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Deep Community Detection
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Abstract—A deep community in a graph is a connected presume that each node in the graph is affiliated with a
component that can only be seen after removal of nodes or edge community. However, in some community detection applica-
from the rest of the graph. This paper formulates the problem g it often occurs that the graphs contain spurious edges

of detecting deep communities as multi-stage node removathat . . P
maximizes a new centrality measure, called the local Fiedie connecting to irrelevant “noisy” nodes that are not members

vector centrality (LFVC), at each stage. The LFVC is associed Of any single community. In such cases, noisy nodes and
with the sensitivity of algebraic connectivity to node or edje re- edges mask the true communities in the graph. Detection of

movals. We prove that a greedy node/edge removal strategyabed  these masked communities is a difficult problem that we call
on successive maximization of LFVC, has bounded performarec “deep community detection”. The formal definition of a deep

loss relative to the optimal, but intractable, combinatorial batch ity is Qi in SecIl. Due to th f noi
removal strategy. Under a stochastic block model framework community IS given in >e - DUE 10 the presence of noisy

we show that the greedy LFVC strategy can extract deep Nodes and spurious edges|[17].][18], deep communities elude
communities with probability one as the number of observatons detection when conventional community detection methods
becomes large. We apply the greedy LFVC strategy to real-wéd  methods are applied.

social network datasets. Compared with conventional commmity In this paper, a new partitioning strategy is applied to

pletection methods_\_/ve demonstrate improyed ability to idenfy detect deep communities. This strategy uses a new local
important communities and key members in the network. . " -, y U
measure of centrality that is specifically designed to urkmas
communities in the presence of spurious edges. The new par-
titioning strategy is based on a novel spectral measuiedfl9]
centrality called local Fiedler vector centrality (LFVQ)EFVC
is associated with the sensitivity of algebraic connetivi
. INTRODUCTION [20] when a subset of nodes or edges are removed from a
In social, biological and technological network analy8k-{ graph [2], [21]. We show that LFVC relates to a monotonic
[5], community detection aims to extract tightly connectegubmodular set function which ensures that greedy node or
subgraphs in the networks. This problem has attractededge removals based on LFVC are nearly as effective as the
great deal of interest in network science [6], [7]. Commynitoptimal combinatorial batch removal strategy.
detection is often cast as graph partitioning. Many graphOur approach utilizes LFVC to iteratively remove nodes
partitioning methods exist in the literature, includingagh in the graph to reveal deep communities. A removed node
cuts [8], [9], probabilistic models [10]/[11], and nodeded that connects multiple deep communities is assigned mixed
pruning strategies based on different critefia [BLI [12H]]  membership: it is shared among these communities. Under a
Many community detection methods are based on detectifignal plus noise” stochastic block model framework][10],
nodes or edges with high centrality. Node and edge cemsalit[11], [22], we use random matrix theory to show that the
are quantitative measures that are used to evaluate thie Igyeedy LVFC strategy can asymptotically identity the deep
of importance and/or influence of a node or an edge in tkemmunities with probability one. As compared with the
network. Centralities can be based on combinatorial measumodularity method[[12] and the L1 norm subgraph detection
such as shortest paths or graph diffusion distances betweesthod [23], [24], we show that the proposed greedy LFVC
every node pair[[15],[[16]. Centrality measures can alsfpproach has superior deep community detection perforemanc
be based on spectral properties of the adjacency and gragd illustrate the proposed deep community detection method
Laplacian matrices associated with the graph [16]. Many eh several real-world social networks. When our proposed
these measures require global topological information agéeedy LFVC approach is applied to the network scientist
therefore may not be computationally feasible for very ¢argzoauthorship datasét [25], it reveals deep communitigsattea
networks. not identified by conventional community detection methods
Nonparametric community detection methods, such as then applied to social media, the Last.fm online music
the edge betweenness method [3] and the modularity methidaset, we show that LFVC has the best performance in
[12], can be viewed as edge removal strategies that aifdtecting users with similar interest in artists.
to maximize a centrality measure, e.g., the modularity or The rest of this paper is organized as follows. $dc. Il sum-
betweenness measures. It is worth noting that these methatigizes commonly used centrality measures, the definitions

of community, and relevant spectral graph theory. $e¢. Il
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the greedy LFVC strategy to real-world social network detss whereas local centrality measures only require local wgpol
in Sec[V]. Finally, Sed_VlI concludes the paper. Throughoical information from neighboring nodes. Some examples of
the paper we use uppercase letters in boldface (Ap.to node centralities are:

represent matrices, lowercase letters in boldface (e)gtp « Betweenness[29]: betweenness measures the fraction

represent vectors, and uppercase letters in calligrade f

(e.g.,.A) to represent sets. Subscripts on matrices and vectors

indicate elements (e.gA; is the element of-th row and;-th
column of matrixA, anda; is thei-th element of vecton).

of shortest paths passing through a node relative to
the total number of shortest paths in the network.
Specifically, betweenness is a global measure defined as

betweenness) = 3>, ;> jo ¢(’;’cil), where ¢y; is
the total number of shortest paths frdmo j and¢y;(7)
is the number of such shortest paths passing thraugh
Il. CENTRALITIES, COMMUNITIES, AND SPECTRAL A similar notion is used to define the edge betweenness
GRAPH THEORY centrality [3].
A. The graph Laplacian matrix and algebraic connectivity =« Closenes$30]: closeness is a global measure of geodesic

Consider an undirected and unweighted grépk= (V, €) distance qf a node to aI.I other nodes.. A node is said
without self loops or multiple edges. We denote Bythe to have high closeness if the sum of its shortest path
node set, withV| = n, and by< the edge set, withs| = m. distances to other _nodes is small. L,qtz,y) denot.e
The connectivity structure of¥ is characterized by an-by- the shortest path distance between nodend node;

n binary symmetric adjacency matrix, where A;; = 1 if in a connected graph. Then we define closefigss
(i,5) € &, otherwiseA;; = 0. Letd; = 377, A;; denote 1/2,7'6\/,,7'751' p(isJ)- _ _ _ _

the degree of node. The degree matriD = diagd) is a  * Eigenvector centrality (eigen centrality) [[16]: eigen-
diagonal matrix with the degree vectdr= [dy, ds, ... d,] on vector centrality is thei-th entry of the eigenvector
its diagonal. The graph Laplacian matrix 6f is defined as associated with the largest eigenvalue of the adjacency

L =D - A. Let \;(L) denote the-th smallest eigenvalue of ~ Malrix A. Itis defined as eigen) = Amax 2 jev Ay

max

()T denotes matrix and vector transpose.

L and letl = [1,...,1]” denote the vector of ones. We have ~ WN€T€Amax is the largest eigenvalue ot and¢ is the
the representatiof [L9]. [26] eigenvector associated withy, .. It is a global measure
since eigenvalue decomposition ok requires global
xTLx = 1 Z Z Ajj(zi —x5)?, (1) knowledge of the graph topology.
2 ey jev o Degree(d;): degree is the simplest local node centrality
L : hich ts for th ber of neighbori
which is nonnegative, anil = (D — A)1 = 0, the vector of nmoedaessure Which accounts for the number of neighboring

all zeros. Thereforg, (L) = 0 andL is a positive semidefinite
(PSD) matrix.

