arXiv:1411.5187v2 [cs.IT] 5 Dec 2015

Statistical Recovery of Simultaneously Sparse
Time-Varying Signals from Multiple

Measurement Vectors

Jun Won ChoiMember, IEEEand Byonghyo ShimSenior Member, IEEE

Abstract

In this paper, we propose a new sparse signal recovery tiguorieferred to as sparse Kalman tree
search (sKTS), that provides a robust reconstruction ofplagse vector when the sequence of correlated
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Statistical Recovery of Simultaneously Sparse
Time-Varying Signals from Multiple

Measurement Vectors

I. INTRODUCTION

Over the years, there has been growing interest in the regc@fehigh dimensional signals
from a small number of measurements. This new paradigm, lledaampressed sensing (CS),
relies on the fact that many naturally acquired high dimamai signals inherently have low
dimensional structure. In fact, since many real world sigican be well approximated as sparse
signals (i.e., only a few entries of signal vector are noogeCS techniques have been applied to
a variety of applications including data compression, selwcalization, wireless sensor network,
medical imaging, data mining, to name just a few.

Over the years, various signal recovery algorithms for C8ehaeen proposed. Roughly
speaking, these approaches are categorized into two slaske first approach is based on
a deterministic signal model, where an underlying signaléen as a deterministic vector and
the sparsity promoting cost function (e.g;;norm) is employed to solve the problem. These
approaches include the basis pursuit (BP) [1], orthogonaiching pursuit (OMP)[]2], (]3],
CoSaMP [[4], and subspace pursuit [5]. The second approdudsid on the probabilistic signal
model, where the signal sparsity is described by ahpriori distribution of the signal and
Bayesian framework is employed in finding the sparse soiy&}, [7].

When the multiple measurement vectors (MMV) from differentirce signals with common
support are available, accuracy of the sparse signal rec@an be improved dramatically by
performing joint processing of these vectors [8]+[14]. c&rnthe algorithms based on MMV
usually performs better than those relying on single mesmsant vector, many efforts have been
made in recent years to develop an efficient sparse recolgagitam. The MMV-based recovery
algorithms targeted for the deterministic signal recovecjude the mixed-norm solution![8], ][9]

and convex relaxation [10] while the probabilistic appiuexinclude the MMV sparse Bayesian
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learning (SBL) method [11], block-SBL [12], auto-regressiSBL [13], and Kalman filtering-
based SBL (KSBL)[[14].

In this work, we are primarily concerned with the MMV-baseginsl recovery problem when
the observation vectors are sequentially acquired. To eeifspp we express th& x 1 observation

vectory, acquired at time index as

whereB,, is the N x M system matrixh,, is the M x 1 source signal vector, and, are the

N x 1 noise vector. We assume that, is modeled as a zero mean complex Gaussian random
vector, i.e.,CN(0,021). Our goal in this setup is to estimate the source signalsing the
sequence of the observatiofs, } when 1) the source signdl, is sparse (i.e., the number
nonzero elements ih,, is small) and 2) the dimension of the observation vegtpiis smaller
than that of the source vectdV < M). In particular, we focus on the scenario where the
nonzero elements df, change over time with certain temporal correlations. Irs genario,

we assume that correlated time-varying signals are welletleadby Gauss-Markov process.
Note that this model is useful in capturing local dynamicsighals in linear estimation theory
[24].

The main purpose of this paper is to propose a new statistieake signal estimation algorithm
for the sequential observation model we just described. urfterlying assumption used in our
model is that the nonzero amplitude of the sparse signalsasging in time, leading to different
signal realizations for each measurement vector, yet thpatiof the signal amplitude is slowly
varying so that the support remains unchanged over ceraisecutive measurement vectors. We
henceforth refer to this model agnultaneously sparse signal with locally common suppioite
the support of the sparse signal remains constant over tbeé finterval under this assumption.
Many of signal processing and wireless communication sysige characterized by this model.
For example, this model matches well with the charactegstf multi-path fading channels for
wireless communications where the channel impulse regponshould be estimated from the
received signay,,. Fig.[1 shows a record of the channel impulse responses (@|R)derwater
acoustic channels (represented over the propagation dalhyime domain) measured from the
experiments conducted in Atlantic ocean in USA![21]. We obsdhat when compared to the

amplitude of the channel taps, the sparsity structure ofkeis varying slowly. Thus, we can
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readily characterize this time-varying sparse signal gisive correlated random process along
with a deterministic binary parameter representing theterice of the signal.

In recovering the original signal vecthr, from the measurement vectors, we use the modified
expectation-maximization (EM) algorithm [22]. The propdscheme, dubbed as sparse-Kalman-
Tree-Search (sKTS), consists of two main operations: 1)riaal smoothing to gather the
posteriori statistics of the source signals from individual measurgnvector within the block
of interest and 2) identification of the support of the spasigmal vector using a greedy tree
search algorithm. Treating the problem to identify the spwarstructure of the source signal
as a combinatorial search, we propose a simple yet effegtivedy tree search algorithm that
examines the small number of promising candidates amorgpaltisity parameter vectors in the
tree.

