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Learning the Conditional Independence Structure of
Stationary Time Series:
A Multitask Learning Approach

Alexander Jung

Abstract—We propose a method for inferring the conditional Our work applies to thaigh-dimensionategime, where the
independence graph (CIG) of a high-dimensional Gaussian eer  model dimension, given by the number of process components,
time series (discrete-time process) from a finite-length aferva- is allowed to be (much) larger than the amount of observed

tion. By contrast to existing approaches, we do not rely on a - . — !
parametric process model (such as, e.g., an autoregressivedel) data, given by the sample sizel [7]. [8]. [9].! [3]. [10]. [11],

for the observed random process. Instead, we only require ceain ~ [12]. It is then intuitively clear that some additional pteim
smoothness properties (in the Fourier domain) of the proces structure is required in order to allow for the existence of
The hIOFOIOOﬁed thfEF?ECG scht;eme fWOfkls even for sample SiZtesconsistent estimation schemes. Here, this structure isngiv
much smaller than the number of scalar process components ; ; ;

if the true underlying CIG is sufficiently sparse. A theoretical by sparsity constraints pIacgd on the CIG. More prec_lsely,
performance analysis provides conditions which guaranteghat we assume that the underlying CIG ha.S a small maximum
the probability of the proposed inference method to delivera Node degree, i.e., each node has a relatively small number of
wrong CIG is below a prescribed value. These conditions impl  neighbors.

lower bounds on the sample size such that the new method is a) Existing Work: GMS for high-dimensional processes
consistent asymptotically. Some numerical experiments Vidate with observations modeled as i.i.d. is now well developé,[1
our theoretical performance analysis and demonstrate sup@r [1], [9]. For continuous valued Gaussian Markov ran’dom

performance of our scheme compared to an existing (parameic) - ; s ; X
approach in case of model mismatch. fields, binary Ising models as well as mixed graphical models

. : . _ . . (containing both continuous and discrete random varidples
Index Terms—High-dimensional statistics, sparsity, graphical - . . .
model selection, multitask learning, multitask LASSO, nompara- effICIent_ nelghbor.hood regression based approaches idtirefe
metric time series underlying graphical model have been proposed [11], [91].[1
An alternative to the local neighborhood regression apgroa
is based on the minimization of &-norm penalized log-
likelihood function [15]. The authors of [11] [9][7]_T15
E consider a stationary discrete-time vector process gfesent sufficient conditions such that their proposedvego
time series. Such a process could model, e.g., the tiliethod is consistent in the high-dimensional regime. These
evolution of air pollutant concentrations! [1].1[2] or medlic sufficient conditions are complemented by the fundamental
diagnostic data obtained in electrocorticography (EC@&}) [ performance limits derived in [16], showing that in certain
One specific way of representing the dependence structisgimes the (computationally efficient) selection schere p
of a vector process is via a graphical model [4], where thgrward in [15] performs essentially optimal.
nodes of the graph represent the individual scalar processhe common feature of existing approaches to GMS for
components, and the edges represent statistical relatiens temporally correlated vector processes is that they aredoais
tween the individual process components. More precised, tfinite dimensional parametric process models. Some of these
(undirected) edges of@onditional independence graph (CIG)approaches apply the recent theory of compressed sensing
associated with a process represent conditional indepeede(CS) to learning dependence networks of vector processes
statements about the process componénts [4], [1]. In pdatic using a vector autoregressive process model [3], [10],,[17]
two nodes in the CIG are connected by an edge if and only[ifg].
the two corresponding process components are conditjonall  b) Contribution: In this paper, we develop and analyze
dependent, given the remaining process components. Natte #h nonparametric compressive GMS schefoe general sta-
the so defined CIG for time series extends the basic nOtiﬂﬁnary time series. Thus, by contrast to existing appreach
of a CIG for random vectors by considering dependenci@g do not rely on a specific finite dimensional model for the
between entire time series instead of dependencies betwgBBerved process. Instead, we require the observed priacess
scalar random variables|[5].][6]. be sufficiently smooth in the spectral domain. This smoakne
In this work, we investigate the problem of graphical modefonstraint will be quantified by certain moments of the pssce
selection (GMS), i.e., that of inferring the CIG of a timeiesr autocovariance function (ACF) and requires the ACF to be
given a finite-length observation. effectively supported on a small interval, whose size isvkmo
o _ . o beforehand, e.g., due to specific domain knowledge.
A. Jung is with the Institute of Telecommunications, Vieraiversity of . . . .
Technology, 1040-Vienna, Austria e-mail: ajung@nt.tuwae.at. Inspired by a recently introduced neighborhood regression
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using i.i.d. samples, we propose a GMS method for tineigenvalue decompositio® = UDU# with unitary U ¢
series by generalizing the neighborhood regression appro&?*? and diagonaD & R’_’f”, we denote its psd square root
for GMS to the Fourier domain. Our approach combingsy v/C £ UvDU! wherev/D is defined entry-wise.

an established method for nonparametric spectrum estimati Given a matrixH € CP*?, we denote its spectral norm as
with a CS recovery method. The resulting method exploifsH ||, := max,.o 2. The norm|[H]| is defined as the
a specific problem structure, inherent to the GMS problemargest magnitude of its entries, LEH || oo := max |(H),, |-
which corresponds to a special case dl@ck-sparse recovery mn

problem [19], [20], [21], i.e., amultitask learning problem
[22], [23]. Il. PROBLEM FORMULATION

Our main conceptual contribution is the formulation of Consider gp-dimensional stationary Gaussian random pro-
GMS for time series as a multitask learning problem. Based oassx[n] with (matrix-valued) ACAR . [m] := E{x[m|xT[0]},
this formulation, we develop a GMS scheme by combiningwhich is assumed to be summable, i¥,,°_ _ |R.[m]|| <
Blackman-Tukey (BT) spectrum estimator with thaultitask oof]

LASSO (mLASS{RZ], [24]. The distinctive feature of the The spectral density matriXSDM) of the process|n]| is
multitask learning problem obtained here is that it is definalefined as

over a continuum of tasks, which are indexed by a frequency - .

variabled € [0,1). We also carry out a theoretical performance S(0) = WZOO Ry, [m] exp(—j2m0m). (1)

analysis of our selection scheme, by upper bounding th¢pe SpM may be interpreted as the multivariate general-
probability of our scheme to deliver a wrong CIG. Moreovef, 41ion of the power spectral density of a scalar stationary
we assess the empirical performance of the proposed schefigyom process. In particular, by the multivariate spéctra:
by means of illustrative numerical experiments. resentation theorem, we can represent the vector progess

c) Outline of the Paper:We formalize the problem of 55 ap infinite superposition of signal components of the form
GMS for _stat|0nary time series in Sectign II. O_ur noveée exp(jfn) for 6 € [0,1) [5], [26]. The random coefficient
compressive GMS scheme for stationary processes is p@se%ctors{ag}ge[()_l), which are statistically independent over
in Sectiori1ll, which is organized in two parts. First, wedliss ¢ haye zero mean and covariance matrix given by the SDM
the spectrum estimator employed in our selectlor) SCh?%iueSI(e), i.e., E{agall} = S, (0).
Then, we show how to apply the mLASSO for inferring pqr our analysis, we require a mild technical condition for

the CIG, by formulating GMS for time series as a multitasy, eigenvalues\(S, () of the process SDNS,, (6).
learning problem. In Sectioh 1V, we present a theoretical

performance guarantee in the form of an upper bound on th&sumption 1. For known positive constants > L > 0, we

— 00

probability of our algorthm to fail in correctly recoyegqhe \ L<A(S.(0))<U for everyge[0,1). @)
true underlying CIG. Finally, the results of some illusirat o _
numerical experiments are presented in Sen V. We remark that the restriction induced by Assumpﬁﬂ)n 1lis

Notation and basic definitionsThe modulus, complex con-"ather weak. E.g., the upper bound [D (2) is already implied
jugate, and real part of a complex numberC are denoted by by the summability of the process ACF. The lower bound in
la|, a*, R{a}, respectively. The imaginary unit is denoted al) ensures Fhat the CIG satisfies the global Markov pr_operty
j := /—1. Boldface lowercase letters denote column vector4l: [27]. An important and large class of processes safigfy
whereas boldface uppercase letters denote matriceskffhe (2) is given by the set of stable VAR processes [28]. In what
entry of a vecton is denoted bya), , and the entry of a matrix follows, we will assume without loss of generdithat L = 1,