The algebraic connectivity of7 is defined as the second
smallest eigenvalue di, i.e., A2(L). G is connected if and
only if Ao(L) > 0. Moreover, it is a well-known property [20]
that for any non-complete graph,

» Ego centrality [31]]: consider théd;+1)-by-(d;+1) local
adjacency matrix of nodé denoted byA (i), and letl
be an identity matrix. Ego centrality can be viewed as a
local version of betweenness that computes the shortest
paths between its neighboring nodes. Sif&é&(i)]; is
the number of two-hop walks betweén and j, and
[A%(i) o (I— A(z’))]kj is the total number of two-hop
shortest paths betwednand j for all £ # j, whereo
denotes entrywise matrix product. Ego centrality is de-
_ fined as egf) = >, >° ;. 1/[A%(i) o (T - A(z‘))]kj.
'Fﬁese centrality measures are used for comparison with the
removals. In addition, letl,, be the minimum degree af, proposed centrality measure (LFVC) for deep community

it is also well-known[[19], [[2F7] that\»(L) < 1 if and only if detection in Sed V.
dmin = 1. That is, a graph with a leaf node (i.e., a node with
a single edge) cannot have algebraic connectivity largen thC- Community and modularity
1. For any connected graph, we can represent the algebraiMany possible definitions of communities exist in the liter-
connectivity as ature [7], [13], [15]. One widely adopted definition is based
No(L) = min xTLx 3) on the r_elations between the number of internal and external
2 x[la=1, xL1 connections of a subgrapghc G [32]. For a subgraply ¢ G

; int — -
by the Courant-Fischer theorem [28] and the fact that ﬂ\1N|th node seWs, let di"(S) = ZjeS A;; denote the number

; ; : ; of internal edges of nodein S andd$*'(S) =3 . Ajj
= 0. 1 ]GV/V %J
constant vector is the eigenvector associated Wittl.) = 0 denote the number of external edges of nodetsides. S is

- said to be a community in the strong sensdf(S) > d¥(S)
B. Some examples of centralities for all i € S, and S is said to be a community in the weak
Centrality measures can be classified into two categoriegnse ify_, ¢ d™(S) > Y, o d¥(9).
global and local measures. Global centrality measures re- Newman [12] defines a community by comparing the in-
quire complete topological information for their compigat ternal and external connections of a subgraph with that of a

A2(L) < node connectivity< edge connectivity  (2)

where node/edge connectivity is the least number of node/ed
removals that disconnects the gragh. (2) is the main magivat
for our proposed node/edge pruning approach. A graph w
larger algebraic connectivity is more resilient to node adde



random graph having the same degree pattern (i.e., a randwiseless grapltz, over n nodes. Assume the nodes have
graph where each node has exactly the same degree asbé®n permuted so thak,,..., A, are block diagonal with
original graph), and he proposes a quantity called modylarnon-overlapping block indices, . .., Z,. The observed graph
to construct a graph partitioning ¢f into communities. First G is a noise corrupted version @, where random edges
consider partitioning a graph into two communities. Reegll have been inserted between the connected compone6is. of
that m = |£] is the number of edges in the graph, definMore specifically, letA,se be a random adjacency matrix with
B;; = A;; — %. B;, can be interpreted as the number othe property thatAnse(i,j) = 0, i,j € Zy, fork = 1,...,g
excessive edges betweeand; sinceB;; is the difference of and where the rest of the elementsAfs. are Bernoulli i.i.d
actual edges minus the expected edges of the degree-eguivahndom variables. Then the adjacency matkirof G satisfies

random graph. Let be the membership vector such thathe signal plus noise model

s; = 1if i isin communityl ands; = —1 if 4 is in community g
2. Modularity @) is proportional to the total number of excess A= ZAk + Apce (5)
edges in each community, i.e., h—1

1 1
Q= Am Z Z Bij(sis; +1) = RSTBS (4) The deep community detection problem is to recover con-
ieV jey nected componentd\,,...,A, from the noise corrupted
since} ;.\, >y Biy = 0. Maximizing this quadratic form observationsA. The A;’s are called deep communities in the
yields a partition of G into two communities [[25]. The sense that they are embedded in a graph with random inter-
associated membership vectoran be obtained by computingconnections between connected components. The perfoemanc
the largest eigenvectds,,., of B and extracting its polarity, analysis of deep community detection on networks generated
i.e., s = sign(bmax) [25]. by a specified stochastic block mod&l[22] is discussed in
To divide a network into more than two communitiesSec.[M. An illustrative visual example of deep community
Newman proposes a recursive partitioning approach. Itsis aldetection is shown in the longer arXiv version of this plper
verified in [33] that there is no performance difference ety  Deep community detection is equivalent to the planted eliqu
the modularity method [12], the statistical inference roeth problem [41] in the special case that= 1 and the non-
[10], [34], and the normalized cut methdd [9]. However, thgero block of A; corresponds to a complete graph, i.e., all
modularity method may fail to detect small communities evedff-diagonal elements of this block are equal to one. Models
when community structures are apparént [17]] [35]] [36]. similar to [3) have also been used for hypothesis testing on
In [14], a node removal strategy based on targeting hidghe existence of dense subgraphs embedded in random graphs
degree nodes is proposed to improve the performance of {88], [24]. The null hypothesis is the noise only model (i.e.
modularity method. The authors 6f]14] argue that high-degrA = 0 Vk). The alternative hypothesis is the signal plus noise
nodes incur more noisy connections than low-degree nodemdel [$) with A;, # 0. The authors in[[23],[[24] propose
and it is experimentally demonstrated that removing higite use the L1 norms of the eigenvectors of the modularity
degree nodes can better reveal the community structure. matrix B as test statistics. This statistic is compared with
our proposed local Fiedler vector deep community detection
D. The Fiedler vector method in Sed. V.

The Fiedler vector of a graph is the eigenvector associatedye propose an iterative denoising algorithm for recovering
with the second smallest eigenvalugL) of the graph Lapla- geep communities that is based on either node or edge
cian matrixL [20]. The Fiedler vector has been widely usedemovals. The proposed algorithm uses a spectral ceptralit
in graph partitioning, image segmentation and data cliier measure, defined in SCIV, to determine the nodes/edges to

Bl [9], [87]-[39]. Analogously to modularity partitiong, the pe pruned from the observed graph with adjacency matrix
Fiedler vector performs community detection by separatieg

nodes in the graph according to the signs of the correspgndin Let L be the resulting: x n graph Laplacian matrix after
Fiedler vector elements. Similarly, hierarchical comntyiniremoving a subset of nodes or edges from the graph. The
structure can be detected by recursive partitioning with ttiollowing theorem provides an upper bound on the number of
Fiedler vector. deep communities in the remaining gragh

In this paper, we use the Fiedler vector to define a new

centrality measure. One advantage of using the Fiedlebvectneorem 1. For any node removal se® of G with [R| = ¢

over other global centrality measures is that it can be cde®u ot .. he the rank of the resulting graph Laplacian matfrand

in a distributed manner via local information exchange OVL; HEH S /\‘(f‘) denote its nuclear norm. The number
* A .

