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Performance Limits of Segmented Compressive

Sampling: Correlated Samples versus Bits
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Abstract

This paper gives performance limits of the segmented cosspye sampling (CS) which collects
correlated samples. It is shown that the effect of correteéimong samples for the segmented CS can be
characterized by a penalty term in the corresponding boandke sampling rate. Moreover, this penalty
term is vanishing as the signal dimension increases. It m#fwt the performance degradation due to the
fixed correlation among samples obtained by the segmente(h€8ompared to the standard CS with
equivalent size sampling matrix) is negligible for a higmdnsional signal. In combination with the
fact that the signal reconstruction quality improves witldiéional samples obtained by the segmented
CS (as compared to the standard CS with sampling matrix ofitee given by the number of original
uncorrelated samples), the fact that the additional catedlsamples also provide new information about

a signal is a strong argument for the segmented CS.

Index Terms

Compressive sampling, channel capacity, correlatiormseged compressive sampling.

. INTRODUCTION

The theory of compressive sampling/sensing (CS) concérthe gossibility to recover a signal € R”
from m (< n) noisy samples
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wherey € R™ is the sample vecto® € R™*" is the sampling matrix, angl € R™ is the random noise
vector [1]-{3]. In a variety of settings, the signalis an s-sparse signal, i.e., only (< n) elements in
the signal are nonzero; in some other settings, the signslsparse in some orthonormal badis i.e.,
the projection ofx onto W is ans-sparse signal. An implication of the CS theory is that an@naignal
(not necessarily band-limited) can be recovered from feseenples than that required by the Shannon’s
sampling theorem, as long as the signal is sparse in somenorimal basis [1]=[4]. This implication gives
birth to the analog-to-information conversion (AIC) [3R][ The AIC device consists of several parallel
branches of mixer and integrators (BMIs) performing randmwdulation and pre-integration (RMPI).
Each BMI measures the analog signal against a unique randomliag waveform by multiplying the
signal to the sampling waveform and then integrating theltewer the sampling perio@. Essentially,
each BMI acts as a row in the sampling matdx and the collected samples correspond to the sample
vectory in (). Therefore, the number of samples that can be cotldayethe traditional BMI-based AIC
device is equal to the number of available BMIs. The RMPleoldesign has already led to first working
hardware devices for AIC, see for examglé [6]. Regardingithgortant areas within CS, it is worth
guoting Becker’s thesis [6]: “The real significance of CS veashange in the very manner of thinking
... Instead of viewing/; minimization as a post-processing technique to achievietbsignals, CS has
inspired devices, such as the RMPI system ..., that acqigreals in a fundamentally novel fashion,
regardless of whethef; minimization is involved.” However, in the case of noisy fdes it is always
beneficial to have more samples for better signal recortfiruc

Recently, Taheri and Vorobyov developed a new AIC structuisimg the segmented CS method to
collect more samples than the number of BMIs [7], [8]. In tlegreented CS-based AIC structure, the
integration periodl” is divided intot¢ sub-periods, and sub-samples are collected at the end bf eac
sub-period. Each BMI can produce a sample by accumulatgup-samples within the BMI. Additional
samples are formed by accumulatihgub-samples from different BMIs at different sub-periddsthis
way, more samples than the number of BMIs can be obtained.atld@ional samples can be viewed
as obtained from an extended sampling matrix whose rowsistarfspermuted segments of the original
sampling matrix([[8]. Clearly, the additional samples are@ated with the original samples and possibly
with other additional samples. A natural question is whe#rel how these additional samples can bring
new information about the signal to enable a higher quadigovery. This motivates us to analyze and
guantify the performance limits of the segmented CS in tlaigep.

Various theoretical bounds have been obtained for the enablof sparse support recovery.[Ih [9]2[13],

sufficient and necessary conditions have been derived &mtesupport recovery using an optimal decoder
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which is not necessarily computationally tractable. Theggeance of a computationally tractable algo-
rithm named/;-constrained quadratic programming has been analyzed4in Phrtial support recovery
has been analyzed in [11], [12], 115]. In_[12], the recovefyadarge fraction of the signal energy has
been also analyzed.

Meanwhile, sufficient conditions have been given for the €&3very with satisfactory distortion using
convex programming [2]/[16]/[17]. By adopting results ifdrmation theory, sufficient and necessary
conditions have also been derived for CS, where the reaanstn algorithms are not necessarily
computationally tractable. Rate-distortion analysis & @as been given il [12][ 18], [19]. In_[19],
it has been shown that when the samples are statisticalgpamtient and all have the same variance, the
CS system is optimal in terms of the required sampling raterder to achieve a given reconstruction
error performance. However, some CS systems, e.g., theesggdhCS architecture ihl[8], have correlated
samples.

In [20], the performance of CS with coherent and redundactiatiaries has been studied. Under
such setup, the resulting samples can be correlated with ether due to the non-orthogonality and
redundancy of the dictionary. Unlike the case studied_ir,[#@e correlation between samples in the
segmented CS is caused by the extended sampling matrix wbaseconsist of permuted segments of
the original sampling matrix [8]. It has been shownlih [8[I[2hat the additional correlated samples help
to reduce the signal reconstruction mean-square error jM8kere the study has been performed based
on the empirical risk minimization method for signal recgydor which the least absolute shrinkage and
selection operator (LASSO) method, for example, can be etikas one of the possible implementations
[17]. Considering the attractive features of the segmef@8darchitecture, it is necessary to analyze its
performance limits where there is a fixed correlation amamgpdes caused by the extended sampling
matrix.

