
ar
X

iv
:1

40
7.

60
71

v5
  [

cs
.S

I] 
 1

5 
Ju

l 2
01

5

Deep Community Detection
Pin-Yu Chen and Alfred O. Hero III,Fellow, IEEE

Abstract—A deep community in a graph is a connected
component that can only be seen after removal of nodes or edges
from the rest of the graph. This paper formulates the problem
of detecting deep communities as multi-stage node removal that
maximizes a new centrality measure, called the local Fiedler
vector centrality (LFVC), at each stage. The LFVC is associated
with the sensitivity of algebraic connectivity to node or edge re-
movals. We prove that a greedy node/edge removal strategy, based
on successive maximization of LFVC, has bounded performance
loss relative to the optimal, but intractable, combinatorial batch
removal strategy. Under a stochastic block model framework,
we show that the greedy LFVC strategy can extract deep
communities with probability one as the number of observations
becomes large. We apply the greedy LFVC strategy to real-world
social network datasets. Compared with conventional community
detection methods we demonstrate improved ability to identify
important communities and key members in the network.

Index Terms—Graph connectivity, local Fiedler vector central-
ity, node and edge centrality, noisy graphs, removal strategy,
spectral graph theory, social networks, submodularity

I. I NTRODUCTION

In social, biological and technological network analysis [3]–
[5], community detection aims to extract tightly connected
subgraphs in the networks. This problem has attracted a
great deal of interest in network science [6], [7]. Community
detection is often cast as graph partitioning. Many graph
partitioning methods exist in the literature, including graph
cuts [8], [9], probabilistic models [10], [11], and node/edge
pruning strategies based on different criteria [3], [12]–[14].

Many community detection methods are based on detecting
nodes or edges with high centrality. Node and edge centralities
are quantitative measures that are used to evaluate the level
of importance and/or influence of a node or an edge in the
network. Centralities can be based on combinatorial measures
such as shortest paths or graph diffusion distances between
every node pair [15], [16]. Centrality measures can also
be based on spectral properties of the adjacency and graph
Laplacian matrices associated with the graph [16]. Many of
these measures require global topological information and
therefore may not be computationally feasible for very large
networks.

Nonparametric community detection methods, such as the
the edge betweenness method [3] and the modularity method
[12], can be viewed as edge removal strategies that aim
to maximize a centrality measure, e.g., the modularity or
betweenness measures. It is worth noting that these methods

P.-Y. Chen and A. O. Hero are with the Department of Electrical Engineer-
ing and Computer Science, University of Michigan, Ann Arbor, MI 48109,
USA. Email : pinyu@umich.edu and hero@umich.edu.

Some results in this paper were presented in part at IEEE GLOBALSIP
2013 [1] and IEEE ICASSP 2014 [2].

This work has been partially supported by the Army Research Office
(ARO), grant number W911NF-12-1-0443.

presume that each node in the graph is affiliated with a
community. However, in some community detection applica-
tions it often occurs that the graphs contain spurious edges
connecting to irrelevant “noisy” nodes that are not members
of any single community. In such cases, noisy nodes and
edges mask the true communities in the graph. Detection of
these masked communities is a difficult problem that we call
“deep community detection”. The formal definition of a deep
community is given in Sec. III. Due to the presence of noisy
nodes and spurious edges [17], [18], deep communities elude
detection when conventional community detection methods
methods are applied.

In this paper, a new partitioning strategy is applied to
detect deep communities. This strategy uses a new local
measure of centrality that is specifically designed to unmask
communities in the presence of spurious edges. The new par-
titioning strategy is based on a novel spectral measure [19]of
centrality called local Fiedler vector centrality (LFVC).LFVC
is associated with the sensitivity of algebraic connectivity
[20] when a subset of nodes or edges are removed from a
graph [2], [21]. We show that LFVC relates to a monotonic
submodular set function which ensures that greedy node or
edge removals based on LFVC are nearly as effective as the
optimal combinatorial batch removal strategy.

Our approach utilizes LFVC to iteratively remove nodes
in the graph to reveal deep communities. A removed node
that connects multiple deep communities is assigned mixed
membership: it is shared among these communities. Under a
“signal plus noise” stochastic block model framework [10],
[11], [22], we use random matrix theory to show that the
greedy LVFC strategy can asymptotically identity the deep
communities with probability one. As compared with the
modularity method [12] and the L1 norm subgraph detection
method [23], [24], we show that the proposed greedy LFVC
approach has superior deep community detection performance.
We illustrate the proposed deep community detection method
on several real-world social networks. When our proposed
greedy LFVC approach is applied to the network scientist
coauthorship dataset [25], it reveals deep communities that are
not identified by conventional community detection methods.
When applied to social media, the Last.fm online music
dataset, we show that LFVC has the best performance in
detecting users with similar interest in artists.

The rest of this paper is organized as follows. Sec. II sum-
marizes commonly used centrality measures, the definitions
of community, and relevant spectral graph theory. Sec. III
gives a definition of deep communities. The proposed local
Fiedler vector centrality (LFVC) is defined in Sec. IV. In Sec.
V, we introduce the signal plus noise stochastic block model
for a deep community and establish asymptotic community
detection performance of the greedy LFVC strategy. We apply
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the greedy LFVC strategy to real-world social network datasets
in Sec. VI. Finally, Sec. VII concludes the paper. Throughout
the paper we use uppercase letters in boldface (e.g.,A) to
represent matrices, lowercase letters in boldface (e.g.,a) to
represent vectors, and uppercase letters in calligraphic face
(e.g.,A) to represent sets. Subscripts on matrices and vectors
indicate elements (e.g.,Aij is the element ofi-th row andj-th
column of matrixA, andai is the i-th element of vectora).
(·)T denotes matrix and vector transpose.

II. CENTRALITIES, COMMUNITIES, AND SPECTRAL

GRAPH THEORY

A. The graph Laplacian matrix and algebraic connectivity

Consider an undirected and unweighted graphG = (V , E)
without self loops or multiple edges. We denote byV the
node set, with|V| = n, and byE the edge set, with|E| = m.
The connectivity structure ofG is characterized by ann-by-
n binary symmetric adjacency matrixA, whereAij = 1 if
(i, j) ∈ E , otherwiseAij = 0. Let di =

∑n
j=1 Aij denote

the degree of nodei. The degree matrixD = diag(d) is a
diagonal matrix with the degree vectord = [d1, d2, . . . dn] on
its diagonal. The graph Laplacian matrix ofG is defined as
L = D−A. Let λi(L) denote thei-th smallest eigenvalue of
L and let1 = [1, . . . , 1]T denote the vector of ones. We have
the representation [19], [26]

xTLx =
1

2

∑

i∈V

∑

j∈V

Aij(xi − xj)
2, (1)

which is nonnegative, andL1 = (D−A)1 = 0, the vector of
all zeros. Thereforeλ1(L) = 0 andL is a positive semidefinite
(PSD) matrix.

The algebraic connectivity ofG is defined as the second
smallest eigenvalue ofL, i.e., λ2(L). G is connected if and
only if λ2(L) > 0. Moreover, it is a well-known property [20]
that for any non-complete graph,

λ2(L) ≤ node connectivity≤ edge connectivity, (2)

where node/edge connectivity is the least number of node/edge
removals that disconnects the graph. (2) is the main motivation
for our proposed node/edge pruning approach. A graph with
larger algebraic connectivity is more resilient to node andedge
removals. In addition, letdmin be the minimum degree ofG,
it is also well-known [19], [27] thatλ2(L) ≤ 1 if and only if
dmin = 1. That is, a graph with a leaf node (i.e., a node with
a single edge) cannot have algebraic connectivity larger than
1. For any connected graph, we can represent the algebraic
connectivity as

λ2(L) = min
‖x‖2=1, x⊥1

xTLx (3)

by the Courant-Fischer theorem [28] and the fact that the
constant vector is the eigenvector associated withλ1(L) = 0.