the graph([40]. e of remaining non-singleton connected componem@N ihas

IIl. DEEP COMMUNITY

A deep community is defined in terms of an additive
signal (community) plus noise model. Lat;, ..., A, denote
the n x n mutually orthogonal binary adjacency matrices
associated withy non-singleton connected components in a lavailable af http://arxiv.org/abs/1407.6071
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the upper bound A. Edge-LFVC

eES<n—qg-—r Considering the grapﬁl(z‘,j) = (V,£U (i,7)) by adding
L] an edge(i,j) ¢ £ to G, we haveLL = L + AL and AL =
sn—q- m AD—-AA, whereAD andAA are the augmented degree and
g~ adjacency matrices, respectively. Denote the resultirgplyr
—n—gq- 2 (6) Laplacian matrix byL(7,j). Let e; be a zero vector except
An(L) that itsi-th element is equal td. Then
where 7 is the number of edges i&. The first inequality AD = diage;) + diagle;) = e;e] +eje?; (7

in @ becomes an equality if all connected components in
G are non-singletons. The second inequality[ih (6) becomes
an equality if all non-singleton connected components aghd therefore

complete subgraphs of the same size. Similarly, for any ~ . T

edge removal set ofs, let r be the rank of the resulting L(i,j) =L+ (e: —e;)(e; — ;). ©)

graph Laplacian matrixL.. The numbefk of remaining non- Thus, the resulting graph Laplacian matfi((z',j) after adding

singleton connectgd componerlts@ has the upper bound 4, edge(i, j) to G is the original graph Laplacian matrik
e<n—r<n-— Jn(”f) T )\31(%)' perturbed by a rank one matrie; —e;)(e; —e;)". Similarly,

Proof: The proof can be found in Appendix A. | when an edgeéi, j) € ETis removed front;, we havel.(i, j) =
The upper bound in Theorefd 1 can be further relaxed fy~ (e - ej)(ei - .ej) : o
applying the inequality\, (L) < 2dpmax [19], Wheredpay is Consider removing an edg{é,j) e & from G resultmg. in
the maximum degree of. Other bounds on\, (L) can be L(i, j) above. Lety denote the Fiedler vector &f, computing
found in [42]. y"L(i,j)y gives an upper bound ok, (L(i, j)) as

The next theorem shows that the largest non-singleton T s TY (: &
connected component size can be represented as a matrix one AL 7)) <y L)y

AA = eie;‘-r + eje;?F, (8)

_ T T
norm of a matrix whose column vectors are orthogonal and =y (L—(ei—ej)(ei—e;) )y
sparsest among all binary vectors that form a basis of thie nul =Xo(L) — (y; —y;)? (10)
space ofL.

following the definition of\z(L) = minx,=1,x11 %" Lx in
Theorem 2. Define the sparsity of a vector to be the number @B). It is worth mentioning that for any connected gragh
zero entries in the vector. Lewll(L) denote the null space ofthere exists at least one edge removal such that the ingguali
L and letX denote the matrix whose columns are orthogonak (L(4, j)) < A2(L) holds, otherwisey; = y; for all i,j € V

and they form the sparsest basis ofil(L) among binary and this violates the constraints tHat||; = 1 and}_" | y; =
vectors. Lety(G) be the largest non-singleton connected. Consequently, there exists at least one edge removal that
component size off. Theny(G) = ||X|1 = max;||x;||;, leads to a decrease in algebraic connectivity.

wherex; is thei-th column vector of binary matriX. Similarly, when we remove a subset of edggsC £ from

Proof: The proof can be found in Appendi¥ B. m G Where|&r[ = h. We obtain an upper bound

Theoremd Tl anfll2 are key results that motivate and theo- Ao (L(E-)) < Mo (L) — )2 11
retically justify the proposed local Fiedler vector celitya 2(L(Er)) < Ao(L) Z i = 9i) (1)
measure introduced below. Theorét 1 establishes that the ) ) )
number of deep communities is closely related to the nurfrPrrespondingly, we define the local Fiedler vector edge
ber of edge/node removals that are required to reveal thefgntrality as
Theoren® establishes thag norm Qf the sparsest basis for edge-LFVGQi, j) = (y; — y;)>. (12)
the null space of the graph Laplacian matrix can be used to

estimate the size of the largest deep community in the n&twoFdge-LFVC is a measure of centrality as it associates the sen
sitivity of algebraic connectivity to edge removal as déssl

(1,))€EER

IV. THE PROPOSEDNODE AND EDGE CENTRALITY: in (I1). The toph edge removals which lead to the largest
LocAL FIEDLER VECTORCENTRALITY (LFVC) decrease on the right hand side [6f]1(11) are ihedges with

The proposed deep community detection algorithm (Algdhe highest edge-LFVC.
rithm [d) is based on removal of nodes or edges according
to how the removals affect a measure of algebraic connectiv-
ity. This measure, called the local Fiedler vector certyralig. Node-LFVC
(LFVC), is computed from the graph Laplacian matrix. In
particular, the LFVC is motivated by the fact that node/edge = When a node; € V is removed fromG, all the edges
movals result in low rank perturbations to the graph Laplaci attached toi will also be removed fronG. Similar to [10),
matrix whenn > dp,ax, Whered,.x is the maximum degree. the resulting graph Laplacian matrik(i) can be regarded
The node and edge LFVC are then defined to corresponda® a rankd; matrix perturbation ofL. SinceL — L(i) =
an upper bound on algebraic connectivity. Y jen; (ei—ej)(e; —e;)T, where\; is the set of neighboring



nodes of node, we obtain an upper bound Lemma 1. The functionf(R) in (I1) is equal to

1.(i TT.(; 1 1
A(L(@) =y L)y FRY=52_ D wi—v)*+5) D Aylni—u)”
=yI(L+L() - L)y IER jEN; i€R jEV/R
=X (L) — Z (yi —y;)°. (13) Furthermore,f(R) > 0 and f(@) = 0, whereg is the empty
JEN; set.
Similar to edge removal, for any connected graph, therd®xis  prgof: The proof can be found in AppendiX C. m
at least one node removal that leads to a decrease in algebrairy,q following theorem establishes monotonic submodu-
connectivity. larity [43] of f(R). Monotonicity meansf(R) is a non-
If a subset of nodek C V are removed fromts, where ecreasing function: for any subs@s, R of the node sev
[R[ =g, then satisfyingR, C R, we havef(R;) < f(Rz). Submodularity
L— i(R) _ Z Z (e; —e;)(e; — ej)T (14) meansf(R) has Qiminishing gajn: foran®, € R, C V and
b yva v € V\ Ry the discrete derivativ& f (v|R) = f(RU{v}) —
f(R) satisfiesA f(v|R2) < Af(v|R1). As will be seen below
1 . ~J e
~5 DD Ajjlei—ej)(ei —e))T, (see [3B)), this implies that greedy node removal based on
iER JER LFVC is almost as effective as the combinatorially complex

where the last term accounts for the edges that are attacRaééch algorithm that searches over all possible removal set
to the removed nodes at both ends. Consequently, similar’fo

(LT), we obtain an upper bound for multiple node removalSrhegrem 3. f(R) is a monotonic submodular set function.