There exist several approaches to estimate the time-wpsgarse signals under MMV model.
In [15], [16], reweighted’; optimization has been modified for the sequential dynamntariiig. In
[14], modified SBL algorithm has been suggested to adoptregitessive modeling. In [19], EM-
based adaptive filtering scheme has been proposed in thextaitsparse channel estimation.
Other than these, notable approaches include turbo appat&imessage passing (AMP) [18],
Lasso-Kalman[[20], and Kalman filtered CS [17]. We note that work is distinct from these
approaches in the following two aspects. First, in conti@#te previous efforts using continuous
(real-valued) parameters to describe signal sparsity 4f-{16], the proposed method employs
the deterministic discrete (binary) parameter vector tiagittures the on-off structure of signal
sparsity. Due to the use of deterministic parameter veatoeffort to deal with the probabilistic
model on signal sparsity is unnecessary. Also, since thelsspace is discretized, identification
of parameter vector is done by the efficient search algorithetond, while the recent work in
[17] estimates signal amplitude using Kalman smoother hed tdentifies the support of sparse
signal by thresholding of the innovation error norm, our kvpursues direct estimation of the
binary parameter vector using the modified EM algorithm. Vééerthat a part of this paper
was presented in_[23]. The distinctive contribution of thegent work is that the algorithm
is developed in a more generic system model and practicaéssée.g., parameter estimation
and iteration control) and real-time implementation issaee elaborated. Further, extensive
simulations for the practical applications are conductedlémonstrate the superiority of the

proposed method.
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Fig. 1. A record of the channel impulse response of undemateustic channels measured off the coast of Martha’s Vihya

MA, USA.

The rest of this paper is organized as follows. In Sectiorwi, briefly explain the sparse
signal model and then present the proposed method. In &dtfieve discuss the application of
the proposed algorithm in the wireless channel estimatioisection 1V, the simulation results
are provided, and Section V concludes the paper.

Notation: Uppercase and lowercase letters written in laakelfdenote matrices and vectors,
respectively. Superscripts)” and (-)? denote transpose and conjugate transpose (hermitian
operator), respectivelyonj(x) denotes the conjugation of the complex numbejf - ||, indicates
an /,-norm of a vector. For thé,-norm, we abbreviate a subscripfor simplicity. diag (-) is a
diagonal matrix having elements only on the main diagoRal(z) andIm (z) denote the real
and imaginary parts of, respectively.£[X| denotes the expectation of a random variakle
and E[X Y] denotes the conditional expectation ®fgivenY. E[X; 0] means the expectation
of X given the deterministic parameté@r The notations for covariance matrices are given by
Cov(x,y) = E[xy"] — E[x]E[y]" and Cov(x) = Cov(x,x). Pr(A) means the probability of
the eventA. tr(A) denotes a trace operation of the matix A © B is the element-by-element
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product (Hadamard product) of the matricésand B. e; denotes théth coordinate vector.

[I. PROPOSEDSPARSE SIGNAL ESTIMATION TECHNIQUE

In this section, we consider the statistical estimationhef time-varying sparse signals from
the sequentially collected observation vectors. As meetip our approach is based on the
assumption that the support of the sparse signal varieshslowtime so that the multiple
measurement vectors sharing common support can be usegtovienthe estimation quality of
the sparse signals. In this section, we first describe thelsmeously sparse signal model and

then present the proposed sparse signal estimation scheme.

A. Simultaneously Sparse Signal Model

We express a time-varying sparse sighglas a product of a vector of random processes
describing the amplitudes of nonzero entriehjnand the vectoe; = [c; 1, - -+, ¢; )7 indicating

the existence of signal. That is,

h, = diag(c;)s,. 2)
wherei is the block index, the entry af; is either 0 or 1 depending on the existence of the
signal

1 if the jth entry ofh,, exists
Cij = ] (3)
0 otherwise,

and the time-varying amplitude, € CM is modeled as Gauss-Markov random process
Spn+1 = Ansn + Vi, (4)

wherev,, € CM is the process noise vector (CA(0,V,)) and A, € CM*M is the state
update matrix. Note that the block indexis associated with the interval of the lengih

n € [Ti+ 1,T(i + 1)]. As mentioned, we assume that the support of the underlypagss
signals is locally time-invariant so that is constant in a block of consecutive measurement

vectors. Using this together with the observation modelij) (ve obtain the simultaneously
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sparse signal model
Sni1 = Ansp + Vi,
h, = diag(c;)s,
v, = B,h, +w,. (5)

Sinceh,, follows Gaussian distribution for the given, the a priori distribution of the source

signalh,, can be described by

1
Pr(h,;c;) = —(h, — E[h,;c;])" h,) " (h, — E[h,;c
7“( n7cz) (QW)Mdet(COV (hn))eXp( ( n [ n; CZ]) COV( n) ( n [ n CZ])) )
(6)
where
E [hna ci] = diag(ci)E[Sn]
Cov (h,,) = diag(c;)Cov(s,)diag(c;). (7)
B. Derivation of Statistical Sparse Signal Estimation
When the multiple measurement vectdssr;,1,--- ,yru4+1)} in theith block are available,
the maximum likelihood (ML) estimate af; is expressed as
Mt = arg max In Pr (y1.7; ¢i) (8)
cie{0,1}T,Z§i1 cij=K
wherey.r = [yris1, - ,yT(z—+1)]T and K is the sparsity order (the number of nonzero entries)

