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Abstract

In this paper, we propose a new sparse signal recovery algorithm, referred to as sparse Kalman tree

search (sKTS), that provides a robust reconstruction of thesparse vector when the sequence of correlated

observation vectors are available. The proposed sKTS algorithm builds on expectation-maximization

(EM) algorithm and consists of two main operations: 1) Kalman smoothing to obtain thea posteriori

statistics of the source signal vectors and 2) greedy tree search to estimate the support of the signal

vectors. Through numerical experiments, we demonstrate that the proposed sKTS algorithm is effective

in recovering the sparse signals and performs close to the Oracle (genie-based) Kalman estimator.
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Statistical Recovery of Simultaneously Sparse

Time-Varying Signals from Multiple

Measurement Vectors

I. INTRODUCTION

Over the years, there has been growing interest in the recovery of high dimensional signals

from a small number of measurements. This new paradigm, so called compressed sensing (CS),

relies on the fact that many naturally acquired high dimensional signals inherently have low

dimensional structure. In fact, since many real world signals can be well approximated as sparse

signals (i.e., only a few entries of signal vector are nonzero), CS techniques have been applied to

a variety of applications including data compression, source localization, wireless sensor network,

medical imaging, data mining, to name just a few.

Over the years, various signal recovery algorithms for CS have been proposed. Roughly

speaking, these approaches are categorized into two classes. The first approach is based on

a deterministic signal model, where an underlying signal isseen as a deterministic vector and

the sparsity promoting cost function (e.g.,ℓ1-norm) is employed to solve the problem. These

approaches include the basis pursuit (BP) [1], orthogonal matching pursuit (OMP) [2], [3],

CoSaMP [4], and subspace pursuit [5]. The second approach isbased on the probabilistic signal

model, where the signal sparsity is described by thea priori distribution of the signal and

Bayesian framework is employed in finding the sparse solution [6], [7].

When the multiple measurement vectors (MMV) from differentsource signals with common

support are available, accuracy of the sparse signal recovery can be improved dramatically by

performing joint processing of these vectors [8]–[14]. Since the algorithms based on MMV

usually performs better than those relying on single measurement vector, many efforts have been

made in recent years to develop an efficient sparse recovery algorithm. The MMV-based recovery

algorithms targeted for the deterministic signal recoveryinclude the mixed-norm solution [8], [9]

and convex relaxation [10] while the probabilistic approaches include the MMV sparse Bayesian
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learning (SBL) method [11], block-SBL [12], auto-regressive SBL [13], and Kalman filtering-

based SBL (KSBL) [14].

In this work, we are primarily concerned with the MMV-based signal recovery problem when

the observation vectors are sequentially acquired. To be specific, we express theN×1 observation

vectoryn acquired at time indexn as

yn = Bnhn +wn, (1)

whereBn is theN ×M system matrix,hn is theM × 1 source signal vector, andwn are the

N × 1 noise vector. We assume thatwn is modeled as a zero mean complex Gaussian random

vector, i.e.,CN (0, σ2
wI). Our goal in this setup is to estimate the source signalhn using the

sequence of the observations{yn} when 1) the source signalhn is sparse (i.e., the number

nonzero elements inhn is small) and 2) the dimension of the observation vectoryn is smaller

than that of the source vector(N ≪ M). In particular, we focus on the scenario where the

nonzero elements ofhn change over time with certain temporal correlations. In this scenario,

we assume that correlated time-varying signals are well modeled by Gauss-Markov process.

Note that this model is useful in capturing local dynamics ofsignals in linear estimation theory

[24].

The main purpose of this paper is to propose a new statisticalsparse signal estimation algorithm

for the sequential observation model we just described. Theunderlying assumption used in our

model is that the nonzero amplitude of the sparse signals is changing in time, leading to different

signal realizations for each measurement vector, yet the support of the signal amplitude is slowly

varying so that the support remains unchanged over certain consecutive measurement vectors. We

henceforth refer to this model assimultaneously sparse signal with locally common supportsince

the support of the sparse signal remains constant over the fixed interval under this assumption.

Many of signal processing and wireless communication systems are characterized by this model.

For example, this model matches well with the characteristics of multi-path fading channels for

wireless communications where the channel impulse response hn should be estimated from the

received signalyn. Fig. 1 shows a record of the channel impulse responses (CIR)of underwater

acoustic channels (represented over the propagation delayand time domain) measured from the

experiments conducted in Atlantic ocean in USA [21]. We observe that when compared to the

amplitude of the channel taps, the sparsity structure of theCIR is varying slowly. Thus, we can
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readily characterize this time-varying sparse signal using the correlated random process along

with a deterministic binary parameter representing the existence of the signal.

In recovering the original signal vectorhn from the measurement vectors, we use the modified

expectation-maximization (EM) algorithm [22]. The proposed scheme, dubbed as sparse-Kalman-

Tree-Search (sKTS), consists of two main operations: 1) Kalman smoothing to gather thea

posteriori statistics of the source signals from individual measurement vector within the block

of interest and 2) identification of the support of the sparsesignal vector using a greedy tree

search algorithm. Treating the problem to identify the sparsity structure of the source signal

as a combinatorial search, we propose a simple yet effectivegreedy tree search algorithm that

examines the small number of promising candidates among allsparsity parameter vectors in the

tree.

There exist several approaches to estimate the time-varying sparse signals under MMV model.

In [15], [16], reweightedℓ1 optimization has been modified for the sequential dynamic filtering. In

[14], modified SBL algorithm has been suggested to adopt autoregressive modeling. In [19], EM-

based adaptive filtering scheme has been proposed in the context of sparse channel estimation.

Other than these, notable approaches include turbo approximate message passing (AMP) [18],

Lasso-Kalman [20], and Kalman filtered CS [17]. We note that our work is distinct from these

approaches in the following two aspects. First, in contrastto the previous efforts using continuous

(real-valued) parameters to describe signal sparsity in [14]–[16], the proposed method employs

the deterministic discrete (binary) parameter vector thatcaptures the on-off structure of signal

sparsity. Due to the use of deterministic parameter vector,an effort to deal with the probabilistic

model on signal sparsity is unnecessary. Also, since the search space is discretized, identification

of parameter vector is done by the efficient search algorithm. Second, while the recent work in

[17] estimates signal amplitude using Kalman smoother and then identifies the support of sparse

signal by thresholding of the innovation error norm, our work pursues direct estimation of the

binary parameter vector using the modified EM algorithm. We note that a part of this paper

was presented in [23]. The distinctive contribution of the present work is that the algorithm

is developed in a more generic system model and practical issues (e.g., parameter estimation

and iteration control) and real-time implementation issues are elaborated. Further, extensive

simulations for the practical applications are conducted to demonstrate the superiority of the

proposed method.
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Fig. 1. A record of the channel impulse response of underwater acoustic channels measured off the coast of Martha’s Vinyard,

MA, USA.

