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Performance Limits of Segmented Compressive

Sampling: Correlated Samples versus Bits
Hao Fang, Sergiy A. Vorobyov, and Hai Jiang

Abstract

This paper gives performance limits of the segmented compressive sampling (CS) which collects

correlated samples. It is shown that the effect of correlation among samples for the segmented CS can be

characterized by a penalty term in the corresponding boundson the sampling rate. Moreover, this penalty

term is vanishing as the signal dimension increases. It means that the performance degradation due to the

fixed correlation among samples obtained by the segmented CS(as compared to the standard CS with

equivalent size sampling matrix) is negligible for a high-dimensional signal. In combination with the

fact that the signal reconstruction quality improves with additional samples obtained by the segmented

CS (as compared to the standard CS with sampling matrix of thesize given by the number of original

uncorrelated samples), the fact that the additional correlated samples also provide new information about

a signal is a strong argument for the segmented CS.

Index Terms

Compressive sampling, channel capacity, correlation, segmented compressive sampling.

I. INTRODUCTION

The theory of compressive sampling/sensing (CS) concerns of the possibility to recover a signalx ∈ R
n

from m (≪ n) noisy samples

y = Φx+ z (1)
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wherey ∈ R
m is the sample vector,Φ ∈ R

m×n is the sampling matrix, andz ∈ R
m is the random noise

vector [1]–[3]. In a variety of settings, the signalx is ans-sparse signal, i.e., onlys (≪ n) elements in

the signal are nonzero; in some other settings, the signalx is sparse in some orthonormal basisΨ, i.e.,

the projection ofx ontoΨ is ans-sparse signal. An implication of the CS theory is that an analog signal

(not necessarily band-limited) can be recovered from fewersamples than that required by the Shannon’s

sampling theorem, as long as the signal is sparse in some orthonormal basis [1]–[4]. This implication gives

birth to the analog-to-information conversion (AIC) [3], [5]. The AIC device consists of several parallel

branches of mixer and integrators (BMIs) performing randommodulation and pre-integration (RMPI).

Each BMI measures the analog signal against a unique random sampling waveform by multiplying the

signal to the sampling waveform and then integrating the result over the sampling periodT . Essentially,

each BMI acts as a row in the sampling matrixΦ, and the collected samples correspond to the sample

vectory in (1). Therefore, the number of samples that can be collected by the traditional BMI-based AIC

device is equal to the number of available BMIs. The RMPI-based design has already led to first working

hardware devices for AIC, see for example [6]. Regarding theimportant areas within CS, it is worth

quoting Becker’s thesis [6]: “The real significance of CS wasa change in the very manner of thinking

... Instead of viewingℓ1 minimization as a post-processing technique to achieve better signals, CS has

inspired devices, such as the RMPI system ..., that acquire signals in a fundamentally novel fashion,

regardless of whetherℓ1 minimization is involved.” However, in the case of noisy samples it is always

beneficial to have more samples for better signal reconstruction.

Recently, Taheri and Vorobyov developed a new AIC structureusing the segmented CS method to

collect more samples than the number of BMIs [7], [8]. In the segmented CS-based AIC structure, the

integration periodT is divided into t sub-periods, and sub-samples are collected at the end of each

sub-period. Each BMI can produce a sample by accumulatingt sub-samples within the BMI. Additional

samples are formed by accumulatingt sub-samples from different BMIs at different sub-periods.In this

way, more samples than the number of BMIs can be obtained. Theadditional samples can be viewed

as obtained from an extended sampling matrix whose rows consist of permuted segments of the original

sampling matrix [8]. Clearly, the additional samples are correlated with the original samples and possibly

with other additional samples. A natural question is whether and how these additional samples can bring

new information about the signal to enable a higher quality recovery. This motivates us to analyze and

quantify the performance limits of the segmented CS in this paper.

Various theoretical bounds have been obtained for the problems of sparse support recovery. In [9]–[13],

sufficient and necessary conditions have been derived for exact support recovery using an optimal decoder
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which is not necessarily computationally tractable. The performance of a computationally tractable algo-

rithm namedℓ1-constrained quadratic programming has been analyzed in [14]. Partial support recovery

has been analyzed in [11], [12], [15]. In [12], the recovery of a large fraction of the signal energy has

been also analyzed.

Meanwhile, sufficient conditions have been given for the CS recovery with satisfactory distortion using

convex programming [2], [16], [17]. By adopting results in information theory, sufficient and necessary

conditions have also been derived for CS, where the reconstruction algorithms are not necessarily

computationally tractable. Rate-distortion analysis of CS has been given in [12], [18], [19]. In [19],

it has been shown that when the samples are statistically independent and all have the same variance, the

CS system is optimal in terms of the required sampling rate inorder to achieve a given reconstruction

error performance. However, some CS systems, e.g., the segmented CS architecture in [8], have correlated

samples.

In [20], the performance of CS with coherent and redundant dictionaries has been studied. Under

such setup, the resulting samples can be correlated with each other due to the non-orthogonality and

redundancy of the dictionary. Unlike the case studied in [20], the correlation between samples in the

segmented CS is caused by the extended sampling matrix whoserows consist of permuted segments of

the original sampling matrix [8]. It has been shown in [8], [21] that the additional correlated samples help

to reduce the signal reconstruction mean-square error (MSE), where the study has been performed based

on the empirical risk minimization method for signal recovery, for which the least absolute shrinkage and

selection operator (LASSO) method, for example, can be viewed as one of the possible implementations

[17]. Considering the attractive features of the segmentedCS architecture, it is necessary to analyze its

performance limits where there is a fixed correlation among samples caused by the extended sampling

matrix.