of h,,. Note that the subscript : 7" denotes the set of time indices for thh block. Note
also that the ML estimate}! is chosen among all candidates satisfying the sparsityt@ins
(Z;.Vil Cij = K). OncecM is obtained, we can estimate the amplitude vectqrassuming
that the signal support specified b{'" is true. Well known linear minimum mean square error
(LMMSE) estimator (e.g. Kalman smoother) can be used tonedtis, and thencM™ and the
estimate ofs,, are combined to produce a final estimatelgf. Note that if the estimation
of c; is correct, we can obtain the best achievable estimatk,pfwhich is equivalent to the
solution attainable by so called “Oracle estimator”. Sitice ML problem in [(8) involves the
marginalization over all possible combinations of therateariabless,.r, finding out the solution

using the direct approach would be computationally unmeablg. Perhaps, a better way to deal
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with the problem at hand is to use the EM algorithm. Recall thea EM algorithm is an efficient
means to find out the ML estimate or maximum a posteriori (MA&)mate of statistical signal
model in the presence of unobserved latent variables. Thealglrithm generates a sequence
of estimatesf:f.”, [ =0,1,2,... by alternating two major steps (E-step and M-step), whieh ar
given, respectively

« Expectation step (E-step)

Q (ci;éﬁ”> =F [hl Pr (Y1:T751:T§ Cz’) Y1:T§é§l)} ) 9)
o Maximization step (M-step)
e = arg max Q <Cz; Agl)) : (10)
Cie{ovl}]wvz?il Ciaj:K

Whereégl) is the estimate o€; at thel-th iteration. Although one cannot guarantee finding out
the global optimal solution of {8) using the EM algorithm, wél empirically show thatc; can
be estimated accurately with a proper initializationc{;)QP (see Section 1V).

C. The E-step

The goal of the E-step is to obtain a simple expression of tis¢ metricQ(c;, éf.l)) using the

simultaneously sparse signal model. FitstPr (yi.7, s1.7;¢;) iS expressed as

In Pr (Y1;T, S1.15 Cz’) =InPr (YLT\SLT; Cz) +1InPr (SlzT; Cz) (11)
T(i+1) T(i+1)

= Y WnPr(yusuic)+ Y InPr(s,ls, 1) (12)
n=T1+1 n=Ti+1

Noting thatPr (y,|s,; c;) ~ CN(B,diag(c;)s,, c2I) andPr (s,|s,_1) ~ CN(A,_ 18,1, Vn_1),

we have
T(i+1)
InPr (yi.r,s1.75¢) = — Z po) yn — Bndiag(ci)snﬂz
n=Ti+1 W
T(i+1)
= > - As) VI (s - As,)+ 0 (13)
n=T1i+1
T(i+1)
-— > =) lyn — Badiag(c;)s,||* + €, (14)

n=Ti+1 W
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where C' and C’ are the terms independent of. From [9) and [(I4), we further have (see

Appendix[B)
yir; 651)} )

yi1; € }dlag(cl)BH] } (15)

T(i+1)

Q (Cz, A,“) =C" + 01 Z {QRe (nyndiag(c,-)E [sn

W n=Ti+1

- tr | Byding(e) 5,5

Lets,;..r andX,;.r be the conditional mean and covariancespfvheny.» andc are given,

ie.,

Sn|1:T = E [Sn

Yi.1; é,(-l)}

Zn\l:T = Cov |isn

Y1:T;é§l)] .
Now We turn to the estimation of the posterioristatisticss,,;;.r and X,1.7. In our work, we

estimates,, ;. andX,,;.r using Kalman smoothing [24]. Wheﬁ” is given, from [[(b), the system

equations for Kalman smoothing becomes

Spn+1 = Ansn + v

We employ the fixed-interval Kalman smoothing algorithmfpening sequential estimation
of 5,17 and X,,1.r via forward and backward recursions in a block of observatip,.;. Let
s,; and X,; be the conditional mean and covariance given the fjrsibservation vectors,

YTit1,  * » YTitsi € 2 , then the
fixed-interval Kalman smoothing algorithm is summarized as

. (1l
e, s, = E |sy|yrit1, - ,yTHj;cg )} and X, ; = Cov {sn

« Forward recursion rule:

Sninet = An_18n_1jn1 (17)
Sanet = Ap 1 Sno1ma1 AL +V, (18)
K, = Y- 1d1ag( )BH (B dlag( ) nin—1diag(e El))BHjLU I>_1 (29)
Suln = Supnt + Ko (yn — Budiag(el”)8,,-1) (20)
S = (1 - Kandiag(ég”)) St (1)
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« Backward recursion rule:

Sy = T AnX (22)
§n|1:T = /S\n|n +S, (/S\n—l—l\l:T - An§n|n) (23)
Zn|1:T = Zn|n + Sn (Zn+1|1:T - Zn—i—l|n)H SnH (24)

i

Usings, .. and X, .7, @ <ci; AU)) can be rewritten as
] T(i+1)
Q <ci; Agl)) =C0" + o) Z {2Re (nyndiag(c,-ﬁml;T)
W n=Ti+1
—tr [Bndlag(cz) (En|1:T +/S\n\1:T/S\£I\1;T) dlag(cz)Bf} } (25)
Note that the second term in the right-hand sidelof (25) ivesqed as (see Appendix B)
tr [Bndiag(ci) (2n|1:T + /S\n\I:T/S\g\lzT) diag(ci)BnH}
= CZT (conj (BnHBn) ® (En|l:T +/S\n\1:T/S\nH|1;T)) C;. (26)