The rest of this paper is organized as follows. In Section II,we briefly explain the sparse

signal model and then present the proposed method. In Section III, we discuss the application of

the proposed algorithm in the wireless channel estimation.In section IV, the simulation results

are provided, and Section V concludes the paper.

Notation: Uppercase and lowercase letters written in boldface denote matrices and vectors,

respectively. Superscripts(·)T and (·)H denote transpose and conjugate transpose (hermitian

operator), respectively.conj(x) denotes the conjugation of the complex numberx. ‖·‖p indicates

an ℓp-norm of a vector. For theℓ2-norm, we abbreviate a subscriptp for simplicity. diag (·) is a

diagonal matrix having elements only on the main diagonal.Re (x) and Im (x) denote the real

and imaginary parts ofx, respectively.E[X ] denotes the expectation of a random variableX

andE[X|Y ] denotes the conditional expectation ofX given Y . E[X ; θ] means the expectation

of X given the deterministic parameterθ. The notations for covariance matrices are given by

Cov(x,y) = E[xyH ] − E[x]E[y]H andCov(x) = Cov(x,x). Pr(A) means the probability of

the eventA. tr(A) denotes a trace operation of the matrixA. A⊙B is the element-by-element
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product (Hadamard product) of the matricesA andB. ei denotes theith coordinate vector.

II. PROPOSEDSPARSESIGNAL ESTIMATION TECHNIQUE

In this section, we consider the statistical estimation of the time-varying sparse signals from

the sequentially collected observation vectors. As mentioned, our approach is based on the

assumption that the support of the sparse signal varies slowly in time so that the multiple

measurement vectors sharing common support can be used to improve the estimation quality of

the sparse signals. In this section, we first describe the simultaneously sparse signal model and

then present the proposed sparse signal estimation scheme.

A. Simultaneously Sparse Signal Model

We express a time-varying sparse signalhn as a product of a vector of random processessn

describing the amplitudes of nonzero entries inhn and the vectorci = [ci,1, · · · , ci,M ]T indicating

the existence of signal. That is,

hn = diag(ci)sn, (2)

where i is the block index, the entry ofci is either 0 or 1 depending on the existence of the

signal

ci,j =





1 if the jth entry ofhn exists

0 otherwise,
(3)

and the time-varying amplitudesn ∈ CM is modeled as Gauss-Markov random process

sn+1 = Ansn + vn, (4)

where vn ∈ CM is the process noise vector (∼ CN (0,Vn)) and An ∈ CM×M is the state

update matrix. Note that the block indexi is associated with the interval of the lengthT ,

n ∈ [T i + 1, T (i + 1)]. As mentioned, we assume that the support of the underlying sparse

signals is locally time-invariant so thatci is constant in a block of consecutive measurement

vectors. Using this together with the observation model in (1), we obtain the simultaneously
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sparse signal model

sn+1 = Ansn + vn,

hn = diag(ci)sn

yn = Bnhn +wn. (5)

Sincehn follows Gaussian distribution for the givenci, the a priori distribution of the source

signalhn can be described by

Pr (hn; ci) =
1

(2π)Mdet(Cov (hn))
exp

(
−(hn − E [hn; ci])

HCov (hn)
−1 (hn − E [hn; ci])

)
,

(6)

where

E [hn; ci] = diag(ci)E[sn]

Cov (hn) = diag(ci)Cov(sn)diag(ci). (7)

B. Derivation of Statistical Sparse Signal Estimation

When the multiple measurement vectors{yT i+1, · · · ,yT (i+1)} in the ith block are available,

the maximum likelihood (ML) estimate ofci is expressed as

cML
i = arg max

ci∈{0,1}T ,
∑M

j=1 ci,j=K

ln Pr (y1:T ; ci) , (8)

wherey1:T = [yT i+1, · · · ,yT (i+1)]
T andK is the sparsity order (the number of nonzero entries)

of hn. Note that the subscript1 : T denotes the set of time indices for theith block. Note

also that the ML estimatecML
i is chosen among all candidates satisfying the sparsity constraint(∑M

j=1 ci,j = K
)

. OncecML
i is obtained, we can estimate the amplitude vectorssn assuming

that the signal support specified bycML
i is true. Well known linear minimum mean square error

(LMMSE) estimator (e.g. Kalman smoother) can be used to estimatesn and thencML
i and the

estimate ofsn are combined to produce a final estimate ofhn. Note that if the estimation

of ci is correct, we can obtain the best achievable estimate ofhn, which is equivalent to the

solution attainable by so called “Oracle estimator”. Sincethe ML problem in (8) involves the

marginalization over all possible combinations of the latent variabless1:T , finding out the solution

using the direct approach would be computationally unmanageable. Perhaps, a better way to deal

September 20, 2018 DRAFT



7

with the problem at hand is to use the EM algorithm. Recall that the EM algorithm is an efficient

means to find out the ML estimate or maximum a posteriori (MAP)estimate of statistical signal

model in the presence of unobserved latent variables. The EMalgorithm generates a sequence

of estimateŝc(l)i , l = 0, 1, 2, ... by alternating two major steps (E-step and M-step), which are

given, respectively

• Expectation step (E-step)

Q
(
ci; ĉ

(l)
i

)
= E

[
ln Pr (y1:T , s1:T ; ci)

∣∣∣∣y1:T ; ĉ
(l)
i

]
, (9)

• Maximization step (M-step)

ĉ
(l+1)
i = arg max

ci∈{0,1}M ,
∑M

j=1 ci,j=K

Q
(
ci; ĉ

(l)
i

)
, (10)

where ĉ(l)i is the estimate ofci at thel-th iteration. Although one cannot guarantee finding out

the global optimal solution of (8) using the EM algorithm, wewill empirically show thatci can

be estimated accurately with a proper initialization ofc
(0)
i (see Section IV).