A2(L(R)) < A2(L) — Z Z (yi — y5)* (15) Proof: The proof can be found in Appendix D. [ ]
ERJEN Based on Theorerill 3, we propose a greedy node-LFVC
+ 1 Z Z Aiji(yi —y5)2. based node removal algorithm for deep community detec-
21-6733-673 tion as summarized in Algorithni] 1. Algorithmi] 1 yields

an adjacency matrixA that corresponds to the remaining

edges after node removal. In addition to a list of the

node-LFVQi) = Z (yi — y;)° (16) removed nodes, the deep communities are defined by the non-
JEN singleton connected components 4n supplemented by the

which is the sum of the square terms of the Fiedler vectBPges .thzt fyver(jebrerrr\]oved, wherg the memt;zr.smph(_)fhthese
elementwise differences between nadeand its neighboring tnho esis de ItneM y the co_?nelclzte _ﬁcoTponeng na()jw Kt:
nodes, and it is also the sum of edge-LFVG'sfneighboring €y connect. More specinically, b = (Vs,&5) denotes
nodes. From{13) an@{lL5), node-LFVC is associated with thae of these non-singleton connec:ted components, the set
upper bound on the resulting algebraic connectivity formod’s U { € R : Ai; =1 for somej € S} is called a deep
removal whenR| = 1. A node with higher centrality implies community. This definition means that some of the removed
that it plays a more important role in the network connegtivinodes may be shared by more than one deep community.

We define the local Fiedler vector node centrality as

structure. The following theorem shows that this greedy algorithm has
bounded performance loss no worse tha63 as compared
C. Monotonic submodularity and greedy removals with the optimal combinatorial batch removal strategy.

Fixing |R| = ¢, consider the problem of finding the optimal i : _
node removal seRp: that maximizes the decrease in the uppétgorithm 1 Deep Community Detection by greedy node-
bound on algebraic connectivity ifi_{15). The computationJirFVC i :
complexity of this batch removal problem is of combinatbria NPut: Adjacency matrixA, number of removed nodes
order (7). Here we show that the greedy LFVC removal Output: Deep communities
procedure, shown in Algorithiial 1, and whose computation is ® - 9
only linear inn, has bounded performance loss relative to OF ¢ =110 ¢ do
the combinatorial algorithm in terms of achieving, within a  Find the largest connected component
multiplicative constantl —1/e), an upper bound on algebraic Compute the corresponding Fiedler vecgor

N 5
connectivity, where: is Euler’s constant. Let I;zmd ;z G irg max; 3 e s (Yi = )
= 7
1 . .
FR) =3 > (wi=w) - 2 DD Aiilyi —yy)? Removei* and its edges from the graph
i€R JEN; iER JER end for

17) Find S, one of the non-singleton connected components.
The setVs U {z € R:A;; =1 for somej S*} is a deep

and recall from[(I5) thats(L(R)) < A2(L) — f(R). Note community.

that when|R| = 1, f(R) reduces to node-LFVC aA;; = 0.
The following lemma provides the cornerstone to Thedrém 3.




Theorem 4. Fix the target number of nodes to be removethndom binary matrix with partitioned structure
as |R| = ¢. Let Ropr be the optimal node removal set that

maximizesf(R) and let R, be the greedy node removal set A= {é‘? AC } , (20)
at the k-th stage of Algorithni]l, whergR| = k. Then out
N . where Aj, and A, are the adjacency matrices of a Erdos-
f(Ropt) — f(Ry) < (1 _ _) F(Ropt) < = f(Ropt)- Renyi graph with edge connection probabilitigs and pout,
q € respectively.C is an nj,-by-nqy binary matrix with its entry
Furthermore, being1 with probability poy. A reduces to the special case of
@) wheng = 1. A; = [4 3] represents within-community

M (L(Ry)) < Aa(L) = (1= e 1) f(Rop)- 18
2(L(Rq)) < Ax(L) ( c )f( ont) (18) connectivity structure and\nse = [(?T A(jm} represents the

Proof: The proof can be found in AppendiX E. B noisy part outside the deep community.

The submodularity of the functiorf implies that after In the following paragraphs we use random matrix theory
q greedy iterations the performance loss is within a factand concentration inequalities to show that asymptotidak
1/e of optimal batch removal[44]. In other words, whemodes/edges in the noisy part are more likely to have high
removingR, from G, the algebraic connectivity is guaranteed FVC. Therefore the removal strategy based on LFVC will
to decrease by at leagt — e 1) f(Rop) Of its original value. with high probability detect the noisy part to reveal the mlee
Consequently, identifying the top nodes affecting algebraic community.
connectivity can be regarded as a monotonic submodular seLet 1;, be the all-ones vector of length, and 1, be
function maximization problem, and the greedy algorithm cahe all-ones vector of lengthoy, and letDi, = diag(Cloy)
be applied iteratively to remove the node with the higheahd Doy = diag(C”1;,). Following (20), the corresponding
node-LFVC. Similarly, we can use edge-LFVC to detect degpaph Laplacian matrix can be represented as
communities by successively remove the edge with the highes L. + Dy, e

edge-LFVC from the graph, and it is easy to show that the L= —CT Lo+ Dol (21)
term 3> ; ieer, (i —y;)? in (@) is a monotonic submodular out 7 out
set function of the edge removal s&t. where Lij, and Lq are the graph Laplacian matrices of the

two Erdos-Renyi graphs.

Theorem 5. Let n = nin + nowt and lety = [yL yIJ7
V. DEEPCOMMUNITY DETECTION IN STOCHASTIC be the Fiedler vector of the graph Laplacian mattx in
BLOCK MODEL (7). Consider the stochastic block model[n](19). For a fixed

. . pin, there exists an asymptotic thresheilt],, such that almost
To demonstrate the effectiveness of using the propos&(ﬂmy

LFVC for deep community detection, we compare its detection
performance to that of other methods for a synthetic network , /2"y, — +1j; and | /2%y, — Flow, If pout < Piue
generated by a stochastic block model (SBM)I[10].][11 .

[22]. Consider a deep community of sizg, embedded in a
network of sizen, nin < n, and letnoy = n — nin denote &S nin — 00, Noyt — 00 and & — ¢ > 0.

the rest of the graph size. The average n_um_ber of edges Proof: The proof can be found in Appendi F. -
between the members of the deep community is denoted by,

Consequently, whepout < pi,; the elements of the Fiedler
cn, and the average number of edgeg between the memlv}erétor tend to have opposite signs within and outside the dee
that are not in the deep community is denoted dgy. We

tricted stochastic block model ch teriged ommunity. Recalling the edge and node LFVC[inl(12) and
assume a resfricted stochastic block modet characterige ), Theorenil5 implies that the nodes/edges with high LFVC
the following2 x 2 group connection probability matrix, which

- - o ...~ are more likely to be present on the periphery of the deep
specifies the community interconnectivity probabilitiestihe community. On the other hand, wheg,: > pg,: bothyi, and