From (25) and[(26), we have

1 T(i+1)
0 (Ci; éf-”) —C" + = Z {2Re (nyndiag(/S\nu:T)) C;
W n=Ti+1
— c;; (conj (Ban) O] (Znu;T +/S\n|1:T/S\£I‘1:T)) Cz}- (27)
Further, by denoting
T(i41)
d] = Z 2Re (y/'B,diag(S,1.7)) (28)
n=Ti+1
T(i+1)
®; = Z (conj (By/By) © (Sujir + SajirSnjrr)) (29)
n=T1i+1
we have
~(1) " 1 T 1 T
Q(eiel") =0+ —dle, - —cl @i (30)
o o

w w

In summary, the E-step performs the Kalman smoothing oipera (17)-(23) to estimats,,;.r
and ;.- and also operations i (28) ard29) to compdfeand ®; used in the computation

of O (ci; ég”).
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Cost function

= Remove duplicate branches

Candidate of b,

{0.1,0,1} 0,1,
Q=05 Q=0.2

R(=3) best candidates

Fig. 2. lllustration of the proposed greedy tree searchritya for the size of the source vectdd = 4 and the sparsity order
K = 2. Since the number of candidates chosen in each layer is sBt+03, R(= 3) nodes with the largesf) values are

chosen in each layer.

D. M-Step
In the M-step, we findt; maximizing ) (c,-; éﬁ”) in (30) as

e Q) @)
CiE{O,l}A{,Z;Vil ciwj:K

whereQ <ci; éE”) = (dTc; — cT®,c;). In finding &™), we need to check all possible combina-
tions satisfying the sparsity constra@jj‘i1 ¢;,; = K. Since this brute force search is prohibitive
for practical values of\/, we consider a computationally efficient search algoritletuming a
sub-optimal solution to the problem ih (31). The proposedraach, which in essence builds
on the greedy tree search algorithm, examines candidatersdo find out the most promising
candidate ofc; in a cost effective manner. The tree structure used for tlopgsed greedy
search algorithm is illustrated in Figl 2. Starting from atroode of the tree (associated with
c; = [0,---,0]T), we construct the layer of the tree one at each iteratiotherfirst layer of the
tree, only one entry o€; is set to one. For example, the nodes in the first layer of & are
expressed as! = [1,0,---,0]%,--- ,cM =10,---,0,1]7. As the layer increases, one additional

entry is set to one and thus entries ofc, are set to one in th&'-th layer (|c;||o = K) (see
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TABLE |
SUMMARY OF THE GREEDY TREE SEARCH ALGORITHM

Input: d; and survival list®;
Initialization: Start with® = {[0,--- ,0]"}.
fork=1:K
forj=1:R
form=1: M
Let 8, be thejth element of©.

If the m-th entry is already one, skip the loop. Otherwise, setrthih entry of @; to one.
For Q(x) £ dfx — xT®;x, evaluateQ(8;) — Q(0) for all 8 € ©.
If Q(6;)—Q(8) =0 for any 8 € ©, then the candidaté; is duplicate node and hence we remove it.
If Q(0;) > mingeco Q(0), add8; into O.
end
end

end

Output: ¢! = arg maxece Q(0).

Fig.[2). At each layer of the tree, we evaluate the cost fonaﬁ (ci; AZ@) for each node and
then choose thé best nodes whose cost function is maximal. The rest of nodesdiacarded
from the tree. The candidates of associated with thé? best nodes at each layer are called
“survival list”. For each node in the survival list, we comnsit the A/ — 1 child nodes in the
second layer by setting one additional entrycpto ong. Note that since we do not distinguish
the order of the bit assertion i, two or more nodes might represent the same realization of
¢; during this process (see Fig. 2). When duplicate nodes amifibd, we keep only one and
discard the rest from the tree. After removing all duplicateles, we choose the best nodes
and then move on to the next layer. This process is repeatidtha tree reaches the bottom
layer of the tree. We note that since the tree search contylesxproportional to the depth of
the tree ), the dimension of source vectak/(), and the number of nodes being select&gl, (
one can easily show that the complexity of the proposed ®aech isO(M RK). Hence, with

small values ofR and K, the computational complexity is reasonably small and griognal to

'For example, ife; = [1,0,---,0]7 is in the survival list, then the child nodes ef becomese; = [1,1,---,0]7,--- ,¢c; =
[1,0,---,1]7.
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TABLE Il
SUMMARY OF THE PROPOSED ALGORITHM

Input: y1.7, B1.r for the ith block

STEP 1: Set = 0. Start withe!” = [1,---,1]” and K©.
STEP 2: Run Kalman smoother in_{17) fo124).

STEP 3: Calculatel; and ®; in (28) and [[Z2D).

STEP 4: Obtairé,ﬁl“) by running the greedy tree search.

STEP 5: Setk + KUY, [+ [ +1 and then go back to STEP 2.
(1+1) _

%

If the estimate ofc; does not change (i.ec
to STEP 6.
STEP 6: Run Kalman smoother usiﬁ@L).
STEP 7: Obtain the final signal estimate frdm](32).
Output: hi.r

éz(.l)) or the number of iterations reaches the limit, go

the dimensionV/ of the source signal vector. The proposed tree search #igors summarized
in Table[].