C. The E-step

The goal of the E-step is to obtain a simple expression of the cost metricQ(ci, ĉ
(l)
i ) using the

simultaneously sparse signal model. First,ln Pr (y1:T , s1:T ; ci) is expressed as

ln Pr (y1:T , s1:T ; ci) = lnPr (y1:T |s1:T ; ci) + lnPr (s1:T ; ci) (11)

=

T (i+1)∑

n=T i+1

ln Pr (yn|sn; ci) +

T (i+1)∑

n=T i+1

ln Pr (sn|sn−1) (12)

Noting thatPr (yn|sn; ci) ∼ CN(Bndiag(ci)sn, σ
2
wI) andPr (sn|sn−1) ∼ CN(An−1sn−1,Vn−1),

we have

ln Pr (y1:T , s1:T ; ci) =−

T (i+1)∑

n=T i+1

1

σ2
w

‖yn −Bndiag(ci)sn‖
2

−

T (i+1)∑

n=T i+1

(sn −An−1sn−1)
H
V−1

n−1 (sn −An−1sn−1) + C (13)

=−

T (i+1)∑

n=T i+1

1

σ2
w

‖yn −Bndiag(ci)sn‖
2 + C ′, (14)
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whereC and C ′ are the terms independent ofci. From (9) and (14), we further have (see

Appendix A)

Q
(
ci; ĉ

(l)
i

)
=C ′′ +

1

σ2
w

T (i+1)∑

n=T i+1

{
2Re

(
yH
n Bndiag(ci)E

[
sn

∣∣∣∣y1:T ; ĉ
(l)
i

])

− tr

[
Bndiag(ci)E

[
sns

H
n

∣∣∣∣y1:T ; ĉ
(l)
i

]
diag(ci)B

H
n

]}
. (15)

Let ŝn|1:T andΣn|1:T be the conditional mean and covariance ofsn wheny1:T and ĉ(l)i are given,

i.e.,

ŝn|1:T = E

[
sn

∣∣∣∣y1:T ; ĉ
(l)
i

]

Σn|1:T = Cov

[
sn

∣∣∣∣y1:T ; ĉ
(l)
i

]
.

Now We turn to the estimation of thea posterioristatisticŝsn|1:T andΣn|1:T . In our work, we

estimatêsn|1:T andΣn|1:T using Kalman smoothing [24]. When̂c(l)i is given, from (5), the system

equations for Kalman smoothing becomes

sn+1 = Ansn + vn

yn = Bndiag(ĉ
(l)
i )sn +wn. (16)

We employ the fixed-interval Kalman smoothing algorithm performing sequential estimation

of ŝn|1:T andΣn|1:T via forward and backward recursions in a block of observations y1:T . Let

ŝn|j and Σn|j be the conditional mean and covariance given the firstj observation vectors,

i.e., ŝn|j = E

[
sn

∣∣∣∣yT i+1, · · · ,yT i+j ; ĉ
(l)
i

]
andΣn|j = Cov

[
sn

∣∣∣∣yT i+1, · · · ,yT i+j; ĉ
(l)
i

]
, then the

fixed-interval Kalman smoothing algorithm is summarized as

• Forward recursion rule:

ŝn|n−1 = An−1ŝn−1|n−1 (17)

Σn|n−1 = An−1Σn−1|n−1A
H
n−1 +Vn−1 (18)

Kn = Σn|n−1diag(ĉ
(l)
i )BH

n

(
Bndiag(ĉ

(l)
i )Σn|n−1diag(ĉ

(l)
i )BH

n + σ2
wI
)−1

(19)

ŝn|n = ŝn|n−1 +Kn(yn −Bndiag(ĉ
(l)
i )̂sn|n−1) (20)

Σn|n =
(
I −KnBndiag(ĉ

(l)
i )

)
Σn|n−1, (21)
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• Backward recursion rule:

Sn = Σn|nAnΣ
−1
n+1|n (22)

ŝn|1:T = ŝn|n + Sn

(
ŝn+1|1:T −Anŝn|n

)
(23)

Σn|1:T = Σn|n + Sn

(
Σn+1|1:T − Σn+1|n

)H
SH
n . (24)

Using ŝn|1:T andΣn|1:T , Q
(
ci; ĉ

(l)
i

)
can be rewritten as

Q
(
ci; ĉ

(l)
i

)
=C ′′ +

1

σ2
w

T (i+1)∑

n=T i+1

{
2Re

(
yH
n Bndiag(ci)̂sn|1:T

)

− tr
[
Bndiag(ci)

(
Σn|1:T + ŝn|1:T ŝ

H
n|1:T

)
diag(ci)B

H
n

]}
. (25)

Note that the second term in the right-hand side of (25) is expressed as (see Appendix B)

tr
[
Bndiag(ci)

(
Σn|1:T + ŝn|1:T ŝ

H
n|1:T

)
diag(ci)B

H
n

]

= cTi
(
conj

(
BH

n Bn

)
⊙

(
Σn|1:T + ŝn|1:T ŝ

H
n|1:T

))
ci. (26)

From (25) and (26), we have

Q
(
ci; ĉ

(l)
i

)
=C ′′ +

1

σ2
w

T (i+1)∑

n=T i+1

{
2Re

(
yH
n Bndiag(̂sn|1:T )

)
ci

− cTi
(
conj

(
BH

n Bn

)
⊙
(
Σn|1:T + ŝn|1:T ŝ

H
n|1:T

))
ci

}
. (27)

Further, by denoting

dT
i =

T (i+1)∑

n=T i+1

2Re
(
yH
n Bndiag(̂sn|1:T )

)
(28)

Φi =

T (i+1)∑

n=T i+1

(
conj

(
BH

n Bn

)
⊙

(
Σn|1:T + ŝn|1:T ŝ

H
n|1:T

))
, (29)

we have

Q
(
ci; ĉ

(l)
i

)
=C ′′ +

1

σ2
w

dT
i ci −

1

σ2
w

cTi Φici. (30)

In summary, the E-step performs the Kalman smoothing operation in (17)-(24) to estimatêsn|1:T

andΣn|1:T and also operations in (28) and (29) to computedT
i andΦi used in the computation

of Q
(
ci; ĉ

(l)
i

)
.
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Fig. 2. Illustration of the proposed greedy tree search algorithm for the size of the source vectorM = 4 and the sparsity order

K = 2. Since the number of candidates chosen in each layer is set toR = 3, R(= 3) nodes with the largestQ values are

chosen in each layer.