In this paper, we derive performance limits of the segmentedCS where the samples are correlated. It

will be demonstrated that the segmented CS is not a post-processing on the samples as post-processing

cannot add new information about the signal. In our analysis, the interpretation of the sampling matrix

as a channel will be employed to obtain the capacity and distortion rate expressions for the segmented

CS. It will make it easily visible how the segmented CS bringsmore information about the signal -

essentially, by using an extended (although correlated) channel/sampling matrix. Moreover, it will be

shown that the effect of correlation among samples can be characterized by a penalty term in a lower

bound on the sampling rate. Such penalty term will be shown tovanish as the length of the signaln

goes to infinity, which means that the influence of the fixed correlation among samples is negligible for a
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high-dimensional signal. With such result to establish, weaim to verify the advantage of the segmented

CS architecture, since it requires fewer BMIs, while achieving almost the same performance as the non-

segmented CS architecture that has a much larger number of BMIs. We also aim at showing that as

the number of additional samples correlated with the original samples increases, the required number of

original uncorrelated samples decreases while the same distortion level is achieved.

The remainder of the paper is organized as follows. Section II describes the mathematical setting

considered in the paper and provides some preliminary results. The main results of this paper are presented

in Section III, followed by the numerical results in SectionIV. Section V concludes the paper. Lengthy

proofs of some results are given in Appendices after SectionV.

II. PROBLEM FORMULATION, ASSUMPTIONS AND PRELIMINARIES

A. Preliminaries

The CS system is given by (1). We use anm × 1 random vectorw to denote the noiseless sample

vector, i.e.,

w = Φx. (2)

Thus, the signalx, the noiseless sample vectorw, the noisy sample vectory and the reconstructed

signal x̂ form a Markov chain, i.e.,x → w → y → x̂, as shown in Fig. 1, where the CS system is

viewed as an information theoretic channel.

Fig. 1: Block diagram of a CS system.

In this paper, we consider an additive white Gaussian noise channel, i.e., the noisez ∈ R
m consists

of m independent and identically distributed (i.i.d.)N (0, 1) random variables. Accordingly, the average

per sample signal-to-noise ratio (SNR), denoted asγ, can be defined as the ratio of the average energy

of the noiseless samplesw to the average energy of the noisez, i.e.,

γ
△
=

E[||w||22]
E[||z||22]

=
E[||w||22]

m
(3)

whereE[·] denotes the expectation of a random variable and|| · ||2 stands for theℓ2-norm of a vector.
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Assuming that all elements ofw have the same expected valueµW and using the assumption that the

signal and noise are uncorrelated, the SNR can be written as

γ =
tr(ΣW ) +mµ2

W

m
(4)

whereΣW denotes the covariance matrix ofw, and tr(·) refers to the trace of a matrix. So we have

tr(ΣW ) = mγ−mµ2
W . According to [19], the channel capacity, i.e., the number of bits per compressed

sample that can be transmitted reliably over the channel in the CS system, satisfies

C ≤ 1

2
log(1 + γ − µ2

W ) bits/sample. (5)

Throughout this paper, the base of the logarithm is 2. The equality in (5) is achieved whenΣW is

diagonal and the diagonal entries are all equal toγ−µ2
W . In other words, the equality is achieved when

the samples inw are statistically independent and have the same variance equal to γ − µ2
W . Based on

this result, [19] gives a lower bound on the sampling rateδ
△
= m/n when a distortionD is achievable,

that is,

δ ≥ 2R(D)

log(1 + γ − µ2
W )

(6)

asn → ∞, whereR(D) is the rate-distortion function, which gives the minimal number of bits per source

symbol needed in order to recover the source sequence withina given distortionD, andD
△
= E[d(x, x̂)]

is the average distortion achieved by the CS system. Here thedistortion between twon × 1 vectorsx

and x̂ is defined by

d(x, x̂) =
1

n

n
∑

i=1

d(xi, x̂i) (7)

wherexi and x̂i denote, respectively, thei-th elements ofx and x̂, and d(x, x̂) and d(xi, x̂i) are the

distortion measure between two vectors and two symbols, respectively.

However, when the samples in the noiseless sample vectorw are correlated, i.e.,ΣW is not a diagonal

matrix, the upper bound on the channel capacityC in (5), and accordingly the lower bound on the

sampling rateδ in (6), can never be achieved. In this paper, we aim at showingthe effects of sample

correlation on these bounds.

B. Stochastic Signal Assumptions

Consider the following assumptions on the random vectorx ∈ Q ⊆ R
n whereQ is a compact subset

of Rn:

(S1) i.i.d. entries: Elements ofx are i.i.d.;
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(S2) finite variance: The variance ofxi is σ2
X < ∞ for all i.

These stochastic signal assumptions sometimes are referred to as Bayesian signal model, and are

commonly used in the literature [11], [13], [15], [19]. In addition, sparsity assumption, i.e.,x is an s-

sparse signal, is sometimes adopted by using a specific distribution [13], [15]. In this paper, we consider

the general signal that is sparse in some orthonormal basis,instead of the signal that is sparse only in

the identity basis. Thus, the sparsity assumption is not necessary.

C. Samples Assumptions

A practical application of CS is the AIC which avoids high rate sampling [3], [5]. The structure of

the AIC based on the random modulation pre-integration (RMPI) is proposed in [3], as shown in Fig. 2.

Here the signalx(t) is an analog signal, and each waveformφi(t) corresponds to a row in the sampling

matrixΦ. The AIC device consists of several parallel BMIs. In each BMI, the analog signal is multiplied

to a random sampling waveformφi(t) and then is integrated over the sampling periodT . Obviously, in

the AIC shown in Fig. 2, the number of samples is equal to the number of BMIs.

In the segmented CS architecture [8], the sampling matrixΦ can be divided into two parts, i.e.,

Φ =





Φo

Φe





whereΦo ∈ R
mo×n is the original part, i.e., a set of original uncorrelated sampling waveforms, and

Φe ∈ R
me×n is the extended part. Herem = mo +me, with mo andme being the number of original

samples and the number of additional samples, respectively. Thus, the noiseless sample vectorw can

also be divided into two parts, i.e.,

w =





wo

we





wherewo = Φox andwe = Φex are the original sample and additional sample vectors, respectively. In

wo, we havemo original samples, and inwe, we haveme additional samples. In practice, there aremo

BMIs and the integration periodT is split into t sub-periods [8]. Each BMI represents a row ofΦo, and

it outputs a sub-sample at the end of every sub-period. Hence, we can obtaintmo sub-samples duringt

sub-periods from themo BMIs. With all thesetmo sub-samples, we can constructmo original samples

in wo andme additional samples inwe as follows.