In this paper, we derive performance limits of the segme@g&dwhere the samples are correlated. It
will be demonstrated that the segmented CS is not a posegsotg on the samples as post-processing
cannot add new information about the signal. In our analykis interpretation of the sampling matrix
as a channel will be employed to obtain the capacity and riistorate expressions for the segmented
CS. It will make it easily visible how the segmented CS brimgsre information about the signal -
essentially, by using an extended (although correlatedpél/sampling matrix. Moreover, it will be
shown that the effect of correlation among samples can beactaized by a penalty term in a lower
bound on the sampling rate. Such penalty term will be showwmatdsh as the length of the signal

goes to infinity, which means that the influence of the fixededation among samples is negligible for a
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high-dimensional signal. With such result to establish,aia to verify the advantage of the segmented
CS architecture, since it requires fewer BMIs, while acimgwalmost the same performance as the non-
segmented CS architecture that has a much larger number ¢6.BMe also aim at showing that as
the number of additional samples correlated with the oalggamples increases, the required number of
original uncorrelated samples decreases while the san@tdia level is achieved.

The remainder of the paper is organized as follows. Sedfialescribes the mathematical setting
considered in the paper and provides some preliminarytsediie main results of this paper are presented
in Section I, followed by the numerical results in Sectld Section[M concludes the paper. Lengthy

proofs of some results are given in Appendices after Sefflon

Il. PROBLEM FORMULATION, ASSUMPTIONS AND PRELIMINARIES
A. Preliminaries

The CS system is given byl(1). We use anx 1 random vectow to denote the noiseless sample

vector, i.e.,
w = Px. (2)

Thus, the signak, the noiseless sample vecter, the noisy sample vectgr and the reconstructed
signal x form a Markov chain, i.e.x -+ w — y — %, as shown in Fid.J1, where the CS system is

viewed as an information theoretic channel.

X—

A A

Decoder |

=i Encoder p=—wr—p: Channel y

Fig. 1: Block diagram of a CS system.

In this paper, we consider an additive white Gaussian ndisarel, i.e., the noise € R consists
of m independent and identically distributed (i.i.dV)(0, 1) random variables. Accordingly, the average
per sample signal-to-noise ratio (SNR), denotedyasan be defined as the ratio of the average energy
of the noiseless samples to the average energy of the noisgi.e.,

A Elliw]3] _ E[w|]
TEB T m 3)

y

whereE[:] denotes the expectation of a random variable @nd ||» stands for the/s-norm of a vector.
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Assuming that all elements & have the same expected valug: and using the assumption that the
signal and noise are uncorrelated, the SNR can be written as

Y= tr(Zw) + mudy @

m

where Xy, denotes the covariance matrix of, andtr(-) refers to the trace of a matrix. So we have
tr(Zw) = my — mu,. According to [19], the channel capacity, i.e., the numidebits per compressed

sample that can be transmitted reliably over the channélenaS system, satisfies
1
C< 5 log(1 +~ — pdy,) bits/sample. (5)

Throughout this paper, the base of the logarithm is 2. Thealg@guin (5) is achieved wherEy, is
diagonal and the diagonal entries are all equaf toi,. In other words, the equality is achieved when
the samples inw are statistically independent and have the same varianeal émy — ;%,. Based on
this result, [[19] gives a lower bound on the sampling afe m/n when a distortionD is achievable,

that is,
2R(D)

~ log(l+7 — p3y)
asn — oo, WwhereR(D) is the rate-distortion function, which gives the minimahmer of bits per source

(6)

symbol needed in order to recover the source sequence witgiven distortionD, and D 2 E[d(x,%)]
is the average distortion achieved by the CS system. Herelisitertion between twa x 1 vectorsx

andx is defined by
< —_— 1 - . 7 .
d(X, X) - E ;:1 d('mh xl) (7)

wherez; andz; denote, respectively, theth elements ofx and x, and d(x,x) and d(x;, ;) are the
distortion measure between two vectors and two symbolpeisely.

However, when the samples in the noiseless sample vectxe correlated, i.e3ly is not a diagonal
matrix, the upper bound on the channel capacityn (5), and accordingly the lower bound on the
sampling rated in (@), can never be achieved. In this paper, we aim at showiegeffects of sample

correlation on these bounds.

B. Stochastic Signal Assumptions

Consider the following assumptions on the random vegtar @ C R™ where Q is a compact subset
of R™:

(S1) i.i.d. entries Elements ofx are i.i.d.;
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(S2) finite variance The variance ofr; is 03 < oo for all i.

These stochastic signal assumptions sometimes are eferras Bayesian signal model, and are
commonly used in the literature [11], [13], ]15[, |19]. Inditlon, sparsity assumption, i.ex, is an s-
sparse signal, is sometimes adopted by using a specifidodistn [13], [15]. In this paper, we consider
the general signal that is sparse in some orthonormal biastgad of the signal that is sparse only in

the identity basis. Thus, the sparsity assumption is notseary.

C. Samples Assumptions

A practical application of CS is the AIC which avoids higheaampling [[3], [[5]. The structure of
the AIC based on the random modulation pre-integration (RN&proposed in[[B], as shown in F[g. 2.
Here the signak(¢) is an analog signal, and each wavefappit) corresponds to a row in the sampling
matrix ®. The AIC device consists of several parallel BMIs. In eachlIBiMe analog signal is multiplied
to a random sampling waveforg(¢) and then is integrated over the sampling pefiadObviously, in
the AIC shown in Fid.R2, the number of samples is equal to theber of BMIs.