A in them-th row andn-th column by(A) . The submatrix IMplying thatU' > 1. . .

of A comprised of the elements in rows. .., b and columns ~ The CIG of thep-dimensional vector process[r] is the
¢,...,d is denotedA,. .q. The superscriptd, *, and #  9raphg, := (V,£€) with node set) = [p|, corresponding to
denote the transpose, (entry-wise) conjugate, and Hemitfhe scalar process componefis.[n]},¢[,), and edge seff C
transpose, respectively. THeh column of the identity matrix ¥ * V. defined by(r, ') ¢ £ if the component processes|n|

will be denoted byey. andz,[n] are conditionally independent given_ the rer_naining

We denote by, ([0, 1)) the set of all vector-valued functionsCOMPonentz:[n]}rep) (.} [1]. For a Gaussian stationary
c() : [0,1) — C¢ such that each component () is proceSSX_[n] _w_hose_ SDMS.(9) is _|nvert|ble for everyd e
square integrable, i.ec,(-) € L%([0,1)) (we also use the [0,1), which is implied by Assumptionl 1, the CIG of a process

. be ch terized iently via its SODM [1], [2], [6]:
shorthandZ2) with norm e, (-)|| .2 := /f91:0|cr(9)|2_d9. We Can be characterized conveniently via its SO [L], [2], [6]

then define the generalized support &f) € ¢,([0,1)) as Lemma Il.1. Consider a Gaussian stationary vector pro-
gsupp(c(+)) := {r € [p]|lle-(-)|2 > 0}. Forc(:) € £,([0,1)) cess satisfying{ll) and with associated CIGj, and SDM
and a subsetZ C [¢], we denote bycz(-) the vector- S:(¢). Then, two component processggn| and z,-[n] are
valued function which is obtained by retaining only those

1The precise choice of norm is irrelevant for the definitiorsofnmability,

componentsc, (-) with r € 7. Given c(-) € éq([(), ), since in finite-dimensional vector spaces all norms arevatgrit [25].

we define the normgc(-)llz = />, ¢y ler(-)]|3. and  2For a stationary process[n] whose SDMS, (6) satisfies[(), with arbi-
. L . ! trary positive constantd andU, we can base our consideration equivalently
lle( )”1 = ng[g] llex( )H.L%_re_SpeCtNely' ) on the scaled process’[n] = x[n]/v/L whose SDMS,,(6) satisfies [[R)
Given a positive semidefinite (psd) mati& € CP*P, with  with the constantd.’ = 1 andU’ = U/L.



conditionally independent, given the remaining compondfit rely on three further assumptions on the QJG inverse
processes x¢[n]}teip)\ (v}, if @nd only if (s;l(e))m, =0 SDMS_!(#) and ACFR,[m] of the underlying process|n).

for all & € [0,1). Thus, the edge sef of the CIG is  The first of these additional assumptions constrains the CIG
characterized by of the observed procesgn] to besparse as made precise in

(r,r') ¢ E if and only if [S7*(0)], ,=0 V6 €[0,1). (3) Assumption 2. The maximum node degremiax,,; [\(r)]
of the process CIG7, is upper bounded by a known small

Thus, in the Gaussian case, the edge&ebrresponds to .
constantsmay, i-€.,

the zero entries of the inverse SDBI1(6), and the GMS
problem is equivalent to detecting the zero entrie$pf(-). Hé?;]( V()] < smax < p. )
We highlight that, by contrast to graphical models for L .
: o . The next assumption is necessary in order to allow for ac-
random vectors, here we consider conditional independence

. Lo : qurate selection schemes based on a finite length obsarvatio
relations between entire time series and not between scaf ar

: : ) : |
random variables. In particular, the CIG, of a time series n particular, we require that the non-zero entriesSqf (¢)

does not depend on timebut applies to the entire time series™ © not too small.

Let us illustrate this point by way of an example. Assumption 3. For a known positive constamnin,
Consider the vector autoregressive (VAR) process [28] 1/2

1
. —1 -1 2 )
x[n] = Ax[n—1]+w[n] with A = (8? _0055) . @ E%i% )</0_0 | [S21(0)] r,r//[sz (9)]r,7“ d9> > pmin- (8)

The noise processv[n] in (@) consists of i.i.d. Gaussian Note that the integrand ifl(8) is well defined, since By (2)
random vectors with zero mean and covariance matfk we have[S;'(d)] > (1/U) > 0 for all § € [0,1) and any
Since the eigenvalues of the coefficient matéx in @), r < [p]. If, for some positivepmin > 0, @) is in force, [B)
given explicitly byexp(jz/4) /2 andexp(—jw/4)/v/2, have becomes(r,r’)¢£ if and only if || [S;1()] [, =0.
modulus strictly smaller than one, there exists a well define By contrast to existing approaches to GMS for time series,
stationary process|[n] conforming to the recursioril(4) (cf. we do not assume a finite parametric model for the observed
[28]). A little calculation reveals that this stationary ARprocess. However, for the proposed selection method to be
process has zero mean and its ACF is givenBy{m| = accurate, we require the proceds] to be sufficiently smooth
o2 >, At (AT)l [28]. Since the VAR parameter matrixin the spectral domain. Bg smooth process[n], we mean
A in @) satisfiesATA = (1/2)I, we haveR,[0] = 20%I. a processx[n] such that the entries of its SD¥,(0) are
For an arbitrary but fixed time index = ng, the Gaussian smooth functions ofl. These smoothness constraints will be
random vectorx[ng] is zero mean with covariance matrixexpressed in terms of moments of the process ACF:
C =R, [0] = 20°1. Thus, the scalar time samples[n] and
x2[n] are marginally, i.e., for a fixed time index = ny,
independent. However, since the inverse SDM of the proc
in (@) is given by [1] -

i L[[15 0 cos  jsinf pl = h[m]||Re[m]|lso < 0. (9)
S (9)_;{<0 1.5)_<—jsin6‘ cos@)} ) m;oo

entire scalar process componefis [n]},ez and{za[n]},c, USe the shorthand

Assumption 4. For a small positive constant, and a given
non-negative weight function[m], that typically increases
&%

With |m|, we have the bound

are dependent. In general, the marginal conditional indepe 0

dence structure at an arbitrary but fixed time n is different po = |ml[Re[m][|o. (10)
from the conditional independence structure of the enitine t m==00

series. We may interpret the momept, as a measure for the effective

The problem of GMS considered in this paper can be statadF width of the process.
as that of inferring the CIG7, = (V,&), or more precisely  Another particular choice for the weighting function will
its edge set’, based on an observed finite length data blogke given in Sectiofi IV. This choice is related to the window
(x[1],...,x[N]). Similar to [11], our approach to GMS is tofunction of the BT estimator which is part of our GMS method
estimate the edge sétby separately estimating the neighbor¢cf. Sectior(1ll).
hood N (r):={r" € [p] |(r,7’) € £} of each node € V. For ~ We note that Assumptiofil 4 is similar in spirit to the
the specific neighborhoali (1), the edge set characterizatiorunderspread assumption for linear time varying systems and

() yields the following convenient characterization nonstationary processes [29] in that it allows to construct
fficient decorrelation transformations. In particulaoy fa
N(1) = gs S, (- —1 6) © ; ra
(1) = gsupp (( o ))172:17) ©) smooth process conforming to Assumptidn 4, one can verify

The neighborhood characterizationl (6) can be generalizindt the discrete Fourier transform (DFT) of the observedibl
straightforwardly to the neighborhoolf (r) of an arbitrary yields random vectors which are approximately uncorrdlate
noder € [p| (cf. Sectior 1lI-B). For the derivation and analysidor different frequencies. This decorrelation in the fregay
of the proposed GMS method, we will, besides Assumptiatomain is the key idea behind our Fourier based approach.