An original sample inwo is generated by accumulatingt sub-samples from a single BMI. Thus, the

mo BMIs result inmo original samples inwo. For each additional sample inwe, we consider a virtual
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Fig. 2: The structure of the AIC based on RMPI.

BMI, which represents a row ofΦe. At the end of every sub-period, the virtual BMI outputs one of

the mo sub-samples from themo real BMIs, and thus, aftert sub-periods, an additional sample can be

generated by accumulatingt sub-samples over thet sub-periods. It is required that for each virtual BMI,

the t sub-samples are all taken from different real BMIs (i.e., notwo sub-samples are taken from the

same real BMI). Thus, it is required thatt ≤ mo.

Example 1: Whenmo = 3 and the integration periodT is divided into 3 sub-periods, Fig. 3 illustrates

how additional samples are constructed. In Fig. 3, sub-samples are represented by rectangle boxes, and

their corresponding sub-periods are represented by the colors of the rectangle boxes: red, yellow, and

blue colors mean the first, second, and the third sub-periods, respectively. We have three original samples:

w1, w2, andw3. Each original sample consists of three sub-samples from the same real BMI. The number
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Fig. 3: Construction of additional samples.

inside the “sub-sample” box indicates the index of the original sample (the index of the real BMI) that

it comes from. We have the following observations on the additional samplesw4, w5 andw6.

• Each additional sample consists of 3 sub-samples with different indices, which means that the sub-

samples are selected from 3 different real BMIs.

• The order of the sub-samples in each additional sample is red, yellow and blue. It means that the

i-th (i = 1, 2, 3) sub-sample in an additional sample comes from thei-th sub-sample of an original

sample, which is the output of the corresponding real BMI forthe i-th sub-period.

From the above description, it can be seen that onlymo parallel BMIs are needed in the segmented

CS-based AIC device, andm (≥ mo) samples in total can be collected. This implementation is equivalent

to collecting additional samples by multiplying the signalwith additional sampling waveforms which are

not present among the actual BMI sampling waveforms, but rather each of theses additional sampling

waveforms comprises non-overlapping sub-periods of different original waveforms.

Consider the following assumptions on the sampling matrixΦ ∈ R
m×n. The assumptions are

(M1) non-adaptive samples: The distribution ofΦ is independent of the signalx and the noisez;

(M2) finite sampling rate: The sampling rateδ is finite;

(M3) identically distributed: Elements ofΦ are identically distributed;

(M4) zero mean: The expectation ofφ(i, j) is 0, whereφ(i, j) denotes the(i, j)-th element ofΦ;

(M5) finite variance: The variance ofφ(i, j) is 1/n;

April 17, 2018 DRAFT



9

(M6) independent entries ofΦo: Elements ofΦo are independent;

(M7) uniform segment length: Each row ofΦ can be divided intomo segments of lengthl, i.e.,l = n/mo

is an integer; thei-th (i ∈ {1, 2, . . . ,mo}) segment is corresponding to thei-th sub-period discussed

before;

(M8) one-segment correlation: For each row ofΦe, the i-th (i ∈ {1, 2, . . . ,mo}) segment is copied

from thei-th segment of a row ofΦo, while ensuring that each row ofΦo contributes exactly one

segment to each row ofΦe. In other words, each row ofΦe is correlated to each row ofΦo over

one segment only.1

In this paper, we consider general assumptions, i.e., the assumptions (M1)–(M6) on the sampling

matrix, which have also been used, for example, in [15]. Random Gaussian matrix is a specific example

of the sampling matrix satisfying the assumptions (M1)–(M6), and it has been used for the information

theoretic analysis on sparsity recovery or CS in some other works [9], [11]–[14]. Actually, the assumptions

(M1)–(M6) reflect the setting that the samples are random projections of the signal, and the original

samples inwo are uncorrelated. In addition, the assumptions (M7) and (M8) characterize the segmented

CS architecture [8]. Specifically, the integration periodT is equally divided into several sub-periods,

as suggested by the assumption (M7). We further assume in theassumption (M7) that in each sample,

the number of sub-periods/segments is alsomo, which is the same as the number of BMIs and also

the number of original uncorrelated samples. As described before, thei-th sub-sample in an additional

sample comes from thei-th sub-sample of an original sample. This feature of the segmented CS-based

AIC device is reflected in the assumption (M8).

Based on these assumptions (especially assumptions (M7) and (M8)), it can be seen that each row ofΦe

(as well as each additional sample inwe) actually corresponds to a permuted sequence of(1, 2, . . . ,mo),

depending on the source BMI indices of themo segments of the row ofΦe. For example, as shown in

Fig. 3, additional samplew5 corresponds to the sequence(2, 3, 1), which means the first, the second and

the third sub-samples ofw5 come from the second, the third and the first BMIs, respectively. Thus, there

are at mostmo! rows inΦe and we have the following observation on themo! potential rows.

Lemma 1: Thesemo! potential rows can be divided into(mo − 1)! groups, where each group consists

of mo uncorrelated rows.

Proof: Here we give an example of such grouping scheme.

1Here, for any two rows inΦ, if they have a common segment in a sub-period, we say the two rows are correlated over that

segment/sub-period.
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Since each of themo! rows corresponds to a permuted sequence of(1, 2, . . . ,mo), we need to prove

that themo! possible permuted sequences (including the sequence(1, 2, . . . ,mo) itself) can be divided

into (mo − 1)! groups, and in each group, we havemo sequences in which any two sequences do not

have correlation.2

First, among themo! sequences, we consider those sequences whose first element is 1. There are

(mo − 1)! such sequences. We put those(mo − 1)! sequences in(mo − 1)! groups, with each group

having one sequence. Then, in each group, we perform cyclic shift on the corresponding sequence and

we can generatemo− 1 new sequences by performing cyclic shiftmo− 1 times. In other words, in each

time we move the final entry in the sequence to the first position, while shifting all other entries to their

next positions. So in each group, we havemo sequences now, and themo sequences are uncorrelated.