It is worth mentioning that one important issue to be congidés how to estimate the sparsity
order K. One simple way is to use the simple correlation method, e/tiee observation vectors
are correlated with the column vectors Bf, and K is chosen as the number of the column
vectors whose absolute correlation exceeds the predefimedhbld. While this approach is
simple to implement, the performance might be affected lgydbtimation quality ofi. One
can alternatively consider a simple heuristic that tert@gsdhe tree search when a big drop in

7

the cost metria) <ci, é(”> is observed.

After all iterations are finished (i.é.= L) and éEL)

is obtained, we use the Kalman smoother
once again to compugg, ;. using the newly updateééL). The final estimate oh,, is expressed

as

~

h,, = diag(¢{"))8, 1.7 (32)

E. Iteration Control

In this subsection, we discuss how to configure the controarpaters in performing the

iterations of the EM algorithm. In each iteration, the pregd scheme estimates the support
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of the sparse signal vector under the sparsity const@fﬁ1 ¢;,; = K. Since the tree search
to identify the support oh,, is based on the greedy principle, it is possible that the supp
elements might not be accurately identified, especiallytiier initial iterations where the cost
metricQ (ci; éﬁ”) is not so accurate. In order to reduce the chance of missingeno entries of

sparse vector in early iterations, we search for the spagsalsvectorc; under relaxed sparsity
constraint in the beginning and then gradually reduce tlassy order X' as the number of
iterations increases. Let the sparsity order parametet fegethe ith iteration be K. Then,

we use sufficiently large value ok initiaIIyE and then decreases”) monotonically (i.e.,

KO > KDY until KO equals the target sparsity ord&tr. In doing so, we can substantially
reduce the chance of missing support elements and at the sam@eyradually improve the

estimation quality of;. The summary of the proposed algorithm is presented in Tdble

F. Estimation ofV,,

Although the proposed algorithm is designed based on thardimsparse model ifl(5A,
andV,, are generally unknown in practice. We are often interestethé scenario where the
elements of the signal vectey, are uncorrelated with each other aAg andV,, are fixed over
the block of intervall’. Then,A,, andV,, have a diagonal form, i.eA, = diag(ay, -+, an)
andV,, = diag((1 — af)o2,,---, (1 — aj,)o2 ). In general,a; can be determined using the
temporal correlations of thgth element ofs,,, which can be known a priori or estimated from
the data separately. While the estimationagfis relatively easy, such is not the case txjyj.
One accurate but computationally expensive approach istitmate these variances using EM
formulation. In this work, we do not pursue this approach usomplexity concern and compute

a rough estimate 052, from L S TC5) bH oy /b, ;

5, whereb,, ; is the jth column of the
matrix B,,. After running all iterations, the refined estimate 6f, can be obtained by taking
sample covariance matrix of the estimated signal vectotfienprocessing block and used for
the final Kalman smoothing step described in Sedfion] II-C.

2Initially, we setcz(.o) =1,---,1] (i.e., K = M) since we have no knowledge on the sparsity structure of dece

signal vector in the beginning.
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G. Real-time Implementation

Since the proposed algorithm we described in the previobsestions performs batch pro-
cessing by running several iterations of E-step and M-step block, it might not be suitable
for real-time applications. By slightly modifying the algihm, we can reduce latency and also
speed up the operations substantially. The main idea behisdnodification is to return the
estimate of the source signal immediately after the new oreasent vector is provided. In
doing so, we can process the block seamlessly without wgitinthe reception of whole block
of observations. First, instead of Kalman smoother, we emnfile Kalman filter to conduct the
operations from[(17) td (21) in a forward direction. In orderensure the real-time processing,
we need to use multiple Kalman filters, where each Kalmarr filberesponds to single iteration
of the EM algorithm. For the sake of simplicity, we here cdesitwo Kalman filters as an
exampl. In the first Kalman filter, we do not know the signal existeneetor c; so that we
setc; = [1,---,1]" and run the Kalman filter. Once,, and%,,, are obtained, we replace the
computation ofd? and ®,, in (28) and [2B) by an auto-regressive update rule

af = (1 — a)af_l + a2Re (yf_an—ldiag(/S\n—lln—l)) (33)

P, =1-a)P, 1+« (conj (BnH_an_l) ® <2n—1|n—1 +§n_1\n_1§f_1m_1)) , (34)

where« is a forgetting factor controlling the speed of update. Nbt by using[(33) and_(34)
instead of [(2B) and_(29), we can compute approximatiod6fand ®,, on the fly whenever the
new measurement vector is available. Oﬁﬁeand ®,, are obtained, we next identify the signal
existence indication vectar; using the greedy tree search described in Se€tion II-D.dJsie
newly obtained estimaté;, the second Kalman filter genera&&s,. By multiplying this andc;,
we get the final estimate af,. Note that it is straightforward to employ more than two Kaim
filters to produce better estimate of. To distinguish this from the original sKTS algorithm,
in the sequel, we refer it to as real-time sKTS (RT-sKTS) athm. The block diagram of the
RT-sKTS algorithm is depicted in Fig] 3.

