2 degrees of freedom when̂z(i)A = 0.
Consequently, the likelihood ratio for cell(i) is given by:

ℓ(z(i)|X) = exp
(

−0.5ẑ(i)
)

I0

(
√

z(i)ẑ(i)
)

(50)

where I0(·) is the modified Bessel function, which can be
evaluated using the approximation given in [64].

Given a vector measurementz the likelihood function of
the multi-target stateX takes the form

g(z|X) ∝
∏

i∈∪x∈XC(x)

ℓ(z(i)|X), (51)

Notice that eqs. (50)-(51) capture the superpositional nature
of the power returns for each measurement bin due to the
possibility of closely spaced targets target, i.e. overlapping
target templates. The separable likelihood assumption is ob-
tained from eqs. (50)-(51) by assuming that at most one target
contributes to the power return from each cell(i),

ẑ(i) = |ẑ(i)A |2 =

{

|Āh(i)
A (x)|2, ∃x ∈ X : i ∈ C(x)

0, otherwise

In the numerical examples we use10 log
(

Ā2/(2σ2
w)
)

as the
signal-to-noise ratio (SNR) definition, and choosingσ2

w = 1
implies Ā =

√
2 · 10SNR/10.

Table I
COMMON PARAMETERS USED INSIMULATIONS

Parameter Symbol Value

Signal-to-Noise Ratio SNR 7dB
Power Spectral Density q 3m2/s3

Amplitude Fluctuation aρ 1
1st Birth Point Coordinates x

1
B [1250,−10, 1000,−10]

2nd Birth Point Coordinates x
2
B [1000,−10, 1250,−10]

3rd Birth Point Coordinates x
3
B [1250,−10, 1250,−10]

Birth Probability PB 0.01
Survival Probability PS 0.99

n◦of particles per target Np 1000

Table II
SEPARABLE L IKELIHOOD PARAMETERS

Parameter Symbol Value

Range Resolution R 5m
Azimuth Resolution B 1◦

Doppler Resolution D 1m/s
Sampling Time Ts 2s

Birth Covariance QB diag([25, 4, 25, 4])

C. Separable Likelihood Results

In this section we report simulation results for a radar TBD
scenario under the separable likelihood assumption, whichis
valid when targets do not overlap at any time. This implies
that the birth density is relatively informative compared to
the targets kinematics. This apparently obvious requirement is
necessary to avoid a bias in the estimated number of targets
due to new target or birth hypotheses which always violate the
separable likelihood assumption.

The considered scenario is depicted in Fig. 1: we have
a time varying number of targets due to various births and
deaths with a maximum of5 targets present mid scenario.
The parameters are reported in Tables I and II. Fig. 2 shows
the estimation results for a single trial along thex and y
coordinates, and Fig. 3 shows the Monte Carlo results for the
estimated number of targets and positional OSPA distance.
Notice that the average estimated number of targets slightly
differs from the true number due to closely spaced targets (see
Fig. 1), but the overall performance is satisfactory given the
low SNR of 7dB.
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Fig. 1. Separable likelihood scenario. Targets appear fromthe top right
corner and move closer to the radar positioned at the Cartesian origin.
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Fig. 2. Separable likelihood scenario. Estimated trajectories along thex and
y coordinates.

D. Non-Separable Likelihood Results

In this section we consider a more difficult radar TBD
scenario where the separable likelihood assumption would lead
to a bias on the estimated number of targets. Fig. 4 shows
a time varying number of targets due to various births and
deaths with a maximum of7 targets present mid scenario. Fig.
5 shows range-azimuth, range-Doppler, and azimuth-Doppler
maps of the received power returns. Notice that for each 2D
map, the index of the3rd coordinate is such that all maps
refer to the same group of targets. Specifically, the target
reflection around (1500m, 0.8◦, 18m/s) is due to two targets
in the same Radar cell. This leads to the so-called unresolved
target problem, which usually results in track loss when using
a standard detection based approach or a separable likelihood
assumption. The parameters used in simulation are reportedin
Tables I and III.
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Fig. 3. Separable likelihood scenario. Monte Carlo resultsfor estimated
number of targets (top) and the OSPA distance (bottom) with cut-off c = 50m

Table III
NON-SEPARABLE L IKELIHOOD PARAMETERS

Parameter Symbol Value

Range Resolution R 20m
Azimuth Resolution B 2◦

Doppler Resolution D 2m/s
Sampling Time Ts 1s

Birth Covariance QB diag([400, 100, 400, 100])

The estimation results for a single trial along thex and y
coordinates are shown in Fig. 6, and the Monte Carlo results
for the estimated number of targets and positional OSPA
error is shown in Fig. 7. The results demonstrate that the
proposed GLMB approximation exhibits satisfactory tracking
performance.
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Fig. 4. Non-separable likelihood scenario. Targets appearfrom the top right
corner and move closer to the radar positioned at the Cartesian origin.
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Fig. 5. Non-separable likelihood scenario. Range-Azimuth, Range-Doppler,
and Azimuth-Doppler maps at time instantk = 19. Ideal or noiseless
measurement (right column), and noisy measurement (left column). Notice
that for each 2D map, the index of the3rd coordinate is such that all maps
refer to the same group of targets. Specifically, the target reflection around
(1500m,0.8◦,18m/s) is due to two targets in the same Radar cell.

VI. CONCLUSIONS

This paper has proposed a tractable class of GLMB ap-
proximations for labeled RFS densities.In particular, we
derived from this class of GLMBs an approximation that can
capture the statistical dependence between targets, preserves
the cardinality distribution and the PHD, as well as minimizes
the Kullback-Leibler divergence.The result has particular
significance in multi-target tracking since it leads to tractable
recursive filter implementations with formal track estimates
for a wide range of non-standard measurement models. A
radar based TBD example with low SNR and a time varying
number of closely spaced targets was presented to verify the
theoretical result. The key result presented in Section IIIis
not only important to recursive multi-target filtering but is
also generally applicable to statistical estimation problems
involving point processes or random finite sets.
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