It can be seen that: 1) totally there aremo! sequences in the(mo − 1)! groups; 2) in each group, any

two sequences are different; 3) any two sequences from two different groups are different. Therefore, the

above grouping satisfies Lemma 1. This completes the proof.

Lemma 2: If mo is a prime, we can find(mo − 1) groups from the(mo − 1)! groups constructed as in

Lemma 1 such that any two rows from different groups are correlated over one and only one segment.

Proof: Throughout the proof, we establish the mapping from row to sequence as described in the

proof of Lemma 1. Consider(mo−1) sequences as follows: in thei-th sequenceRi (i = 1, 2, ...,mo−1),

thek-th element (k = 1, 2, ...,mo) is [1+ (k− 1)i] modmo. It is obvious that these(mo − 1) sequences

belong to (mo − 1) different groups, and they are correlated over the first element only. Let thei-

th sequenceRi belong to thei-th group denoted asGi. As shown in Lemma 1, the rest (mo − 1)

sequences in groupGi can be obtained by performing cyclic shift onRi. Therefore, inGi, for the

sequence whose first element isj, the k-th element of the sequence can be expressed as[j + (k − 1)i]

modmo (j, k = 1, 2, . . . ,mo).

For any pair of(i, j) and(i′, j′) wherei 6= i′, i, i′ ∈ {1, 2, . . . ,mo− 1} andj, j′ ∈ {1, 2, . . . ,mo}, the

greatest common divisor of (i− i′) andmo, denoted GCD(i− i′,mo), is 1 sincemo is a prime. Therefore,

we have−(j − j′) = 0 mod GCD(i − i′,mo). Then according to the linear congruence equation, with

given pair of(i, j) and (i′, j′), the equation

(k − 1)(i − i′) = −(j − j′) mod mo

2Recall that each potential row (forΦe) corresponds to a permuted sequence of(1, 2, . . . ,mo). For any two rows, if they

are correlated over thej-th segment/sub-period, the two sequences of the two rows have the same element at thej-th position.

Accordingly, we say the two sequences are correlated over the j-th position.
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has an unique solutionk∗ ∈ {1, 2, . . . ,mo} [22]. In other words, we can always find one and only

one k∗ ∈ {1, 2, . . . ,mo} that makes[j + (k∗ − 1)i] = [j′ + (k∗ − 1)i′] mod mo. Therefore, for any

two sequences from two different groupsGi andGi′ , they are correlated over exactly one position. This

completes the proof.

Define theextension rate of the CS systemwith correlated samples as the ratio of the number of

additional samplesme to the number of original samplesmo, i.e., α
△
= me/mo. In this paper, we

consider two kinds ofΦe:

(M9a) Φe consists ofme rows withme ≤ mo; all theseme rows are uncorrelated, and are taken from

one of the(mo − 1)! groups of potential rows constructed as shown in Lemma 1; in this case,

α ≤ 1;

(M9b) Φe consists of all rows inα groups of potential rows constructed as shown in Lemma 2; in this

case,α = 1, 2, . . . ,mo − 1.

III. M AIN RESULTS

The channel capacityC of the CS system (see Fig. 1) is studied in this section. The channel capacity

in the considered setup gives the amount of information thatcan be extracted from the compressed

samples. Meanwhile, the rate-distortion functionR(D) gives the minimum information (in bits) needed

to reconstruct the signal with distortionD for a given distortion measure. Accordingly, an inequality

betweenC andR(D) can be given using the source-channel separation theorem [23], which results in

a lower bound on the sampling rateδ as a function of distortionD and SNRγ. Apparently, when the

CS system has correlated samples, the amount of informationthat can be extracted from the samples

decreases. In other words, the channel capacityC is smaller than that of the CS system in which all

samples are uncorrelated. Thus, we expect a penalty term in the upper bound on the channel capacityC

and in the lower bound on the sampling rateδ. According to assumption (M8), in the sampling matrix

Φ, an additional row is correlated with an original row over one segment. Thus, when the variance of the

signal, the variance of the entries ofΦ, and the length of the segment are fixed, as assumed in (S2), (M5)

and (M7), respectively, the correlation between an additional sample and an original sample is fixed. The

penalty term caused by the fixed correlation among samples isdiscussed in the remaining part of this

section.

April 17, 2018 DRAFT
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A. Case 1:α ≤ 1

The following lemma gives a bound on the capacity of the CS system with correlated samples and a

sampling matrix satisfying the assumption (M9a).

Theorem 1: For a signal satisfying the assumptions (S1)–(S2) and a sampling matrix satisfying the

assumptions (M1)–(M8) and (M9a), the maximal amount of information that can be extracted from the

samples is given by

C ≤ m

2
log(γ + 1) +

1

2
log

[

1−
(

γ

γ + 1

)2

· α
]

(8)

with equality achieved if and only ifw ∼ N (0,ΣW ).

Proof: See Appendix A and then follow with Appendix B for the proof.

It can be observed that the second term on the right-hand-side of (8) is a function ofγ andα and it is

always non-positive. Thus, this term has a meaning of the penalty term caused by the fixed correlation

among samples. Furthermore, if the total number of samplesm is fixed, the upper bound in (8) is

obviously decreasing asα increases, which means that when the total number of samplesm is fixed, it is

better to have less correlated samples. However, usually the number of original samplesmo (not the total

number of samplesm) is fixed, and we are interested in the best extension rateα. Sincem = (1+α)mo,

(8) becomes

C ≤ (1+α)mo

2
log(γ + 1) +

1

2
log

[

1−
(

γ

γ + 1

)2

·α
]

. (9)

The right-hand-side of (9) is not always an increasing function of α. However, noting thatα
△
= me/mo

whereme is an integer, we have the following observation on the upperbound in (9).

Lemma 3: The maximum of the upper bound onC in (9) is achieved whenα = 1 for all mo ≥ 1 and

positiveγ.