In what follows, we will formulate and analyze a GMSwith §; := 2x(f—1)/(2N—1).
scheme for the class gf-dimensional Gaussian stationary We then have the identity

processes|n| conforming to Assumptions|[I}4. This process a _ H
class will be denoted as1 for brevity. Sa(0)=(1/N)AZ () A(0). (16)
Proof: Appendix[A. R [ |
I1l. THE SELECTION SCHEME As evident from the factorizatiof (I.6), the rankf(6) sat-

The GMS scheme developed in this section is inspird¥fies rank{S(6)} < N. Therefore, in the high-dimensional
by the neighborhood regression approach(in [11]. A mal§gime, where the numbe¥ of observations may be much
conceptual difference of our approach fo[11] is that wemaller than the number of process components, the esti-
perform neighborhood regression in the frequency domaiRatesS;(#) € CP*? will typically be rank-deficient and thus
Moreover, while the approach in [11] is based on a standsf@nnot be inverted to obtain estimates of the edgefse
sparse linear regression model, we formulate the neigloarh the relation[(8).

regression for time series as a multitask learning probkhis [N order to cope with the rank deficiency of the SDM
multitask learning problem is based on an estimator for tigstimateS;(6), we next show that finding the support of the
SDM, which will be discussed next. inverse SDMS; 1(#) based on the observatiosil],. .., x[N]

can be formulated asraultitask learning problenfor clarity,
we detail this approach only for the problem of estimating

A. SDM Estimation . o L
) ) the neighborhoodV(1). The generalization to the estimation
Due to the direct relatio [3) between the zero pattern of the e neighborhoodV'(r) of an arbitrary node € [p] is
inverse SDM and the edge set of the CIG, a naive approaﬁpaightforward.

to GMS would be to first estimate the SDM, then invert this | qeed consider the permuted proceds] = P,x[n],
estimate and determine the location of the non-zero entrigsih, the permutation matri®, := (e, (1), - - -, e, () ) Where
With regards to the first step, it is natural to estimst0) I0,(-) : [p] — [p] denotes the permutation exchTarI;ging eritry
by replacing the ACF in{1) with an empirical versi®.[m] it entryr. As can be verified easily, the SDSk(¢) of the
which is based on sample averages. This yields the eStim"’B?ocessZ[n] is then given byP,.S, (9)P... Moreover, the CIG

R N-1 R ‘ Gz of x[n] contains the edgév, w) if and only if the CIGG,
S.(0) := Z w[m]R,[m]e=727m (11) of x[n] contains the edgdl, (v), IL.(w)), i.e.,
m=—N+1

(v,w) € Gz if and only if (IT, (v), I, (w)) € Go.  (17)

Thus, the problem of determining the neighborhddd-) in
N 1= T the CIG of the procesx[n] is equivalent to the problem
Rf[m]:ﬁ > xn+mix[n], me{0,... . N-1}. (12) determining the neighborhood/(1) in the CIG of the
n=l Eermuted proces&[n] = P,x[n].
e

where,R”[—m] = R,[m] and

Note that the SDM estimatof_(J11) can be regarded as t
natural adaptation, to the case of SDM estimation for vectgr
process, of the BT estimatar [30] for the power spectral digns
of a scalar process.

The real-valued window functiow([m] in (@), from now
on assumed to satisfy

Multitask Learning Formulation

The basic intuition behind our approach is to perform
a decorrelation of the time sampledl],...,x[N] by ap-
plying a DFT. In particular, given the observatidd =
(x[1],...,x[N]) € RN, we compute the lengtfeN — 1)

wlm] =0 for m > N andw[0] = 1, (13) DFT as

is chosen such that the estima®(f) is guaranteed to ::L —i — _ —
be a psd matrix. A sufficient condition for this to be the ad \/NREX[;V]X[H] exp(—j2r(n—1)(f-1)/(2N 1)),
case is non-negativity of the discrete-time Fourier trans- (18)
form (DTFT) W(#) of the window function, i.e.JW(0) := for f € [2N —1]. It can be shown that for a vector process
S wlm]exp(—j2mm) > 0 [30, p. 40]. x[n] conforming to Assumptioi]4 and a sufficiently large

In what follows, we need a specific representation of treample sizeVV, the DFT vectorsk[1],...,%[2N —1], which
estimateS,.(0) in (1), which is stated in may be interpreted as random samples indexed by frequency

f, are approximately independent. However, what hinders the
straight application of the neighborhood regression nttho
in [11], developed for the case of i.i.d. samples, is the fact
A@):=/W(OHF'DT, (14) that the samplex[f] are not identically distributed. Indeed,
where D := (x[1],....x[N]) € R*N is the data matrix, the covariance matrix of the Gaussian random veg{gi is

Nx(2N-1) , _ B roughly equal to the SDM valu8,, (6, =2n(f-1)/(2N-1)),
gFETC Xt o de}z‘lotesjhe f|rsr\; rozvs 10f ;hels|z§?VN 11) which in general varies wittf. However, for processes with
and matrix, i.e.,(F);, = exp(=2r(k—1)(I=1)/2N=1)) 5 gmooth SDM, i.e., conforming to Assumptigh 4 with small

1 ) 1o, the SDM is approximately constant over small frequency
IN_—1 diag{W (0 +0)} rejon-1y; (15) " intervals and therefore, in turn, the distribution of canstve

Lemma Ill.1. Consider the estima@z(e) given by(@1), for
6 € [0,1). Let us define the matrix

W(b):=




samplesx[f] is nearly identical. We exploit this by maskingLemma I1.2. Consider the parameter vectgs(9) defined
the DFT samplex[f] such that, for a given center frequencyor eachf € [0,1) via (22). The generalized support ¢f(-)
6 € [0,1), we only retain those sampl&gf] which fall into is related toN (1) via

the pass band of the spectral windd® (6, +6) in (15),

which is the shifted (by the center frequer®yDTFT of the gsupp(B(-)) = V(1) - L. (26)

window functionw[m] employed in the BT estimatof (1L1). Proof: Let us partition the SDMS, (6) and its inverse
This spectral masking then yields the modified DFT sampl@&wl(g) as

SO[f] o= /W (O, +0)RIf], for f € PN-1]. (19) (7”) CH”’) —S,(0), (W éH”’) —S-10). @)

By considering the significant DFT vectat§f] approximately c(6) ) G(®) c@) G
as i.i.d. samples of a Gaussian random vector with zero me¢Fording to [3), we ha\~/e
and covariance matri$,(6), we can immediately apply the gsupp(e(-)) =N (1)—1, (28)

neighborhood regress_i_on approach[inl[11]. In particgla&, V‘Ovhereé(e) is the lower left block 0S-(0) (cf. (7)), which
formulate, for a specific center frequengy a sparse linear s coon as follows. Applying a wellw known formula for the

regression problem by regressing the first entry of the VeCifiverse of a block matrix (cf[I31, Fact 2.17.3 on p. 159]) to
%) [f] against its remaining entries. More precisely, based M partitioning [(217) L
the vectory () € C*M~! and matrixX(g) € CEGN-Dxp-1), ’ -

gom O[T &(0) = -3(0)G ' (0)c(0) D@ -B0)7(0).  (29)
1 2:p
y(0):= : , X(0):= : , Note that7(6) @ [S;'(0)],, > 0, since we assums,(f)
~(0) . ~(6) T to be strictly positive definite (cf[{2)), implying in turiat
zy [2N~1] (%25 [2N —1]) (20) S.1(0) is also strictly positive definite. Therefore,
we define, for eactd € [0, 1), the linear regression model gsupp(B(+)) E:g)gsulDlD(é(')) @N(l)—l-
y(0) := X(0)B(0) + £(0) (21) .
with the parameter vector 1 Thus, the problem of determining the neighborhdéd ) of
BO) = [(S2(9)) 4,0, (Sa(®))2:p.1- (22)  noder=1 has been reduced to that of finding the joint support

Let us make the relation between the quantiygg), X(9) ©f the parameter vector§3(0)} sep0,1) from the observation
and the observed dafa = (x[1],. .., x[N]) more explicit by ©Of the vectors{y(6)}sc(o,1) given by [21). _
noting that, upon combining {1.8) witf{19) and insertingint Re€covering the vector ensemblg3(60)}ocpo,1) With a

@0), we have small generalized support from the linear measurements
. {¥(#)}ocp0,1), given by [21), is an instance of multitask
y(0)=vW(O)F" (D1 1.x) (23) learning problen23], [32], [22], [33], being, in turn, a special
and case of a block-sparse recovery problem| [19]. Compared to

B T T existing work on multitask learning [23], [32], [22], [33fhe
X(O)=vWO)F (DQ:PJ:N) ‘ (24) distinctive feature of the multitask learning problem givey
Note that the producFT(DM;N)T in 3) just amounts (22) is that we have a continuum of individual tasks indexgd b

to computing the DFT (of lengt®N — 1) of the process b€ [.0’ 1). The F:Iosest to our sgttmg IS [34-" [20), where also
- T T . multitask learning problems with a continuum of tasks have
componentz; [n]. Similarly, the rows ofF” (D, 1.x)" in

: been considered. However, the authors of [34]] [20] recthiee
S‘:?rzl;(;ﬁegr:}[/secn[%y the :CD'E;GS (of lengdhV —1) of the process system matrixX () to be the same for all tasks. To the best
2 yeeeyLp .