H. Convergence Behavior

Since the proposed sKTS algorithm is derived based on EMrithgo, we can study the
convergence of the EM algorithm to understand the beha¥itteosKTS algorithm. In general,

3This setup corresponds to single EM iteration.
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Fig. 3. Real-time implementation of the sKTS algorithm.

the convergence of the EM algorithm can be shown in two stEpst step is to show that
the likelihood functionPr (ylzT;cZ@> is non-decreasing function of the iteration. Using the
standard analysis for EM algorithm, one can show that theSS&I§jorithm satisfies this property.
The second step is to show thaﬁ) converges to a stationary point of the likelihood function
Pr (y1.1; c;). Since we do not use the continuous model éﬁ? (the parameter vectcrrf.” is
binary), unfortunately, it is not easy to prove this conegrce property. Nevertheless, we show
from numerical experiments that the sKTS algorithm finds ezueate estimate af; in a small

number of iterations.

IIl. APPLICATION TOWIRELESSCHANNEL ESTIMATION

In this section, we study the application of the propose@sehto the training-based channel
estimation problem in wireless communication systems. dmyncommunication systems, esti-
mation of channels is done before the symbol detection dimeechannel estimate is required
for the detection of the transmitted symbols. Also, to perfohe precoding and user scheduling
in the transmitter, accurate estimate of the channel vesttould be fed back from the receiver
to the transmitter. Since the wireless channels whose dsdayad is larger than the number
of significant paths are well modeled as a sparse signal vétta discretized delay domain,
the CS techniques have been used in the sparse channeltestip@blem [25]-27]. While
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existing approaches perform the sparse channel estimagiog only a single observation vector
or multiple observation vectors under the assumption tit&CiR vector is invariant in the block,
the proposed sKTS algorithm exploits the simultaneouséysp structure of time-domain CIR,
which matches well with physical characteristics of mphith fading channels. In this section,
we describe the application of the proposed method to thengtaestimation problem in the

orthogonal frequency division multiplexing (OFDM) and thiegle carrier (SC) systems.

A. OFDM systems

We first consider the channel estimation problem of the OF@®tesns. In our simulations,
we focus on the scenario where the number of the pilot syntbasmitted per OFDM symbol
is much smaller than the length of the CIR, thereby formingeardetermined systems in the
estimation of the CIR. Note that this scenario will be premalwhen a large number of transmit
antennas are deployed (e.g., in large-scale multi-inpdti+output systems) since the required
number of the pilot signals is proportional to the numbeiheftransmit antennas. Since too much
pilot overhead will eat out the resources and eventuallyt lthre throughput of the systems, it
is desirable to estimate the channel with small number auees. However, when the number
of the pilot signals is small, conventional channel estoratdo not perform well due to the
lack of observations. Whereas, by exploiting the spargiycture of the CIR vector, the sKTS
algorithm overcomes the shortage of pilot signals. In treppsed scheme, as shown in Hig. 4,
we randomly allocate the pilot signals in time and frequeaxig to make the better conditioned
system matrixB,,. As a result, while the support @f, is invariant for several OFDM symbols,
the composite system matrix is varying per symbol.

Let P, N, and M be the total number of the subcarriers, the number of the pilbcarriers,
and the length of the time-domain CIR, respectively. Furthet N be the number of pilot
subcarriers per OFDM symbol. Then the relationship betwlenpilot signal vectop,, € CV

and the observed signal vectpy € CV of the OFDM system is expressed as
Yn =Pn©8n+Vp (35)
= diag(pn)gn + Va (36)

whereg,, is the vector representing frequency-domain channel respdJsing the”? x P DFT

matrix Fp whose (i, j) entry is given bye~’#i, the frequency-domain channel response is
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expressed in terms of the time-domain CIR as

whereh,, is the M x 1 vector representing the time-domain CIR dng is the N x P matrix

that selects théV rows of F'» depending on the location of pilot subcarriers, i.e.,

€l
I1, = 57 ) (38)
e
Recall that{c, 1,c,2, -+ ,c,n} are the pilot subcarrier indices at th¢h OFDM symbol and

® is the P x M matrix choosing the firsfi/ columns ofFp, i.e.,

<I>:[e1 eM]- (39)

Using (36) and[(37), we obtain the observation model for Whie proposed sKTS scheme can
be readily applied

whereB,, = diag(p,)IL, Fpd.

B. Single Carrier Systems

In the single carrier (SC) transmission system, the knowaimitng symbols are sent from the
transmitter to the receiver before the transmission of tt@ dymbols. Suppose that the length
of the training symbols being transmitted A§ then the received signal at timeis expressed

as
M

Yn = Z hn,ltn—l—l—l + Wy, 0<n< N; (41)
=1

whereh,,; is thelth tap of the CIR at time: andt; is theith training symbol. Using a vector

notation, we have
Yn = t7h, +w,, 0<n<N, (42)
whereh,, = [hy 1, ,hon]” ands, = [t -+ ,t5_,,_,]7. To estimate the channel vecthy,,

recursive least square (RLS) or Kalman channel estimatrs heen popularly used [28], [29].
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Fig. 4. Pilot allocation in (a) conventional systems (cotpbe assignment) vs. (b) proposed sKTS algorithm.
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TABLE 11l
SIMPLIFIED ALGORITHM FOR CHANNEL ESTIMATION IN SC SYSTEMS