1i2r;}’in — 0 and 1gut3’out — 0, it Dout > Do

SBM: yout have alternating signs and the deep community cannot
deep others be reliably detected by LFVC due to incorrect node/edge
deep [ pin  Pout removals. One can interpra = nir-pin as the signal strength
b= others\ pout  pout | (19)  andcout = nourpout as the noise level. Based on Theofdm 5, for

a fixedcoyt there exists an asymptotic signal strength threshold
where pi, = Z—m and poyt = % are the edge connectione;, such that theyi, and yo. become constant vectors with
probabilities within and outside the deep community, respeopposite signs whemi, > ¢;. These results are consistent
tively. According to the definition of community in S€c.TI-C with the planted clique detection analysis|inl[45] that &t
when c¢in > cour, the nodes in the deep community form ds detectable if the ratio of its within-clique connectidosits
community. The planted clique problem [41] is a special casgitside-clique connections is above a certain threshold.
of the SBM in [I9) wherpi, = 1. The detection performance The proposed deep community detection method in Algo-
of the modularity method has been analyzed[in [45] for th&thm [T is implemented by sequentially removing the node
planted clique problem. (edge) with the highest LFVC until the graph becomes dis-
The adjacency matrix generated by the SBM[nl (19) is @nnected. For comparison, the modularity method is im-
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Fig. 1. ~ Sensitivity comparisons of community detectionositypms. This g 2. Specificity comparisons of community detection &tyms. For
figure shows fraction of correctly identified community neder simulated the same algorithms as in Fig. 1, this figure shows the fraatibcorrectly
stochastic block mode[T20) using_{19). There is a singlepde@mmunity, igentified noisy nodes for simulated stochastic block md@8) using [ID).
nin = 40, n = 200, and cout = 2. The parametey; in the proposed node- There is a single deep community, = 40, n = 200, and cout = 2.
LFVC algorithm is selected adaptively: Algorithih 1 stopsemfthe first non-  The results are averaged o0 trials. Only the three community detection

_singleton conngcted component is disc_overed. The otheritdms are also algorithms having the highest sensitivity (edge-LFVC, edVC, and
implemented with knowledge that there is only one commuiiitye results are spectral clustering) are shown here. Comparing to [Hig. L > 2.5
A > 2.9,

averaged ovet00 trials. The proposed Qeep community‘ detection algorithrg,e proposed deep community detection algorithm based ar Fenoises
based on LFVC_ is capable of uncovering the community stract8pectral o observed adjacency matd in (5), removing some noisy edges Anse
clustering has similar performance since it partitions grgph based on the | nije retaining the deep community’s edges Aq,. Spectral clustering is

Fiedler vceinctor. The modularity method fails to detect thepdleommunity in |esg effective in denoisingh. The results validate Theordm 5 that the Fiedler
the low _ regime. vector tend to have opposite signs within and outside thg deenmunity
whencin exceeds the thresholg;, = 5.

plemented by dividing the network into two communities. - .

The L1 norm subgraph detection methad][28].1[24] is aIs%enOte the cardlnqhty of the set that contam_s the nodemgel
implemented. For the null model (i.e., absence of communif§d t© bothS and S andnin = [S|. The fraction of correctly
structure) of the L1 norm subgraph detection method, videntified noisy nodes is defined 855!, wheres© = G/
generate500 Erdos-Renyi random graphs with edge cordenotes the complement graph®@ndnoey = [S¢|. Together
nection probabilitypo,: and compute the mean and standaridiese sensitivity and specificity measures can be usedéssass
deviation of the L1 norm of each eigenvector associated withe performance of deep community detection.

the modularity matrix. Let med#) and stdi) denote the mean ~As shown in Fig[ll, deep community detection based on
and standard deviation of the L1 norm 6th eigenvector LFVC is capable of detecting the embedded community.
in the null model and let; denote the L1 norm of théth ~ Spectral clustering is implemented by partitioning theirent
eigenvector associated with the modularity maiixThe test graph into two subgraphS; and S,, and selectings’ = ;-

statistic is as the identified community, whe#é = arg max;c 1,23 {[S N
_ 0; — mearfi) Sil,|S N S2|}. The modularity method is implemented in a
b=, ——dy (22)  similar fashion.

Spectral clustering [9] has similar performance to the pro-
> posed method since it partitions the graph based on thedfied|
correspondstﬁg%izjaelfrg)alarm probabilityl [23].[24]. Let" = \ector. On the other hand, the modularity method is overly
argmini=1, .n =g - 1he deep community is identifiednflyenced by the noisy part resulting in degraded community
by selecting thei, entries of the*-th eigenvector having the getection. In particular it incorrectly identifies membefshe
largest magnitude. deep community as different groups, especially whenis
Consider detecting a single deep community of sife small. The inaccuracy of the modularity method is due to the
embedded in a network of si280 generated by the stochasticfact that in the low<= regime, the network is overly similar
block model [[I®). We consider the following definitions oto the Correspondinogu;t degree-equivalent random graph model
community detection algorithm. Sensitivity and speciicitused to define the modularity metric. That is, modularitysioe
measures: fraction of correctly identified community nodesot provide enough evidence that a community is present.
detected by the algorithm and fraction of correctly ideetfi  The fraction of correctly identified noisy nodes via LFVC
noisy nodes detected by the algorithm. I%be a community and spectral clustering is shown in Fig. 2. In this setting,
identified by an algorithm and It denote the true community the fraction of identified noisy nodes via node-LFVC is
embedded in the observed graph. Then the fraction of céyred|ightly less than that via edge-LFVC. Spectral clusterisig
identified community nodes is defined bg-ré;ﬂ where|SNS| less effective in denoising the observed adjacency matrix

The presence of a dense subgraph is declargdf 2, which



(a) modularity (b) edge-LFVC, h=6 (c) node-LFVC, g=4 (a) g=2 (b) g=3 (c)g=4

Fig. 3. Dolphin social network [46] witmm = 62 nodes andn = 159 Fig. 4. The modularity method on Zachary’s karate clubl [4®thw. = 34
edges. (a) The modularity method. (b) Edge-LFVC communéection with  nodes andn = 78 edges.

h = 6 edge removals. (c) Node-LFVC community detection wjth- 4 node

removals. Using node-LFVC, we are able to identify the foalptins that

interact with two groups as marked by nodes in gray circldss &lgorithm, (@) h=4, g=2 (0) h=15, g=3 (€)h=20, g=4

defined by Algorithni]L, detects that these four nodes are raesmif the two
communities. The result of spectral clustering is showrhi supplementary
filel. Spectral clustering results in the same discovered coritimsiras the
proposed edge-LFVC community detection method. Howevelikes the

proposed node-LFVC method it does not explicitly identifie tfour mixed

membership dolphins that connect the two communities.

Observe that the fraction of identified noisy nodes is stak
when % > 2.5. The results validate Theorefd 5 that the
elements of the Fiedler vector tend to have opposite sig
within and outside the deep community whep exceeds
the thresholdc;, = 5. Consequently, the results show tha
removal of nodes/edges with high LFVC helps to reveal tt
true community structure and improve community detectic
performance.