Proof: Denote the right-hand-side of (9) asf(α). Thus, the first-order derivative off(α) is given

by

f ′(α) =
mo

2
log(γ + 1)− 1

2 ln 2

γ2

(γ + 1)2 − γ2α
. (10)

Obviously,f ′(α) is a strictly decreasing function ofα for 0 ≤ α ≤ 1. Thus,f ′(1) ≤ f ′(α) ≤ f ′(0),

where

f ′(0) =
mo

2
log(γ + 1)− 1

2 ln 2

γ2

(γ + 1)2
(11)

f ′(1) =
mo

2
log(γ + 1)− 1

2 ln 2

γ2

2γ + 1
. (12)
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We first show thatf ′(0) > 0. Let g(γ) = ln(γ + 1)− γ/(γ + 1). The derivative ofg(γ) is

g′(γ) =
1

γ + 1
− 1

(γ + 1)2
=

γ

(γ + 1)2
> 0.

Thus,g(γ) > g(0) = 0 and we haveln(γ + 1) > γ/(γ + 1) for γ > 0. Using (11), we then have the

following inequality

f ′(0) >
mo

2 ln 2

γ

γ + 1
− 1

2 ln 2

γ2

(γ + 1)2

≥ 1

2 ln 2

γ

γ + 1
− 1

2 ln 2

γ2

(γ + 1)2
(13)

=
1

2 ln 2

γ

(γ + 1)2
> 0

where the second inequality follows frommo ≥ 1.

If α can be chosen from a continuous set between 0 and 1,f ′(α) is a strictly decreasing function of

α. Note thatf ′(0) > 0. Therefore, whenf ′(1) ≥ 0, the maximum off(α) is achieved atα1 = 1; when

f ′(1) < 0, the maximum off(α) is achieved atα2 = (γ + 1)2/γ2 − 1/[mo ln(γ + 1)], which makes

f ′(α) = 0.

Sincemo ≥ 1, we have

moα2 − (mo − 1)

= mo

(

γ + 1

γ

)2

− 1

ln(γ + 1)
− (mo − 1) (14)

≥
(

γ + 1

γ

)2

− 1

ln(γ + 1)
(15)

>

(

γ + 1

γ

)2

− γ + 1

γ
(16)

=
γ + 1

γ2
> 0

where (15) follows from the fact that (14) is an increasing function of mo, and (16) follows from the

inequality ln(γ + 1) > γ/(γ + 1). Therefore,α2 ≥ (mo − 1)/mo. Noting thatα can only take a value

from the discrete set{0, 1/mo, 2/mo, . . . , 1}, when f ′(1) ≥ 0, the maximum off(α) is achieved at

α1 = 1; when f ′(1) < 0, the maximum off(α) is eitherf(α1) or f(α3), whichever is larger. Here
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α3 = (mo − 1)/mo. We have

f(α1)− f(α3)

= mo log(γ + 1) +
1

2
log

[

1−
(

γ

γ + 1

)2
]

− 2mo − 1

2
log(γ + 1)− 1

2
log

[

1−
(

γ

γ + 1

)2

· mo − 1

mo

]

=
1

2
log(γ + 1) +

1

2
log

[

1−
(

γ

γ + 1

)2
]

− 1

2
log

[

1−
(

γ

γ + 1

)2

· mo − 1

mo

]

. (17)

Sincelog
[

1− (γ/(γ + 1))2 · (mo − 1)/mo

]

≤ 0 consideringmo ≥ 1, we have

f(α1)− f(α3)

≥ 1

2
log(γ + 1) +

1

2
log

[

1−
(

γ

γ + 1

)2
]

=
1

2
log

[

2γ + 1

γ + 1

]

> 0.

Thus,f(1) > f((mo − 1)/mo). In other words, the maximum off(α) is always achieved whenα = 1.

This completes the proof.

Based on Theorem 1, a lower bound on the sampling rateδ is given in the following theorem.

Theorem 2: For a signal satisfying the assumptions (S1)–(S2) and a sampling matrix satisfying the

assumptions (M1)–(M8) and (M9a), if a distortionD is achievable, then

δ ≥ 2R(D)

log(γ + 1)
− 1

n

log

[

1−
(

γ
γ+1

)2
· α

]

log(γ + 1)
(18)

asn → ∞.

Proof: According to the source-channel separation theorem for discrete-time continuous amplitude

stationary ergodic signals,x can be communicated up to distortionD via several channels if and only

if the information contentC that can be extracted from these channels exceeds the information content

nR(D) of the signalx [24]. In other words,nR(D) ≤ C whenn goes to∞. According to Theorem 1,

the information contentC is upper bounded by (8). Meanwhile,nR(D) gives the minimal number of

bits in then source symbols inx needed to recoverx within distortionD.
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Therefore, we have

nR(D) ≤ C ≤ m

2
log(γ + 1) +

1

2
log

[

1−
(

γ

γ + 1

)2

· α
]

which implies that

δ =
m

n
≥ 2R(D)

log(γ + 1)
− 1

n

log

[

1−
(

γ
γ+1

)2
· α

]

log(γ + 1)
.

This completes the proof.

If α = 0, i.e., all samples are uncorrelated, the result is essentially the same as that in [19]. Ifα > 0,

the second term on the right-hand-side of (18), which is the penalty term, is vanishing asn → ∞. In

other words, the penalty because of the fixed correlation among samples vanishes asn → ∞.

Note that the original sampling rateδo
△
= mo/n = δ/(1 + α) is the parameter to be designed for a

segmented CS-based AIC device. Thus, it is interesting to study how the extension rateα affects the

requiredδo in order to achieve a given distortion level. In terms ofδo, the inequality (18) becomes

δo ≥
1

1 + α









2R(D)

log(γ + 1)
− 1

n

log

[

1−
(

γ
γ+1

)2
·α
]

log(γ + 1)









. (19)

Although the optimalα that minimizes the right-hand-side of (19) is not easy to findout from this

expression, it can still be observed that asn → ∞, the right-hand-side of (19) becomes a strictly

decreasing function ofα, which means that the required original sampling rate decreases as the extension

rateα increases. Considering that (19) essentially correspondsto (9), Numerical Example 1 in Section IV

shows that the lower bound onδo behaves similar to the upper bound onC in (9), and the minimum is

achieved whenα = 1 sinceα can only take values from0, 1/mo, 2/mo, . . . , 1.

