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Generalized Labeled Multi-Bernoulli
Approximation of Multi-Object Densities

Francesco Papi, Ba-Ngu Vo, Ba-Tuong Vo, Claudio Fantacd, Michael Beard

Abstract—In multi-object inference the multi-object prob-
ability density captures the uncertainty in the number and
the states of the objects as well as the statistical dependmn
between the objects. Exact computation of the multi-object
density is generally intractable and tractable implementgions
usually require statistical independence assumptions beeen
objects. In this paper we propose a tractable multi-object @nsity
approximation that can capture statistical dependence beteen
objects. In particular, we derive a tractable Generalized labeled
Multi-Bernoulli (GLMB) density that matches the cardinali ty
distribution and the first moment of the labeled multi-object
distribution of interest. It is also shown that the proposedapprox-
imation minimizes the Kullback-Leibler divergence over a special
tractable class of GLMB densities. Based on the proposed GLB
approximation we further demonstrate a tractable multi-object
tracking algorithm for generic measurement models. Simuléon
results for a multi-object Track-Before-Detect example uig
radar measurements in low signal-to-noise ratio (SNR) scemios
verify the applicability of the proposed approach.

Index Terms—RFS, FISST, Multi-Object Tracking, PHD.

|. INTRODUCTION

Computing the multi-object density is generally intradtab
and approximations are necessary. Tractable multi-obect
sities usually assume statistical independence between th
objects. For example, the Probability Hypothesis Density
(PHD) [34], Cardinalized PHD (CPHD)[[35], and multi-
Bernoulli filters [36], are derived from multi-object detiss in
which objects are statistically independent. On the otlagdh
multi-object tracking approaches such as Multiple Hyps#se
Tracking (MHT) [13], [37], [38] and Joint Probabilistic Dt
Association (JPDA)[14] are capable of modeling the staasét
dependence between objects. However, MHT does not have
the notion of multi-object density while JPDA only has the
notion of multi-object density for a known number of objects
A tractable family of multi-object densities that can captthe
statistical dependence between the objects is the reqatly
posed Generalized Labeled Multi-Bernoulli (GLMB) family,
which is conjugate with respect to the standard measurement
likelihood function [39], [40].

The bulk of multi-object estimation algorithms in the lit-
erature, including those discussed above, are designed for

N multi-object inference the objective is the estimation ahe so-called standard measurement model, where fizga
an unknown number of objects and their individual statégeen preprocessed into point measurements or detectigjs [1
from noisy observations. Multi-object estimation is a corfl4], [35], [36]. For a generic measurement model the GLMB

problem in spatial statistic§[[1],][2], and multi-targeddking

density is not necessarily a conjugate prior, i.e. the rolject

[3], [4], spanning a diverse range of applications. Impuirtaposterior density is not a GLMB. This is the case in Track-

applications of spatial statistics include agricultuvedstry
[51-[7], epidemiology/public health[[1],[[2],[ 18], commin
cations networks| [9]=[11], while applications of multirget
tracking include radar/sonér [12]-[14], computer visiG&]-
[18], autonomous vehicles [19]-[22], automotive saféetg][2
[24] and sensor networkss [R5]=[28[he multi-object probabil-
ity density is fundamental in multi-object estimation besa

Before-Detect (TBD)[[41]-+£[46], tracking with superposital
measurements_[47]) [48], merged measurement$ [49], and
video measurements [60], [17]. In general, the multi-objec
density is numerically intractable in applications invialy
non-standard measurement models. A simple strategy that
drastically reduces the numerical complexity is to apprate

the measurement likelihood by a separable likelihaod [60] f

it captures the uncertainty in the number and the statesvafich Poisson, independently and identically distributi¢id)
the objects as well as the statistical dependence between dluster, multi-Bernoulli and GLMB densities are conjugate

objects. Statistical dependence between objects trasspia

While this approximation can facilitate a trade off between

the data when we consider the multi-object posterior dgnsitractability and performance, biased estimates typicatige
or from the interactions between objects as in Markov poiathen the separable assumption is violated.
processes [29], [30] or determinantal point processes—[31] Inspired by Mahler's IID cluster approximation in the

[33].
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CPHD filter [35], in this paper we consider the approximation
of a general labeled RFS density using a special tractable
class of GLMBs. In particular, we derive from this class of
GLMBs, an approximation to any labeled RFS density which
preserves the cardinality distribution and the first moment