In the segmented CS architecturé [8], the sampling makrizan be divided into two parts, i.e.,

where ®, € R™*" is the original part, i.e., a set of original uncorrelatednping waveforms, and
P, € R™*" s the extended part. Here = m, + m., with m, andm,. being the number of original
samples and the number of additional samples, respectiValys, the noiseless sample vectorcan

also be divided into two parts, i.e.,

Wo

We
wherew, = ®,x andw, = ®.x are the original sample and additional sample vectors ectisely. In
w,, we havem, original samples, and iw., we havem, additional samples. In practice, there aug
BMIs and the integration period is split into¢ sub-periods([8]. Each BMI represents a rowd®f, and
it outputs a sub-sample at the end of every sub-period. Hemeean obtaintm, sub-samples during
sub-periods from then, BMIs. With all thesetm, sub-samples, we can construgt, original samples
in w, andm, additional samples i, as follows.

An original sample inw, is generated by accumulatinigsub-samples from a single BMI. Thus, the

m, BMIs result inm,, original samples inw,. For each additional sample ., we consider a virtual
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Fig. 2: The structure of the AIC based on RMPI.

BMI, which represents a row o®P.. At the end of every sub-period, the virtual BMI outputs orfe o
the m, sub-samples from theu, real BMIs, and thus, after sub-periods, an additional sample can be
generated by accumulatingsub-samples over thiesub-periods. It is required that for each virtual BMI,
the ¢t sub-samples are all taken from different real BMIs (i.e.,two sub-samples are taken from the

same real BMI). Thus, it is required thak m,,.

Example 1. Whenm, = 3 and the integration period is divided into 3 sub-periods, Fig. 3 illustrates
how additional samples are constructed. In Hig. 3, sub-&mmgre represented by rectangle boxes, and
their corresponding sub-periods are represented by trerscof the rectangle boxes: red, yellow, and
blue colors mean the first, second, and the third sub-perniedpectively. We have three original samples:

w1, ws, andws. Each original sample consists of three sub-samples frensdime real BMI. The humber
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Fig. 3: Construction of additional samples.

inside the “sub-sample” box indicates the index of the oagjisample (the index of the real BMI) that

it comes from. We have the following observations on the talthl samplesv,, ws andws.

« Each additional sample consists of 3 sub-samples withrdifteindices, which means that the sub-
samples are selected from 3 different real BMls.

o The order of the sub-samples in each additional sample isyedbw and blue. It means that the
i-th (i = 1,2, 3) sub-sample in an additional sample comes fromittte sub-sample of an original

sample, which is the output of the corresponding real BMItfa i-th sub-period.

From the above description, it can be seen that enlyparallel BMIs are needed in the segmented
CS-based AIC device, and (> m,) samples in total can be collected. This implementatiomisvalent
to collecting additional samples by multiplying the sigmalh additional sampling waveforms which are
not present among the actual BMI sampling waveforms, biteragach of theses additional sampling
waveforms comprises non-overlapping sub-periods of wiffe original waveforms.

Consider the following assumptions on the sampling mafrix R™*". The assumptions are
(M1) non-adaptive sampledhe distribution of® is independent of the signal and the noise;
(M2) finite sampling rate The sampling raté is finite;
(M3) identically distributed Elements of® are identically distributed;
(M4) zero meanThe expectation ob(i, j) is 0, whereg(i, j) denotes thei, j)-th element of®;

(M5) finite variance The variance of(i, j) is 1/n;
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(M6) independent entries @b,: Elements of®, are independent;

(M7) uniform segment lengttieach row of® can be divided inton, segments of length i.e.,l = n/m,

is an integer; the-th (@ € {1,2,...,m,}) segmentis corresponding to th#h sub-period discussed
before;
(M8) one-segment correlatiorFor each row of®., thei-th (i € {1,2,...,m,}) segment is copied

from thei-th segment of a row o#,, while ensuring that each row @, contributes exactly one
segment to each row a@b.. In other words, each row @b, is correlated to each row @b, over

one segment only.

In this paper, we consider general assumptions, i.e., tsangstions (M1)—-(M6) on the sampling
matrix, which have also been used, for example[in [15]. Ram@Gaussian matrix is a specific example
of the sampling matrix satisfying the assumptions (M1)-JM#&d it has been used for the information
theoretic analysis on sparsity recovery or CS in some otloeks\C], [11]-[14]. Actually, the assumptions
(M1)—(M6) reflect the setting that the samples are randonjeptions of the signal, and the original
samples inw, are uncorrelated. In addition, the assumptions (M7) and) (@h@racterize the segmented
CS architecture[]8]. Specifically, the integration periddis equally divided into several sub-periods,
as suggested by the assumption (M7). We further assume iasthenption (M7) that in each sample,
the number of sub-periods/segments is alsg which is the same as the number of BMIs and also
the number of original uncorrelated samples. As descrilafdrb, thei-th sub-sample in an additional
sample comes from theth sub-sample of an original sample. This feature of therssged CS-based
AIC device is reflected in the assumption (M8).

Based on these assumptions (especially assumptions (M{M#8)), it can be seen that each row®f
(as well as each additional samplevin) actually corresponds to a permuted sequendg o, . .., m,),
depending on the source BMI indices of the, segments of the row ob.. For example, as shown in
Fig.[3, additional samplev; corresponds to the sequen@e3, 1), which means the first, the second and
the third sub-samples af; come from the second, the third and the first BMIs, respdgtiVénus, there

are at mostn,! rows in ®. and we have the following observation on thg! potential rows.

Lemma 1: Thesem,! potential rows can be divided inton, — 1)! groups, where each group consists

of m, uncorrelated rows.