B. Case 2:α = 1, 2, . . . ,mo − 1

The following lemma now gives a bound on the capacity of the CSsystem with correlated samples

and a sampling matrix satisfying the assumption (M9b). Thislemma extends the result of Theorem 1.

Theorem 3: For a signal satisfying the assumptions (S1)–(S2) and a sampling matrix satisfying the

assumptions (M1)–(M8) and (M9b), the maximal amount of information that can be extracted from the

samples is given by

C ≤ m

2
log(γ+1)−

[

α+1

2
log(γ+1) − 1

2
log ((1+α)γ+1)

]

(20)

with equality achieved if and only ifw ∼ N (0,ΣW ).
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Proof: See Appendix A and then follow with Appendix C for the proof.

It can be observed that the terms in the square brackets on theright-hand-side of (20) are the penalty

terms caused by the fixed correlation among samples. We have the following observation on the upper

bound onC in (20).

Lemma 4: Considering thatα is an integer in{1, 2, . . . ,mo−1}, the upper bound onC in (20) increases

asα increases.

Proof: Denote the right-hand-side of (20) ash(α). Then we have

h(α+ 1)− h(α) =
mo − 1

2
log(γ + 1) +

1

2
log

[

1 + (α+ 2)γ

1 + (α+ 1)γ

]

.

Since(1+ (α+2)γ)/(1 + (α+1)) ≥ 1, mo ≥ 1, andγ ≥ 0, we haveh(α+1) ≥ h(α). This completes

the proof.

Whenα = 1, the result in (20) is the same as that in (8). From the proof ofLemma 3 we can see that the

upper bound onC in (8) is an increasing function ofα whenα takes values from{0, 1/mo, 2/mo, . . . , 1},

and thus the maximum of the upper bound onC in (8) is achieved whenα = 1. From Lemma 4,

the minimum of the upper bound onC in (20) is achieved whenα = 1. Thus, the upper bound on

C in (20) is always higher than that in (8). This is reasonable because when the number of original

uncorrelated samplesmo is fixed, more correlated samples can be taken with assumption (M9b) than that

with assumption (M9a).

Based on Theorem 3, a lower bound on the sampling rateδ is given in the following theorem.

Theorem 4: For a signal satisfying the assumptions (S1)–(S2) and a sampling matrix satisfying the

assumptions (M1)–(M8) and (M9b), if a distortionD is achievable, then

δ ≥ 2R(D)

log(γ + 1)
+

α+ 1

n
− 1

n

log[(1 + α)γ + 1]

log(γ + 1)
(21)

asn → ∞.

Proof: The proof follows the same steps as that of Theorem 2.

In this case, the penalty brought by the fixed correlation between samples also vanishes asn → ∞.

Similar to the case ofα ≤ 1, the original sampling rateδo satisfies

δo ≥
1

1 + α

(

2R(D)

log(γ + 1)
− 1

n

log[(1 + α)γ + 1]

log(γ + 1)

)

+
1

n
. (22)

As n → ∞, the right-hand-side of (22) becomes a strictly decreasingfunction of α, which means that

the required original sampling rate decreases as the extension rateα increases.

April 17, 2018 DRAFT



17

0 0.2 0.4 0.6 0.8 1
9

10

11

12

13

14

15

16

17

18

α

up
pe

r 
bo

un
d 

on
 C

 (
bi

ts
)

Fig. 4: Upper bound on the capacityC in (9) versusα.

IV. N UMERICAL RESULTS

To illustrate Lemma 3, we consider the following example.

Numerical Example 1: Consider the sampling matrix satisfying assumptions (M1)–(M8) and (M9a).

Let the SNRγ be 20 dB, the number of original samplesmo be 3, and the signal’s lengthn be 100.

The rate-distortion functionR(D) is 0.2 bits/symbol in the example.

Figs. 4 and 5 show the upper bound onC in (9) and the lower bound onδo in (19), respectively,

for different values ofα. It can be observed from both figures that the optimum, i.e., the maximum of

the upper bound onC (or the minimum of the lower bound onδo) is achieved atα = (γ + 1)2/γ2 −
1/[mo ln(γ +1)] ≈ 0.95 if α can take any continuous value between 0 and 1. However, considering that

α can only take values0, 1/3, 2/3 and1 in this example, as shown by the points marked by ‘*’ in both

figures, the optimum is achieved atα = 1. This verifies the Lemma 3.

Next, we illustrate Theorems 2 and 4.

Numerical Example 2: Consider ans-sparse signalx where the spikes have uniform amplitude and the

sparsity ratios/n is fixed as10−4. In this case, it is well known that precise description ofx would
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Fig. 5: Lower bound on the original sampling rateδo in (19) versusα.

require approximatelylog
(

n
s

)

≈ s log(n/s) bits [19]. Accordingly,R(D) is approximately calculated as

(s/n) log(n/s) = 0.0013 bits/symbol.

In Figs. 6 and 7, the lower bounds on the sampling rateδ in either (18) or (21) (based on the value

of α) for n = 105 and n = 107 are shown. It can be observed from both figures that as the SNRγ

increases, the lower bound on the sampling rateδ decreases, which means that fewer samples are needed

for a higher SNR. Besides, asα increases, the lower bound onδ increases as well. The gap between

the curve withα = 0 and that with the other values ofα is the penalty brought by the fixed correlation

among samples. However, comparing Figs. 6 and 7 to each other, it can be seen that this penalty vanishes

asn increases, which verifies the conclusions obtained based onTheorems 2 and 4.

Numerical Example 3: Continuing with the same setup as used in Example 2, letn = 107. In the

segmented CS architecture, the additional samplesΦex can be obtained from the original samplesΦox

[8]. Thus, in this example we show how the extension rateα affects the requirement on the original

sampling rateδo.