VI. DEEPCOMMUNITY DETECTION ONREAL-WORLD Fig. 5. Edge-LFVC community detection on Zachary's kardid §47] with
SocIAL NETWORK DATASETS n = 34 nodes andn = 78 edges. Foy = 3 and 4, the only node with a

. . ingle acquaintance is excluded from any deep community.
In this section, we use the proposed node and edge centraﬁltyg L v ceep y

measures to perform deep community detection on several
datasets collected from real-world social networks. In t
implementations of the community detection methods below;
the number of removed nodes or edges is a user-specift
free parameter. For LFVC (Algorithi] 1) this parameter capy,
be selected based on the bounds established in Theldre

We definel the number of edge removalg,the number of the results of separating2 dolphins into two communities

node removals ang the _number of deep communities. Theas proposed in[46]. For this dataset, community detections
results are compared with the modularity method and other.. o, modularity, edge-LFVC and node-LFVC have high
node centralities discussed in Sec.]1-B. For data visatbn, '

) " concordance on the community structures. To partition the
vertex shapes and colors represent different communéies,

: . > graph into two communities, we need to remove 6 edges based
edges attached to the removed nodes are retained in thesfig I edge-LFVC or remove 4 nodes based on node-LFVC. The
in comparison with other methods. Nodes with cross lab '

black X label inal : hat d bel ur dolphins that are able to communicate between these two
(black X labels) are sing e_ton survivors t "’_‘t 0 not belomg o mmunities are further identified by node-LFVC.
any deep communities using LFVC (AlgoritHm 1).

ins of the same group and only a few dolphins can interact
th dolphins from different groups. In terms of the propdse
C algorithm, these latter Dolphins introduce "noisy’ges
necting the two communities. Figuré 3 shows that they
therefore be detected by LFVC. In Fid. 3 we compare

A. Dolphin social network B. Zachary’s karate club

It is shown in [46] that there are tight social structures in Zachary’s karate club_[47] is a widely used example for
dolphin populations. Most dolphins interact with other -dolsocial network analysis, which contains interactions agnon
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Fig. 6. Node-LFVC community detection on Zachary’s kardtd {47 with  Fig. 7. Yamir Moreno’s local2-hop coauthorship network (from part of
n = 34 nodes andn = 78 edges. Important communities and key memberthe network of coauthorship among network scientists [28]ing n = 379
are discovered using node-LFVC. This also demonstratesthevsingleton nodes andnm = 914 edges). Moreno has4 coauthors (marked by light
survivors (nodes with black X labels) interact through tleem communities. orange color) and his coauthors ha® coauthors. The modularity method
The result of spectral clustering is shown in the supplemrgntilel. When [25] detects that Moreno is a member of only one large comtpudashed
g = 4, spectral clustering yields imbalanced communities (om@rounity box in gray). The proposed LFVC method detects Moreno asngelg to

has single node). two separate communities indicated by red and blue nodspecévely.
1 ' STAUFFER 7 7 T T T T T = ="
34 karate students. Based on the student activities, Zach 1 Howe 7‘ KLEINBERG
i ; SOLE = = = =
determines the ground-truth community structure joe 2,
which coincides with the result of the modularity method i ===

Fig.[4 (a). However, the visualization indicates that thare

some deep communities embedded in these two communit|
such as the five-node community in the upper left corne
Indeed, the modularity will keep increaseing if we furthe N
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1
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in Fig.[d (b) and (c), respectively. [N~k |clRvan
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As shown in Fig[b (a), using edge-LFVC, the five-nod
community in the left upper corner is revealed when w
partition the graph into two connected subgraphs. In Eg. BALTHROP '~
. . FORREST 1
(b), three communities are revealed and the only node witk R L
single acquaintance is excluded from any deep communi
Excluding this node makes the community structure more

; ; ; _ Fig. 8. Mark Newman’s local-hop coauthor network in the network scientist
tlghtly connected compared with FIEI 4 (b) For= 4, the authorship grapH_[25]. The proposed LFVC method deteewrhan as

. L c
community structure in Fid.]5 (c) mU_Ch res_embles Elg-_ 4 (%glonging to5 communities (marked by different vertex shapes and cotors i
except that we exclude the node having a single acquaintaregd boxes) and being associated witsingleton survivors (marked by black

. . X label). Notably, Lusseau is detected as singleton sunsimce his research
Using node-LFVC, we are able to extract important COMyea is primarily in zoology. As shown in gray dashed box, rtiedularity
munities and key members as shown in Fih. 6. For 2, method [25] detect25 out of 28 scholars as being in a single community,

only one node removal is required to partition the graph infyd the top left3 scholars as belonging t different communities.
two connected subgraphs, which implies that this node is

common to the two communities according to the proposed _ o
Algorithm[I. Forg = 3, two deep communities (green circIeC' Coauthorship among network scientists

and blue triangle) are discovered in the largest communityWe next examine the coauthorship network studied by
(the blue triangle community in Fif] 6 (a)), where these twhewman [25]. Nodes represent network scientists and edges
deep communities have dense internal connections companegresent the existence of coauthorship. Multiple mentiyess
with the external connections to other members in the largese expected to occur in this dataset since a network ssfenti
community. These discovered deep communities are importamay collaborate with other network scientists across wfie
communities embedded in the network since they play aegions all the while having many collaborations with hés/h
important role in connecting the singleton survivors iadéd colleagues and students at the same institution. As a yest

by black X labels. Similar observations hold fge= 4 in Fig. would expect, as implemented by Algoritith 1, node-LFVC
(c). to be advantageous for identifying authors who with mugtipl
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memberships and detecting deep communities. @ o

0.9 T T T 50

As shown in Fig[V, the first node with the highest node
LFVC is Yamir Moreno, who is a network scientist in Spair
but has many collaborators outside Spain. The local (twm-hc
coauthorship network of Yamir Moreno is shown in Fig. 7
The red square community represents the network scienti
in Spain and Europe, whereas the blue triangle commun
represents the rest of the network scientists.

After removing Yamir Moreno from the network, the node
with the highest node-LFVC in the remaining largest commi
nity is Mark Newman, who is associated withcommunity
memberships and singleton survivors as shown in Fig. %%
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[B. Each community can be related to certain relationsh 8 Fdo convely
such as c_olleagues, studer_1ts and reseqrch _|nst|tut|ombl)dp 08 =0 100 150 200 T o0 150 200
Lusseau is detected as a singleton survivor in the deep cemt number of removed nodes (@) number of removed nodes (a)

nity detection process in Fifj] 8. This can be explained by the
fact that although Lusseau has coauthorship with Newman, ﬁigd- 9. Friendship (ijn Last(-fr)n online ImuzicI systemi[48] with= 1843 r:jodes
: : N : . andm = 12668 edges. (a) Normalized largest community size decreases

re_seamh areals p“mfr’mIY In Z_OO|Ogy and he has no Intenasti in the number of node removals at different rates under reiffe node
with other network scientists in the dataset since othewot centralities. (b) Discovered communities with respectdderremovals using
scientists are mainly specialists in physics. Also note tha different node centralities. Node-LFVC outperforms othede centralities in

. . erms of minimizing the largest community size, and whiléengecapable of
mOdU|a”_tY memoq (gray dashed bOX) fails to detect t_hes_@ de{ietecting more communities in the network for the first 50 oeafs.
communities and it detects 25 out of 28 network scientists in

Fig.[8 as one big community.