The error terme(6) in () is defined implicity via the of our knowledge, general multitask learning problems vaith

definitions [22). [[28), and(24). It will be shown in Sect[oF | ggr}i?uum of tasks of the fornh_(21) have not been considered
that, if the SDM estimatoi_(11) is accurate, i8,,(0) is close '
to S, (0) uniformly for all & € [0, 1), the error terme(0) will
be small. C. Multitask LASSO based GMS

As can be verified easily, by comparing expressidns (23)A popular approach for estimating a set of vectors with a
and [24) with [(IB), the vectoy(f) and the matrixX(¢) are small joint support, based on linear measurements, igrthep
given by the columns of the matriA (6) in (I4) of Lemma | ASSO[35]. Specializing the group LASSO to the multitask
[MLI] Therefore, according td (16), we have the identity  model [21) yields thenultitask LASS@MLASSO) [22], [24].

H & However, while [[22], [24] consider a finite number of tasks,

(y(9) X(G)) (y(9) X(G)) = 8:(0), for 6€[0,1), (25) we consider a continuum of tasks indexed by the frequency

whereS, (6) denotes the BT estimator iA{11). 6 € [0,1). An obvious generalization of the mLASSO to our

The link between the multitask learning problefl(21) angftting is

Fhe problem of determining the neighborha&@1) is stated Bly (), X(-)] :=argmin ||Y(')—X(')5(')||§+/\||5(')H1- (30)
in BELy([0,1))



If the design parametex >0 in (30) is chosen suitably (cf.
Section[1V), the generalized support 8f-) coincides with
that of the true parameter vect@(:) in (21), i.e.,

@ nr(1) - 1.

gsupp(B(+)) = gsupp(B(")) (31)

Thus, we can determine the neighborhodd1) via com-

B(:) = argming .y, (0,1)) f1B(-)] any of these solutiorts.

Let us finally mention that, in principle, Algorithinl 1 can
also be applied to non-Gaussian processes. However, the
resulting graph estimatg is then not related to a CIG anymore
but to a partial correlation graph of the process[[1]. By
contrast to a CIG, which is based on the exact probability
distribution of the process, a partial correlation grapbostes
only the second order statistic, i.e., the partial corietat

puting the mLASSO based on the observation vector agfictre of a vector process. In the Gaussian case, however

system matrix constructed via (23) andl(24) from the obskrv,

dataD = (x[1],...
nation of the neighborhoat’(r) for an arbitrary node € [p]

is acomplished via[(17) by using the permuted observati
D :=P,(x[1],...,x[N]) in (23) and [2¥4) instead db. We
arrive at the following algorithm for estimating the CIG biet
observed process.

Algorithm 1. 1) Given a specific node € [p], form the
permuted data matrixD = P, (x[1],...,x[N]), and
compute the observation vectp(f) and system matrix
X () according to

y(0)=W(OFT (D11.n)" (32)
and
X(9)= \V4 W(H)FT(]SQ:;),I:N)T' (33)

2) Based on the observation vectpfd) and system matrix
X(¢) given by (32) and (33), compute the mLASSO
estimate3(6) according to(30) and estimate the neigh-

borhood A/ (r) by the index set

N(r) = {IL( + 1) 7" € [p], 1B ()l g2 > 0}, (34)
for some suitably chosen threshojd

3) Repeat step) and step2) for all nodesr € [p] and
combine the individual neighborhood estimaté¢r) to

obtain the final CIG estimat§ = ([p], ).

The proper choice for the mLASSO paramefetin (30)
and the threshold in (34) will be discussed in Sectidn V.

For the last step of Algorithril1, different ways of com-

bining the individual neighborhood estimat&é(r) to obtain
the edge set of the CIG estimafeare possible. Two intuitive
choices are the “AND” rule and the “OR” rule. For the AND
(OR) rule, an edgér, ') is present inG, i.e. (r,1') € &, if
and only ifr € A/(+') and (or)r’ € N(r).

Note that the optimization in[{30) has to be carrie
out over the Hilbert space/,([0,1)) with inner prod-
uct (f(-),g("))e, = f;:OgH(o)f(e)de, and induced norm
lg()ll2 = />, llg-(-)] 2. Since the cost function if_(BO) is

convex, continuous and coercive, i.e., lim  f[3(-)] = oo,
1B() =00

it follows by convex analysis that a minimizer fof_{30)

,x[N]). The generalization to the determi-

fhese two concepts coincide.

&h Numerical Implementation

In order to numerically solve the optimization probldm](30)
we will use a simple discretization approach. More pregijsel
we require the optimization variabl8(-) € ¢4([0,1)) to
be piecewise constant over the frequency intenjéls—
1)/F, f/F), for f € [F], where the numbeF of intervals
is chosen sufficiently large. As a rule of thumb, we will use
F =~ 2u,, since the SDMS,, (0) is approximately constant over
frequency intervals smaller tharyp,. This may be verified
by the Fourier relationship1) between the process SDM
and ACF. Thus, if we denote hiy(6) the indicator function
of the frequency interval(f —1)/F, f/F), we represent the
optimization variable3(-) € ¢,([0,1)) as

BO) = Brls(0),

fE[F]

(35)

with the vector-valued expansion coefficiegts € C?. Insert-
ing (33) into [30) yields the finite-dimensional MLASSO

B= argmin >  BfGBr—2R{c{ B} + AlBI: (36)
B:(Bl"'"ﬁF)?G[F]

LG X (0)X (0)do
cr éf:/f;_n/p X7(9)y(0)do. Here, we used
1Bl == X, g 1B7]|2 with the vectors3(™) e CF given
elementwise as(ﬁ(”)f := (By),- Based on the solution

B = (Bl,...,BF) of (38), we replace the neighborhood
estimateN (r) given by [34) in AlgorithnIL with

N(r) ={IL(" +1) |7 € [pl, A/VF)|B" |2 > n}, (37)
where3) = ((B1),...., (Br),).

We note that Algorithnl]1, based on the discretized version
(38) of the mLASSOI[(30), scales well with the problem dimen-
sions, i.e., it can be implemented efficiently for large skmp
size N and large numbey of process components. Indeed, the
expressions[(32) and (33) can be evaluated efficiently using

FFT algorithms. For a fast implementation of the mLASSO

with Gy

and

gﬁ) we refer to[[39].

3Note that a sufficient condition for uniqueness of the sotutto [30)
would be strict convexity of the objective function. Howeven the high-
dimensional regime wher¥ < p the system matriX (9) € C2N-1)x(r-1)
defined by [(3B) is singular and therefore the objective foncin (30) is
not strictly convex. Thus, in this regime, uniqueness of ¢biution to [30)
requires additional assumptions such as, e.g., incoherennditions [[3/7],
[38]. We emphasize, however, that our analysis does notreegmiqueness

exists [36]. In the case of multiple solutions, we mean byt the solution to[(3D).