Proof: Here we give an example of such grouping scheme.

IHere, for any two rows inB, if they have a common segment in a sub-period, we say thedws are correlated over that

segment/sub-period.
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Since each of then,! rows corresponds to a permuted sequencéldt, ..., m,), we need to prove
that them,! possible permuted sequences (including the sequ@nee...,m,) itself) can be divided
into (m, — 1)! groups, and in each group, we havg sequences in which any two sequences do not
have correlatiot.

First, among them,! sequences, we consider those sequences whose first elemeniThere are
(m, — 1)! such sequences. We put thoge, — 1)! sequences irfm, — 1)! groups, with each group
having one sequence. Then, in each group, we perform cyiit @ the corresponding sequence and
we can generate:, — 1 new sequences by performing cyclic shift, — 1 times. In other words, in each
time we move the final entry in the sequence to the first pasitichile shifting all other entries to their
next positions. So in each group, we hawg sequences now, and the, sequences are uncorrelated.
It can be seen that: 1) totally there are,! sequences in thém, — 1)! groups; 2) in each group, any
two sequences are different; 3) any two sequences from tferetfit groups are different. Therefore, the

above grouping satisfies Lemma 1. This completes the proof. [ |

Lemma 2: If m, is a prime, we can findm, — 1) groups from thgm, — 1)! groups constructed as in

Lemmd_lL such that any two rows from different groups are ¢ated over one and only one segment.

Proof: Throughout the proof, we establish the mapping from row tgusace as described in the
proof of Lemmd L. Considdrmn,— 1) sequences as follows: in thi¢h sequenc®; (i = 1,2, ...,m, — 1),
the k-th element§ = 1,2,...,m,) is [1 + (k — 1)i]| modm,. It is obvious that thesém, — 1) sequences
belong to (m, — 1) different groups, and they are correlated over the first efgnonly. Let thei-
th sequenceR; belong to thei-th group denoted ag;. As shown in Lemmadll, the resin( — 1)
sequences in groug; can be obtained by performing cyclic shift oR;. Therefore, ing;, for the
sequence whose first elementjisthe k-th element of the sequence can be express€d agk — 1)i]
modm, (j,k =1,2,...,m,).

For any pair of(, j) and (¢, j') wherei # ¢, 4,7/ € {1,2,...,m,— 1} andj, ;' € {1,2,...,m,}, the
greatest common divisor of { i') andm,, denoted GCD(-1’, m,), is 1 sincem, is a prime. Therefore,
we have—(j — j/) = 0 mod GCD{ — i’,m,). Then according to the linear congruence equation, with

given pair of (¢, 7) and (7, j'), the equation

(k—1)(i—i)=—((—3) mod m,
’Recall that each potential row (f@b.) corresponds to a permuted sequencelo®, ..., m,). For any two rows, if they
are correlated over thgth segment/sub-period, the two sequences of the two rowes the same element at theth position.

Accordingly, we say the two sequences are correlated oeej-th position.
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11

has an unique solutiok* € {1,2,...,m,} [22]. In other words, we can always find one and only
onek* € {1,2,...,m,} that makes[j + (k* — 1)i] = [j’ + (k* — 1)¢] mod m,. Therefore, for any
two sequences from two different grougsand G;., they are correlated over exactly one position. This
completes the proof. [ |

Define theextension rate of the CS systemith correlated samples as the ratio of the number of
additional samplesn. to the number of original samples,, i.e., « 2 me/me. In this paper, we
consider two kinds ofb,:

(M9a) ®. consists ofm,. rows withm,. < m,; all thesem, rows are uncorrelated, and are taken from
one of the(m, — 1)! groups of potential rows constructed as shown in Lerhina lhisdase,
a<l;

(M9b) @, consists of all rows inv groups of potential rows constructed as shown in Lerhina 2y t

casea=1,2,...,m, — 1.

I1l. M AIN RESULTS

The channel capacit¢’ of the CS system (see Fig. 1) is studied in this section. Tkamcdl capacity
in the considered setup gives the amount of information tzet be extracted from the compressed
samples. Meanwhile, the rate-distortion functiBiD) gives the minimum information (in bits) needed
to reconstruct the signal with distortioP for a given distortion measure. Accordingly, an inequality
betweenC' and R(D) can be given using the source-channel separation ther8nwhich results in
a lower bound on the sampling radeas a function of distortiorD and SNR~. Apparently, when the
CS system has correlated samples, the amount of inform#tatincan be extracted from the samples
decreases. In other words, the channel capaCitig smaller than that of the CS system in which all
samples are uncorrelated. Thus, we expect a penalty terheingper bound on the channel capacity
and in the lower bound on the sampling rateAccording to assumption (M8), in the sampling matrix
®, an additional row is correlated with an original row ovee@egment. Thus, when the variance of the
signal, the variance of the entries ®f and the length of the segment are fixed, as assumed in (S2), (M
and (M7), respectively, the correlation between an aduiticample and an original sample is fixed. The
penalty term caused by the fixed correlation among sampldsé@issed in the remaining part of this

section.
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A. Case 1l.a <1

The following lemma gives a bound on the capacity of the C3esyswith correlated samples and a
sampling matrix satisfying the assumption (M9a).
Theorem 1. For a signal satisfying the assumptions (S1)-(S2) and a Baghmatrix satisfying the
assumptions (M1)-(M8) and (M9a), the maximal amount ofrin&dion that can be extracted from the

samples is given by

m 1 ol 2
< — — — _ .
C < 5 log(y+1) + 2log [1 <7+1> a] (8)

with equality achieved if and only i ~ N(0, Xy ).
Proof: See Appendix’A and then follow with AppendiX B for the proof. |
It can be observed that the second term on the right-hamdediB) is a function ofy and« and it is
always non-positive. Thus, this term has a meaning of thalpeterm caused by the fixed correlation
among samples. Furthermore, if the total number of sampleis fixed, the upper bound iri1(8) is
obviously decreasing as increases, which means that when the total number of samplsdixed, it is
better to have less correlated samples. However, usu&lpimber of original samples, (not the total

number of samples) is fixed, and we are interested in the best extensionaa&ncem = (14 «a)m,,