Ingegnerialt 1S @lso established that our approximation minimizes the

Kullback-Leibler divergence (KLD) over this class of GLMB
densities. This approximation is then applied to develop an
efficient multi-object tracking filter for a generic measuent
model. As an example application, we consider a radar multi-
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object TBD problem with low signal-to-noise ratio (SNR)Two important statistics of an RFS relevant to this paper are
and closely spaced targets. Simulation results verify that the cardinality distributiorp(-) and the PHDu(-) [3]:
proposed approximation yields effective tracking perfante 1

in challenging scenarios. p(n) = = /r({xl, ey Xp PA(X1, ey X)) Q)
The paper is structured as follows: in Section Il we recall "
some definitions and results for Labeled random finite sets v(z,l) = /w({(m,ﬂ)} U X)oX 2

(RFSs) and GLMB densities. In Section Il we propose the

GLMB approximation to multi-object distributions via cardi where the integral is aet integraldefined for any functiory
nality, first moment matching and KLD minimization. In Secon F(X) by

tion IV we describe the application of our result to multijedt

tracking problems with non-standard measurement models. /f(X)5X=Z.l/f({Xlw-in})d(Xl’---,Xz‘).
Simulation results for challenging, low SNR, multi-targ&D i—0 il

in radar scenarios are shown in Section V. Conclusions affle pHD in [2) and the unlabeled PHD [n[39], i.e. the PHD
future research directions are reported in Section VI. of the unlabeled version, are related bt) = 3., v(w, £).
Hence (-, £) can be interpreted as the contribution from label
Il. BACKGROUND ¢ to the unlabeled PHD.
This section briefly presents background material on multi-
object filtering and labeled RFS which form the basis for th§_ Generalized Labeled Multi-Bernoulli

formulation of our multi-object estimation problem. _ _ _
An important class of labeled RFS is the generalized labeled

A. Labeled RES muIti-Bernou_IIi (GLMB) family [39], Which_forr_ns th_e basis
. i _of an analytic solution to the Bayes multi-object filtér [40]
An RFS on a spacé’ is simply a random variable taking jger the standard multi-object likelihood, the GLMB is a
values in F(X), the space of all finite subsets &f. The o gate prior, which is also closed under the Chapman-
s_pace]—"(X) do_es not inherit the Euclidean notion of lntegraKmmogorov equation[[39]. Thus if initial prior is a GLMB
tion and den_S|ty. Nonetheless, Mahl_ers Finite Set_Staﬂst density, then the multi-object prediction and posteriarsiges
(FISST) provides powerful yet practical mathematical sl;oolat all subsequent times are also GLMB densities.

for dealing with RFSs[[3],[134],[[S1] based on a notion of \ G| \ig is an RFS ofXxL distributed according to
integration/density that is consistent with measure th§si2].

A Iabe!e(_j RFS is an RFS whose elements are assi_gned 7(X) = A(X)Zw(c) (L(X)) [p(c)}x @)
unique distinct labels[ [39]. In this model, the single-alje
state spacet is the Cartesian produéfxIL, whereX is the
kinematic/feature space arid is the (discrete) label spaceWhereA(X) £6)x(|£(X)|) denotes thelistinct label indica-
Let £ : XxL — L be the projectionC((z, ¢)) = ¢. A finite tor, C is a discrete index set, and), p) satisfy:
subset seiX of XxI. has distinct labels ifX and its labels c
L(X) £ {¢: (2,¢) € X} have the same cardinality. An RFS Z Zw( o =1L )
on XxIL with distinct labels is called &beled RFJ39].

For the rest of the paper, we use the standard inner product /p(c) (x,0)de = 1. 5)
notation(f, g) £ [ f(x)g(z)dz, and multi-object exponential
notationh X £ HIEX h(z), whereh is a real-valued function, The GLMB density [(B) can be interpreted as a mixture of
with »? = 1 by convention. We denote a generalization of th@ulti-object exponentials. Each term [ (3) consists of aive
Kroneker delta and the inclusion function which take agwjrr w?(£(X)) that depends only on the labels 3, and a

ceC

LCL ceC

arguments such as sets, vectors, etc, by multi-object exponentia[p(c)}X that depends on the labels
LifX=Y and kinematics/features &.
Sy(X) = ’ . The cardinality distribution and PHD of a GLMB are,
0, otherwise ) . -
, respectively, given by [39]
Iy(X) 2 1, if XCY
Y ~ ] 0, otherwise p(n) =" Su(|Lw' (L), (6)
We also writely (z) in place ofly({z}) when X = {x}. ceCLeL
Single-object states are represented by lowercase leétgys vl 0) = p(,0) Y 10w (L). )
x, x, while multi-object states are represented by uppercase ceC LCL

letters, e.g.X, X, symbols for labeled states and their distri- A [abeled Multi-Bernoulli (LMB) density is a special case
butions are bolded to distinguish them from unlabeled onegst, the GLMB density with one term (in which case the

e.g.x, X, m, etc, spaces are represented by blackboard balgherscrip(c) is not needed) and a specific form for the only
e.9.X, Z, L, etc. The integral of a functionf on XxL is  weightw(-) [39], [53]:

given by 1 (£)r©
/f(x)dx = Z/f(:z:,ﬁ)da:. w(L) = H (1 - r(e)) g %, (8)