B. Some examples of centralities

Centrality measures can be classified into two categories,
global and local measures. Global centrality measures re-
quire complete topological information for their computation,

whereas local centrality measures only require local topolog-
ical information from neighboring nodes. Some examples of
node centralities are:

• Betweenness[29]: betweenness measures the fraction
of shortest paths passing through a node relative to
the total number of shortest paths in the network.
Specifically, betweenness is a global measure defined as
betweenness(i) =

∑
k 6=i

∑
j 6=i,j>k

φkj(i)
φkj

, whereφkj is
the total number of shortest paths fromk to j andφkj(i)
is the number of such shortest paths passing throughi.
A similar notion is used to define the edge betweenness
centrality [3].

• Closeness[30]: closeness is a global measure of geodesic
distance of a node to all other nodes. A node is said
to have high closeness if the sum of its shortest path
distances to other nodes is small. Letρ(i, j) denote
the shortest path distance between nodei and nodej
in a connected graph. Then we define closeness(i) =
1/
∑

j∈V,j 6=i ρ(i, j).
• Eigenvector centrality (eigen centrality) [16]: eigen-

vector centrality is thei-th entry of the eigenvector
associated with the largest eigenvalue of the adjacency
matrix A. It is defined as eigen(i) = λ−1

max

∑
j∈V Aijξj ,

whereλmax is the largest eigenvalue ofA and ξ is the
eigenvector associated withλmax. It is a global measure
since eigenvalue decomposition onA requires global
knowledge of the graph topology.

• Degree(di): degree is the simplest local node centrality
measure which accounts for the number of neighboring
nodes.

• Ego centrality [31]: consider the(di+1)-by-(di+1) local
adjacency matrix of nodei, denoted byA(i), and letI
be an identity matrix. Ego centrality can be viewed as a
local version of betweenness that computes the shortest
paths between its neighboring nodes. Since[A2(i)]kj is
the number of two-hop walks betweenk and j, and[
A2(i) ◦ (I−A(i))

]
kj

is the total number of two-hop
shortest paths betweenk and j for all k 6= j, where◦
denotes entrywise matrix product. Ego centrality is de-
fined as ego(i) =

∑
k

∑
j>k 1/

[
A2(i) ◦ (I−A(i))

]
kj

.

These centrality measures are used for comparison with the
proposed centrality measure (LFVC) for deep community
detection in Sec. VI.

C. Community and modularity

Many possible definitions of communities exist in the liter-
ature [7], [13], [15]. One widely adopted definition is based
on the relations between the number of internal and external
connections of a subgraphS ⊂ G [32]. For a subgraphS ⊂ G
with node setVS , let dint

i (S) =
∑

j∈S Aij denote the number
of internal edges of nodei in S anddext

i (S) =
∑

j∈V/VS
Aij

denote the number of external edges of nodei outsideS. S is
said to be a community in the strong sense ifdint

i (S) > dext
i (S)

for all i ∈ S, andS is said to be a community in the weak
sense if

∑
i∈S d

int
i (S) >

∑
i∈S d

ext
i (S).

Newman [12] defines a community by comparing the in-
ternal and external connections of a subgraph with that of a



random graph having the same degree pattern (i.e., a random
graph where each node has exactly the same degree as the
original graph), and he proposes a quantity called modularity
to construct a graph partitioning ofG into communities. First
consider partitioning a graph into two communities. Recalling
that m = |E| is the number of edges in the graph, define
Bij = Aij − didj

2m . Bij can be interpreted as the number of
excessive edges betweeni andj sinceBij is the difference of
actual edges minus the expected edges of the degree-equivalent
random graph. Lets be the membership vector such that
si = 1 if i is in community1 andsi = −1 if i is in community
2. ModularityQ is proportional to the total number of excess
edges in each community, i.e.,

Q =
1

4m

∑

i∈V

∑

j∈V

Bij(sisj + 1) =
1

4m
sTBs (4)

since
∑

i∈V

∑
j∈V Bij = 0. Maximizing this quadratic form

yields a partition ofG into two communities [25]. The
associated membership vectors can be obtained by computing
the largest eigenvectorbmax of B and extracting its polarity,
i.e., s = sign(bmax) [25].

To divide a network into more than two communities,
Newman proposes a recursive partitioning approach. It is also
verified in [33] that there is no performance difference between
the modularity method [12], the statistical inference method
[10], [34], and the normalized cut method [9]. However, the
modularity method may fail to detect small communities even
when community structures are apparent [17], [35], [36].

In [14], a node removal strategy based on targeting high
degree nodes is proposed to improve the performance of the
modularity method. The authors of [14] argue that high-degree
nodes incur more noisy connections than low-degree nodes,
and it is experimentally demonstrated that removing high-
degree nodes can better reveal the community structure.

D. The Fiedler vector

The Fiedler vector of a graph is the eigenvector associated
with the second smallest eigenvalueλ2(L) of the graph Lapla-
cian matrixL [20]. The Fiedler vector has been widely used
in graph partitioning, image segmentation and data clustering
[8], [9], [37]–[39]. Analogously to modularity partitioning, the
Fiedler vector performs community detection by separatingthe
nodes in the graph according to the signs of the corresponding
Fiedler vector elements. Similarly, hierarchical community
structure can be detected by recursive partitioning with the
Fiedler vector.

In this paper, we use the Fiedler vector to define a new
centrality measure. One advantage of using the Fiedler vector
over other global centrality measures is that it can be computed
in a distributed manner via local information exchange over
the graph [40].

III. D EEP COMMUNITY

A deep community is defined in terms of an additive
signal (community) plus noise model. LetA1, . . . ,Ag denote
the n × n mutually orthogonal binary adjacency matrices
associated withg non-singleton connected components in a

noiseless graphG0 over n nodes. Assume the nodes have
been permuted so thatA1, . . . ,Ag are block diagonal with
non-overlapping block indicesI1, . . . , Ig. The observed graph
G is a noise corrupted version ofG0 where random edges
have been inserted between the connected components ofG0.
More specifically, letAnse be a random adjacency matrix with
the property thatAnse(i, j) = 0, i, j ∈ Ik, for k = 1, . . . , g
and where the rest of the elements ofAnse are Bernoulli i.i.d
random variables. Then the adjacency matrixA of G satisfies
the signal plus noise model

A =

g∑

k=1

Ak +Anse. (5)

The deep community detection problem is to recover con-
nected componentsA1, . . . ,Ag from the noise corrupted
observationsA. TheAk ’s are called deep communities in the
sense that they are embedded in a graph with random inter-
connections between connected components. The performance
analysis of deep community detection on networks generated
by a specified stochastic block model [22] is discussed in
Sec. V. An illustrative visual example of deep community
detection is shown in the longer arXiv version of this paper1.
Deep community detection is equivalent to the planted clique
problem [41] in the special case thatg = 1 and the non-
zero block ofA1 corresponds to a complete graph, i.e., all
off-diagonal elements of this block are equal to one. Models
similar to (5) have also been used for hypothesis testing on
the existence of dense subgraphs embedded in random graphs
[23], [24]. The null hypothesis is the noise only model (i.e.,
Ak = 0 ∀k). The alternative hypothesis is the signal plus noise
model (5) withAk 6= 0. The authors in [23], [24] propose
to use the L1 norms of the eigenvectors of the modularity
matrix B as test statistics. This statistic is compared with
our proposed local Fiedler vector deep community detection
method in Sec. V.

We propose an iterative denoising algorithm for recovering
deep communities that is based on either node or edge
removals. The proposed algorithm uses a spectral centrality
measure, defined in Sec. IV, to determine the nodes/edges to
be pruned from the observed graph with adjacency matrixA.