2
C< WIOg(’y—F 1)+ %log [1— <L> 'a] ) 9)

(B) becomes

y+1

The right-hand-side of{9) is not always an increasing fiomcof o. However, noting that 2 Me /Mo

wherem, is an integer, we have the following observation on the ufpmemd in [9).

Lemma 3: The maximum of the upper bound 6hin (@) is achieved whea = 1 for all m, > 1 and

positive~y.
Proof: Denote the right-hand-side dfl(9) &$«). Thus, the first-order derivative gf(«) is given

by
1 ’y2

2In2 (y+1)2 — 72’
Obviously, f'(«) is a strictly decreasing function af for 0 < o < 1. Thus, f’(1) < f'(«) < f(0),

flla)= % log(y +1) — (10)

where
/ My . 1 /72
o Mo 14
1) = o +1) = gyt (12)
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We first show thatf’(0) > 0. Let g(v) = In(y + 1) — /(v + 1). The derivative ofg(y) is

r 1 B ot
v+ (y+1?2 (y+1)7?
Thus, g(y) > ¢(0) = 0 and we haven(y + 1) > v/(y + 1) for v > 0. Using [11), we then have the

> 0.

g ()=

following inequality

2
£(0) me Y 1 Y

7 3m2y+1 22 (y+ 1)
1 vy 1 72
> - 13
“2In2y+1 2In2(y+1)2 (13)
1 Y

>0

T 22 (7 + 1)
where the second inequality follows from, > 1.

If « can be chosen from a continuous set between 0 arnfd(&) is a strictly decreasing function of
«. Note thatf’(0) > 0. Therefore, whery’(1) > 0, the maximum off («) is achieved aty; = 1; when
f'(1) < 0, the maximum off () is achieved atvy = (v + 1)2/9? — 1/[m, In(y + 1)], which makes
/() =0.

Sincem, > 1, we have

meay — (my — 1)

e <7+1>2‘1 CESRCED 4
<7+1> ln71+1) (15)
ey
_ 0+ 1 >0

where [1b) follows from the fact thaf (L4) is an increasingdiion of m,, and [16) follows from the
inequalityIn(y 4+ 1) > ~v/(y + 1). Therefore,cs > (m, — 1)/m,. Noting thata can only take a value
from the discrete sef0,1/m,,2/m,,...,1}, when f'(1) > 0, the maximum off(«) is achieved at

a; = 1; when f/(1) < 0, the maximum off(«) is either f(«1) or f(«as), whichever is larger. Here
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ag = (my, —1)/m,. We have

flan) = f(as)

1 2
:molog(’y+1)+§log [1— <

1 v ) me—1 17
- <7 + 1) Cme | a7
Sincelog |1 — (y/(y +1))*- (m, — 1)/m0] < 0 consideringm, > 1, we have
flar) = flas)
1 vy 2
> bﬁ7+D+§bgP—(——J

1

2 v+1

1 2v+1

=1 0.
2 Og[vﬂ] g

Thus, f(1) > f((m, — 1)/m,). In other words, the maximum of(«) is always achieved when = 1.
This completes the proof. [ |

Based on Theoref 1, a lower bound on the sampling &asegiven in the following theorem.
Theorem 2: For a signal satisfying the assumptions (S1)—-(S2) and a Baghmatrix satisfying the
assumptions (M1)—(M8) and (M9a), if a distortidn is achievable, then

oR(D) 18 [1 B (#)2 ' O‘}
“log(y+1) n log(y + 1)

(18)

asn — oo.

Proof: According to the source-channel separation theorem farelis-time continuous amplitude
stationary ergodic signals, can be communicated up to distortidn via several channels if and only
if the information contenCC' that can be extracted from these channels exceeds the mtformcontent
nR(D) of the signalx [24]. In other wordspR(D) < C whenn goes toco. According to Theoreril1,
the information conten€ is upper bounded by {8). MeanwhileR(D) gives the minimal number of

bits in then source symbols ix needed to recovex within distortion D.
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Therefore, we have

m 1 0% 2
D)<(C<—1 1 — 1 1—( —— .
nR(D) < C < 5 og(vy + )—1—2 og[ (’y+1> a]

which implies that
2
S e R
_m_ oR(D) 1 - ()]

6= > -
n —log(y+1) n log(y +1)

This completes the proof. [ |

If « =0, i.e., all samples are uncorrelated, the result is esdlgrfiee same as that in [19]. & > 0,
the second term on the right-hand-side[of] (18), which is tmeafty term, is vanishing as — oc. In
other words, the penalty because of the fixed correlationngnsamples vanishes as — oc.