IV. SELECTION CONSISTENCY OF THEPROPOSEDSCHEME Assume further that the system matrix possesses a positive

We will now analyze the probability of Algorithrfi] 1 to Multitask compatibility constant(S) > 0 (cf. (38)), and the
deliver a wrong CIG. Our approach is to separately bound tRE0r terme(6) in (2I) satisfies
probability that a specific neighborhodd(r), for an arbitrary 2(8) B
but fixed noder € [p], is estimated incorrectly by Algorithfd 1. sup [le™(0)X(0)],, < % (42)
Since the correct determination of all neighborhoods iegli belon) max
the delivery of the correct CIG, we can invoke a union bour@enote by3[y(-), X(-)] the mLASSO estimate obtained from
over all p neighborhoods to finally obtain an upper boun@Q) with A = ¢*(S)Bmin/(8smax)- Then, the index set
on the error probability of the GMS method. For clarity, A .
we detail the analysis only for the specific neighborhood S={reld [ 16:0)llzz > Bmin/2}, (43)
N(1), the generalization to an arbitrary neighborhoWidr) coincides with the true generalized support@), i.e., S =
being trivially obtained by considering the permuted PBCE gsupp(3(-))
x[n] = P,.x[n] (see our discussion arourld17)). )

The high-level idea is to divide the analysis into a de- Proof: Appendix(B. o u
terministic part and a stochastic part. The deterministit p Stochastic PartWe now show that, for sufficiently large
consists of a set of sufficient conditions on the multitasReMple sizeN, the multitask learing probleni (1) satisfies
learning problem[{21) such that the generalized support ¢ condition[(42) of Theorein IM.1 with high probability. To
the mLASSO B[y (-),X(-)] (cf. (30)), coincides with the this end,.we _f|rst verify tha{{42) is satisfied if the maximum
generalized support of the parameter vec) in @2), SDM estimation error R
which, in turn, is equal toV'(1)—1 (cf. (Z8)). These conditions £ := sup [[E(8)] .., with E(f) := S, (0) — S.(), (44)
are stated in Theorem V.1 below. The stochastic part of o<l0.1) i -
the analysis amounts to controlling the probability thae t s small enough. We then characterize the large deviation

sufficient conditions of Theorem V.1 are satisfied. Thid \vé ehavior of £/ to obtain an upper bound on the probability of
ﬁlgorithmlj] to deliver a wrong neighborhood, i.e., we bound

accomplished by a large deviation analysis of the BT estimat - ~ ) )
in (LT). By combining these two parts, we straightforwardl{'® probTb]mtyP{N (r) # N(r)}, for an arbitrary but fixed
der € [p].

obtain our main result, i.e., Theordm IV.5 which presents ¥ )
condition on the sample siz¥ such that the error probability " Order to invoke Theoreni M1, we need to ensure
of our GMS method is upper bounded by a prescribed valu&in = el ) 18-(-)llz= (with B(-) given by [22)) to
Deterministic Part.The deterministic part of our analysis isbe sufficiently large. This is accomplished by assum[dg (8),
based on the concept of the multitask compatibility conditi which is valid for any process[n] € M, and implying via
[22]. For a given index sef C [q] of size smax the system (29) the lower bound
matrix X(9) € CN-Ux(1) defined ford € [0,1), is said
to satisfy the multitask compatibility condition with caast Bin = prain- (45)
@(S) if In order to ensure validity of [{42), we need the
. |\X(~)5(')H§ > ¢2(8) -0 (38) following relation between the maximum correlation
MBs(E T supge(o.1) €7 (8)X(0)| ., and the estimation errdt in (44).

for all vectors3(-) € A(S) \ {0}, where Lemma IV.2. Consider the multitask learning proble@l),

A(S):={8(-)el, (0,1 L <3 Iy, (39) With observation vectoy (f) and system matrixX(0) given
(8):={B0) L0, )[I1Bs- Ol <3185V}~ (39) by 32) and (33), based on the permuted observatibin =

Another quantity which is particularly relevant for the var p (x[1],...,x[N]) of the processc[n] € M. We have

able selection performance of the mLASSO is the minimum .

NOMMMIN,. ¢ ceupp(a(-) ||5-(-)]| 2 Of the non-zero blocks of the sup [[e”(0)X(0)| o < 2EV/Smaxl- (46)

parameter vectoB(-) € £,([0,1)) given by [22). We require oelo.n)

this quantity to be lower bounded by a known positive number ~ Proof: Appendix[C. ]

Brmin, i.€., Note that due to[{46) and_(45), a sufficient condition for
min 1,()l|z2 = frun. (40) (@) to be satisfied is

regsupp(8(+))
E < ¢*(S) pmin/ (64U s302). (47)

Based ong(S) and fimin, the following result characterizes The following result characterizes the multitask compghtib

the ability of the mLASSQ3]y (-), X(-)] (cf. (30)) to correctly it i . .

. X ; o y condition ¢(S) of the system matriX (6) given by [2%),
identify the generalized suppogkupp(A(-)), which is equal for a proces|[n] belonging toM, i.e., in particular satisfying
to NV(1)—1 (cf. (28)). @

Theorem IV.1. Consider the multitask leaming mod @) Lemma IV.3. Consider the multitask learning proble(@l)

with parameter vectop3(:) € é?([o’l)) and system matrix which is constructed according t@3), (24), based on the
X (). The parameter vectgd(-) is assumed to have no more S .

i observed process[n] € M. If the estimation errotF in (44)
than smax NON-zero components, i.e.,

satisfies
gsupp(B(-)) C S, with |S| = smax (41) E <1/(328max), (48)



then, for any subse® C [p] with |S| < smax the system matrix neighborhoodV (r) of a specific node. Since any reasonable
X(6), given for anyd € [0,1) by (24), satisfies the multitask combination strategy in step of Algorithm [I will yield the
compatibility condition(@8) with a constant correct CIG if all neighborhoods are estimated correctlg, w
obtain, via a union bound over all nodeg [p], the following
9(5) 2 1/\/5' (49) bound on the probability that applications of Algorithm 1
Proof: Appendix[D. m (one for each node) yields a wrong CIG.

Combining Lemma& VB with the sufficient Conditiom47)’Corollary IV6. Consider a processdn] € M and the

we have that the multitask learning probldm](21) satisfies th . : ;
requirement[(42) of TheoreM V.1 if corresponding SDM estima@1l). Then, if

. 2
E < _ Pmin__ (50) —N(pmm/2526) —1log(2N) > log(2p*/6), and (55)
T 128U sl 8siad w(-][[TU*
Smax (1) Pmin
Indeed, the validity of[(30) implie§ (48) singgn < U which He't S ———, (56)

can be verified from the asa)umptio (8) and the reIatiortﬁ bability of AlqorithmClL 256|(_]Zmax dally to all
B B B e probability of Algori , applied sequentially to a

|(Szl(9))m‘ 2 )‘min(sml(e)) = 1/U, and\(szl(e)) < nodesr € [p], using/\zpmin/(16smax) in (30) and = pmin/2

)\maX(Sfl(Q)) 9 1 in (34), yielding a wrong CIG, i.e.¢ #§, is upper bounded
In what follows, we derive an upper bound on the prob&S P{9z# 5.} < 4.

bility that (50) is not satisfied for a proces$n] € M. This  According to [B5), neglecting the terag(2V') and assum-
will be done with the aid of ing pmin fixed, the sample siz&V has to grow polynomially

Lemma IV4. Let §1(9) be the estimate o8, (6), obtained with the maximum node degree and logarithmically with

according to (D) with sample sizeV and window function the number of process componeptsThis polynomial and
wl] € 6,(Z). For v € [0,1/2), logarithmic scaling of the sample sizZ€ on the maximum

o node degreesmax and number of process components
P{E > v+ p")} < 2¢ slwllifu? +2logplog 2N (51) respectively, is a typical requirement for accurate GMShim t
high-dimensional regime [9], [11]. [15].
where ui}“) denotes the ACF momei@) obtained for the  Note that, according td_(55), the sample si¥enas to grow
weighting function with the squared; norm |jw[][|% of the window functionw]-]
employed in the BT estimator_(IL1). For the inequalityl (56) to
hilm] := {ll —wm](1 —~|m|/N)|  for |m| <N (52) hold, one typically has to use a window functiar}] whose
1 else. effective support matches those of the process ATHm].
Proof: Appendix(E. m Therefore, Theorefm IM5 suggests that the sample size has to

Main Result.By Lemmal[lV4, we can characterize thedrow with the square of the effective process correlatiodthvi

probability of the condition[{50) to hold. Since validity of(éffective size of the ACF support), which is quantified/by
(50) allows to invoke Theorein M1, we arrive at However, some first results on the fundamental limits of GMS

] for time series in indicate that the required sample sizailsho
Theorem IV.5. Consider a procesx([n] € M and the pe effectively independent of the correlation wigth [20].
corresponding SDM estima(@l). Then, if One explanation of the discrepancy between the sufficient
N(pmin/256)2 condition [5%) and the lower bounds on the required sample
W —log(2N) > log(2p?/3), and  (53) gjze is that the derivation of Theorem 1V.5 is based on
requiring the SDM estimatoS, (), given by [11), to be
3/27 accuratesimultaneouslyfor all 6 € [0, 1). According to [41],

- 256U smax . . . .
. _ _ . the achievable uniform estimation accuracy, measured &y th
the probability of AlgorithniLIL, using = pmin/ (16sma) iN 0)  minimax risk, depends inversely on the correlation wigth

and 7 = pmin/2 in (34), selecting the neighborhood of node o yever, the analysis in [40] suggests that it is not necgssa

r € [p] not correctly, i.e. N (r) # N(r), is upper bounded as {, accurately estimate the SD8A (6) for all § simultaneously.