D. M-Step

In the M-step, we findci maximizingQ
(
ci; ĉ

(l)
i

)
in (30) as

ĉ
(l+1)
i = arg max

ci∈{0,1}M ,
∑M

j=1 ci,j=K

Q̂
(
ci; ĉ

(l)
i

)
, (31)

whereQ̂
(
ci; ĉ

(l)
i

)
=

(
dT
i ci − cTi Φici

)
. In finding ĉ(l+1)

i , we need to check all possible combina-

tions satisfying the sparsity constraint
∑M

j=1 ci,j = K. Since this brute force search is prohibitive

for practical values ofM , we consider a computationally efficient search algorithm returning a

sub-optimal solution to the problem in (31). The proposed approach, which in essence builds

on the greedy tree search algorithm, examines candidate vectors to find out the most promising

candidate ofci in a cost effective manner. The tree structure used for the proposed greedy

search algorithm is illustrated in Fig. 2. Starting from a root node of the tree (associated with

ci = [0, · · · , 0]T ), we construct the layer of the tree one at each iteration. Inthe first layer of the

tree, only one entry ofci is set to one. For example, the nodes in the first layer of the tree are

expressed asc1i = [1, 0, · · · , 0]T , · · · , cMi = [0, · · · , 0, 1]T . As the layer increases, one additional

entry is set to one and thusK entries ofci are set to one in theK-th layer (‖ci‖0 = K) (see
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TABLE I

SUMMARY OF THE GREEDY TREE SEARCH ALGORITHM

Input: di and survival listΦi

Initialization: Start withΘ = {[0, · · · , 0]T }.

for k = 1 : K

for j = 1 : R

for m = 1 : M

Let θj be thejth element ofΘ.

If the m-th entry is already one, skip the loop. Otherwise, set them-th entry ofθj to one.

For Q(x) , dT
i x− xTΦix, evaluateQ(θj)−Q(θ) for all θ ∈ Θ.

If Q(θj)−Q(θ) = 0 for any θ ∈ Θ, then the candidateθj is duplicate node and hence we remove it.

If Q(θj) > minθ∈Θ Q(θ), addθj into Θ.

end

end

end

Output: ĉ(l+1)
i = argmaxθ∈Θ Q(θ).

Fig. 2). At each layer of the tree, we evaluate the cost function Q̂
(
ci; ĉ

(l)
i

)
for each node and

then choose theR best nodes whose cost function is maximal. The rest of nodes are discarded

from the tree. The candidates ofci associated with theR best nodes at each layer are called

“survival list”. For each node in the survival list, we construct theM − 1 child nodes in the

second layer by setting one additional entry ofci to one1. Note that since we do not distinguish

the order of the bit assertion inci, two or more nodes might represent the same realization of

ci during this process (see Fig. 2). When duplicate nodes are identified, we keep only one and

discard the rest from the tree. After removing all duplicatenodes, we choose theR best nodes

and then move on to the next layer. This process is repeated until the tree reaches the bottom

layer of the tree. We note that since the tree search complexity is proportional to the depth of

the tree (K), the dimension of source vector (M), and the number of nodes being selected (R),

one can easily show that the complexity of the proposed tree search isO(MRK). Hence, with

small values ofR andK, the computational complexity is reasonably small and proportional to

1For example, ifci = [1, 0, · · · , 0]T is in the survival list, then the child nodes ofci becomesci = [1, 1, · · · , 0]T , · · · , ci =

[1, 0, · · · , 1]T .
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TABLE II

SUMMARY OF THE PROPOSED ALGORITHM

Input: y1:T , B1:T for the ith block

STEP 1: Setl = 0. Start with ĉ(0)i = [1, · · · , 1]T andK(0).

STEP 2: Run Kalman smoother in (17) to (24).

STEP 3: Calculatedi andΦi in (28) and (29).

STEP 4: Obtain̂c(l+1)
i by running the greedy tree search.

STEP 5: SetK ← K(l+1), l← l + 1 and then go back to STEP 2.

If the estimate ofci does not change (i.e.,̂c(l+1)
i = ĉ

(l)
i ) or the number of iterations reaches the limit, go

to STEP 6.

STEP 6: Run Kalman smoother usingĉ(L)
i .

STEP 7: Obtain the final signal estimate from (32).

Output: ĥ1:T

the dimensionM of the source signal vector. The proposed tree search algorithm is summarized

in Table I.

It is worth mentioning that one important issue to be considered is how to estimate the sparsity

orderK. One simple way is to use the simple correlation method, where the observation vectors

are correlated with the column vectors ofBn andK is chosen as the number of the column

vectors whose absolute correlation exceeds the predefined threshold. While this approach is

simple to implement, the performance might be affected by the estimation quality ofK. One

can alternatively consider a simple heuristic that terminates the tree search when a big drop in

the cost metricQ
(
ci, ĉ

(l)
i

)
is observed.

After all iterations are finished (i.e.l = L) and ĉ(L)i is obtained, we use the Kalman smoother

once again to computêsn|1:T using the newly updated̂c(L)i . The final estimate ofhn is expressed

as

ĥn = diag(ĉ
(L)
i )̂sn|1:T . (32)

E. Iteration Control

In this subsection, we discuss how to configure the control parameters in performing the

iterations of the EM algorithm. In each iteration, the proposed scheme estimates the supportci
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of the sparse signal vector under the sparsity constraint
∑M

j=1 ci,j = K. Since the tree search

to identify the support ofhn is based on the greedy principle, it is possible that the support

elements might not be accurately identified, especially forthe initial iterations where the cost

metricQ̂
(
ci; ĉ

(l)
i

)
is not so accurate. In order to reduce the chance of missing nonzero entries of

sparse vector in early iterations, we search for the sparse signal vectorci under relaxed sparsity

constraint in the beginning and then gradually reduce the sparsity orderK as the number of

iterations increases. Let the sparsity order parameter used for the lth iteration beK(l). Then,

we use sufficiently large value ofK(1) initially 2 and then decreasesK(l) monotonically (i.e.,

K(l) ≥ K(l+1)) until K(l) equals the target sparsity orderK. In doing so, we can substantially

reduce the chance of missing support elements and at the sametime gradually improve the

estimation quality ofci. The summary of the proposed algorithm is presented in TableII.