Let L̃ be the resultingn × n graph Laplacian matrix after
removing a subset of nodes or edges from the graph. The
following theorem provides an upper bound on the number of
deep communities in the remaining graphG̃.

Theorem 1. For any node removal setR of G with |R| = q,
let r be the rank of the resulting graph Laplacian matrixL̃ and
let ‖L̃‖∗ =

∑
i λi(L̃) denote its nuclear norm. The number

ǫ of remaining non-singleton connected components inG̃ has

1available at http://arxiv.org/abs/1407.6071
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the upper bound

ǫ ≤ n− q − r

≤ n− q − ‖L̃‖∗
λn(L̃)

= n− q − 2m̃

λn(L̃)
, (6)

where m̃ is the number of edges iñG. The first inequality
in (6) becomes an equality if all connected components in
G̃ are non-singletons. The second inequality in (6) becomes
an equality if all non-singleton connected components are
complete subgraphs of the same size. Similarly, for any
edge removal set ofG, let r be the rank of the resulting
graph Laplacian matrixL̃. The numberǫ of remaining non-
singleton connected components iñG has the upper bound
ǫ ≤ n− r ≤ n− ‖L̃‖∗

λn(L̃)
= n− 2m̃

λn(L̃)
.

Proof: The proof can be found in Appendix A.
The upper bound in Theorem 1 can be further relaxed by

applying the inequalityλn(L̃) ≤ 2d̃max [19], whered̃max is
the maximum degree of̃G. Other bounds onλn(L̃) can be
found in [42].

The next theorem shows that the largest non-singleton
connected component size can be represented as a matrix one
norm of a matrix whose column vectors are orthogonal and
sparsest among all binary vectors that form a basis of the null
space ofL̃.

Theorem 2. Define the sparsity of a vector to be the number of
zero entries in the vector. Letnull(L̃) denote the null space of
L̃ and letX denote the matrix whose columns are orthogonal
and they form the sparsest basis ofnull(L̃) among binary
vectors. Letψ(G̃) be the largest non-singleton connected
component size of̃G. Thenψ(G̃) = ‖X‖1 = maxi ‖xi‖1,
wherexi is the i-th column vector of binary matrixX.

Proof: The proof can be found in Appendix B.
Theorems 1 and 2 are key results that motivate and theo-

retically justify the proposed local Fiedler vector centrality
measure introduced below. Theorem 1 establishes that the
number of deep communities is closely related to the num-
ber of edge/node removals that are required to reveal them.
Theorem 2 establishes thatL1 norm of the sparsest basis for
the null space of the graph Laplacian matrix can be used to
estimate the size of the largest deep community in the network.

IV. T HE PROPOSEDNODE AND EDGE CENTRALITY:
LOCAL FIEDLER VECTORCENTRALITY (LFVC)

The proposed deep community detection algorithm (Algo-
rithm 1) is based on removal of nodes or edges according
to how the removals affect a measure of algebraic connectiv-
ity. This measure, called the local Fiedler vector centrality
(LFVC), is computed from the graph Laplacian matrix. In
particular, the LFVC is motivated by the fact that node/edgere-
movals result in low rank perturbations to the graph Laplacian
matrix whenn≫ dmax, wheredmax is the maximum degree.
The node and edge LFVC are then defined to correspond to
an upper bound on algebraic connectivity.

A. Edge-LFVC

Considering the graph̃G(i, j) = (V , E ∪ (i, j)) by adding
an edge(i, j) /∈ E to G, we haveL̃ = L + ∆L and∆L =
∆D−∆A, where∆D and∆A are the augmented degree and
adjacency matrices, respectively. Denote the resulting graph
Laplacian matrix byL̃(i, j). Let ei be a zero vector except
that its i-th element is equal to1. Then

∆D = diag(ei) + diag(ej) = eie
T
i + eje

T
j ; (7)

∆A = eie
T
j + eje

T
i , (8)

and therefore

L̃(i, j) = L+ (ei − ej)(ei − ej)
T . (9)

Thus, the resulting graph Laplacian matrixL̃(i, j) after adding
an edge(i, j) to G is the original graph Laplacian matrixL
perturbed by a rank one matrix(ei−ej)(ei−ej)

T . Similarly,
when an edge(i, j) ∈ E is removed fromG, we havẽL(i, j) =
L− (ei − ej)(ei − ej)

T .
Consider removing an edge(i, j) ∈ E from G resulting in

L̃(i, j) above. Lety denote the Fiedler vector ofL, computing
yT L̃(i, j)y gives an upper bound onλ2(L̃(i, j)) as

λ2(L̃(i, j)) ≤ yT L̃(i, j)y

= yT (L− (ei − ej)(ei − ej)
T )y

= λ2(L) − (yi − yj)
2 (10)

following the definition ofλ2(L) = min‖x‖2=1,x⊥1x
TLx in

(3). It is worth mentioning that for any connected graphG
there exists at least one edge removal such that the inequality
λ2(L̃(i, j)) < λ2(L) holds, otherwiseyi = yj for all i, j ∈ V
and this violates the constraints that‖y‖2 = 1 and

∑n
i=1 yi =

0. Consequently, there exists at least one edge removal that
leads to a decrease in algebraic connectivity.

Similarly, when we remove a subset of edgesER ⊂ E from
G, where|ER| = h. We obtain an upper bound

λ2(L̃(ER)) ≤ λ2(L)−
∑

(i,j)∈ER

(yi − yj)
2. (11)

Correspondingly, we define the local Fiedler vector edge
centrality as

edge-LFVC(i, j) = (yi − yj)
2. (12)

Edge-LFVC is a measure of centrality as it associates the sen-
sitivity of algebraic connectivity to edge removal as described
in (11). The toph edge removals which lead to the largest
decrease on the right hand side of (11) are theh edges with
the highest edge-LFVC.

B. Node-LFVC

When a nodei ∈ V is removed fromG, all the edges
attached toi will also be removed fromG. Similar to (10),
the resulting graph Laplacian matrix̃L(i) can be regarded
as a rankdi matrix perturbation ofL. SinceL − L̃(i) =∑

j∈Ni
(ei−ej)(ei−ej)

T , whereNi is the set of neighboring



nodes of nodei, we obtain an upper bound

λ2(L̃(i)) ≤ yT L̃(i)y

= yT (L+ L̃(i)− L)y

= λ2(L)−
∑

j∈Ni

(yi − yj)
2. (13)

Similar to edge removal, for any connected graph, there exists
at least one node removal that leads to a decrease in algebraic
connectivity.

If a subset of nodesR ⊂ V are removed fromG, where
|R| = q, then

L− L̃(R) =
∑

i∈R

∑

j∈Ni

(ei − ej)(ei − ej)
T (14)

− 1

2

∑

i∈R

∑

j∈R

Aij(ei − ej)(ei − ej)
T ,

where the last term accounts for the edges that are attached
to the removed nodes at both ends. Consequently, similar to
(11), we obtain an upper bound for multiple node removals

λ2(L̃(R)) ≤ λ2(L)−
∑

i∈R

∑

j∈Ni

(yi − yj)
2 (15)

+
1

2

∑

i∈R

∑

j∈R

Aij(yi − yj)
2.

We define the local Fiedler vector node centrality as

node-LFVC(i) =
∑

j∈Ni

(yi − yj)
2, (16)

which is the sum of the square terms of the Fiedler vector
elementwise differences between nodei and its neighboring
nodes, and it is also the sum of edge-LFVC ofi′s neighboring
nodes. From (13) and (15), node-LFVC is associated with the
upper bound on the resulting algebraic connectivity for node
removal when|R| = 1. A node with higher centrality implies
that it plays a more important role in the network connectivity
structure.