P{N(r) #N(r)} <. Indeed, for a process[n] with underlying CIGG,., the SDM
Note that Theoreri IVI5 applies to the infinite dimensionafaluesS.(¢) are coupled over frequendy € [0,1) via the

mLASSO optimization problem i {80), thereby ignoring anyelation [3). Due to this coupling, the SDM needs to be

discretization or numerical implementation issue. Ndwert estimated accurately only on average (over frequef)cyA

less, if the discretization is fine enough, i.e., the numBer more detailed performance analysis of the selection sclieme

of frequency intervals used for the discretized mLASSQ (3éygorithm[l, taking the coupling effect due {d (3) into acabu

is sufficiently large, we expect that Theorém V.5 accugateiS an interesting direction for future work.

predicts the performance of the GMS method obtained by

using Algorithm1 with the discretized mLASSQ {36) instead V. NUMERICAL EXPERIMENTS

of the infinite dimensional MLASSQ@ (BO). The performance of the GMS method given by Algorithm
Furthermore, Theorem 1\M.5 considers the probability o& (tHl is assessed by two complementary numerical experiments.

first two steps of) Algorithni 11 to fail in selecting the corteclin the first experiment we measure the ability of our method

rr!

pi) < (54)



to correctly identify the edge set of the CIG of a synthe 1

ically generated process. In a second experiment, we ap g |
our GMS method to electroencephalography (EEG) measu 08 |
ments, demonstrating that the resulting CIG estimate may 1l o
used for detecting the eye state (open/closed) of a person. 0.7 R .""
0.6 r ’," - .~ v+ N=128
. X P

A. Synthetic Process 05 F e N=064

We generated a Gaussian process of dimensionp = 64 041 o e N=32
by applying a finite impulse response filtgin] of length2 to 0.3 9. ~ — N=128,VAR ]
a zero-mean stationlary white Qaussian noise proepgs~ 02 ¥ ----N=064,VAR
N(0, Cy). The covariance matriC, was chosen such that the 0.1 ;’ N 1

. e : ---N=32,VAR

resulting CIGG, = ([p],€) satisfies[(I7) withsmax = 3. The 0 N S SR R
non-zero filter coefficientg[0] and g[1] are chosen such that 0 01 02 03 04 05 06 07 08 09 1

the magnitude of the associated transfer function is umifpr Py,
bounded from above and below by positive constants, thereby

ensuring condition[(2).
We thgen com uEedd)the CIG estima@ using Algorithm 1 Fig. 1. ROC curves for the compressive selection scheme giyeilgorithm
P 3 g Alg [t%and for a VAR-model based GMS scheme presentedlin [3].

based on the discretized versidn](36) of the mMLASSO (wi

F = 4) and the window functionw[m] = exp(—m?/44).

In particular, we applied thalternating direction method of 1
multipliers (ADMM) to the optimization problem(36) (cf. 097

@2, Sec. 6.4l We set A = 162, pmin/(185maxF’) and 08 f
n = pmin/2, Wherec; was varied in the rangg € [1073,103]. 0.7 L

In Fig.[, we show receiver operating characteristic (RO( 06 -
curves with the average fraction of false alarmg, = - 0'5 |
ﬁzle[m % and the average fraction of correci 0'4 I
decisionsPy = + 2t % for varying mLASSO param- 03 I

eter \. Here,&; denotes the edge set estimate obtained fro 02+
Algorithm[d during thel-th simulation run. We averaged over ([ Py
M = 10 i.i.d. simulation runs. As can be seen from Hig. 1 0 T ‘ ‘ ‘ ‘
our selection scheme yields reasonable performance eve -1 -0.5 0 0.5 1
N =32 only for a 64-dimensional process. We also adapteu log(7)

an existing VAR-based network learning method [3] in Ord%g. 2. Empirical detection probability’; vs. rescaled sample size =
to estimate the underlying CIG. The resulting ROC curves/(log(p)say)-

are also shown in Fid.] 1. Note that the performance obtained

for the VAR-based method is similar to a pure guess. The

inferior performance of the VAR-based method is due to a

model mismatch since the simulated process is not a VAReasurement data. This problem is relevant, e.g., for raédic
process but a moving average process. care or for driving drowsiness detection [44]. We used th6&GEE

We also evaluated the empirical detection probabifigyfor dataset d_onated by Olﬁver Roesler from Baden-Wuerttemberg
fixed mMLASSO parametek = pmin/10 and varying rescaled Cooper:’?\tlve State Unlversny_(DHBW)_, Stuttga_rt, Germany,
sample sizer := N/(log(p)s). According to Fig[®, and and avallable_at the UCI maphlne learning repository [45}9T
as suggested by the bourid](55) of TheofemlIV.5, for a fixSiqtaset consists of 14980 time samples, each sample being a
squared normjjw[-]||? (the window functionw[m] employed vector mac_ie up of 14 featgre values. The trug eye state was
in (I0) is fixed throughout the simulation), the rescaledsam detected via a camera during the EEG recording.
sizer = N/(log(p)s2.,,) seems to be an accurate performance AS @ first processing step, given the raw data, we removed

indicator. In particular, the selection scheme in Algaritdl Parts of the time series which contain outliers. In a secoepl s
works well only if 7 > 1. we performed a detrending operation by applying a boxcar

filter of length 5. Based on the true eye state signal, which
_ is equal to one if the eye was open and equal to zero if
B. Eye State Detection it was closed, we extracted two data blockg, D;, one

In this experiment, we evaluate the applicability of our GMSorresponding to each state. We then applied Algoriffim 1
method for the problem of eye state detection based on ER@h the discretized mLASS_(86) (with" = 5) instead of
(30) and using the OR-rule in the third step, i@.contains

4We_> used the all-zero initialization for the ADMM varigblex;l k_)ur the edge(r, T/) if either » € /\7(7,/) or ' € ./\/(7’) For
experiments. In general, the convergence of the ADMM imgletation h ind f . in the BT . 1 d th
for LASSO type problems of the forni (B6) is not sensitive te fhrecise the window function in the eSt'matOEal ) we used the

initialization of the optimization variables [43]. [42]. choice wim] = exp(—(m/59)?). In Fig. [3, we show the
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APPENDIXA
PrROOF oFLEMMA [T 1]
Let Z,[n] and Z;[n] denote(2N —1)-periodic discrete-time
signals, with one period given by

{rt} o for n € 2N—1]\ [N]
) and corresponding DFTs
(a) “eye open” (b) “eye closed”
2N -2

Etlgtleii. Resulting CIG estimate for the EEG time series undféerent eye Xy [k]:= Z - [n] exp(—j27kn/(2N —1))

n=0
DN (x[nl) .,y exp(~j2mk(n—1)/(2N 1),
two CIG estimates obtained for each of the two data blocks ne[N]
Dy,D; € R'"*1924 each corresponding to a sample sizg, . — 9 2N _2. Note that
of N = 1024. As evident from Fig[13, the resulting graph U
estimates are significantly different for each of the two eye Xy [k] = (DF) (b1 (58)

states. In p.artlculatr{ the gradph obtzr:]\!nﬁd for the “eye la:nlt‘)slg et us verify the equivalence of (16) arid11) entry-wise.
state contains much more edges which are moreover localizgd i< end, for arbitrary but fixed, ¢  [p], consider the

at few nodes having relatively high degree. Thus, the ClGirv s-— (S (0 f the SDM estimate qi bV TL1). B
estimate delivered by Algorithfd 1 could serve as an indicat ys: ( o ))th orthe estimate given by (11). By

for the eye state of a person based on EEG measurements.SpeCtIng m),
N—-1
$=(1/N) wlm] exp(—27mb) - (Z, @ &;)[m], (59)
VI. CONCLUSION m;\m t
n=0 L