F. Estimation ofVn

Although the proposed algorithm is designed based on the dynamic sparse model in (5),An

andVn are generally unknown in practice. We are often interested in the scenario where the

elements of the signal vectorsn are uncorrelated with each other andAn andVn are fixed over

the block of intervalT . Then,An andVn have a diagonal form, i.e.,An = diag(α1, · · · , αM)

andVn = diag((1 − α2
1)σ

2
s,1, · · · , (1 − α2

M)σ2
s,M). In general,αj can be determined using the

temporal correlations of thejth element ofsn, which can be known a priori or estimated from

the data separately. While the estimation ofαi is relatively easy, such is not the case forσ2
s,j.

One accurate but computationally expensive approach is to estimate these variances using EM

formulation. In this work, we do not pursue this approach dueto complexity concern and compute

a rough estimate ofσ2
s,j from 1

T

∑T (i+1)
n=T i+1 b

H
n,jyn/‖bn,j‖22, wherebn,j is the jth column of the

matrix Bn. After running all iterations, the refined estimate ofVn can be obtained by taking

sample covariance matrix of the estimated signal vectors inthe processing block and used for

the final Kalman smoothing step described in Section II-C.

2Initially, we set c(0)i = [1, · · · , 1] (i.e., K(0) = M ) since we have no knowledge on the sparsity structure of the source

signal vector in the beginning.
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G. Real-time Implementation

Since the proposed algorithm we described in the previous subsections performs batch pro-

cessing by running several iterations of E-step and M-step in a block, it might not be suitable

for real-time applications. By slightly modifying the algorithm, we can reduce latency and also

speed up the operations substantially. The main idea behindthis modification is to return the

estimate of the source signal immediately after the new measurement vector is provided. In

doing so, we can process the block seamlessly without waiting for the reception of whole block

of observations. First, instead of Kalman smoother, we employ the Kalman filter to conduct the

operations from (17) to (21) in a forward direction. In orderto ensure the real-time processing,

we need to use multiple Kalman filters, where each Kalman filter corresponds to single iteration

of the EM algorithm. For the sake of simplicity, we here consider two Kalman filters as an

example3. In the first Kalman filter, we do not know the signal existencevector ci so that we

setci = [1, · · · , 1]T and run the Kalman filter. Oncêsn|n andΣn|n are obtained, we replace the

computation ofdH
n andΦn in (28) and (29) by an auto-regressive update rule

d̃H
n = (1− α)d̃H

n−1 + α2Re
(
yH
n−1Bn−1diag(̂sn−1|n−1)

)
(33)

Φ̃n = (1− α)Φ̃n−1 + α
(
conj

(
BH

n−1Bn−1

)
⊙

(
Σn−1|n−1 + ŝn−1|n−1ŝ

H
n−1|n−1

))
, (34)

whereα is a forgetting factor controlling the speed of update. Notethat by using (33) and (34)

instead of (28) and (29), we can compute approximation ofdH
n andΦn on the fly whenever the

new measurement vector is available. Onced̃H
n andΦ̃n are obtained, we next identify the signal

existence indication vectorci using the greedy tree search described in Section II-D. Using the

newly obtained estimatêci, the second Kalman filter generatesŝn|n. By multiplying this and̂ci,

we get the final estimate ofhn. Note that it is straightforward to employ more than two Kalman

filters to produce better estimate ofci. To distinguish this from the original sKTS algorithm,

in the sequel, we refer it to as real-time sKTS (RT-sKTS) algorithm. The block diagram of the

RT-sKTS algorithm is depicted in Fig. 3.

H. Convergence Behavior

Since the proposed sKTS algorithm is derived based on EM algorithm, we can study the

convergence of the EM algorithm to understand the behavior of the sKTS algorithm. In general,

3This setup corresponds to single EM iteration.
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Fig. 3. Real-time implementation of the sKTS algorithm.

the convergence of the EM algorithm can be shown in two steps.First step is to show that

the likelihood functionPr
(
y1:T ; c

(l)
i

)
is non-decreasing function of the iteration. Using the

standard analysis for EM algorithm, one can show that the sKTS algorithm satisfies this property.

The second step is to show thatc
(l)
i converges to a stationary point of the likelihood function

Pr (y1:T ; ci). Since we do not use the continuous model forc
(l)
i (the parameter vectorc(l)i is

binary), unfortunately, it is not easy to prove this convergence property. Nevertheless, we show

from numerical experiments that the sKTS algorithm finds an accurate estimate ofci in a small

number of iterations.

III. A PPLICATION TO WIRELESSCHANNEL ESTIMATION

In this section, we study the application of the proposed scheme to the training-based channel

estimation problem in wireless communication systems. In many communication systems, esti-

mation of channels is done before the symbol detection sincethe channel estimate is required

for the detection of the transmitted symbols. Also, to perform the precoding and user scheduling

in the transmitter, accurate estimate of the channel vectorshould be fed back from the receiver

to the transmitter. Since the wireless channels whose delayspread is larger than the number

of significant paths are well modeled as a sparse signal vector in a discretized delay domain,

the CS techniques have been used in the sparse channel estimation problem [25]–[27]. While
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existing approaches perform the sparse channel estimationusing only a single observation vector

or multiple observation vectors under the assumption that the CIR vector is invariant in the block,

the proposed sKTS algorithm exploits the simultaneously sparse structure of time-domain CIR,

which matches well with physical characteristics of multi-path fading channels. In this section,

we describe the application of the proposed method to the channel estimation problem in the

orthogonal frequency division multiplexing (OFDM) and thesingle carrier (SC) systems.

A. OFDM systems

We first consider the channel estimation problem of the OFDM systems. In our simulations,

we focus on the scenario where the number of the pilot symbolstransmitted per OFDM symbol

is much smaller than the length of the CIR, thereby forming underdetermined systems in the

estimation of the CIR. Note that this scenario will be prevalent when a large number of transmit

antennas are deployed (e.g., in large-scale multi-input multi-output systems) since the required

number of the pilot signals is proportional to the number of the transmit antennas. Since too much

pilot overhead will eat out the resources and eventually limit the throughput of the systems, it

is desirable to estimate the channel with small number of resources. However, when the number

of the pilot signals is small, conventional channel estimators do not perform well due to the

lack of observations. Whereas, by exploiting the sparsity structure of the CIR vector, the sKTS

algorithm overcomes the shortage of pilot signals. In the proposed scheme, as shown in Fig. 4,

we randomly allocate the pilot signals in time and frequencyaxis to make the better conditioned

system matrixBn. As a result, while the support ofhn is invariant for several OFDM symbols,

the composite system matrix is varying per symbol.