LO K Betweenness
7 $900000000 Eigon conraty
D. Last.fm online music system g5 AR D> (o) % Degee
z ‘A DDD OO 0 Egz c_entrallty

Last.fm is an online music system which allows users 1 £ o [>[>[>[>OOO O NodelPve
tag their favorite songs and artists and make friends wi 2 °[ %% [>[> OOOO i
other users. We use the friendship dataset collected in [« 2 ¢ D
for deep community detection based on node-LFVC and t  § ,.| XQ 0 > (0] i
other centralities introduced in Séc.11-B. Two quantitite s A *Q0 >> POOH 4
normalized largest community size and the number of di g AA [>[>[>E>
covered communities with respect to node removals, are us 2 4 ﬁﬁ 1
to evaluate the performance of community detection whe = ‘AQ 950
different node centralities are applied. These two quastit a5 T*Ve

reflect the effectiveness of graph partitioning. The nunifer 0 B e communer @ a0 %
removed nodes is the number of stages for performing decp
community det_e,Ctlon and removing m9re nodes reveals m%& 10. Residual sum of community similarity (RSCS) in Lastnetwork.
deep communities and key members in the network. The residual sum of community similarity based on node-LFM@performs
; ; ; sother centralities, which indicates that node removalstbasn node-LFVC
. As shown In. Fig[P (a)' the normalized largest Commumgéln best detect deep communities that share common interasiists.
size decays linearly with respect to the number of node
removals. Among all node centralities, node-LFVC has the
steepest decaying rate. Furthermore, using node-LFVC dé?m
covers more deep communities, as shown in [Big. 9 (b) during .
i i i W W
the first 50 node removals._The only node central_lty that is RCS(Cy,) = Z Z Vi (23)
comparable to node-LFVC is betweenness centrality. [Iwill2 | w:|2
To validate the effectiveness of deep community detection, . L . .
we use the user-artists dataset(in/ [48] to compute the Imen‘Phehre&dual fsuRrréé)f (;ommhug!ty S|m|Iacrj|ty (RSCS,) |sT(i]ef|n_ed
similarity in each discovered community. The dataset dosta as the sum o of each discovered community. That is,

ilarity of a deep community’y, is defined as

1€CK,IER JECK,j>1,7¢R

17632 artists and records the number of times each user has 9
listened to an artist. Letv; be a17632-by-1 vector with its RSCS= Z RCSCk). (24)
j-th entry being the number of times tlwh user has listened k=1

to the j-th artist. The residual community similarity (RCS) As shown in Fig.[ID, the residual sum of community
is defined as the sum of cosine similarity between each usénilarity based on node-LFVC is larger than that for other
in the same community excluding the nodes that have beesntralities. This suggests that node removals based o& nod
removed and the singleton survivors. The residual communitFVC can best detect friendship communities that share



common interest in artists. Note that although betweennefisjoint complete subgraphs of > 2 nodes andn'(n’ —
may detect more communities in Fid. 9 (b), Figl 10 shows thaf/2 edges. The largest eigenvalue of each subgraph is
the residual sum of community listening similarity based oand ||f,|l* = g -n/(n — 1). The upper bound becomes-
betweenness is smaller than that based on node-LFVC, whijgh_ w = g, which is exactly the number of non-

indicate that node-LFVC reveals more accurate Communglhg|eton connected Components@] These results can be

structure than betweenness. The residual sum of Commurutbbcﬂy app“ed to edge removals (& by Set“ngq = (0 since
similarity decreases with respect to the number of dis@erng nodes are removed.

communities due to the fact that the removed nodes and
singleton survivors are excluded for similarity compudati

APPENDIX B
VII. CONCLUSION PROOF OFTHEOREMIZ]
Based on bounds on the sensitivity of algebraic connegtivit
to node or edge removals, we proposed a centrality measuréet r be the rank ofL.. We prove that there exists anx
called local Fiedler vector centrality (LFVC) for deep comm (n — r) binary matrixX = [x; x3...x,_,] whose columns
nity detection. We proved that LFVC relates to a monotonix; };—, satisfy: 1) [|x;[|; is the size of thei-th connected
submodular set function such that greedy node removalsibasemponent of7; 2) they are orthogonal; 3) they span ).
on LFVC can be applied to identify the most vulnerabl&ssumeG consists ofg connected components. Then there
nodes or edges with bounded performance loss comparedexits a matrix permutation (node relabeling) such that
the optimal combinatorial batch removal strategy. Asyrtipto . 0 0 o0
analysis of the Fiedler vector established that LFVC can !

successfully remove the noisy part while retaining the deep I— 0 L 0 0 . (25)
community structure in networks generated by the stoahasti 0O 0 . 0
block model. In comparison to the modularity methiod [12] and 0O 0 0 iq

the L1 norm subgraph detection methad|[24], we show that
LFVC can achieve better community detection performance &ssociated with thei-th block matnxL we definex; as
correctly identifying the embedded deep communities. an n x 1 binary vector x; in nuII( ) having the form
The proposed method provides better resolution for discax; = [0...0 1...1 0...0]7, where the locations of the
ering important communities and key members in the realonzero entries correspond to the indexes of ithle block
world social network datasets studied here. In particdtar, matrix. It is obvious thatl|x;|l; = > 7_, |;;| equals the
the Last.fm online music system dataset, LFVC is shown #ize of thei-th component and sucfx;}!'~;" are mutually
significantly outperform other centralities for deep commityr  orthogonal. Furthermore, there exists no other binary imatr
detection in terms of the residual sum of community listgninwhich is sparser thaX with column span equal to nylL).
similarity. This new measure can likely offer new insights olf there existed another binary matrix that were sparsen tha
community structure in other social, biological and tedbge X, then it would contradict the fact that its column vectors
ical networks. have sums equal to the component sizesGof Therefore
the largest non-singleton connected component siz&' a$
APPENDIXA P(G) = || X1 = max; [|x;]]1.
PROOF OFTHEOREM[]
From [2) a graph is connected if and only if the algebraic
connectivity is greater than zero. Furthermore, the srsialle APPENDIXC
eigenvalue of the associated graph Laplacian matrix isyswa PROOF OFLEMMA[]
0. Thereforen — g —1 is the number of connected components )
(including the singleton nodes) @@ [19] by the fact that. — ¢ By the relation

and r are the node size and rank f respectively. Since A (s 26
the definition of a deep community excludes singleton nodes, Z Z i (Y = Z Z y7 (26)

iER JEV iE€ER JEN;
the first inequality in[(B) becomes equality if all connected =Te e
components irG are non-singleton. andV = {V/R} U {R}, we have
Using a well-known matrix norm inequality [28] that 9
[IM]|l. < r||M||2 for any square matriM of rank r, where R)= Z Z i Yi) Ty Z ZAU
M2 = maxy,—1 [ Mx]|2 = A, (M). We have 167?@“ E€R jEV
IE], 27 T3 2 Aul
n—q—rﬁn—q—m:n— _)\—(f;)’ i€ER FEV/R
- - - =5 Yi — Yj) Aij(y
where||L||. = tracéL) = 2m is the total degree of:. Z;QJEZN ! zEZRJG%ER i
Next we show that the second inequality ih (6) becomes an >0 27)

equality if each non-singleton connected graph is a comaplet
subgraph of the same size. Consider a graph consisting of (&) = 0 follows directly from the definition off (R) in (I3).