Lell £eM



wherer(® for ¢ € M C L represents the existence probability In general, the true multi-object likelihood is not separa-
of track?, andp(-, ¢) is the probability density of the kinematicble, however the separable likelihood assumption can be a
state of track¢ conditional upon existence [B9Note that reasonable approximation if the objects do not overlap @& th
the LMB density can always be factored into a product aheasurement spade [50].

terms over the elements &. The LMB density can thus

be interpreted as comprising multiple independent tratke. B | apeled RFS Density Approximation

LMB density is in fact the basis of the LMB filter, a principled
and efficient approximation of the Bayes multi-object tiagk
filter, which is highly parallelizable and capable of trawi
large numbers of targets [53], [54].

In this subsection we propose a tractable GLMB density
approximation to an arbitrary labeled multi-object densit
Tractable GLMB densities are numerically evaluated via the
so-calleds-GLMB form which involves explicit enumeration
of the label sets (for more details s€el[39],1[40]). Sincad¢he
is no general information on the form af, a natural choice
In this section we discuss the multi-object estimation prolis the class o5-GLMBs of the form

IIl. MULTI-OBJECTESTIMATION WITH GLMBs

lem with GLMBs. In particular, in subsectién TII}A we pregen ~ D) R
a simple approximation through separable likelihoodunc- 7(X)=AX) Y oM (L(X) [p } (14)
tion which exploits the conjugacy of the GLMB distributions LeF(L)

while in subsectiorE_I]EB we propose a more principleq\,here eaclp(™) (-, ¢) is a density or¥, and each weighi()
approach fqr approximating a general labeled RFS denﬁ'éynon-negative such that, -, w™) = 1. It follows from (8)
with a special form GLMB that matches both the PHD angq [7) that the cardinality distribution and PHD BF1(14) are

cardinality distribution. given, respectively, by
5(n) = )
A. Conjugacy with respect to Separable Likelihoods pn) = LXC;L&”OLDUJ ’ (15)
A separable multi-object likelihoodf the stateX given the _ e (L) ~(L)
measurement is one of the form[[50]: v(z, 0) = chilL(f)w P, 0). (16)
9(21X) o = H 7z(%) (9  Note that suchs-GLMB is completely characterised by the
xeX parameter sef(w'), p"))} < 7). Our objective is to seek
where~,(+) is a non-negative function defined &h a density, via its parameter set, from this class-@LMBs,

It was shown in[[5D] that Poisson, IID cluster and multiwhich matches the PHD and cardinality distributionaf
Bernoulli densities are conjugate with respect to separabl The strategy of matching the PHD and cardinality distribu-
multi-object likelihood functions. Moreover, this conpugy is tion is inspired by Mahler's 1ID cluster approximation ineth
easily extented to the family of GLMBs. CPHD filter [35], which has proven to be very effective in

. — . L practice [4], [55], [56]. While our result is used to develop
Proposition 1. If the multi-object prior densityr is a GLMB a multi-object tracking algorithm in the next section, itnist

of the form [B) and the muItl—pbjgct Ilkellhoqd IS Se‘F?""r"’_‘t)lﬁecessariIy restricted to tracking applications, and eanded
of the form [[®), then the multi-object posterior density is & more general multi-object estimation problems.

GLMB of the form: Our result follows from the following representation for

. . X labeled RFS.
m(X|2) o AX) 3wl (LX) [p019)]” (10)
ceC Definition 1. Given a labeled multi-object density on
where F(XxL), and any positive integen, we define thejoint
. existence probabilitpf the label set{¢y, ..., ¢, } by
wO(L) = )" w(L) (11)
() . (c) w({fl,...,ﬁn})
n-(0) = <p<0>(-,e),~yz(-,e)> (13) = /ﬂ({(xlvfl)v"'7(xn7€n)})d($la---axn) (17)
Proof: and thejoint probability density(on X™) of x4, ..., x,, condi-
' tional on their corresponding label§,, ..., ¢, by
n(X[z) o« Fm(X) ({1, 01), ., (2, €
Z N 1,€1)y o5 (T n)})
= AK) D W LX) E P PAEL ) G 6D == Ty 49
e (X Forn = 0, we definew(d) £ =(0) and p(0) £ 1. It is
= A(X) Zw(c) (L(X)) [1.]*) [v-p"] implicit that p(X) is defined to be zero whenever£(X))
pyers [nz]ﬁ(x) is zero. Consequently, the labeled multi-object density loa
X expressed as
= AX) Y W) [P . 7 (X) = w(£(X))p(X) (19)



Remark1. Note that} ;) w(L) = 1, and sincer is

To show that# preserves the cardinality af, observe that

symmetric in its arguments it follows from Lemnid 1 thathe cardinality distribution of any labeled RFS is compiete

w(-) is also symmetric iréy, ..., ¢,.
probability distribution onF(L).