Operational sted Algorithm change
_ S in—1diag(el)tn
Eq. 19) Kn = tHdiag(eT)z, |, diag(@)tn+o2,
Eqg. (28) ar 2 Z:(:Z;Brl 2Re (conj(yn)Bndiag(Sn1.7))
Eq. @) o, £ ZZ(:Z;BA diag(tf) (En\ltT +/S\n\1:T/S\5\1:T) diag(tn)

When the training period/ is small, the system becomes ill-posed and thus the estimatiality
of these channel estimation algorithms would be severglyatked. Whereas, by exploiting the
simultaneously sparse structure lof and treatingt,, as a system matrix, the sKTS algorithm
generates reliable estimate laf. Note that since the system matrix is a row vedt@rin (42),

each step of the algorithm can be simplified (see Table ).

[V. SIMULATIONS AND DISCUSSION

In this section, we study the performance of the proposedSsKIgorithm. We first conduct
simulations with the synthetic data, and then we test théopeance of sKTS algorithm in
wireless channel estimation and MRI image reconstructimblpm. In our simulations, we
compare the performance of the following algorithms:

« Proposed sKTS algorithm: we set the tree search paramieter5. Only two iterations

with K@ = 2K and K" = K are performed.

« Conventional Kalman smoother: standard Kalman smooth8rif2used.

« Oracle-based Kalman smoother: Kalman smoothing is peddrander the perfect knowl-
edge on the support of the CIR. This algorithm provides th& behievable performance
bound of the proposed sKTS algorithm.

« OMP algorithm [27]: greedy projection is used to estimatke signal support.

« KSBL algorithm [14]: the SBL algorithm[[12] is extended togsential signal estimation
based on the autoregressive model.

« RWI1L-DF algorithm [16]: the reweightefi optimization is modified to perform sequential

dynamic filtering.
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As a metric to measure the estimation performance, we usadhmalized mean square error

(MSE) defined as

E[|[h, — h,|]%]
El[|hy, 7]

A. Experiments with synthetic data

1) Simulation Setup:We first evaluate the performance of the sKTS algorithm ushey
synthetic data generated from the signal modelin (16). Mexeassume thaf,, andV,, are
given by oIy« ando?(1 — o®)Iy <. The location of nonzero elements bf is fixed over
the interval of 7" = 30 and changes randomly for different intervals. Note thawslariation
of support is not considered in the simulations. The signadedsion M is set to200 and
the sparsity orders is set tol5. Entries of the matrixB,, are generated from i.i.d. Gaussian
distribution A/(0, 1/M).

2) Simulation ResultsFig. [ presents the MSE performance of signal recovery algos
as a function of the SNR. In Fig] 5 (a) and (b), the auto-resivegparametet is set t00.8 and
0, respectively. Note that whem = 0, each element of, is temporally uncorrelated. For both
scenarios, the dimensiaN of the measurement vector is set4t@ As shown in the figure, the
proposed sKTS algorithm outperforms competing recovegprdhms and also performs close
to the Oracle-based Kalman smoother for the whole SNR regBimee the dimensiowV of
the measurement vector is much smaller than the dimensimf the source signal < M),
it is no wonder that the conventional Kalman smoother doegpadorm well. Since the OMP
algorithm uses each measurement vector independentfyeifermance is also not appealing.

Next, we investigate the MSE performance when the systemixmBt, does not change
over the processing block. Since the system matrix is fixed, is ill-conditioned, recovery
algorithm suffer from severe performance loss. In ordetlaviate this phenomenon, we increase
the dimensionV of the measurement vector & and also use the iteration control by setting
KO = 4K, KM = 2K, and K® = K (that is, we perform three iterations with different
sparsity parameters). Fig. 6 shows the MSE performance ascéidn of SNR. While the sKTS
algorithm suffers from considerable performance loss wheis set to45, it performs well
when N becomess.

We next take look at the convergence behavior of the sKT Si#thgo and the KSBL algorithm.
In this test, we selV anda to 45 and 0.8, respectively. As shown in Hig. 7, the sKTS atlgor
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TABLE IV
PARAMETERS OF THEOFDM SYSTEMS

Setup Specification

Total number of subcarriers 1024

Bandwidth of each subcarrier 15 kHz

Symbol duration 66.7 us

CP length 16.7 us

Interval between two consecutive pilot signal€.25 ms (three OFDM symbol)
Maximum delay spread of CIR 13 us

Modulation order QPSK

Code rate 1/2

performs close to the Oracle-based Kalman smoother afterit@vations, while the KSBL
algorithm requires five iterations until the performancavages. Due to this reason, even though
the computational complexity of the greedy tree search ig &igher than the complexity of
M-step in the EM algorithm, overall complexity of the apprbas are more or less similar. In
fact, our numerical experiments demonstrate that it take89lseconds for the sKTS algorithm

to finish recovery process while the time required for the KS814.97 seconds.

B. Experiments in application to channel estimation

In this subsection, we study the performance of the propsskdme in application to channel
estimation in OFDM systems.