We proposed a nonparametric compressive selection schefiMre (i, @ #,)[m] = SN2 5 [n + m]#[n] denotes the
for inferring the CIG of a stationary discrete-time Gauss!%eriodic autocorrelation function of,[n] and Z[n]. The

vector process. This selection scheme is based on combinggrg WIk] and V[k] of the (2N — 1)-periodic signals
a BT estimator for the SDM with the mLASSO. The key ide@,[m] exp(—27m#b) and (z, ® #,)[m| are given by[[45, Ch.

behind this novel selection scheme is the formulation of thg ysingg,,:=2r(k—1)/(2N-1),

GMS problem for a stationary vector process as a multitas - -

learning problem. This formulation lends itself to apptyin W[kl = W(0 + 011) andV[k] = X, [k]X[[k],  (60)
mLASSO to QMS for stationary vector processes. Draw'%spectively. Using again [46, Ch. 8], we obtain frdm] (53tth
on an established performance characterization [22] of the
mLASSO, we derived sufficient conditions on the observed§ B 1 Z WKV [K]
sample size such that the probability of selectingawro@ Cl ~  N(2N 1)

does not exceed a given (small) threshold. Some numerical F=0

2N—2

experiments validate our theoretical performance amalysd ©0) 1 S
show superior performance compared to an existing (VAR- — NanN—1) > WO+ 0,) X [k X[K]

based) method in case of model mismatch. k€[2N-1]
Our work may serve as the basis for some interesting @@ 1
avenues of further research, e.g., extending the concept of = =  — Z (DF)t,k(W(H))M((DF)H)k . (61)
i . : . N , .
a CIG to processes with a singular SDM or introducing the ke[2N—1]

notion of a frequency dependent CIG. Moreover, we ?Xpel%te that the last expression is nothing but the)-th entry
that our frequency domain approach to GMS for stationag the RHS in [16).

vector processes can be extended easily to non-stationary
vector processes by using time-frequency concepts (aged
on underspread assumptions).

APPENDIXB
PrROOF OFTHEOREM[IV.1]

We will need the following lemma, which is a straightfor-
VII. ACKNOWLEDGMENT ward generalization of [22, Thm. 6.1].

The author is grateful to R. Heckel who performed @emma B.1. Consider the multitask learning proble@)
careful review of some early manuscripts, thereby pointingith parameter vectoB(-) ¢,([0,1)), observation vector

to some errors in the consistency analysis and the fornoulatiy (9) and system matriX () defined by@2), 32) and 33),
of LemmalB.1. Moreover, some helpful comments from andspectively. Suppose,

discussions with H. Bolcskei and F. Hlawatsch, resulting i A\
an improved presentation of the main ideas, are appreciatedsup || (6)X(9)|_, < =, and gsupp(B(-)) € S, (62)
sincerely. 6€0,1) 4
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with an index sef C [g] of sizesmax=|S|. If the system matrix Note that

X(#) possesses a positive multitask compatibility constant, 5 @, x
$(S) > 0, the mLASSO estimaf@ly(-), X(-)] given by(30) x, el =[x (y = XB)| (69)
satisfies
@).22 H~_1
. 4Xs —g) G le—glG~
186) - B0l < T 63) (8:)y, (& -8r) G emg/ G el
Combinin with ,
Evaluating LemmBBI1 for the specific choike= idl és)ﬁm'” 9[E) (&8)
we have that, under conditionh {42) (which ensufes (62)) the IxHe|= | (gm_sw) X 1—(gr—gr)HG_IC\
mMLASSO estimatg3[y(-), X(-)] satisfies @ e
18() = BO)y < Brin/2- (64) < [(Se=S0),l+ (&7 )8 (70)
This implies, in turn, for any- € gsupp(8(-)), Applying the Cauchy-Schwarz inequality to the second term
. . in and usin
18- (Il 2 2 118r (Nl L2 = 1B ()l 2 = 118r(- )I\Lzl = /2 = J o
and similarly for anyr € [p] \ gsupp(8(-)), | gsupp(B())] B IN(1)] < sma (71)

R - €3 .
18-z < 18-Cll g2 + B Ol g2 = 18- ()l 2| < Pmin/2. we obtain

Thus, the set{r : [|5,(-)||l;» > Bmin/2} coincides with the IXfI&‘ISHsz—§mHOO(1+~/Smax||5||2)- (72)
true generalized suppogtupp(3(+)).

Inserting the bound
APPENDIXC

PROOF OFLEMMA [V.2] 181 @ |a'¢||, 2u
Let us recall the partitionind (27) of the SDM: T3
into , finally yields

o oy o ) fnally vields

c®) GO)) x e <||Sz—Sa|| (1 + vSmaxU)
Analogously, we partition the SDM estima$s, (4) given by §2HSm_§wH VomadU. (73)
@) as >~

W0 O\ o o

¢0) GoO)) +(0)- (65) APPENDIXD

. . . PRoOOF oFLEMMA [V.3]
For the sake of light notation, we consider throughout the

remainder of this proof an arbitrary but fixed frequericgnd We first state an inequality which applies to any vector
drop the argument of the jrequency dependent variables, efgnction 3(.) e ¢,(]0,1)) for somegq. In particular,
S.(0), G(6), c(8), S.(0), G(0), ¢(d) and so on.

If we define the matrixJ € R@-1)x»p by settingJ;; =1 if

I=k+1 and.J; =0 else, we have /9 18(0)|7d6 _/ S8 1B (6)]d6
c = JS,er. (66) Sret reld
Consider the system matriX given by [33) and note that, S Z Z 18- (Il L2 1B () 2
by comparing[(2b) with[{65), we have relq] r'elq]
XHX = G. (67) = 1807, (74)
In what follows, we denote theth columns ofX, G andG \yhere stefa) is due to the Cauchy-Schwarz inequality. This,
by x,, g- andg;, respectively. in turn, implies for any@’(:) € A(S) (cf. (39)) that
We also require a helpful identity for certain sub-matrices
of the SDM: 1 @ @9
(8:),11, =87 G e (68) AIW@WMSWMMSMW%W- (75)
=0

This can be verified by

H~—-1_, __ _H —1
g G c=e GG Observe that

D 1 GG IS, 0 IX()BOIE = / B (0)X" (0)X(0)3(0)d0

=elf €1 G
=e, JS; & @H(e)G(e)ﬁ(o)d9+5H(9) [G(6)-G(0)]B(6)db-
= (Sm)rﬂ,l' w (76)



Sincea” Ma < ||M|\OO||a||f for any vector € C? and matrix
M e C?*4, we obtain further

1x()s0)2 2

[ 6"0)60)8(0)~1G(0)-G0)] . |180) 0 >
38" (6)G (6)B(6)d6— sup |5, o) / 180 2do S
0=0 0e0,1)

1
8" (0)G(O)(0)d0 - %uﬂ(-)n?. 77)
6=0 Smax
Combining [Z¥) with [(7b), we have for an§(-) € A(S),
IXOBOIE - Joo B (O)IGO)BO)AY
e Es0R 2 1801 /2
d§1)1—1/2=1/2. (78)

APPENDIXE
PROOF OFLEMMA [[V.4]

We will establish Lemmd_1Vl4 by boundm@( -
Sa(
a union bound over all pairs, ! € [p].

Set 6(6) := [S4(0))ks, 5(0) := E{[S,
[S:(0)]k,: and the bia®(0):=c(0)—E{5(
inequality,

O}, o(0) =

P{ sup [g—o|>v+ul"} <

0€lo,1)

P{ sup [6(0)—a(0)|+ sup |b(0)|>v+ul} <
0€l0,1) 6€[0,1)

P{ sup |6(0)—5(0)|=v}, (79)
0elo,1)

where the last |nequal|ty holds since, for afiye [0,1), the
bias satisfiesb(0)| < pa (") which is verified next.
With A/ := {-N+1,. ,N—l} and

Q I 1 gy T —j270m
E{S.(0)} =E {N Z w[m] Z x[n + m|x* [n]e”™?
m=0 ne[N—{m|]
—1

+% Z w[m] Z x[n]xT[n—m]e_jz”em}

m=—N+1 n€[N—|ml]

z[m]eijﬂ'Gm

> wim](1— |m|/N)R

mejv
D S™ wim)(1 - ml/N)Ry[me 20,
meZ
we obtain
) ()]
0(0) (0] |3 halm] [Rafm]], e=720m) < ).
meZ (80)
Similarly,
5(0)=5(0) 2 1/N) S wimlgfmle7>™, (81)

mE./\7

)kl\ for a fixed pairk,l € [p| and then appeallng to C; as

12

where g [m] = XngXl — E{xg.]mxl}. Here, xj
(1], .., 2 [N € RN, x;:= (x[1],..., o [N])" € RN
and the matrixJ,,, € {0,1}¥*¥ is defined element-wise as

(Im), ,=1for w—v=m and (J )v_ =0 else. Note that
Jn=JT  and|J,.|. < 1. By (1), for anyd € [0, 1),
16(0)~E{&(0)} < (1/N) D wimllara[m]l.  (82)
mE./\7
In  order to upper bounding the probability

P{supyc(o.1 [6(6)—(0)|> v}, we now bound the probability

of the event
(1/N)lgg[m]| = &

by first considering the large deviation behavior of
(1/N)|qr.1[m]| for a specificm and then using a union bound
over allm € .