(X xY)”

Hencew(-) is indeed a

Lemma 1. Let f :
X" — R given by

— R be symmetric. Thep :

g(z1,...,x /f T15Y1)s -y (s Yn ) )A(Y1 5 ooy Yn)
is also symmetric oiX".

Proof: Let o be a permutation ofl, ...,n}, then

o(1)> s La(n))

/f o(1)> Yo (1)) - (Zo(n)s Yo ) )A(Yo(1) s s Yo (n))

/f (21, 91),
/f (w1, 91),

.’L'n, yn))d(ycr(l) PRRET ya'(n))

xnu yn))d(ylu sy yn)

where the last step follows from the fact that the order of

integration is interchangeable. |

Proposition 2. Given any labeled multi-object density, the

0-GLMB density in the class defined ly1(14) which preserves

the cardinality distribution and PHD ofr, and minimizes the
Kullback-Leibler divergence fronr, is given by

#X)=AX) Y @) [i0]"  (20)
IeF(L)
where
) = w(I), (21)
P (@, 0) = 11(Opr—(ey (2, 0), (22)

p{el,...,en}(%é) =
/p({(:c,é), (21,01), ey (T, ) })d (21, ...y ) . (23)

Remark2. Note from the definition of!)(z, ¢) in @22) that
f)({évél 7777 én})(z’ /)

= /.p({(x,é), (1,01), ey (T, ) P)d(21, ...y ) (24)

Hence, ptfota) (. 0;), i = 1,..,n, defined in [2R)

are the marginals of the label- condltloned joint dens'tb(lotmg thatp({(-, ¢1)

PG 1), s (¢ 6n)}) O .

determined by the joint existence probabilities of the lsbe

w(-), i.e.

1
(n)=— w({ly, ..., 0
p({(:vl,fl), ooy (@, L) (s ooy T)
LCL

Since both# andw have the same joint existence probabilities,
i.e. w(L) = &Y = w(L), their cardinality distributions are
the same.

To show that the PHDs af and# are the same, note from
(@8) that the PHD oft can be expanded as

N 1 . .
oz, 0) = Z " Z WGt D) 8L} (1 )
n=0 """ (£1,...,6,)€L"
= 1
= ol Z w({gagla"'agn})x
n=0 """ (£1,...,6,)€L"

[ @0, (@1 0) s (o )1, )
where the last step follows by substituting](21) and] (24).

The right hand side of the above equation is the set integral

[ m({(z,0)} UX)dX. Henced(x, £) = v(z,?).
The Kullback-Leibler divergence from and anys-GLMB
of the form [14) is given by

D (m;7T)
o () oo
- w({ﬁl, ,én})
- Z 2, o <w({€1, ...,en})> 8
T (L1, ln)ELR
({él, E })/ ({(Il, él), ceey (ZCn, En)})d(:zrl, ceey ZCn)

$1,f1) o (%0, 4n)})
p({el vvvvv ln }) (;1;1 61)

£n})p ({(Ilvél)a"-a

> X
(Tny b)) Pd (21, ..,

sy (-, n)}) integrates to 1, we have

({61,...,

Zn)

Proposmon[IZ states that replacing the label- conditionddk L(m; 7) =

joint densities, of a labeled multi-object density, by the
products of their marginals yieldstaGLMB of the form [13),
which minimises the Kullback-Leibler divergence framand
matches its PHD and cardinality distribution.

Proof: Sincepyy, ... ¢,y (x,£) is symmetric infy, ..., Ly,
via Lemmall,5)(z,¢) is indeed a function of the set.
The proof uses the facf(l4) can be rewritten7aX) =
w(L(X))p(X) where

w(L) = o',
p(X) = AX) [pe]”

DKL w; w +Z I Z ({El,...,ﬂn})x

( Tyeens n)G]L"
Dkr (P({(

Setting® = # we haveDy, (w;w) =0 smcew(I) w(l).
Moreover, for eactn and each{/1, ..., £, }, pétnb) (. ¢)),
i = 1,..,n, are the marginals ob({(-,¢1),..., (-, €n)}).
Hence, it follows from[[5/7] that each Kullback-Leibler dive
gence in the above sum is minimized. Therefdpe; , (r; 7)
is minimized over the class d-rGLMB of the form [14). m