Note that the original sampling ratg 2 me/n = 6/(1 + «) is the parameter to be designed for a
segmented CS-based AIC device. Thus, it is interestingudyshow the extension rate affects the
requiredd, in order to achieve a given distortion level. In termsdgf the inequality [(I8) becomes

1 oR(D) 1'% {1_ (ﬁ)z'a]

5, > = . 19
“l14a|log(y+1) n log(y +1) (19)

Although the optimaly that minimizes the right-hand-side df {19) is not easy to find from this
expression, it can still be observed thatas— oo, the right-hand-side off (19) becomes a strictly
decreasing function af, which means that the required original sampling rate dege as the extension
rate« increases. Considering that[19) essentially corresptn@), Numerical Example 1 in SectiénllV
shows that the lower bound aiy behaves similar to the upper bound 6nin (@), and the minimum is

achieved whenv = 1 sincea can only take values fror, 1/m,,2/m,, ..., 1.

B. Case 2a=1,2,...,m,—1

The following lemma now gives a bound on the capacity of thes§&em with correlated samples

and a sampling matrix satisfying the assumption (M9b). Teisma extends the result of Theoréin 1.

Theorem 3: For a signal satisfying the assumptions (S1)-(S2) and a Baghmatrix satisfying the
assumptions (M1)—-(M8) and (M9b), the maximal amount ofrin&édgion that can be extracted from the
samples is given by

a+

<
Cs 2

log(y+1) —

o] 3

1 1
log(y+1) — 5 log ((14+a)y+1) (20)
with equality achieved if and only i ~ N(0, Zy).
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Proof: See Appendix’A and then follow with AppendiX C for the proof. [ |
It can be observed that the terms in the square brackets argtitehand-side of[(20) are the penalty
terms caused by the fixed correlation among samples. We haviollowing observation on the upper
bound onC in (20).

Lemma4: Considering thatv is an integer in{1,2,...,m,—1}, the upper bound o6’ in (20) increases

as « increases.

Proof: Denote the right-hand-side df (20) &éx). Then we have

1—|—(a—|—2)7]
14+ (a+1)y]

Since(1+ (a+2)y)/(1+ (a+1)) > 1, m, > 1, andy > 0, we haveh(a + 1) > h(a). This completes

o1 1
h(a+1)—h(a):m2 10g(’y+1)+§log[

the proof. |

Whena = 1, the result in[(ZD) is the same as thatfih (8). From the proafofimd3B we can see that the
upper bound o@ in (@) is an increasing function ef whena takes values from0, 1/m,, 2/m,, ..., 1},
and thus the maximum of the upper bound @nin (8) is achieved whemx = 1. From LemmaH},
the minimum of the upper bound off in (20) is achieved whemx = 1. Thus, the upper bound on
C in (20) is always higher than that i](8). This is reasonal#eanse when the number of original
uncorrelated samples,, is fixed, more correlated samples can be taken with assum{}eb) than that
with assumption (M9a).

Based on Theorei 3, a lower bound on the sampling fasegiven in the following theorem.

Theorem 4: For a signal satisfying the assumptions (S1)-(S2) and a Baghmatrix satisfying the
assumptions (M1)—(M8) and (M9b), if a distortidn is achievable, then

2R(D) Lo +1  1llog[(1+a)y+1]
~ log(y+1) n n  log(y+1)

(21)

asn — oQ.

Proof: The proof follows the same steps as that of Thedrém 2. |
In this case, the penalty brought by the fixed correlatiomvbeh samples also vanishesrass co.

Similar to the case ofr < 1, the original sampling raté, satisfies

1 2R(D) 1log[(1+ a)y+1] 1
% 2 1+« <log(7—|—1) “n log(v+1) > T (22)

As n — oo, the right-hand-side of (22) becomes a strictly decreagingtion of o, which means that

the required original sampling rate decreases as the éaterste« increases.
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Fig. 4: Upper bound on the capacify in (@) versusa.

V. NUMERICAL RESULTS
To illustrate Lemma13, we consider the following example.

Numerical Example 1. Consider the sampling matrix satisfying assumptions (NMIg) and (M9a).
Let the SNR~ be 20 dB, the number of original samples, be 3, and the signal's length be 100.

The rate-distortion functioR(D) is 0.2 bits/symbol in the example.

Figs[4 and b show the upper bound 6hin (@) and the lower bound on, in (I9), respectively,
for different values ofn. It can be observed from both figures that the optimum, ite,maximum of
the upper bound od' (or the minimum of the lower bound o) is achieved atv = (y + 1)2/42% —
1/[moIn(y+1)] = 0.95 if a can take any continuous value between 0 and 1. However,denirsj that
a can only take value8, 1/3,2/3 and1 in this example, as shown by the points marked by *’ in both
figures, the optimum is achieved at= 1. This verifies the Lemmil 3.

Next, we illustrate Theorenid 2 afhd 4.

Numerical Example 2: Consider ars-sparse signat where the spikes have uniform amplitude and the

sparsity ratios/n is fixed as10~*. In this case, it is well known that precise descriptionxofvould
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Fig. 5: Lower bound on the original sampling rakein (I9) versusx.

require approximateog (’;‘) ~ slog(n/s) bits [19]. Accordingly,R(D) is approximately calculated as
(s/n)log(n/s) = 0.0013 bits/symbol.

In Figs[6 and17, the lower bounds on the sampling fate either [18) or[(2ll) (based on the value
of a) for n = 10° andn = 107 are shown. It can be observed from both figures that as the $NR
increases, the lower bound on the sampling fatkecreases, which means that fewer samples are needed
for a higher SNR. Besides, as increases, the lower bound @nincreases as well. The gap between
the curve witha = 0 and that with the other values af is the penalty brought by the fixed correlation
among samples. However, comparing Higs. 6[@nd 7 to each dtban be seen that this penalty vanishes

asn increases, which verifies the conclusions obtained basethenrem$ P andl 4.