Fig. 8 shows the lower bound on theδo in either (19) or (22) (based on the value ofα) for different
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Fig. 6: Lower bound on the sampling rateδ versus SNR for differentα = 0, 1, 5 whenn = 105.

extension ratesα. It can be observed that asα increases, the lower bound on the original sampling rate

δo decreases, which means that fewer original samples are needed to achieve the same reconstruction

performance. This confirms and explains the advantage of using segmented CS architecture over the

non-segmented CS architecture one of [5].

V. CONCLUSION

The performance limits of the segmented CS have been studiedwhere samples are correlated. When

the total number of samples is fixed, there is a performance degradation brought by the fixed correlation

among samples by segmented CS. This performance degradation is characterized by a penalty term in

the upper bound on the channel capacity of the correspondingsampling matrix or in the lower bound

on the sampling rate. This degradation is vanishing as the dimension of the signal increases, which has

also been verified by the numerical results. From another point of view, as the extension rate increases,

the necessary condition on the original sampling rate to achieve a given distortion level becomes weaker,

i.e., fewer original samples (BMIs in the AIC) are needed. This verifies the advantages of the segmented

CS architecture over the non-segmented CS one.
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Fig. 7: Lower bound on the sampling rateδ versus SNR for differentα = 0, 1, 5 whenn = 107.

APPENDIX A

COMMON START OF PROOF FORTHEOREMS1 AND 3

The channel in Fig. 1 can be formalized as

y = w + z. (23)

The channel capacity is given as [25]

C = max
pWY (w,y)

I(w;y) (24)

where pWY (w,y) denotes the joint probability of twom-dimensional random vectorsw and y and

I(w;y) denotes the mutual information between two random vectorsw and y. Let h(·) denote the

entropy of a random vector. Then, the mutual information canbe expressed as

I(w;y) = h(y) − h(y|w) = h(y) − h(z). (25)

Sincez consists ofm i.i.d. N (0, 1) random variables, the entropy ofz is 0.5 log(2πe)m. The entropy of

y satisfies [25]

h(y) ≤ 1

2
log(2πe)m|ΣY | (26)
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Fig. 8: Lower bound on the original sampling rateδo versus SNR for differentα = 0, 1, 5 whenn = 107.

with equality achieved if and only ify ∼ N (0,ΣY ), where| · | denotes the determinant of a matrix and

ΣY stands for the covariance matrix ofy. Accordingly, the capacity satisfies

C = max
pWY (w,y)

I(w;y) ≤ max
pY (y)

1

2
log |ΣY | (27)

wherepY (y) denotes the probability function of a random vectory. Therefore, we are interested in the

determinant of the covariance matrixΣY . According to (23),ΣY = ΣW + Im whereIm is them×m

identity matrix.

Throughout the proof, denote thei-th element of a vector using a subscripti, e.g., thei-th element of

w is wi. According to the assumptions (M1) and (M4), we have

E[wi] = E





n
∑

j=1

φ(i, j)xj



 =

n
∑

j=1

E[φ(i, j)]E[xj ] = 0 (28)
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for i ∈ {1, 2, . . . ,m}. For anyi, j ∈ {1, 2, . . . ,m}, we have

E[wiwj] = E





n
∑

p=1

φ(i, p)xp

n
∑

q=1

φ(j, q)xq





=

n
∑

p=1

n
∑

q=1

E[φ(i, p)φ(j, q)xpxq].

According to the assumption (M1), we can further write that

E[wiwj ] =

n
∑

p=1

n
∑

q=1

E[φ(i, p)φ(j, q)]E[xpxq].

Moreover, according to the assumptions (M6) and (M8), for any p 6= q, φ(i, p) andφ(j, q) are uncorrelated.

Thus, the following statement

E[φ(i, p)φ(j, q)] = 0

is true forp 6= q. SinceE[x2p] = σ2
X that follows from assumption (S2), we obtain

E[wiwj] =

n
∑

p=1

E[φ(i, p)φ(j, p)]σ2
X . (29)

Obviously, depending on the assumption (M9a) or (M9b), the behavior ofΣW differs, and thus, the

determinant ofΣY differs. We discuss the determinant ofΣY in the following subsections.

APPENDIX B

COMPLETING PROOF OFTHEOREM 1

According to (29) and assumptions (M5), (M6), (M8) and (M9a), we have

E[wiwj] =

n
∑

p=1

E[φ(i, p)φ(j, p)]σ2
X

=











































σ2
X , i = j

0, 1 ≤ i, j ≤ mo, i 6= j

0, mo + 1 ≤ i, j ≤ m, i 6= j

σ2

X

mo

, 1 ≤ i ≤ mo,mo + 1 ≤ j ≤ m

σ2

X

mo

, mo + 1 ≤ i ≤ m, 1 ≤ j ≤ mo.

(30)

Thus,ΣW can be divided into four blocks, i.e.,

ΣW =





σ2
X · Imo

σ2

X

mo

· 1mo×me

σ2

X

mo

· 1me×mo
σ2
X · Ime



 (31)
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where1mo×me
and1me×mo

are matrices of all ones of dimensionmo ×me andme ×mo, respectively.

Accordingly,ΣY can be written as

ΣY = ΣW + Im

=





(σ2
X + 1) · Imo

σ2

X

mo

· 1mo×me

σ2

X

mo

· 1me×mo
(σ2

X + 1) · Ime



 . (32)

According to Section 9.1.2 of [26], the determinant|ΣY | of the block matrixΣY can be calculated as

|ΣY | = (σ2
X + 1)m ·

[

1−
(

σ2
X

σ2
X + 1

)2

· α
]

. (33)

According to (3) and (30), the SNR can be expressed asγ = σ2
X . Substituting (33) into (27), the upper

bound on the capacity can be expressed as a function ofγ andα, i.e.,

C ≤ 1

2
log

{

(γ + 1)m ·
[

1−
(

γ

γ + 1

)2

· α
]}

=
m

2
log(γ + 1) +

1

2
log

[

1−
(

γ

γ + 1

)2

· α
]

. (34)

The equality in (34) is achieved wheny ∼ N (0,ΣY ). This completes the proof.