C. Monotonic submodularity and greedy removals

Fixing |R| = q, consider the problem of finding the optimal
node removal setRopt that maximizes the decrease in the upper
bound on algebraic connectivity in (15). The computational
complexity of this batch removal problem is of combinatorial
order

(
n
q

)
. Here we show that the greedy LFVC removal

procedure, shown in Algorithm 1, and whose computation is
only linear in n, has bounded performance loss relative to
the combinatorial algorithm in terms of achieving, within a
multiplicative constant(1−1/e), an upper bound on algebraic
connectivity, wheree is Euler’s constant. Let

f(R) =
∑

i∈R

∑

j∈Ni

(yi − yj)
2 − 1

2

∑

i∈R

∑

j∈R

Aij(yi − yj)
2

(17)

and recall from (15) thatλ2(L̃(R)) ≤ λ2(L) − f(R). Note
that when|R| = 1, f(R) reduces to node-LFVC asAii = 0.
The following lemma provides the cornerstone to Theorem 3.

Lemma 1. The functionf(R) in (17) is equal to

f(R) =
1

2

∑

i∈R

∑

j∈Ni

(yi − yj)
2 +

1

2

∑

i∈R

∑

j∈V/R

Aij(yi − yj)
2.

Furthermore,f(R) ≥ 0 andf(∅) = 0, where∅ is the empty
set.

Proof: The proof can be found in Appendix C.
The following theorem establishes monotonic submodu-

larity [43] of f(R). Monotonicity meansf(R) is a non-
decreasing function: for any subsetsR1,R2 of the node setV
satisfyingR1 ⊂ R2 we havef(R1) ≤ f(R2). Submodularity
meansf(R) has diminishing gain: for anyR1 ⊂ R2 ⊂ V and
v ∈ V \R2 the discrete derivative∆f(v|R) = f(R∪ {v})−
f(R) satisfies∆f(v|R2) ≤ ∆f(v|R1). As will be seen below
(see (33)), this implies that greedy node removal based on
LFVC is almost as effective as the combinatorially complex
batch algorithm that searches over all possible removal sets
R.

Theorem 3. f(R) is a monotonic submodular set function.

Proof: The proof can be found in Appendix D.
Based on Theorem 3, we propose a greedy node-LFVC

based node removal algorithm for deep community detec-
tion as summarized in Algorithm 1. Algorithm 1 yields
an adjacency matrixÂ that corresponds to the remaining
edges after node removal. In addition to a list of theq
removed nodes, the deep communities are defined by the non-
singleton connected components in̂A supplemented by the
nodes that were removed, where the membership of these
nodes is defined by the connected components inÂ to which
they connect. More specifically, if̂S = (VŜ , EŜ) denotes
one of these non-singleton connected components, the set
VŜ ∪

{
i ∈ R : Aij = 1 for somej ∈ Ŝ

}
is called a deep

community. This definition means that some of the removed
nodes may be shared by more than one deep community.
The following theorem shows that this greedy algorithm has
bounded performance loss no worse than0.63 as compared
with the optimal combinatorial batch removal strategy.

Algorithm 1 Deep Community Detection by greedy node-
LFVC

Input: Adjacency matrixA, number of removed nodesq
Output: Deep communities
R = ∅

for i = 1 to q do
Find the largest connected component
Compute the corresponding Fiedler vectory

Find i∗ = argmaxi
∑

j∈Ni
(yi − yj)

2

R = R∪ i∗
Removei∗ and its edges from the graph

end for
Find Ŝ, one of the non-singleton connected components.
The setVŜ ∪

{
i ∈ R : Aij = 1 for somej ∈ Ŝ

}
is a deep

community.



Theorem 4. Fix the target number of nodes to be removed
as |R| = q. Let Ropt be the optimal node removal set that
maximizesf(R) and letRk be the greedy node removal set
at thek-th stage of Algorithm 1, where|Rk| = k. Then

f(Ropt)− f(Rq) ≤
(
1− 1

q

)q

f(Ropt) ≤
1

e
f(Ropt).

Furthermore,

λ2(L̃(Rq)) ≤ λ2(L)−
(
1− e−1

)
f(Ropt). (18)

Proof: The proof can be found in Appendix E.
The submodularity of the functionf implies that after

q greedy iterations the performance loss is within a factor
1/e of optimal batch removal [44]. In other words, when
removingRq fromG, the algebraic connectivity is guaranteed
to decrease by at least(1− e−1)f(Ropt) of its original value.
Consequently, identifying the topq nodes affecting algebraic
connectivity can be regarded as a monotonic submodular set
function maximization problem, and the greedy algorithm can
be applied iteratively to remove the node with the highest
node-LFVC. Similarly, we can use edge-LFVC to detect deep
communities by successively remove the edge with the highest
edge-LFVC from the graph, and it is easy to show that the
term

∑
(i,j)∈ER

(yi − yj)
2 in (11) is a monotonic submodular

set function of the edge removal setER.

V. DEEPCOMMUNITY DETECTION IN STOCHASTIC

BLOCK MODEL

To demonstrate the effectiveness of using the proposed
LFVC for deep community detection, we compare its detection
performance to that of other methods for a synthetic network
generated by a stochastic block model (SBM) [10], [11],
[22]. Consider a deep community of sizenin embedded in a
network of sizen, nin < n, and letnout = n − nin denote
the rest of the graph size. The average number of edges
between the members of the deep community is denoted by
cin, and the average number of edges between the members
that are not in the deep community is denoted bycout. We
assume a restricted stochastic block model characterized by
the following2×2 group connection probability matrix, which
specifies the community interconnectivity probabilities in the
SBM:

P =

(deep others

deep pin pout

others pout pout

)
, (19)

where pin = cin
nin

and pout = cout
nout

are the edge connection
probabilities within and outside the deep community, respec-
tively. According to the definition of community in Sec. II-C,
when cin > cout, the nodes in the deep community form a
community. The planted clique problem [41] is a special case
of the SBM in (19) whenpin = 1. The detection performance
of the modularity method has been analyzed in [45] for the
planted clique problem.

The adjacency matrix generated by the SBM in (19) is a

random binary matrix with partitioned structure

A =

[
Ain C

CT Aout

]
, (20)

whereAin and Aout are the adjacency matrices of a Erdos-
Renyi graph with edge connection probabilitiespin and pout,
respectively.C is annin-by-nout binary matrix with its entry
being1 with probabilitypout. A reduces to the special case of
(5) wheng = 1. A1 =

[
Ain 0

0 0

]
represents within-community

connectivity structure andAnse =
[

0 C

C
T

Aout

]
represents the

noisy part outside the deep community.
In the following paragraphs we use random matrix theory

and concentration inequalities to show that asymptotically the
nodes/edges in the noisy part are more likely to have high
LFVC. Therefore the removal strategy based on LFVC will
with high probability detect the noisy part to reveal the deep
community.

Let 1in be the all-ones vector of lengthnin and 1out be
the all-ones vector of lengthnout, and letDin = diag(C1out)
andDout = diag

(
CT1in

)
. Following (20), the corresponding

graph Laplacian matrix can be represented as

L =

[
Lin +Din −C

−CT Lout +Dout

]
, (21)

whereLin andLout are the graph Laplacian matrices of the
two Erdos-Renyi graphs.

Theorem 5. Let n = nin + nout and let y = [yT
in yT

out]
T

be the Fiedler vector of the graph Laplacian matrixL in
(21). Consider the stochastic block model in (19). For a fixed
pin, there exists an asymptotic thresholdp∗out such that almost
surely,
{ √

nnin
nout

yin → ±1in and
√

nnout
nin

yout → ∓1out, if pout ≤ p∗out,

1T
inyin → 0 and1T

outyout → 0, if pout > p∗out,

asnin → ∞, nout → ∞ and nin
nout

→ c > 0.