Let P , N , andM be the total number of the subcarriers, the number of the pilot subcarriers,

and the length of the time-domain CIR, respectively. Further, let N be the number of pilot

subcarriers per OFDM symbol. Then the relationship betweenthe pilot signal vectorpn ∈ CN

and the observed signal vectoryn ∈ CN of the OFDM system is expressed as

yn = pn ⊙ gn + vn (35)

= diag(pn)gn + vn (36)

wheregn is the vector representing frequency-domain channel response. Using theP ×P DFT

matrix FP whose (i, j) entry is given bye−
j2π
P

ij, the frequency-domain channel response is
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expressed in terms of the time-domain CIR as

gn = ΠnFPΦhn, (37)

wherehn is theM × 1 vector representing the time-domain CIR andΠn is theN × P matrix

that selects theN rows ofFP depending on the location of pilot subcarriers, i.e.,

Πn =




eTcn,1

...

eTcn,N


 . (38)

Recall that{cn,1, cn,2, · · · , cn,N} are the pilot subcarrier indices at thenth OFDM symbol and

Φ is theP ×M matrix choosing the firstM columns ofFP , i.e.,

Φ =
[
e1 · · · eM

]
. (39)

Using (36) and (37), we obtain the observation model for which the proposed sKTS scheme can

be readily applied

yn = Bnhn +wn, (40)

whereBn = diag(pn)ΠnFPΦ.

B. Single Carrier Systems

In the single carrier (SC) transmission system, the known training symbols are sent from the

transmitter to the receiver before the transmission of the data symbols. Suppose that the length

of the training symbols being transmitted isN , then the received signal at timen is expressed

as

yn =
M∑

l=1

hn,ltn−l+1 + wn, 0 ≤ n ≤ N, (41)

wherehn,l is the lth tap of the CIR at timen and ti is the ith training symbol. Using a vector

notation, we have

yn = tHn hn + wn, 0 ≤ n ≤ N, (42)

wherehn = [hn,1, · · · , hn,M ]T and tn = [t∗n, · · · , t
∗
n−M−1]

T . To estimate the channel vectorhn,

recursive least square (RLS) or Kalman channel estimators have been popularly used [28], [29].
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Fig. 4. Pilot allocation in (a) conventional systems (comb-type assignment) vs. (b) proposed sKTS algorithm.
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TABLE III

SIMPLIFIED ALGORITHM FOR CHANNEL ESTIMATION IN SC SYSTEMS

Operational step Algorithm change

Eq. (19) Kn =
Σn|n−1diag(ĉ

(l)
i

)tn

tH
n

diag(ĉ
(l)
i

)Σn|n−1diag(ĉ
(l)
i

)tn+σ2
w

Eq. (28) dT
i ,

∑T (i+1)
n=Ti+1 2Re

(
conj(yn)Bndiag(ŝn|1:T )

)

Eq. (29) Φi ,
∑T (i+1)

n=Ti+1 diag(t
H
n )

(
Σn|1:T + ŝn|1:T ŝ

H
n|1:T

)
diag(tn)

When the training periodN is small, the system becomes ill-posed and thus the estimation quality

of these channel estimation algorithms would be severely degraded. Whereas, by exploiting the

simultaneously sparse structure ofhn and treatingtn as a system matrix, the sKTS algorithm

generates reliable estimate ofhn. Note that since the system matrix is a row vectortHn in (42),

each step of the algorithm can be simplified (see Table III).

IV. SIMULATIONS AND DISCUSSION

In this section, we study the performance of the proposed sKTS algorithm. We first conduct

simulations with the synthetic data, and then we test the performance of sKTS algorithm in

wireless channel estimation and MRI image reconstruction problem. In our simulations, we

compare the performance of the following algorithms:

• Proposed sKTS algorithm: we set the tree search parameterR to 5. Only two iterations

with K(0) = 2K andK(1) = K are performed.

• Conventional Kalman smoother: standard Kalman smoother [24] is used.

• Oracle-based Kalman smoother: Kalman smoothing is performed under the perfect knowl-

edge on the support of the CIR. This algorithm provides the best achievable performance

bound of the proposed sKTS algorithm.

• OMP algorithm [27]: greedy projection is used to estimate the signal support.

• KSBL algorithm [14]: the SBL algorithm [12] is extended to sequential signal estimation

based on the autoregressive model.

• RW1L-DF algorithm [16]: the reweightedℓ1 optimization is modified to perform sequential

dynamic filtering.
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As a metric to measure the estimation performance, we use thenormalized mean square error

(MSE) defined as

MSE = 10 log10
E[‖hn − ĥn‖2]

E[‖hn‖2]
. (43)

A. Experiments with synthetic data

1) Simulation Setup:We first evaluate the performance of the sKTS algorithm usingthe

synthetic data generated from the signal model in (16). Herewe assume thatAn andVn are

given byαIM×M andσ2
s(1 − α2)IM×M . The location of nonzero elements ofhn is fixed over

the interval ofT = 30 and changes randomly for different intervals. Note that slow variation

of support is not considered in the simulations. The signal dimensionM is set to200 and

the sparsity orderK is set to15. Entries of the matrixBn are generated from i.i.d. Gaussian

distributionN (0, 1/M).

2) Simulation Results:Fig. 5 presents the MSE performance of signal recovery algorithms

as a function of the SNR. In Fig. 5 (a) and (b), the auto-regressive parameterα is set to0.8 and

0, respectively. Note that whenα = 0, each element ofsn is temporally uncorrelated. For both

scenarios, the dimensionN of the measurement vector is set to40. As shown in the figure, the

proposed sKTS algorithm outperforms competing recovery algorithms and also performs close

to the Oracle-based Kalman smoother for the whole SNR regime. Since the dimensionN of

the measurement vector is much smaller than the dimensionM of the source signal (N ≪ M),

it is no wonder that the conventional Kalman smoother does not perform well. Since the OMP

algorithm uses each measurement vector independently, itsperformance is also not appealing.