Since we assume the procesf:] to be Gaussian and
stationary, the random vectoss, and x; in (83) are zero-
mean normally distributed with Toeplitz covariance magdsic
C. = E{xpx;T} and C, = E{xx;/T}, whose first row
s given by {(Rulm), )y 3 (Rl by
respectively. Accordlng ta [47, Lemma 4. 1] and due to the
Fourier relationship[{1), we can bound the spectral norm of

(83)

(a)
ICklle < max [(S2(6)),.,| < U.

)}. By the triangle Here, step(a) follows from (2) together with the matrix norm

inequality|| - ||oc < || - || [48, p. 314]. Similarly, one can also
verify that ||Cy||2 < U.

Therefore, for any? < 1/2, we can invoke Lemm@&H.2
with the choicesx =x;, y=x;, Amax=U >1, Q=1J,, and
)‘;nax:HJmHZ < 1, yielding

). (84)

P{(1/N)lgusm]| > 7} 2 2 exp ( -

Then, by a union bound over alk € N,

Ni?
8U?

P{max Ll > 7} <2exp (—57-+ox(20). (69)
and, in turn,
@2 1 v
P{ sup |6 0)|>v} <P{max —|gxi[m|| > ——
{96[01| ) =@z} {meK/N| il ||w[']||1}

D g exp(- N2 /(8w 2U%) + log2N)).  (86)

Applying (88) to [79), we have for any < 1/2 that

P{ sup [6(0)—c(0)| > v+ul}<2e Suwmzvﬁl"g(”’.
0€[0,1)

Another application of the union bound (over aft pairs

(k,1) € [p] x |p]) finally yields [51).

APPENDIXF
LARGE DEVIATIONS OF A GAUSSIAN QUADRATIC FORM

Lemma F.1. Consider the quadratic formy := w” Qw with
real-valued standard normal vecter ~ A/(0,I) and a real-
valued symmetric matriQ € RV <N with || Q|2 < Amax. FOr
anyv < 1/2,

P{qg—E{q} > Nv} < exp( NI/2/(8 Inax{/\max, })) (87)
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Proof: Our argument closely follows the techniques usedutting together the pieces,
in [10]. In what follows, we will use the eigenvalue decom- @
position ofQ, i.e., P{q—E{q} > Nv} < exp (- N(yw —2v* o)
Q= Z avivy, (88)
with eigenvalues; € R and e|genvec:tor$vl}l6 | forming

an orthonormal basis fak" [49]. Note that, for any € [N],
we have|q| < ||Qll2 < Amax- Based on[(88), we can rewrite

D exp (= Now = (1/2 70\ f max{ A2 1)

<exp(— Nyv/2)

the quadratic formy = w”Qw as o
@l _ 2 2
q= Z quIQ, (89) - exp( Nv /(8 max{)‘maxa 1})) (98)
lE[N] |

with i.i.d. standard Gaussian random variablgs- A/(0, 1),

for 1 € [N]. We then obtain Lemma F.2. Consider two real-valued zero-mean random

vectorsx € RN andy < RY, such that the stacked

P{q - E{q} > Nv} = P{WTQW - E{w"Qw} > Nv} vector z = (x” yT)T e R2?N is zero-mean multivariate
normally distributed, i.e.z ~ A(0,C.) with covariance
Dpy > @z —1) = Nv} matrix C, := E{zz” }. Let the individual covariance matrices
L€[N] satisfy |C.|l2 < Amax [|Cyll2 < Amax. We can then charac-
>0 i iati i T
7> P{W[ Z a2 —1) - Nu] > 0} terize the large deviations of the quadratic foym=y* Qx,

with an arbitrary (possibly non- symmetric) real-valuedtna
Q € RV*N satisfying||Qll2 < A @

P{lg—E{q}|>Nv} <2exp (- 1\7V2/(8 max{ Apanax 1}))

l€[N]

<E{exp ([ > @ —1) - Nv])}, (90)

for any positivey > 0. In Whlaetu;‘[(])llows, we set _ (99)
— v/(dmax{)2, 1}), (91) valid for anyv < 1/2.
which implies, smce}ql| < Amax andv < 1/2 by assumption, IntI:(:((;(l)JEing the shorthand(v) := P{|¢g—E{q}|>Nv}, an
2|y = 2|q|v/ (4 max{ Ao 1}) < 1/2. (92) application of the union bound yields

t?]ieiégn%), we also haveyg;| < 1/2 and can therefore use p(v) < P{g—E{q} > Nv} + P{q— E{q} < —Nv}. (100)

1 =ps (V) =p—(v)

Efexp(az})} = ——=, (93)

: V1-—2a We will derive an upper bound op(v) by separately upper
valid for a standard Gaussian random variahle- N'(0,1) boundingpy(v) and p_(v). The derivations are completely
and|a| < 1/2. Observe that analogous and we will only detail the derivation of the upper

) bound onp (v).
P{g—E{q}>Nv} <E{exp ([ Y a(sf—1)-Nv])} Defining the matriced\, B € RV *2V via the matrix square
lE[N] root of the covariance matric.., i.e.,
=exp ( Z a+Nv])E{exp (v Z az) (94) A\ cl/2 (101)
lE[N] B/) — “z
Since the variables; are i.i.d., we have the following innovation representation for the-ran
dom vectorsx andy:
E{exp(y Z a@?) } Dexp ( > —1/2) 103(1—27(11)) Y
1€[N] x = Av, andy = Bv, (102)
95
) ) , (95) wherev ~ A/(0,1) is a standard normally distributed random
Inserting [95) into[(K) yields vector of lengtr2N. Note thatC, = AA” andC, = BB7,
P{¢—E{¢} >Nv} < which implies
o (= 3 [rartglos(1-29a)] 9NY). 8 | AJy=\/[CLTo< /A and[Bla= /Gy 1o v/
lE[N] (103)
By (@2), we can then apply the inequality(1—a) > —a—a?
(valid for |a| < 1/2) to (98), yielding Let us further develop
P{q—E{q} > Nv} p+(v) = P{y"Qx - E{y"Qx} > Nv}
<ex —yq+yq+2v3¢ —yNv Py,
p (lez[;w Ya+ya+2v2q —yNv) @b, TBTQAY - B{v'BTQAV} > N1
|‘Zl|§)\max

< exp (= N(w—2v*A2))- 97) @ P{vI'Mv — E{v'Mv} > Nv}, (104)



with the symmetric matrix [15]
M = (1/2)[B"QA + ATQ"B. (105)
In ([@04), step(a) follows from the identity v/ Dv = [16]

(1/2)[vIDv + vI'DTv], which holds for an arbitrary matrix

D < R?2V*2N_ Combining [(I0b) with[(103) yields 17
M, @ (1/2)|BTQA + ATQT B,

@) [18]
< (1/2(IBT[2|QIIIAll> + AT (2] Q7 [|2]B])

[19]
= [|B|l2/1Qll2]|All2
3 [20]
S )\maXA:'naw (106)

[21]

where step(a) is due to the triangle inequality and submulti-
plicativity of the spectral norm. Usind (1ID6), the applioat
of LemmalEl to[(104) yields 22]

P+ (V) < exp ( - NVQ/(s max{/\gax/\ﬁ]axv 1}))a (107) (23]
and, similarly, 2
4
p—(v) <exp (— Nv*/(8max{Npprmax 11))- (108)
Inserting [Z0F) and_(108) intd_(IDO) finally yields [25]
p(v) < 2exp ( — N2/ (8 max{ N2 2 a0 1})) m  [26]
[27]
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