Proof: The proof can be found in Appendix F.
Consequently, whenpout ≤ p∗out the elements of the Fiedler

vector tend to have opposite signs within and outside the deep
community. Recalling the edge and node LFVC in (12) and
(16), Theorem 5 implies that the nodes/edges with high LFVC
are more likely to be present on the periphery of the deep
community. On the other hand, whenpout > p∗out bothyin and
yout have alternating signs and the deep community cannot
be reliably detected by LFVC due to incorrect node/edge
removals. One can interpretcin = nin ·pin as the signal strength
andcout = nout·pout as the noise level. Based on Theorem 5, for
a fixedcout there exists an asymptotic signal strength threshold
c∗in such that theyin and yout become constant vectors with
opposite signs whencin ≥ c∗in. These results are consistent
with the planted clique detection analysis in [45] that a clique
is detectable if the ratio of its within-clique connectionsto its
outside-clique connections is above a certain threshold.

The proposed deep community detection method in Algo-
rithm 1 is implemented by sequentially removing the node
(edge) with the highest LFVC until the graph becomes dis-
connected. For comparison, the modularity method is im-
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Fig. 1. Sensitivity comparisons of community detection algorithms. This
figure shows fraction of correctly identified community nodes for simulated
stochastic block model (20) using (19). There is a single deep community,
nin = 40, n = 200, and cout = 2. The parameterq in the proposed node-
LFVC algorithm is selected adaptively: Algorithm 1 stops when the first non-
singleton connected component is discovered. The other algorithms are also
implemented with knowledge that there is only one community. The results are
averaged over100 trials. The proposed deep community detection algorithm
based on LFVC is capable of uncovering the community structure. Spectral
clustering has similar performance since it partitions thegraph based on the
Fiedler vector. The modularity method fails to detect the deep community in
the low cin

cout
regime.

plemented by dividing the network into two communities.
The L1 norm subgraph detection method [23], [24] is also
implemented. For the null model (i.e., absence of community
structure) of the L1 norm subgraph detection method, we
generate500 Erdos-Renyi random graphs with edge con-
nection probabilitypout and compute the mean and standard
deviation of the L1 norm of each eigenvector associated with
the modularity matrix. Let mean(i) and std(i) denote the mean
and standard deviation of the L1 norm ofi-th eigenvector
in the null model and letℓi denote the L1 norm of thei-th
eigenvector associated with the modularity matrixB. The test
statistic is

t = min
i=1,...,n

ℓi − mean(i)
std(i)

. (22)

The presence of a dense subgraph is declared if|t| ≥ 2, which
corresponds to5% false alarm probability [23], [24]. Leti∗ =
argmini=1,...,n

ℓi−mean(i)
std(i) . The deep community is identified

by selecting thenin entries of thei∗-th eigenvector having the
largest magnitude.

Consider detecting a single deep community of size40
embedded in a network of size200 generated by the stochastic
block model (19). We consider the following definitions of
community detection algorithm. Sensitivity and specificity
measures: fraction of correctly identified community nodes
detected by the algorithm and fraction of correctly identified
noisy nodes detected by the algorithm. LetŜ be a community
identified by an algorithm and letS denote the true community
embedded in the observed graph. Then the fraction of correctly
identified community nodes is defined as|S∩Ŝ|

nin
, where|S∩ Ŝ|

1 2 3 4 5 6 7 8
0.03

0.04

0.05

0.06

0.07

0.08

0.09

0.1

0.11

0.12

0.13

c
in

/c
out

fr
ac

tio
n 

of
  c

or
re

ct
ly

 id
en

tif
ie

d 
no

is
y 

no
de

s

 

 

edge−LFVC
node−LFVC
spectral clustering

Fig. 2. Specificity comparisons of community detection algorithms. For
the same algorithms as in Fig. 1, this figure shows the fraction of correctly
identified noisy nodes for simulated stochastic block model(20) using (19).
There is a single deep community,nin = 40, n = 200, and cout = 2.
The results are averaged over100 trials. Only the three community detection
algorithms having the highest sensitivity (edge-LFVC, node-LFVC, and
spectral clustering) are shown here. Comparing to Fig. 1, when cin

cout
≥ 2.5,

the proposed deep community detection algorithm based on LFVC denoises
the observed adjacency matrixA in (5), removing some noisy edges inAnse
while retaining the deep community’s edges inAin. Spectral clustering is
less effective in denoisingA. The results validate Theorem 5 that the Fiedler
vector tend to have opposite signs within and outside the deep community
whencin exceeds the thresholdc∗in = 5.

denote the cardinality of the set that contains the nodes belong-
ing to bothS and Ŝ andnin = |S|. The fraction of correctly

identified noisy nodes is defined as|S
c∩Ŝc|
nout

, whereSc = G/S
denotes the complement graph ofS andnout = |Sc|. Together
these sensitivity and specificity measures can be used to assess
the performance of deep community detection.

As shown in Fig. 1, deep community detection based on
LFVC is capable of detecting the embedded community.
Spectral clustering is implemented by partitioning the entire
graph into two subgraphŝS1 and Ŝ2, and selectinĝS = Ŝi∗

as the identified community, wherei∗ = argmaxi∈{1,2}{|S ∩
Ŝ1|, |S ∩ Ŝ2|}. The modularity method is implemented in a
similar fashion.

Spectral clustering [9] has similar performance to the pro-
posed method since it partitions the graph based on the Fiedler
vector. On the other hand, the modularity method is overly
influenced by the noisy part resulting in degraded community
detection. In particular it incorrectly identifies membersof the
deep community as different groups, especially whencin

cout
is

small. The inaccuracy of the modularity method is due to the
fact that in the low cin

cout
regime, the network is overly similar

to the corresponding degree-equivalent random graph model
used to define the modularity metric. That is, modularity does
not provide enough evidence that a community is present.

The fraction of correctly identified noisy nodes via LFVC
and spectral clustering is shown in Fig. 2. In this setting,
the fraction of identified noisy nodes via node-LFVC is
slightly less than that via edge-LFVC. Spectral clusteringis
less effective in denoising the observed adjacency matrixA.



(a) modularity (b) edge−LFVC, h=6 (c) node−LFVC, q=4

Fig. 3. Dolphin social network [46] withn = 62 nodes andm = 159

edges. (a) The modularity method. (b) Edge-LFVC community detection with
h = 6 edge removals. (c) Node-LFVC community detection withq = 4 node
removals. Using node-LFVC, we are able to identify the four dolphins that
interact with two groups as marked by nodes in gray circles. This algorithm,
defined by Algorithm 1, detects that these four nodes are members of the two
communities. The result of spectral clustering is shown in the supplementary
file1. Spectral clustering results in the same discovered communities as the
proposed edge-LFVC community detection method. However, unlike the
proposed node-LFVC method it does not explicitly identify the four mixed
membership dolphins that connect the two communities.

Observe that the fraction of identified noisy nodes is stable
when cin

cout
≥ 2.5. The results validate Theorem 5 that the

elements of the Fiedler vector tend to have opposite signs
within and outside the deep community whencin exceeds
the thresholdc∗in = 5. Consequently, the results show that
removal of nodes/edges with high LFVC helps to reveal the
true community structure and improve community detection
performance.

VI. D EEPCOMMUNITY DETECTION ONREAL-WORLD

SOCIAL NETWORK DATASETS

In this section, we use the proposed node and edge centrality
measures to perform deep community detection on several
datasets collected from real-world social networks. In the
implementations of the community detection methods below,
the number of removed nodes or edges is a user-specified
free parameter. For LFVC (Algorithm 1) this parameter can
be selected based on the bounds established in Theorem 1.
We defineh the number of edge removals,q the number of
node removals andg the number of deep communities. The
results are compared with the modularity method and other
node centralities discussed in Sec. II-B. For data visualization,
vertex shapes and colors represent different communities,and
edges attached to the removed nodes are retained in the figures
in comparison with other methods. Nodes with cross labels
(black X labels) are singleton survivors that do not belong to
any deep communities using LFVC (Algorithm 1).