The cardinality and PHD matching strategy in the aboveis denoted by, and the label space for targets at tife
Proposition can be readily extended to the approximation @hcluding those born prior té) is denoted a&.q.;.. Note that

any labeled multi-object density of the form Ly andLLg.;_1 are disjoint andLg.;, = Lg.p—1 U L.
A multi-target stateX; at time k, is a finite subset of
— ©) (c) k )
m(X) = AX) Zw (LX) (X) (25) y_ XxLo.. Similar to the standard state space model, the

eeC multi-target system model can be specified, for each tinye ste

where the weightsv(®)(-) satisfy [4) and k, via the multi-target transition densityf,,_(:|-) and the
multi-target likelihood functiomy (-|-), using the FISST notion
/p(c)({(évl,fl)a coos (Tny bn) })d(1, ., m) =1 (26)  of integration/density. Thenulti-target posterior densityor
simply multi-target posterior) contains all informatiom o
by approximating each(®) ({(-,41), ..., (-,£»)}) by the product the multi-target states given the measurement history. The
of its marginals. This is a better approximation than disectmulti-target posterior recursion generalizes directlynirthe

applying Propositio]2 td (25), which only approximates thgosterior recursion for vector-valued states [58], i.e.ifo> 1
label-conditioned joint densities of (25). However, it iffidult

to establish any results on the Kullback-Leibler divergefur 7.1 (Xo.x|21:1)
this more general class. 9 (2] X)) Ei -1 (X | Xe—1) m0i—1 (Xose—1]21:6-1), (31)

Proposition 3. Given any labeled multi-object density of . . .
the form [2b) as-GLMB which preserves the cardinalityWhereXO:’“ = (Xo, .., Xy) is the multi-target state history,
distribution and the PHD ofr is given by and ALk = (21, ..., 2) IS the measurement hls_tory V.V'th“
denoting the measurement at tinke Target trajectories or
#(X) = A(X) Z 51(£(X))w(c,1) {ﬁ(c,l)}x 27) tracks are accommodated in this formulation through the
inclusion of a distinct label in the target’s state veciq}, [3

(e,1)ECX F(L) : _ .
[39], [51], [59]. The multi-target posteriof (B1) then caints

where all information on the random finite set of tracks, given the
w1 = w© (1), (28) Mmeasurement history.
(oD B () In this work we are interested in thaulti-target filtering
P (@, ) = 1 (Op; gy (2, 0), (29) " gensityr, a marginal of the multi-target posterior, which can
pg? . }(x,é) = be propagated forward recursively by theulti-target Bayes
1yeeertn

filter [3], [34]
/p<c>({(x,@,(xl,el),...,(xn,zn)})d(xl,...,xn). (30)

The proof follows along the same lines as Propositibn 2.

Remark3. Note that in[[49, Sec. V] a-GLMB was proposed
to approximate a particular family of labeled RFS densities
that arises from multi-target filtering with merged measure

ments. Our results show that the approximation used in [A}];@Pelre r’:kJal\k |sdthe multl-tﬁrggt prediction ddfensnyo time
Sec. V] preserves the cardinality distribution and the PHD. +1 (the dependence on the data is omitted for compactness).

In multi-object tracking, the matching of the cardinalityAn analytic solution to the multi-target Bayes filter for &léd
distribution and PHD in Pr’opositidﬁ 2 is a stronger resudinth states and track estimation from the multi-target filtering
simply matching the PHD alone. Notice that this propertysdogens'ty_ IS given 1n !39]'_ Note that a I_arg_e volume of work
not hold for the LMB filter, as shown ir [53] (Section III),'n multi-target tracking is based on filtering, and often the

due to the imposed multi-Bernoulli parameterization of thg "\ m“'t"t‘?‘r%et posterior” is used in plch of .multrgat
cardinality distribution. iltering density". In this work we shall not distinguish tneten

the filtering density and the posterior density.

k(| X)) a1 (X))
m(Xnlzk) = S 9r (21 X) 7 -1 (X)6X (32)

e (Xip) = / Bt (X [X) i (X 2)5X,  (33)

IV. APPLICATION TO MULTI-TARGET TRACKING

In this section we propose a multi-target tracking filteB. Update
for generic measurement models by applying the GLMBI hi . v th SEGLMB
approximation result of Propositidth 2. Specifically, wegaet n this section we apply the propos . approx-
the prediction and update of the Bayes multi-target filf&{3 imation to multi-target tracking with a generic measuretmen