Next, we investigate the MSE performance when the system matrix Bn does not change

over the processing block. Since the system matrix is fixed, if Bn is ill-conditioned, recovery

algorithm suffer from severe performance loss. In order to alleviate this phenomenon, we increase

the dimensionN of the measurement vector to60 and also use the iteration control by setting

K(0) = 4K, K(1) = 2K, andK(2) = K (that is, we perform three iterations with different

sparsity parameters). Fig. 6 shows the MSE performance as a function of SNR. While the sKTS

algorithm suffers from considerable performance loss whenN is set to45, it performs well

whenN becomes65.

We next take look at the convergence behavior of the sKTS algorithm and the KSBL algorithm.

In this test, we setN andα to 45 and 0.8, respectively. As shown in Fig. 7, the sKTS algorithm

September 20, 2018 DRAFT



21

TABLE IV

PARAMETERS OF THEOFDM SYSTEMS

Setup Specification

Total number of subcarriers 1024

Bandwidth of each subcarrier 15 kHz

Symbol duration 66.7 µs

CP length 16.7 µs

Interval between two consecutive pilot signals0.25 ms (three OFDM symbol)

Maximum delay spread of CIR 13 µs

Modulation order QPSK

Code rate 1/2

performs close to the Oracle-based Kalman smoother after two iterations, while the KSBL

algorithm requires five iterations until the performance converges. Due to this reason, even though

the computational complexity of the greedy tree search is a bit higher than the complexity of

M-step in the EM algorithm, overall complexity of the approaches are more or less similar. In

fact, our numerical experiments demonstrate that it takes 15.69 seconds for the sKTS algorithm

to finish recovery process while the time required for the KSBL is 14.97 seconds.

B. Experiments in application to channel estimation

In this subsection, we study the performance of the proposedscheme in application to channel

estimation in OFDM systems.

1) Simulation Setup:The specific parameters for the OFDM system are summarized inthe

Table IV. In generating pilot symbols, we use the quadraturephase shift keying (QPSK) pseudo-

random sequence. The pilot signals are transmitted for every three OFDM symbols. For the

OFDM symbol containing pilots, we assignN pilot symbols. As described in the previous

section, the location of pilot subcarriers is randomly chosen for each OFDM symbol. The

remaining OFDM resources are filled with data symbols. The binary information bits are encoded

using half rate convolutional code with generation polynomials (171, 133) and the coded bits

are modulated to QPSK symbols. Each code block contains 23,360 coded bits. Considering the

maximum channel delay spread specified in the Table IV, we setthe dimensionM of hn to 200.
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TABLE V

3GPPCHANNEL MODELS

Extended Pedestrian A model (EPA) Delay = [0, 30, 70, 90, 110, 190, 410] ns

Power =[0,−1,−2,−3,−8,−17.2,−20.8] dB

Extended Vehicular A model (EVA) Delay = [0, 30, 150, 310, 370, 710, 1090, 1730, 2510] ns

Power =[0,−1.5,−1.4,−3.6,−0.6,−9.1,−7.0,−12.0,−16.9] dB

Extended Typical Urban model (ETU) Delay = [0, 50, 120, 200, 230, 500, 1600, 2300, 5000] ns

Power =[−1,−1,−1, 0, 0, 0,−3,−5,−7] dB

In generating the complex Rayleigh fading frequency-selective channels, we use Jake’s model

[30], where temporal correlation of the CIR taps for given Doppler frequencyfd (Hz) is expressed

asJ0(2πfdTs), whereTs is the interval between consecutive pilot symbols in time (Ts = 0.25ms)

andJ0(x) =
∑∞

m=0
(−1)m

m!Γ(m+1)

(
x
2

)2m
is the zero-th order Bessel function. For convenience, we use

Doppler ratedefined as Doppler frequency normalized by pilot transmission rate, i.e.,fdTs. We

use two types of channel models: 1) the exactK-sparse channel model where the location of the

K nonzero taps is randomly chosen for every block ofT OFDM symbols and 2) the practical

channel models specified by 3GPP Long Term Evolution (LTE) standard [32] (see Table V).

Note that the channel taps in the standard LTE channel model are only approximately sparse. In

order to determine the parameters of the Gauss-Markov processAn andVn for a givenfd, we

minimize the approximation error between the Gauss-Markovprocess and the Jake’s model as

suggested in [31]. Using the CIR estimates obtained by the sparse signal recovery algorithms,

the transmitted symbols are detected by the MMSE equalizer in frequency domain. Then, the

channel decoder is followed to detect the information bits.To evaluate the performance of the

recovery algorithms, we measure bit error rate (BER) at the output of the channel decoder.

2) Simulation Results:We test the performance of the channel estimators when the exactK-

sparse channels are used. The sparsity orderK for these channels is set to8 and the dimension

N of the measurement vector is set to32. Note that whenN = 32, the pilot resources occupy

3.12% of the overall OFDM resources. We assume that the sparsity structure remains unchanged

over the block ofT = 30 pilot containing OFDM symbols. We set the Doppler rateDr to 0.05.

In Fig. 8 (a) and (b), we plot the MSE and BER performance of therecovery algorithms as a

function of SNR. From the figure, we clearly observe that the sKTS algorithm performs best
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among all algorithms under test and also performs close to that of the Oracle-based Kalman

smoother.

We next investigate the performance of the proposed sKTS algorithm when the practical

LTE channel models are used. In this test, we observe the behavior of the algorithms for four

distinctive scenarios: a) EVA channel withDr = 0.1 andN = 60, b) EVA channel withDr =

0.05 and N = 60, c) EPA channel withDr = 0.02 and N = 48, and d) EPA channel with

Dr = 0.005, N = 48. We setK = 60 andK = 24 for EVA and EPA channel models since

the EVA channel exhibits longer delay spread. In Fig. 9, we observe that the sKTS algorithm

maintains the performance gain over the competing algorithms for wide range of Doppler rates.

Note that when compared to the results of the exactK-sparse channel model, we see that the

performance gap between the sKTS and KSBL is a bit reduced.

Next, we compare the performance of the RT-sKTS described inSection II-G with the original

sKTS algorithm. In this simulations, we setN = 32 andT = 30. For the RT-sKTS algorithm, we

setα = 0.4. In order to test the performance in a harsh condition, we arbitrarily change the delay

structure of the CIR for every 30 observation vectors. To ensure the convergence of the online

update strategy in (33) and (34), we use the first 10 observation vectors for warming up purpose

and then use the rest for measuring the MSE performance. Notethat in practice, such warming

up period would not be necessary since the support of channelvector would not be changed

abruptly in many real applications. In Fig. 10, we see that the RT-sKTS algorithm performs close

to the original sKTS algorithm in low and mid range SNR regime. In the high SNR regime,

however, the RT-sKTS algorithm suffers slight performanceloss due to the approximation step of

d̃H
n andΦ̃n. Nevertheless, as shown in Fig. 10 and Fig. 8 (a), the RT-sKTSalgorithm maintains

the performance gain over the conventional channel estimators.