A. Dolphin social network

It is shown in [46] that there are tight social structures in
dolphin populations. Most dolphins interact with other dol-

(a) g=2 (b) g=3 (c) g=4

Fig. 4. The modularity method on Zachary’s karate club [47] with n = 34

nodes andm = 78 edges.

(a) h=4, g=2 (b) h=15, g=3 (c) h=20, g=4

Fig. 5. Edge-LFVC community detection on Zachary’s karate club [47] with
n = 34 nodes andm = 78 edges. Forg = 3 and 4, the only node with a
single acquaintance is excluded from any deep community.

phins of the same group and only a few dolphins can interact
with dolphins from different groups. In terms of the proposed
LFVC algorithm, these latter Dolphins introduce ”noisy” edges
connecting the two communities. Figure 3 shows that they
can therefore be detected by LFVC. In Fig. 3 we compare
the results of separating62 dolphins into two communities
as proposed in [46]. For this dataset, community detections
based on modularity, edge-LFVC and node-LFVC have high
concordance on the community structures. To partition the
graph into two communities, we need to remove 6 edges based
on edge-LFVC or remove 4 nodes based on node-LFVC. The
four dolphins that are able to communicate between these two
communities are further identified by node-LFVC.

B. Zachary’s karate club

Zachary’s karate club [47] is a widely used example for
social network analysis, which contains interactions among



(a) q=1, g=2 (b) q=6, g=3 (c) q=7, g=4

Fig. 6. Node-LFVC community detection on Zachary’s karate club [47] with
n = 34 nodes andm = 78 edges. Important communities and key members
are discovered using node-LFVC. This also demonstrates howthe singleton
survivors (nodes with black X labels) interact through the deep communities.
The result of spectral clustering is shown in the supplementary file1. When
g = 4, spectral clustering yields imbalanced communities (one community
has single node).

34 karate students. Based on the student activities, Zachary
determines the ground-truth community structure forg = 2,
which coincides with the result of the modularity method in
Fig. 4 (a). However, the visualization indicates that thereare
some deep communities embedded in these two communities,
such as the five-node community in the upper left corner.
Indeed, the modularity will keep increaseing if we further
divide communities into3 and4 small communities as shown
in Fig. 5 (b) and (c), respectively.

As shown in Fig. 5 (a), using edge-LFVC, the five-node
community in the left upper corner is revealed when we
partition the graph into two connected subgraphs. In Fig. 5
(b), three communities are revealed and the only node with a
single acquaintance is excluded from any deep community.
Excluding this node makes the community structure more
tightly connected compared with Fig. 4 (b). Forg = 4, the
community structure in Fig. 5 (c) much resembles Fig. 4 (c)
except that we exclude the node having a single acquaintance.

Using node-LFVC, we are able to extract important com-
munities and key members as shown in Fig. 6. Forg = 2,
only one node removal is required to partition the graph into
two connected subgraphs, which implies that this node is
common to the two communities according to the proposed
Algorithm 1. Forg = 3, two deep communities (green circle
and blue triangle) are discovered in the largest community
(the blue triangle community in Fig. 6 (a)), where these two
deep communities have dense internal connections compared
with the external connections to other members in the largest
community. These discovered deep communities are important
communities embedded in the network since they play an
important role in connecting the singleton survivors indicated
by black X labels. Similar observations hold forg = 4 in Fig.
6 (c).
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Fig. 7. Yamir Moreno’s local2-hop coauthorship network (from part of
the network of coauthorship among network scientists [25] having n = 379

nodes andm = 914 edges). Moreno has14 coauthors (marked by light
orange color) and his coauthors have35 coauthors. The modularity method
[25] detects that Moreno is a member of only one large community (dashed
box in gray). The proposed LFVC method detects Moreno as belonging to
two separate communities indicated by red and blue nodes, respectively.
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Fig. 8. Mark Newman’s local1-hop coauthor network in the network scientist
coauthorship graph [25]. The proposed LFVC method detects Newman as
belonging to5 communities (marked by different vertex shapes and colors in
solid boxes) and being associated with3 singleton survivors (marked by black
X label). Notably, Lusseau is detected as singleton survivor since his research
area is primarily in zoology. As shown in gray dashed box, themodularity
method [25] detects25 out of 28 scholars as being in a single community,
and the top left3 scholars as belonging to3 different communities.

C. Coauthorship among network scientists

We next examine the coauthorship network studied by
Newman [25]. Nodes represent network scientists and edges
represent the existence of coauthorship. Multiple memberships
are expected to occur in this dataset since a network scientist
may collaborate with other network scientists across different
regions all the while having many collaborations with his/her
colleagues and students at the same institution. As a result, one
would expect, as implemented by Algorithm 1, node-LFVC
to be advantageous for identifying authors who with multiple



memberships and detecting deep communities.
As shown in Fig. 7, the first node with the highest node-

LFVC is Yamir Moreno, who is a network scientist in Spain
but has many collaborators outside Spain. The local (two-hop)
coauthorship network of Yamir Moreno is shown in Fig. 7.
The red square community represents the network scientists
in Spain and Europe, whereas the blue triangle community
represents the rest of the network scientists.

After removing Yamir Moreno from the network, the node
with the highest node-LFVC in the remaining largest commu-
nity is Mark Newman, who is associated with5 community
memberships and3 singleton survivors as shown in Fig.
8. Each community can be related to certain relationship
such as colleagues, students and research institutions. Notably,
Lusseau is detected as a singleton survivor in the deep commu-
nity detection process in Fig. 8. This can be explained by the
fact that although Lusseau has coauthorship with Newman, his
research area is primarily in zoology and he has no interactions
with other network scientists in the dataset since other network
scientists are mainly specialists in physics. Also note that the
modularity method (gray dashed box) fails to detect these deep
communities and it detects 25 out of 28 network scientists in
Fig. 8 as one big community.

D. Last.fm online music system

Last.fm is an online music system which allows users to
tag their favorite songs and artists and make friends with
other users. We use the friendship dataset collected in [48]
for deep community detection based on node-LFVC and the
other centralities introduced in Sec. II-B. Two quantities, the
normalized largest community size and the number of dis-
covered communities with respect to node removals, are used
to evaluate the performance of community detection when
different node centralities are applied. These two quantities
reflect the effectiveness of graph partitioning. The numberof
removed nodes is the number of stages for performing deep
community detection and removing more nodes reveals more
deep communities and key members in the network.

As shown in Fig. 9 (a), the normalized largest community
size decays linearly with respect to the number of node
removals. Among all node centralities, node-LFVC has the
steepest decaying rate. Furthermore, using node-LFVC dis-
covers more deep communities, as shown in Fig. 9 (b) during
the first 50 node removals. The only node centrality that is
comparable to node-LFVC is betweenness centrality.