(33) for the standard multi-target dynamic model as well asnglodel. We do not assume any particular structure for theimult
generic measurement model target likelihood functiong(:|-) and hence the approach in

this section is applicable to any measurement model inctudi
. o point detections, superpositional sensors and imprecisa m
A. Multi-target Filtering surements [3],[[60]. If the multi-target prediction degsi a
Following [39], [40], to ensure distinclabels we assign §-GLMB of the form
each target anrdered pair of integerg = (k, i), wherek is x
the time of birth and is a unique index to distinguish targets m,_;(X) = A(X) Z 51(£(X))w,ﬁ,)€_1[p,<fll)€_l} , (34)
born at the same time. The label space for targets born at time IEF (Lowx)



then the multi-target posterior densify 132) becomes time is the superposition of surviving and new born targets.
The set of new targets born at the next time step is distribute
_ (N (1)
mo(X|z) = AX) Z SH(LX))wy (zx)py, (X]zr), (35) according to a birth densitfz on F(X x Ly, 1), given by
IeF(Lo.x)

_ Y
where f5(Y) = A(Y)wp(L(Y)) [pB] (45)
This birth model covers labeled Poisson, labeled 11D cluste
wl () < w'h) (I) (36) : -
k \Fk klk—1Tze L) and LMB. We use an LMB birth model with
€3] _ I 1x )
X|2) = X . (1), 37 g 1y, (£
Py ( |Z) Q(Zk| )[pk\k71] /77 k( ) ( ) wB(L) _ H (1_T1(9)) H JLk( )7(;])3 ’ (46)
nzk({éla"-agn}) = /g(ZkH(Ilagl)v'-'7('rn7€n)})x Ze(%)k teL 1_TB
p,%l’{"é"})(xi,éi)d(ﬂfh -~ Zn). (38)  Following [39], if the current multi-target posterior haset
i=1 following 0-GLMB form

Note from [37) that after the update each multi-object o Lo

exponential [p](f“)cil]x from the prior -GLMB becomes me(X) = A(X) Z or(L(X))wy {pk } , (48)
(1) I . - TeF (Loy)

p;.’ (X]|zr), which is not necessarily a multi-object exponen- ) o )

tial. Hence, in general((5) is not a GLMB density. then the multi-target predictiol (B3) is alsoyeaGLMB:

1) Separable Likelihoodtf targets are well separated in the _ (n o 1
measurement space, we can approximate the likelihood byg(““““(x) =AX) Z 5I(£(X))wk+1\k [p’“rllk} (49)
separable one, i.g(zx|X) ~ ygi, and obtain an approximate
GLMB posterior from Proposition 1:

IeF(Lo:kt1)

where

D = w (TN Log)ws (I N L)
- x AKX S LXK D (1), >’< 39 W1k = Ws ( 0:k)WB +1)
7 (X[ 2k) ( I)e]-'z(]];o:k)l( (X))wy, "(21) [pk sz)} (39) wg)(L) — [n(sf)]fi Z 1,](L)[1—n(sl)]']fLw;(f)(J),
where (1) JQLM(”
() ©) 1 P (%5 6) = 1o, (Opg " (2, €) + (1 = 1, ()5 (2, 0),
Wy (2k) o w0 (40) <ps( 0 Frepan(al 0), pg £)>
: 1 |-, L), K
B @ bz = P (@0 (@, 0/ (0, (4D pD(x,0) = - |<f><e> k ’
_ . . '
140 = (P 00500). @) 10 = (ps(, 0,0 (,0))

2) General Caself instead targets are closely spaced, th‘?h b E licitly d ibe th lculati f th
separable likelihood assumption is violated, then it bez®m € above Lqs. expicilly describe the caicuiation of the
parameters of the predicted multi-target density from the

necessary to directly approximate the multi-target pastén . .
@5 whic)rl1 can be rz/awfi'gen as: getp parameters of the previous multi-target dendityi [40].

mr(X]21) = wF P2 AX)PFETD (X 24) (43) V. NUMERICAL RESULTS
. ) In this section we verify the proposed GLMB approximation
It follows from Propositior{R that an approximateGLMB  (achnique via an application to recursive multi-targetkiag
of the form [14), which matches the cardinality and PHD qfjith radar power measurements. Target tracking is usually
the above multi-target posterior, as well as minimizing thgerformed on data that have been preprocessed into point
Kullback-Leibler divergence from it, is given by measurements or detections. The bulk of multi-target track
X algorithms in the literature are designed for this type dhda
e (Xzr) = AX) Z 51(£(X))wi(cl)(zk) {ﬁg)('pk)}’ (44) [ISI?J [12], [61], [62]. Compressing ingformation fromypthe raw
TeF (Lo:x) measurement into a finite set of points is very effective for a
where for each label sef = {/4,...,¢,}, the densi- wide range of applications. However, for applications viathy
ties p,(c{él""’fn})(-,zi|zk), i = 1,..,n are the marginals of SNR, this approach may not be adequate as the information
pl(c{él,...,én}){(_’gl)v oo, (-, £) Y 2% ). Notice that we retained the 0SS |tr|10u_:rgd in the compressmtn becl(()mes 5|gfn|f|||cgr;t. Gor;se
: : quently, it becomes necessary to make use of all information
+ given by [36), from the true pOSterlc’HBS)'contained in the pre-detection measurements, which in turn
o requires more advanced sensor models and algorithms.
C. Prediction We first describe the single-target dynamic model and
The standard multi-target dynamic model is described awnulti-target measurement equation used to simulate thar rad
follows. Given the current multi-target stad§’, each state power measurements. We then report numerical results éor th
(«',¢") € X' either continues to exist at the next time stepeparable likelihood approximation and GLMB posterior ap-
with probability ps(z’,¢") and evolves to a new state;,¢) proximation. Throughout this section our recursive mtatget
with probability density fj, 1, (z]2’, £")0¢(¢"), or dies with tracker is implemented with a particle filter approximation
probability 1 — pgs(a’,¢'). The multi-target state at the next58], [63] of the GLMB density given in[{40].