C. Experiments in Dynamic MRI Application

In this subsection, we investigate the performance of the sKTS algorithms in the reconstruction

of the dynamic MRI images. In our test, we use a sequence of32 × 32 dimensional cardiac

images shown in Fig. 124. We generate the measurements by performing two dimensional discrete

wavelet transform (DWT) with a 2-level Daubechies-4 wavelet, applying two dimensional DFT

4These images are decimated from the original128 × 128 images [34]. The raw image data is available online [33].
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matrix and taking theN randomly chosen frequency-domain image samples. After adding the

Gaussian noise to the image, we recover the original image using the recovery algorithms. We

setN = 358, which corresponds to about 35% of the image size (i.e.,M = 1024). We could

empirically observe that the location of nonzero coefficients in wavelet image is slowly changing

(i.e., support change occurs for only a few places), which matches well with our simultaneous

sparse signal model. In order to capture the most of signal energy, we setK = 152 for all

images5. In Fig. 12, we plot the MSE of the several image recovery schemes obtained for each

image. The sKTS algorithm outperforms the basis pursuit denoising (BPDN) [1] and RW1L-

DF [16] and also performs close to the Oracle-based Kalman smoother. Note that we could

not include modified CS scheme in [34] in our numerical experiments since large number of

measurement samples is required for the first image.

V. CONCLUSIONS

In this paper, we studied the problem to estimate the time-varying sparse signals when the

sequence of the correlated observation vectors are available. In many signal processing and

wireless communication applications, the support of sparse signals changes slowly in time and

thus can be well modeled as simultaneously sparse signal, weproposed a new sparse signal

recovery algorithm, referred to as sparse Kalman tree search (sKTS), that identifies the support

of the sparse signal using multiple measurement vectors. The proposed sKTS scheme performs

the Kalman smoothing to extract thea posterioristatistics of the source signals and the greedy

tree search to identify the support of the signal. From the case study of sparse channel estimation

problem in orthogonal frequency division multiplexing (OFDM) and image reconstruction in

dynamic MRI, we demonstrated that the proposed sKTS algorithm is effective in recovering the

dynamic sparse signal vectors.

5Actually, we setK to the the number of coefficient containing99.9% of the signal energy.
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APPENDIX A

DERIVATION OF (15)

From (9) and (14), we get

Q
(
ci; ĉ

(l)
i

)
=C ′ −

T (i+1)∑

n=T i+1

E

[
1

σ2
w

‖yn −Bndiag(ci)sn‖
2

∣∣∣∣y1:T ; ĉ
(l)
i

]
(44)

=C ′′ +
1

σ2
w

T (i+1)∑

n=T i+1

{
E

[
tr
[
2Re

(
Bndiag(ck)sny

H
n

)] ∣∣∣∣y1:T ; ĉ
(l)
i

]

−E

[
tr
[
Bndiag(ci)sns

H
n diag(ci)B

H
n

] ∣∣∣∣y1:T ; ĉ
(l)
i

]}
(45)

=C ′′ +
1

σ2
w

T (i+1)∑

n=T i+1

{
tr

[
2Re

(
Bndiag(ci)E

[
sn

∣∣∣∣y1:T ; ĉ
(l)
i

]
yH
n

)]

− tr

[
Bndiag(ci)E

[
sns

H
n

∣∣∣∣y1:T ; ĉ
(l)
i

]
diag(ci)B

H
n

]}
, (46)

(47)

whereC ′ andC ′′ are the terms independent ofci. Using the property of the trace, i.e,tr(ABC) =

tr(BCA) = tr(CAB), we have

Q
(
ci; ĉ

(l)
i

)
=C ′′ +

1

σ2
w

T (i+1)∑

n=T i+1

{
2Re

(
yH
n Bndiag(ci)E

[
sn

∣∣∣∣y1:T ; ĉ
(l)
i

])

− tr

[
Bndiag(ci)E

[
sns

H
n

∣∣∣∣y1:T ; ĉ
(l)
i

]
diag(ci)B

H
n

]}
(48)

APPENDIX B

DERIVATION OF (26)

Denotingbn,i as the transpose of theith row vector ofBn, we can express the lefthand term

of (26) as

left term=

M∑

j=1

bT
n,jdiag(ci)

(
Σn|1:T + ŝn|1:T ŝ

H
n|1:T

)
diag(ci)conj(bn,j). (49)

SincebT
n,jdiag(ci) = cTi diag(bn,j) anddiag(ci)conj(bn,j) = diag(conj(bn,j))ci, we further have

left term=
M∑

j=1

cTi diag(b
T
n,j)

(
Σn|1:T + ŝn|1:T ŝ

H
n|1:T

)
diag(conj(bn,j))ci (50)

= cTi

M∑

j=1

[
diag(bT

n,j)
(
Σn|1:T + ŝn|1:T ŝ

H
n|1:T

)
diag(conj(bn,j))

]
ci, (51)
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and hence we finally have

left term= cTi
(
conj

(
BH

n Bn

)
⊙

(
Σn|1:T + ŝn|1:T ŝ

H
n|1:T

))
ci. (52)
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Fig. 5. The MSE performance as a function of SNR with (a)α = 0.8 and (b)α = 0.
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Fig. 6. The MSE performance whenBn is fixed.
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Fig. 7. The MSE performance of the sKTS and KSBL as a function of the number of iterations.
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Fig. 8. The performance of the recovery algorithms for theK-sparse channel model: a) MSE and b) BER performance.
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Fig. 9. The BER performance as a function of SNR for the four distnictive scenarios of a) EVA channel withDr = 0.1 and

N = 60, b) EVA channel withDr = 0.05 andN = 60, c) EPA channel withDr = 0.02 andN = 48, and d) EPA channel

with Dr = 0.005 andN = 48.
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Fig. 10. The MSE performance of the RT-sKTS algorithm.
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Fig. 11. A sequence of cardiac MRI images.
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Fig. 12. The MSE performance of the dynamic MRI image as a function of image sequence index.
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