To validate the effectiveness of deep community detection,
we use the user-artists dataset in [48] to compute the listening
similarity in each discovered community. The dataset contains
17632 artists and records the number of times each user has
listened to an artist. Letwi be a17632-by-1 vector with its
j-th entry being the number of times thei-th user has listened
to the j-th artist. The residual community similarity (RCS)
is defined as the sum of cosine similarity between each user
in the same community excluding the nodes that have been
removed and the singleton survivors. The residual community
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Fig. 9. Friendship in Last.fm online music system [48] withn = 1843 nodes
and m = 12668 edges. (a) Normalized largest community size decreases
in the number of node removals at different rates under different node
centralities. (b) Discovered communities with respect to node removals using
different node centralities. Node-LFVC outperforms othernode centralities in
terms of minimizing the largest community size, and while being capable of
detecting more communities in the network for the first 50 removals.
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Fig. 10. Residual sum of community similarity (RSCS) in Last.fm network.
The residual sum of community similarity based on node-LFVCoutperforms
other centralities, which indicates that node removals based on node-LFVC
can best detect deep communities that share common interestin artists.

similarity of a deep communityCk is defined as

RCS(Ck) =
∑

i∈Ck,i/∈R

∑

j∈Ck,j>i,j /∈R

wT
i wj

‖wi‖2‖wi‖2
. (23)

The residual sum of community similarity (RSCS) is defined
as the sum of RCS of each discovered community. That is,

RSCS=
g∑

k=1

RCS(Ck). (24)

As shown in Fig. 10, the residual sum of community
similarity based on node-LFVC is larger than that for other
centralities. This suggests that node removals based on node-
LFVC can best detect friendship communities that share



common interest in artists. Note that although betweenness
may detect more communities in Fig. 9 (b), Fig. 10 shows that
the residual sum of community listening similarity based on
betweenness is smaller than that based on node-LFVC, which
indicate that node-LFVC reveals more accurate community
structure than betweenness. The residual sum of community
similarity decreases with respect to the number of discovered
communities due to the fact that the removed nodes and
singleton survivors are excluded for similarity computation.

VII. CONCLUSION

Based on bounds on the sensitivity of algebraic connectivity
to node or edge removals, we proposed a centrality measure
called local Fiedler vector centrality (LFVC) for deep commu-
nity detection. We proved that LFVC relates to a monotonic
submodular set function such that greedy node removals based
on LFVC can be applied to identify the most vulnerable
nodes or edges with bounded performance loss compared to
the optimal combinatorial batch removal strategy. Asymptotic
analysis of the Fiedler vector established that LFVC can
successfully remove the noisy part while retaining the deep
community structure in networks generated by the stochastic
block model. In comparison to the modularity method [12] and
the L1 norm subgraph detection method [24], we show that
LFVC can achieve better community detection performance in
correctly identifying the embedded deep communities.

The proposed method provides better resolution for discov-
ering important communities and key members in the real-
world social network datasets studied here. In particular,for
the Last.fm online music system dataset, LFVC is shown to
significantly outperform other centralities for deep community
detection in terms of the residual sum of community listening
similarity. This new measure can likely offer new insights on
community structure in other social, biological and technolog-
ical networks.

APPENDIX A
PROOF OFTHEOREM 1

From (2) a graph is connected if and only if the algebraic
connectivity is greater than zero. Furthermore, the smallest
eigenvalue of the associated graph Laplacian matrix is always
0. Thereforen−q−r is the number of connected components
(including the singleton nodes) iñG [19] by the fact thatn−q
and r are the node size and rank of̃L, respectively. Since
the definition of a deep community excludes singleton nodes,
the first inequality in (6) becomes equality if all connected
components inG̃ are non-singleton.

Using a well-known matrix norm inequality [28] that
‖M‖∗ ≤ r‖M‖2 for any square matrixM of rank r, where
‖M‖2 = max‖x‖2=1 ‖Mx‖2 = λn(M). We have

n− q − r ≤ n− q − ‖L̃‖∗
λn(L̃)

= n− q − 2m̃

λn(L̃)
,

where‖L̃‖∗ = trace(L̃) = 2m̃ is the total degree of̃G.
Next we show that the second inequality in (6) becomes an

equality if each non-singleton connected graph is a complete
subgraph of the same size. Consider a graph consisting ofg

disjoint complete subgraphs ofn′ ≥ 2 nodes andn′(n′ −
1)/2 edges. The largest eigenvalue of each subgraph isn′

and ‖L̃‖∗ = g · n′(n′ − 1). The upper bound becomesg ·
n′ − gn′(n′−1)

n′ = g, which is exactly the number of non-
singleton connected components iñG. These results can be
directly applied to edge removals inG by settingq = 0 since
no nodes are removed.

APPENDIX B
PROOF OFTHEOREM 2

Let r be the rank of̃L. We prove that there exists ann×
(n − r) binary matrixX = [x1 x2 . . .xn−r] whose columns
{xi}n−r

i=1 satisfy: 1) ‖xi‖1 is the size of thei-th connected
component ofG̃; 2) they are orthogonal; 3) they span null(L̃).
AssumeG̃ consists ofg connected components. Then there
exits a matrix permutation (node relabeling) such that

L̃ =




L̃1 0 0 0

0 L̃2 0 0

0 0
. . . 0

0 0 0 L̃g


 . (25)

Associated with thei-th block matrix L̃i we definexi as
an n × 1 binary vector xi in null(L̃) having the form
xi = [0 . . . 0 1 . . . 1 0 . . . 0]T , where the locations of the
nonzero entries correspond to the indexes of thei-th block
matrix. It is obvious that‖xi‖1 =

∑n
j=1 |xij | equals the

size of thei-th component and such{xi}n−r
i=1 are mutually

orthogonal. Furthermore, there exists no other binary matrix
which is sparser thanX with column span equal to null(L̃).
If there existed another binary matrix that were sparser than
X, then it would contradict the fact that its column vectors
have sums equal to the component sizes ofG̃. Therefore
the largest non-singleton connected component size ofG̃ is
ψ(G̃) = ‖X‖1 = maxi ‖xi‖1.
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By the relation
∑

i∈R

∑

j∈V

Aij(yi − yj)
2 =

∑

i∈R

∑

j∈Ni

(yi − yj)
2 (26)

andV = {V/R} ∪ {R}, we have

f(R) =
∑

i∈R

∑

j∈Ni

(yi − yj)
2 − 1

2

∑

i∈R

∑

j∈V

Aij(yi − yj)
2

+
1

2

∑

i∈R

∑

j∈V/R

Aij(yi − yj)
2

=
1

2

∑

i∈R

∑

j∈Ni

(yi − yj)
2 +

1

2

∑

i∈R

∑

j∈V/R

Aij(yi − yj)
2

≥ 0. (27)

f(∅) = 0 follows directly from the definition off(R) in (17).
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We first prove the monotonic property. Consider two node
removal setsR1 ⊂ R2 ⊂ V . Then using Lemma 1 and the
fact thatR1/R2 = ∅,

f(R2)− f(R1)

=
∑

i∈R2/R1

∑

j∈Ni

(yi − yj)
2 −

∑

i∈R1

∑

j∈R2/R1

Aij(yi − yj)
2

− 1

2

∑

i∈R2/R1

∑

j∈R2/R1

Aij(yi − yj)
2

=
∑

i∈R2/R1

∑

j∈V

Aij(yi − yj)
2 −

∑

i∈R1

∑

j∈R2/R1

Aij(yi − yj)
2

−
∑

i∈R2/R1

∑

j∈R2/R1

Aij(yi − yj)
2

+
1

2

∑

i∈R2/R1

∑

j∈R2/R1

Aij(yi − yj)
2

=
∑

i∈R2/R1



∑

j∈V

Aij(yi − yj)
2 −

∑

j∈R2

Aij(yi − yj)
2




+
1

2

∑

i∈R2/R1

∑

j∈R2/R1

Aij(yi − yj)
2

=
∑

i∈R2/R1

∑

j∈V/R2

Aij(yi − yj)
2

+
1

2

∑

i∈R2/R1

∑

j∈R2/R1

Aij(yi − yj)
2

≥ 0. (28)

Thereforef(R) is a monotonic increasing set function (i.e.,
f(R2) ≥ f(R1) for all R1 ⊂ R2 ⊂ V).