weightSw,(f )(zk)



A. Dynamic Model Given a vector measurementthe likelihood function of
The kinematic part of the single-target state = (x, /1) the multi-target stat&X takes the form

at time k comprises the planar position, velocity vectors 9(2]X) H 0(z9X), (51)

in 2D Cartesian coordinates, and the unknown modulus of

the target complex amplitud€,, respectively, i.e.x, = . .
Dok Boos Py Byt Ci] - A Nearly Constant Velocity (NCV) Notice that eqs.[(30J-(51) capture the superpositionaireat

model is used to describe the target dynamics, while a Ze%_th%_lpowefr rletur?s for ea:jch measurement_ bin due to the
mean Gaussian random walk is used to model the fluctuatidhs>>' llity of closely spaced targets target, i.e. ovegiag

S Uxexc(x)

; - target templates. The separable likelihood assumptiorbis o

of the target complex amplitude, i.e. . ,

¢ P P tained from eqs[{30J-(51) by assuming that at most one ttarge

Tpy1 = Fagp +vg, v ~ N (0;Q) contributes to the power return from each dgll,
where F = diag Fy, Fi, 1), Q = diag(qQ1, ¢Q1, acTs), " (6 1A (x))2, IxeX:ieC(x)
() — |z( )|2 _ A
LT 872 A 0, otherwise
I = s - 3 2 i _
! [ 0 1 } » @ [ 1;2 T, ] In the numerical examples we uselog (A%/(202)) as the

. . . . signal-to-noise ratio (SNR) definition, and choosing = 1
with T, ¢, and a; denoting the radar sampling time, themplies[l — /2. 105NE/10.

power spectral density of the process noise, and the ardplitd Table |

fluctuation in linear domain, respectively. COMMON PARAMETERS USED INSIMULATIONS
. | Parameter | Symbol | Value
B. TBD Measurement Equation Signal-to-Noise Ratio SNR ~dB
A targetx € X illuminates a set of cell€’(x), usually re- Powel_r Sdpectlral Density q 3m’/s’
ferred to as théarget templateA radar positioned at the Carte- Amplitude Fluctuation %p !

) . ﬁa 9 P P ) (m) 1% Birth Point Coordinates|  x} 1250, —10, 1000, —10
slan origin co ects a VecFor measurement Ef) e 2] 277 Birth Point Coordinates|  x2, 1000, —10, 1250, —10
consisting of the power signal retura§) = |z34’|?, where 37 Birth Point Coordinates| x5, 1250, —10, 1250, —10

i) @) ) Birth Probability Pp 0.01
ZAZ = Z 1C(x)(i)A(x)hAZ (x) + w® Survival Probability Pg 0.99
xeX n°of particles per target Np 1000
is the complex signal in cell, with: Table I

. w® denoting zero-mean white circularly symmetric com- SEPARABLE LIKELIHOOD PARAMETERS
plex Gaussian noise with varianee?;

(4) . . ) . | Parameter | Symbol | Value
. ]@A (x) ?enottlngthhetptomt spread function value in cell Range Resolution = =
rom a target with state Azimuth Resolution B 1°
i rs — r(x))2 di — d(x))2 by — b(x))2 Doppler Resolution D im/s
hfq)(x) = exp (—( 2R( D”_( 2D( D~ _( 2B( ) ) Sampling Time Ts 2s
Birth Covariance QB diag([25, 4, 25, 4])

whereR, D, B are resolutions for range, Doppler, bear-

ing; r(x) = \/p% +p12/v d(x) = —(Papz + Dypy)/7(X), o
b(x) = atan2p,, p,) are range, Doppler, bearing, giverC- Separable Likelihood Results