Numerical Example 3: Continuing with the same setup as used in Exariple 2nlet 107. In the
segmented CS architecture, the additional samiples can be obtained from the original sampkesx
[8]. Thus, in this example we show how the extension rataffects the requirement on the original

sampling rate),.

Fig.[8 shows the lower bound on tlag in either [19) or[(2R) (based on the value @f for different
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Lower bound on the sampling rate

1 1 1 1 1 J
10 20 30 40 50 60
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Fig. 6: Lower bound on the sampling rafeversus SNR for differents = 0, 1,5 whenn = 10°.

extension rates. It can be observed that asincreases, the lower bound on the original sampling rate
), decreases, which means that fewer original samples areeddedachieve the same reconstruction
performance. This confirms and explains the advantage oigusegmented CS architecture over the

non-segmented CS architecture onelof [5].

V. CONCLUSION

The performance limits of the segmented CS have been stuwdiede samples are correlated. When
the total number of samples is fixed, there is a performangeadation brought by the fixed correlation
among samples by segmented CS. This performance degradatharacterized by a penalty term in
the upper bound on the channel capacity of the corresporsdingpling matrix or in the lower bound
on the sampling rate. This degradation is vanishing as tmewsion of the signal increases, which has
also been verified by the numerical results. From anothertdiview, as the extension rate increases,
the necessary condition on the original sampling rate téeaeha given distortion level becomes weaker,
i.e., fewer original samples (BMls in the AIC) are neededisNerifies the advantages of the segmented

CS architecture over the non-segmented CS one.
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Lower bound on the sampling rate
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Fig. 7: Lower bound on the sampling rafeversus SNR for different = 0,1,5 whenn = 107.

APPENDIX A

COMMON START OF PROOF FORTHEOREMS[I] AND

The channel in Fidl]1 can be formalized as

y=wW+z. (23)
The channel capacity is given as [25]
C= max I(w;y) (24)
pwy (W,y)

where pyyy (w,y) denotes the joint probability of twen-dimensional random vectorsr and y and
I(w;y) denotes the mutual information between two random vectorandy. Let i(-) denote the

entropy of a random vector. Then, the mutual information lsarexpressed as

I(w;y) = h(y) — M(y|w) = h(y) — h(2). (25)
Sincez consists ofm i.i.d. N'(0,1) random variables, the entropy ofis 0.5log(2re)™. The entropy of

y satisfies[[25]
1
h(y) < 5 log(2re)"[Ey| (26)
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Lower bound on the original sampling rate

SNR (dB)

Fig. 8: Lower bound on the original sampling rateversus SNR for different: = 0, 1,5 whenn = 10”.

with equality achieved if and only i¥ ~ A (0, Xy ), where| - | denotes the determinant of a matrix and

3y stands for the covariance matrix of Accordingly, the capacity satisfies

1
C= max I(w;y) < max —log|Xy]| (27)
PY(Y) 2

pwy (W,y)
wherepy (y) denotes the probability function of a random vecyorTherefore, we are interested in the
determinant of the covariance mat®y . According to [2B),Xy = Xy + I, wherel,, is them x m
identity matrix.
Throughout the proof, denote thigh element of a vector using a subscripe.g., thei-th element of

w is w;. According to the assumptions (M1) and (M4), we have

Elw;] =E | > ¢, 5)z; | =Y _E[¢(i,j)|E[z;] =0 (28)
j=1 =1
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fori e {1,2,...,m}. For anyi,j € {1,2,...,m}, we have

E[wiw;] = [Z¢1pwpz¢]q ]
= Z ZE[¢(i,p)¢(j, q)TpTq)-

p=1 g=1
According to the assumption (M1), we can further write that

E[wsw;] = ZZE (i, 2)0(j, Q)| E[zpy].

p=1 g=1
Moreover, according to the assumptions (M6) and (M8), foraet g, ¢ (i, p) ande(j, ¢) are uncorrelated.
Thus, the following statement

El¢(i,p)¢(j,q)] =0

is true forp # q. SinceE[wi] = 0% that follows from assumption (S2), we obtain

wzwy ZE Z p j p)] (29)

Obviously, depending on the assumptlon (M9a) or (M9b), tekavior of Xy differs, and thus, the

determinant of¥y differs. We discuss the determinant Bf in the following subsections.

APPENDIX B

COMPLETING PROOF OFTHEOREM[]]

According to [29) and assumptions (M5), (M6), (M8) and (M9ag have

wlw] ZE Z p j p)]

0%, i=]
07 1ézaj§m0717é]
=90, me+1<uj<mi#]j (30)

I<i<me,me+1<j<m

X
Mo’
e me+1<i<m, 1< j <my.
Thus, Xy can be divided into four blocks, i.e.,

0.2

S = X Mo mo T XTe (31)

X 2
e | EMmexmg Ox - Ime
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wherel,, «m,. andl1,, «,, are matrices of all ones of dimensiom, x m. andm, x m,, respectively.

Accordingly, 3y can be written as

Yy =Yw + 1y

2 o%
_ (O-ZX + 1) ' Imo m_o ’ 1m0><me ) (32)
X

Mo ’ 1me><mo (O%( + 1) : Ime
According to Section 9.1.2 of [26], the determinaBly-| of the block matrix3y can be calculated as
2

\zyyz(a§(+1)m-[1—< ox )2.a]. (33)

a§<+1

According to [[8) and[(30), the SNR can be expressed aso%. Substituting [(3B) into[(27), the upper

bound on the capacity can be expressed as a functienawfd o, i.e.,

Cg%log{(’y+l)m~ [1—(#)2@”

m 1 ol 2
=1 D+-log [1—[——) -af. 34
20g(7+)+20g[ <7+1> a] (34)
The equality in[(3}) is achieved when~ N (0, Xy ). This completes the proof. [ |
APPENDIXC

COMPLETING PROOF OFTHEOREM[3

Recall that®, consists of all rows inv groups of potential rows constructed as shown in Lerhima 2.
In the following, them, rows of ®, are considered as a group as well. Thereforepinwe have all
rows from (a + 1) groups.