APPENDIX C

COMPLETING PROOF OFTHEOREM 3

Recall thatΦe consists of all rows inα groups of potential rows constructed as shown in Lemma 2.

In the following, themo rows of Φo are considered as a group as well. Therefore, inΦ, we have all

rows from (α+ 1) groups.

First, according to assumption (M5) we have
n
∑

p=1

E[φ(i, p)φ(j, p)] = 1 (35)

for every i = j ∈ {1, 2, . . . ,m}. Second, since any two rows within one of the(α + 1) groups are

uncorrelated, we have
n
∑

p=1

E[φ(i, p)φ(j, p)] = 0 (36)

for any pair of (i, j) ∈ {(i, j)|i 6= j, 1 ≤ i ≤ m, 1 ≤ j ≤ m, ⌈i/mo⌉ = ⌈j/mo⌉} where ⌈·⌉ denotes

the ceiling function. Thirdly, as reflected in assumption (M8) and Lemma 2, two rows taken from two
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different groups are correlated over one segment, which indicates that the correlation between the two

rows is1/mo according to assumptions (M5) and (M7). Thus, we have
n
∑

p=1

E[φ(i, p)φ(j, p)] = 1/mo (37)

for any pair of(i, j) ∈ {(i, j)|⌈i/mo⌉ 6= ⌈j/mo⌉, 1 ≤ i ≤ m, 1 ≤ j ≤ m}.

Let U(1) = σ2
X · Imo

, and defineU(k + 1) ∈ R
(k+1)mo×(k+1)mo for k = 1, 2, . . . , α as follows,

U(k + 1) =





σ2
X · Imo

σ2

X

mo

· 1mo×kmo

σ2

X

mo

· 1kmo×mo
U(k)



 .

Combining (29), (35), (36), and (37),ΣW can be written in the following form

ΣW = U(α + 1) =





σ2
X · Imo

σ2

X

mo

· 1mo×me

σ2

X

mo

· 1me×mo
U(α)



 . (38)

Accordingly,ΣY can be written as

ΣY = ΣW + Im

=





(σ2
X + 1) · Imo

σ2

X

mo

· 1mo×me

σ2

X

mo

· 1me×mo
U(α) + Ime



 . (39)

Define akmo×kmo matrixV(k) = 1/(σ2
X+1)·[U(k)+Ikmo

] for k = 1, 2, . . . , α+1. Then,V(1) = Imo
,

and

V(k + 1) = 1/(σ2
X + 1) · (U(k + 1) + I(k+1)mo

)

=





Imo

β
mo

· 1mo×kmo

β
mo

· 1kmo×mo
V(k)





where 0 < β = σ2
X/(σ2

X + 1) < 1. Therefore,ΣY = (σ2
X + 1)V(α + 1), and thus|ΣY | = (σ2

X +

1)m|V(α + 1)|.
Denote the eigenvalues and the corresponding eigenvectorsof V(k) asλi’s andqi’s for 1 ≤ i ≤ kmo,

respectively (k = 1, 2, . . . .α+ 1). For a pair ofλi andqi, we have

(V(k) − λiIkmo
)qi = 0kmo×1 (40)

where0kmo×1 stands for a vector of all zeros with dimensionkmo×1. Thus, correspondingqi’s comprise

the basis of the null space of

V(k) − λiIkmo

=





(1− λi)Imo

β
mo

· 1mo×(k−1)mo

β
mo

· 1(k−1)mo×mo
V(k − 1)− λiI(k−1)mo



 . (41)
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We have the following lemma.

Lemma 5: The eigenvalues ofV(k) have three different values.

• λi = 1 and there are(mo − 1)k corresponding eigenvectorsqi. They satisfy11×kmo
qi = 0.

• λi = 1− β and there are(k − 1) corresponding eigenvectorsqi. They satisfy11×kmo
qi = 0.

• λi = 1+(k−1)β and there is a single corresponding eigenvectorqi. It satisfies11×kmo
qi =

√
kmo.

Proof: Divide the matrix shown in (41) intok sub-matrices, with thei-th (i = 1, 2, . . . , k) sub-matrix

Bi ∈ R
kmo×mo consisting of the[(i− 1)mo + 1]-th column to theimo-th column.

Whenλi = 1, the diagonal elements of the matrix in (41) are all zeros. Itcan be observed that within

each sub-matrixBi, the columns are identical. Sinceqi’s comprise the basis of the null space of (41),

there are(mo − 1)k such eigenvectors and11×kmo
qi = 0.

Whenλi = 1− β, the diagonal elements of the matrix in (41) are all equal toβ. It can be observed

that for each sub-matrixBi, we haveBi1mo×1 = β1kmo×1. Thus, there are(k − 1) corresponding

eigenvectors and11×kmo
qi = 0.

Whenλi = 1 + (k − 1)β, the diagonal elements of the matrix in (41) are all equal to−(k − 1)β. It

can be observed that[V(k)− λiIkmo
]1kmo×1 is a vector of zeros. Thus, there is a single corresponding

eigenvector and it satisfies11×kmo
qi =

√
kmo considering that||qi||2 = 1.

The matrixV(k) is symmetric, and thus it has totallykmo mutually orthogonal eigenvectors. We have

already found all of them. Thus, there are no other eigenvalues and eigenvectors. This completes the

proof.

Using these remarks, the determinant ofV(k) can be obtained as

|V(k)| = (1− β)k−1(1 + (k − 1)β). (42)

Accordingly,

|ΣY | = (σ2
X + 1)m|V(α + 1)|

= (σ2
X + 1)m(1− β)α(1 + αβ).

Noting thatγ = σ2
X andβ = σ2

X/(σ2
X +1), the upper bound on the capacityC in (27) can be expressed

as

C ≤ 1

2
log

[

(γ + 1)m ·
(

1− γ

γ + 1

)α

·
(

1 +
αγ

γ + 1

)]

=
m

2
log(γ+1)−α+ 1

2
log(γ+1)+

1

2
log [(1+α)γ+1] . (43)

The equality in (43) is achieved wheny ∼ N (0,ΣY ). This completes the proof.
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