the target state; andr;, d;, b; are cell centroids; In this section we report simulation results for a radar TBD
» A(x) denoting the complex echo of target which for scenario under the separable likelihood assumption, wisich
a Swerlingd model is constant in modulus valid when targets do not overlap at any time. This implies

that the birth density is relatively informative compared t
the targets kinematics. This apparently obvious requirgrnse
Let (1) — |2S)|2 be the noiseless power return in celivhere Necessary to avoid a bias in the estimated number of targets
} } due to new target or birth hypotheses which always violate th
éfj) = Z lc(x)(i)]lhx) (x). separable likelihood assumption.
xeX The considered scenario is depicted in Higj. 1: we have
The measurement® in each cell follows a non-central chi- & time varying number of targets due to various births and

squared distribution wit2 degrees of freedom and non—_(il_ﬁaths with ta maximurm ?5 dtgrg_?ta]éorels%; rlrluollasceznarr:o.
centrality parameteréﬁf), and simplifies to a central chi- € parameters are reported in 1ailes - 9. 2 Shows

N i (i) the estimation results for a single trial along theand y
squared dlstr|but|on. W't.n degregs of freedom V‘{had‘ - 0. coordinates, and Fi§] 3 shows the Monte Carlo results for the
Consequently, the likelihood ratio for cell) is given by: estimated number of targets and positional OSPA distance.

£(2(¢)|X) — exp (_0_52(1‘)) i ( Z(i)é(i)) (50) Notice that the average estimated number of targets sfightl
differs from the true number due to closely spaced targets (s
where Iy (+) is the modified Bessel function, which can beé=ig.[d), but the overall performance is satisfactory givea t
evaluated using the approximation given[in|[64]. low SNR of 7dB.

A(X) = Ae-je, 9 ~ Z/[[0727r).
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D. Non-Separable Likelihood Results

In this section we consider a more difficult radar TBD

scenario where the separable likelihood assumption weald |

to a bias on the estimated number of targets. Eig. 4 shows
a time varying number of targets due to various births and
deaths with a maximum df targets present mid scenario. Fig. 700}
shows range-azimuth, range-Doppler, and azimuth-Dopple
maps of the received power returns. Notice that for each 2D
map, the index of thed"? coordinate is such that all maps 500t
refer to the same group of targets. Specifically, the target

reflection around 1(500m, 0.8°, 18m/s) is due to two targets
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o o
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Fig. 3. Separable likelihood scenario. Monte Carlo restdtsestimated
number of targets (top) and the OSPA distance (bottom) witroff ¢ = 50m
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Table Il
NON-SEPARABLE LIKELIHOOD PARAMETERS
| Parameter | Symbol | Value
Range Resolution R 20m
Azimuth Resolution B 2°
Doppler Resolution D 2m/s
Sampling Time Ts 1s
Birth Covariance QB diag([400, 100, 400, 100])

The estimation results for a single trial along theand y
coordinates are shown in Figl 6, and the Monte Carlo results
for the estimated number of targets and positional OSPA
error is shown in Fig[d7. The results demonstrate that the
proposed GLMB approximation exhibits satisfactory tracki

performance.
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in the same Radar cell. This leads to the so-called unredolve

target problem, which usually results in track loss whemgisi

a standard detection based approach or a separable likelinbio- 4. Non-separable likelihood scenario. Targets apfiean the top right
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assumption. The parameters used in simulation are repiorted P 9
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and Azimuth-Doppler maps at time instakt = 19. Ideal or noiseless
measurementright columr), and noisy measurementeft columr). Notice
that for each 2D map, the index of t13< coordinate is such that all maps
refer to the same group of targets. Specifically, the targi¢ation around
(1500m,0.8°,18m/s) is due to two targets in the same Radar cell.

VI. CONCLUSIONS

This paper has proposed a tractable class of GLMB ap-
proximations for labeled RFS densitiek particular, we
derived from this class of GLMBs an approximation that can
capture the statistical dependence between targets,rpesse

OSPA Dist. (m)

the cardinality distribution and the PHD, as well as miniasiz z 8 N S 7

the Kullback-Leibler divergenceThe result has particular
significance in multi-target tracking since it leads to tadte
recursive filter implementations with formal track estiest
for a wide range of non-standard measurement models. A &
radar based TBD example with low SNR and a time varying

number of closely spaced targets was presented to verify the
theoretlca,' result. The key re,SUH pre§ented ",1 S.enslll- Fig. 7. Non-separable likelihood scenario. Monte Carlaitesfor estimated
not only important to recursive multi-target filtering b i number of targets (top) and the OSPA distance (bottom) wittotf ¢ = 50m.
also generally applicable to statistical estimation peaid

involving point processes or random finite sets.
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