First, according to assumption (M5) we have

> E[¢(i,p)$(j.p)] =1 (35)
p=1
for everyi = j € {1,2,...,m}. Second, since any two rows within one of the + 1) groups are
uncorrelated, we have .
> E[6(i,p)¢(4,p)] = 0 (36)
p=1

for any pair of (i, j) € {(i,)li £ j,1 <i < m,1 < j <m,[i/m,] = [j/m,]} where[-] denotes

the ceiling function. Thirdly, as reflected in assumption8jMind Lemmad 2, two rows taken from two
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different groups are correlated over one segment, whicltédmes that the correlation between the two
rows is1/m, according to assumptions (M5) and (M7). Thus, we have
> El6(i, p)é(j,p)] = 1/m, (37)

p=1
for any pair of (i, ) € {(4,5)|[i/mo] # [j/mo], 1 <i<m,1 <j<m}.

Let U(1) = 0% - I,,,,, and defineU(k + 1) € REFDmox(k+me for p = 1,2,... a as follows,

2
ox

o% - L, X 1y, xkm
U1y = | "
m_)i “Lkm, xm, U(k)
Combining [29),[(3b),[(36), and_(B7¥ - can be written in the following form
o -1, ok . 1, <m
Sw=Ula+1)=| , X T me Tmexme (38)
ZT)Z L xm, U(a)
Accordingly, 3y can be written as
Yy =Yw + 1y
0% 1) Lo, 25 Lo sm
@D T 5L | o)

fn_% Lmoxm,  Ula) + 1L,
Define akm, x km, matrix V(k) = 1/(c% +1)-[U(k)+1gy,] for k =1,2,...,a+1. Then,V(1) = I, ,

and
V(k+1)=1/(c% +1) - (Uk+1) +Lji1ym,)
o L, mio L, xkm,
- ,5 “Lim,xm, V(k)
where0 < 8 = 0% /(0% + 1) < 1. Therefore,Ey = (0% + 1)V(a + 1), and thus|Ey| = (c% +
D)™V (a+1)).

Denote the eigenvalues and the corresponding eigenvexftdfék) as\;’s andq;’s for 1 < i < km,,

respectively k = 1,2, ....a+ 1). For a pair of\; andg;, we have
(V(k) = Ailkm, )i = O, x1 (40)

where0y,,, x1 Stands for a vector of all zeros with dimensiom,, x 1. Thus, corresponding;’s comprise

the basis of the null space of
V (k) — Nilkm,

1- /\2 Im m. 1m —1)m
— ( ) o Mo ox(k 1) o . (41)

mio Agmymyxm, VI(k—1) = ANl 1)m,
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We have the following lemma.

Lemma 5: The eigenvalues o¥ (k) have three different values.
e )\, =1 and there are(m, — 1)k corresponding eigenvectorg. They satisfyl; .z, q; = 0.
e A\; =1—f and there arg(k — 1) corresponding eigenvectorg. They satisfyl;xm, d; = 0.

e \; = 1+ (k—1)p and there is a single corresponding eigenveefprlt satisfiesl xxm, qi = vVkmo.

Proof: Divide the matrix shown in (41) inté sub-matrices, with théth (i = 1,2, ..., k) sub-matrix
B; € RFmexm. consisting of the/(i — 1)m, + 1]-th column to theim,-th column.

When \; = 1, the diagonal elements of the matrix [n41) are all zerosatt be observed that within
each sub-matri¥B;, the columns are identical. Sineg’s comprise the basis of the null space [ofl(41),
there are(m, — 1)k such eigenvectors ant, x s, q; = 0.

When )\; = 1 — 3, the diagonal elements of the matrix [0(41) are all equab.tdt can be observed
that for each sub-matriB;, we haveB;1,, x1 = Blgm,x1. Thus, there arék — 1) corresponding
eigenvectors and « . q; = 0.

When \; = 1 + (k — 1), the diagonal elements of the matrix [N 141) are all equakté — 1). It
can be observed th&V (k) — \jIx,,. |1xm,x1 IS @ vector of zeros. Thus, there is a single corresponding
eigenvector and it satisfiely « .., q; = v/km, considering that|q;||s = 1.

The matrixV (k) is symmetric, and thus it has totaltyn, mutually orthogonal eigenvectors. We have
already found all of them. Thus, there are no other eigeeghlnd eigenvectors. This completes the
proof. |

Using these remarks, the determinant\ofk) can be obtained as
IV(E) = (1= ) (1 + (k- 1)B). (42)
Accordingly,
Sy| = (0% +1)"|V(a +1)]
= (0% + )™ (1 = B)* (1 + ap).

Noting thaty = 0% and = 0% /(0% + 1), the upper bound on the capacityin (27) can be expressed

as
1 m v\ ay
< Z . — .
R R )
m a+1 1
=5 log(vy+1)— 5 log(v+ 1)—1—5 log [(1+a)y+1]. (43)
The equality in[(4B) is achieved when~ N (0, Xy ). This completes the proof. [ |
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