Furthermore,f(R) is a submodular set function [44], [49]
since for any nodev ∈ V , v /∈ R2, R1 ⊂ R2 ⊂ V , we have
from (17) that

f(R1 ∪ v)− f(R1) =
∑

j∈Nv

(yv − yj)
2 −

∑

j∈R1

Avj(yv − yj)
2

≥
∑

j∈Nv

(yv − yj)
2 −

∑

j∈R2

Avj(yv − yj)
2

= f(R2 ∪ v)− f(R2). (29)

This diminishing returns property off(R) establishes thatf
is submodular [43].
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By submodularity off(R) in Theorem 3, there exists a
v ∈ Ropt/Rk [49] such that

f(Rk ∪ v)− f(Rk) ≥
1

q
(f(Ropt)− f(Rk)) . (30)

After algebraic manipulation, we have

f(Ropt)− f(Rk+1) ≤
(
1− 1

q

)
(f(Ropt)− f(Rk)) (31)

and therefore

f(Ropt)− f(Rq) ≤
(
1− 1

q

)q

f(Ropt) ≤
1

e
f(Ropt). (32)

Applying this result to (15), we have

λ2(L̃(Rq)) ≤ λ2(L)− f(Rq)

≤ λ2(L)−
(
1− e−1

)
f(Ropt). (33)
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Let x = [xT
in xT

out]
T . By (3) we haveλ2(L) = minx x

TLx

subject toxT
inxin + xT

outxout = 1 and xT
in1in + xT

out1out = 0.
Using Lagrange multipliersµ, ν and (21), the Fiedler vector
y = [yT

in yT
out]

T of L is a minimizer of the function overx:

Γ = xT
in(Lin +Din)yin + xT

out(Lout +Dout)xout − 2xT
inCxout

− µ(xT
inxin + xT

outxout − 1)− ν(xT
in1in + xT

out1out). (34)

Differentiating (34) with respect toxin andxout respectively,
and substitutingy to the equations,

2(Lin +Din)yin − 2Cyout − 2µyin − ν1in = 0; (35)

2(Lout +Dout)yout − 2CTyin − 2µyout − ν1out = 0. (36)

Multiplying 1T
in to (35) and1T

out to (36) from the left hand
side, we have

21T
inDinyin − 21T

inCxout − 2µ1T
inxin − νnin = 0; (37)

21T
outDoutxout − 21T

outC
Txin − 2µ1T

outxout − νnout = 0. (38)

Since1T
inDin = 1T

outC
T and1T

inC = 1T
outDout, summing (37)

and (38) we obtain for the Lagrange multiplierν:

ν = −2µ

n
(yT

in1in + yT
out1out) = 0 (39)

due the fact thaty ⊥ 1. Applying ν = 0 and left multiplying
(35) byyT

in and (36) byyT
out, we have

yT
in(Lin +Din)yin − yT

inCyout − µyT
inyin = 0; (40)

yT
out(Lout +Dout)yout − yT

outC
Tyin − µyT

outyout = 0. (41)

Sincey is the Fiedler vector, summing (40) and (41) together
we obtain

µ = λ2(L). (42)

Let C = pout1in1
T
out, where its entry is the mean of an

i.i.d Bernoulli random variable of an entry inC. Let σi(M)
denote thei-th largest singular value ofM and writeC =
C+C−C =: C+∆. Since∆ij = 1−pout with probabilitypout

and∆ij = −pout with probability1−pout, by Latala’s theorem
[50], Eσ1(∆/

√
ninnout) → 0 asnin, nout → ∞. Therefore by

Talagrand’s concentration inequality [51], the singular values
of C/

√
ninnout converge topout, i.e., σ1(C/

√
ninnout)

a.s.−→
σ1(C/

√
ninnout) = pout andσi(C/

√
ninnout)

a.s.−→ 0 for i ≥ 2
whennin → ∞, nout → ∞. We further assumenin andnout

grow with a constant rate so thatnin
nout

→ c, where c is a
positive constant. Furthermore, as proved in [52], the left/right
singular vectors ofC and C are close to each other in the
sense that the squared inner product of their left/right singular



vectors converges to1 almost surely when
√
ninnoutpout → ∞.

Consequently, we have1nout
Din1in = 1

nout
C1out → pout1in and

1
nin

Dout1out =
1
nin

CT1in → pout1out almost surely.

Applying these results to (37) and (38), we have, almost
surely,

pout1
T
inyin√
c

−√
cpout1

T
outyout −

µ1T
inyin√
ninnout

→ 0; (43)

√
cpout1

T
outyout −

pout1
T
inyin√
c

− µ1T
outyout√
ninnout

→ 0. (44)

By the fact that1T
inyin + 1T

outyout = 0, we have, almost surely,
(√

c+
1√
c

)(
pout −

µ

n

)
1T

inyin → 0; (45)
(√

c+
1√
c

)(
pout −

µ

n

)
1T

outyout → 0. (46)

Consequently, recallingµ = λ2(L) in (42), at least one of the
two cases has to be satisfied:

Case 1:
λ2(L)

n

a.s.−→ pout; (47)

Case 2:1T
inyin

a.s.−→ 0 and1T
outyout

a.s.−→ 0. (48)

Similar to the results in [53], the algebraic connectivity and
the Fiedler vector undergo an asymptotic structural transition
between Case 1 and Case 2. That is, a transition from Case
1 to Case 2 occurs whenpout exceeds a certain threshold
p∗out. In Case 1, the asymptotic algebraic connectivity grows
linearly with pout. Furthermore, from (40), (41), (47) and
1T

inyin + 1T
outyout = 0, in Case 1 the Fiedler vectory has

the following property: almost surely,

yT
inLinyin√
ninnout

+
pout√
ninnout

(1T
inyin)

2 −√
cyT

inyin → 0; (49)

yT
outLoutyout√
ninnout

+
pout√
ninnout

(1T
inyin)

2 − yT
outyout√
c

→ 0. (50)

Summing them up, we have
[
2(1T

inyin)
2

√
ninnout

−
(√

cyT
inyin +

yT
outyout√
c

)]
pout

+
1√

ninnout

(
yT

inLinyin + yT
outLoutyout

) a.s.−→ 0. (51)

Since in Case 1 the asymptotic Fiedler vectory is the same for
different values ofpout when pout ≤ p∗out, this implies almost
surely,

1√
ninnout

(
yT

inLinyin + yT
outLoutyout

)
→ 0; (52)

2(1T
inyin)

2

√
ninnout

−
(√

cyT
inyin +

yT
outyout√
c

)
→ 0. (53)

By the PSD property of graph Laplacian matrix,yT
inLinyin > 0

andyT
outLoutyout > 0 if and only if yin andyout are not constant

vectors. Therefore (52) impliesyin andyout are both constant
vectors. Finally, by the constraintsyT

inyin + yT
outyout = 1 and

1T
inyin+1T

outyout = 0, we have whenpout ≤ p∗out, almost surely,
√
nnin

nout
yin → ±1in and

√
nnout

nin
yout → ∓1out. (54)
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Fig. 11. An illustration of deep community detection. The entire network is
a realization of the stochastic block model introduced in Sec V, with network
sizen = 50 and deep community sizendeep = 20. The nodes in the deep
community are marked by red solid circle, and the other nodesare marked by
blue solid rectangles. The left and right columns representadjacency matrices
and their corresponding graphs, respectively. It is observed whencin is fixed,
the deep community is more difficult to be detected ascout increases.

Fig. 12. Spectral clustering on dolphin social network. Spectral clustering
results in the same discovered communities as the edge-LFVCcommunity
detection method. However, unlike the proposed node-LFVC method it does
not explicitly identify the four mixed membership dolphinsthat connect the
two communities.

(a) g=2 (b) g=3 (c) g=4

Fig. 13. Spectral clustering on Zachary’s karate club dataset. The firstg
smallest eigenvectors of the graph Laplacian matrix are used to cluster the
nodes intog communities as suggested in [9]. Wheng = 4, spectral clustering
yields imbalanced communities (one community has single node).
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