APPENDIXD
PROOF OFTHEOREM[3|

We first prove the monotonic property. Consider two node

and therefore

FRap) = 1(R) < (1= 2 f(Rom) < L (Rog. (32

removal setskR; C Rg C V. Then using Lemmél1 and theAppIylng this result to[[T5), we have

fact thatR,/Rs =

f(R2) = f(R1)
oD - D Ayl
i€ER2/R1 JEN; i€R1 jER2/R1
1
~3 oD Auli—w)’
1€R2/R1 jER2/R1
oD AGwi—u) =Y Y Aywi—w)’
i€R2/R1 JEV i€ER1 jJER2/R1
YooY Aulwi—u)
’iGRQ/Rl jGRQ/Rl
1
t3 o> Auli-w)’
1€R2/R1 jER2/R1
= Z ZAij (y - Z Ay )?
i€R2/R1 \JEV JER2
1
t3 o> Auli-w)’
1€R2/R1 jER2/R1
YD Aslyi-y)
i€R2/R1 jEV/R2
1
+3 oY Aylyi—u)
’iGRQ/Rl jERz/Rl
> 0. (28)

Thereforef(R) is a monotonic increasing set function (i.e.,

f(R2) > f(Rq) forall Ry C Ra C V).

Furthermore,f(R) is a submodular set functioh [44], [49]
since for any node € V,v ¢ Ry, R1 C R2 C V, we have
from (17) that

JRAUD) = fFR) =Y (o — )" = D Auslue
JEN JER1
> (e —y) = Y Auly
JEN, JER2
= f(R2Uv) — f(Ra2). (29)

This diminishing returns property of(R) establishes thaf
is submodular([43].

APPENDIXE
PROOF OFTHEOREM[4

By submodularity of f(R) in Theorem[B, there exists a
v € Ropt/ Ry [49] such that

fWHZ%UWm%-

After algebraic manipulation, we have

ﬂmm—ﬂmﬂ>( )UWW—ﬂ&»(m)

J(RxUw) — J(Re)). (30)

1
1- =
q

y =

A2(L(Ry)) < A2(L) — f(Ry)
< /\Q(L) - (1 - 871) f(Ropt)- (33)
APPENDIXF
PROOF OFTHEOREM[G
Letx = [x] x1 7. By (@) we have\y(L) = min, x? Lx

subject tox’ xin + xI,xout = 1 and xI 1in + xZ,1out = 0.

Using Lagrange multipliers, v and [21), the Fiedler vector
[yl yIJT of L is a minimizer of the function ovex:

I'= Xin (Lin + Din)}’in + Xout(Lout + Dout)xout -
1) — v(%ih Lin + XguLour)-

Differentiating [3%) with respect taj, andxqy respectively,
and substitutingy to the equations,

2(Lin + Din)Yin — 2Cyout — 20yin — v1jin = 0; (35)
2(Lout + Dout)}’out - 2CTyin — 2pyout — Y1out = 0. (36)

Multiplying 17 to (38) and1l, to (38) from the left hand
side, we have

2Xin CXout
(34)

T T
— 1(XjnXin + XouXout —

2:1511]:)in}’in - 21i1r;cxout - 2M1¥;Xin - (37)

21ZutDouthut - 21ZutCTxin - 2ﬂlguthut — VNout = O. (38)
L€ and1fC = 1]

Since1. Dy, = 17, I Dout, summing [(317)
and [38) we obtain for the Lagrange multiplier

vnijn = 05

2
V= - (yln Lin + youtIOUl) =0 (39)

due the fact thay L 1. Applying » = 0 and left multiplying
(39) byyi, and [36) byyg,, we have

¥in(Lin 4+ Din)¥in — ¥in Cyout — #¥in¥in = 0; (40)
You(Lout + Dow)yout — Youl” ¥in — iyauyour = 0. (41)

Sincey is the Fiedler vector, summinf_(40) aiid(41) together
we obtain

1= (L). (42)

Let C = pouwlinll,, where its entry is the mean of an
i.i.d Bernoulli random variable of an entry €. Let o;(M)
denote thei-th largest singular value aM and write C =
C+C—C =: C+A. SinceA;; = 1—poy With probability pou
andA;; = —pout With probability 1 —poy, by Latala’s theorem
[50], Eoy(A/\/Ninftout) — 0 @S nin, nout — co. Therefore by
Talagrand’s concentration inequalify [51], the singulatues
of C/\/Minfiowt CONVErge topou, i-€., 01(C//Minton) —5
01(C//Mintiow) = pout and a;(C//iniom) — 0 for i > 2
whennin, — 00, nout — oo. We further assume, and ngyt
grow with a constant rate so thaﬁ— — ¢, Wherec is a
positive constant. Furthermore, as provedﬁi [52], thérlgfit
singular vectors ofC and C are close to each other in the
sense that the squared inner product of their left/righddir



vectors converges tbalmost surely wheR/ninnoupout — 0.
Consequently, we hav%Dmlm = ﬁCLmt — poutlin and
1 1

~=Doutlout = 7-C" 1in = pourlowt almost surely.

Applying these results td_(B7) anf_{38), we have, almost
surely,
(1]

. T
Poutlin¥in T #linYin
PoulipYn o — Poindin g, 43
\/E \/_pout outY out \/m ( ) 2]
T T
Poutlin¥in  plouYout
< 1T _ in _ ou — 0. 44
Vepoutl oY out NG VTinTiout e

By the fact thatl] yi, + 12 ;your = 0, we have, almost surely, [

1 %

(JE + %) (o= £) 1yin — 0 (45) (4
1 %

(\/E + %) (pout - E) 1gutYOut — 0. (46) 5]

Consequently, recalling = X\»(L) in (42), at least one of the
two cases has to be satisfied:

A2(L) as,

6

—_

Case 1.2 2% ) 47y [
n
Case 210 yin =% 0 and 1. your =3 0. (a8)

El

1£yin+10Tutyout = 0, we have whemgy < pg, almost surely,

NNin NMNout

Yin — +1j, and

Yout = Flout (54)

Tout in
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Fig. 11. Anillustration of deep community detection. Theirennetwork is
a realization of the stochastic block model introduced in[@ewith network
sizen = 50 and deep community sizeqeep = 20. The nodes in the deep
community are marked by red solid circle, and the other nedesnarked by
blue solid rectangles. The left and right columns repreadj#tcency matrices
and their corresponding graphs, respectively. It is olkwhenc;, is fixed,
the deep community is more difficult to be detectedc@g increases.

Fig. 13. Spectral clustering on Zachary’s karate club @dtathe firstg
smallest eigenvectors of the graph Laplacian matrix arel usecluster the
nodes intog communities as suggested fif [9]. Wher= 4, spectral clustering
yields imbalanced communities (one community has singlieho

Fig. 12. Spectral clustering on dolphin social network. G@é clustering
results in the same discovered communities as the edge-L&Edf@munity
detection method. However, unlike the proposed node-LF\&hod it does
not explicitly identify the four mixed membership dolphitisat connect the

two communities.
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