1) Simulation SetupThe specific parameters for the OFDM system are summarizéiein
Table[IM. In generating pilot symbols, we use the quadrapinase shift keying (QPSK) pseudo-
random sequence. The pilot signals are transmitted foryetlgee OFDM symbols. For the
OFDM symbol containing pilots, we assigh pilot symbols. As described in the previous
section, the location of pilot subcarriers is randomly @rmwgor each OFDM symbol. The
remaining OFDM resources are filled with data symbols. Tinatyi information bits are encoded
using half rate convolutional code with generation polyms(171,133) and the coded bits
are modulated to QPSK symbols. Each code block contain®@3;8ded bits. Considering the
maximum channel delay spread specified in the Table 1V, wéhgedimensionV/ of h,, to 200.
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TABLE V
3GPPCHANNEL MODELS

Extended Pedestrian A model (EPA)| Delay =0, 30, 70,90, 110, 190, 410] ns

Power =[0, —1, -2, —3, -8, —17.2, —20.8] dB

Extended Vehicular A model (EVA) | Delay =10, 30, 150, 310, 370, 710, 1090, 1730, 2510] ns

Power =[0, —1.5, —1.4, —3.6, —0.6, —9.1, —7.0, —12.0, —16.9] dB
Extended Typical Urban model (ETU) Delay = [0, 50, 120, 200, 230, 500, 1600, 2300, 5000] ns

Power =[-1,—1,—-1,0,0,0, —3, -5, —7] dB

In generating the complex Rayleigh fading frequency-delechannels, we use Jake’s model
[30], where temporal correlation of the CIR taps for giverppler frequencyf,; (Hz) is expressed
asJo(27 f4T5), whereTy is the interval between consecutive pilot symbols in tiffie=€ 0.25ms)
and.Jo(z) = 0o, =il (%)™ is the zero-th order Bessel function. For convenience, we us
Doppler ratedefined as Doppler frequency normalized by pilot transrorssate, i.e..f,T,. We
use two types of channel models: 1) the exesparse channel model where the location of the
K nonzero taps is randomly chosen for every blockkoOFDM symbols and 2) the practical
channel models specified by 3GPP Long Term Evolution (LTEBhdard [32] (see TablelV).
Note that the channel taps in the standard LTE channel modairdy approximately sparse. In
order to determine the parameters of the Gauss-Markov gsdtg and 'V, for a given f,;, we
minimize the approximation error between the Gauss-Magkmcess and the Jake’s model as
suggested in_[31]. Using the CIR estimates obtained by tlesspsignal recovery algorithms,
the transmitted symbols are detected by the MMSE equalizérequency domain. Then, the
channel decoder is followed to detect the information bits.evaluate the performance of the
recovery algorithms, we measure bit error rate (BER) at thtpwd of the channel decoder.

2) Simulation ResultsWe test the performance of the channel estimators when thet &%
sparse channels are used. The sparsity okdéor these channels is set &and the dimension
N of the measurement vector is set3®. Note that whenV = 32, the pilot resources occupy
3.12% of the overall OFDM resources. We assume that theigpaiicture remains unchanged
over the block ofl" = 30 pilot containing OFDM symbols. We set the Doppler rateto 0.05.

In Fig.[8 (a) and (b), we plot the MSE and BER performance ofrdeovery algorithms as a

function of SNR. From the figure, we clearly observe that tK@S algorithm performs best
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among all algorithms under test and also performs close db dh the Oracle-based Kalman
smoother.

We next investigate the performance of the proposed sKTS8riign when the practical
LTE channel models are used. In this test, we observe thevimehat the algorithms for four
distinctive scenarios: a) EVA channel wifh, = 0.1 and N = 60, b) EVA channel withD, =
0.05 and N = 60, ¢) EPA channel withD, = 0.02 and N = 48, and d) EPA channel with
D, = 0.005, N = 48. We setK = 60 and K = 24 for EVA and EPA channel models since
the EVA channel exhibits longer delay spread. In Eig. 9, weeoke that the sKTS algorithm
maintains the performance gain over the competing algostfor wide range of Doppler rates.
Note that when compared to the results of the exgetparse channel model, we see that the
performance gap between the sKTS and KSBL is a bit reduced.

Next, we compare the performance of the RT-sKTS describ&atiori [I-G with the original
SKTS algorithm. In this simulations, we s&t= 32 and7" = 30. For the RT-sKTS algorithm, we
seta = 0.4. In order to test the performance in a harsh condition, wérarily change the delay
structure of the CIR for every 30 observation vectors. Tausmghe convergence of the online
update strategy in_(33) and (34), we use the first 10 observatctors for warming up purpose
and then use the rest for measuring the MSE performance. tNaten practice, such warming
up period would not be necessary since the support of charmwdr would not be changed
abruptly in many real applications. In Fig.110, we see thatRA-sKTS algorithm performs close
to the original sKTS algorithm in low and mid range SNR regirfrethe high SNR regime,
however, the RT-sKTS algorithm suffers slight performaloss due to the approximation step of
aﬁf and ®,,. Nevertheless, as shown in Fig. 10 and Eig. 8 (a), the RT-s&l@6rithm maintains

the performance gain over the conventional channel estimat

C. Experiments in Dynamic MRI Application

In this subsection, we investigate the performance of tHESKIgorithms in the reconstruction
of the dynamic MRI images. In our test, we use a sequenc& of 32 dimensional cardiac
images shown in FidZWe generate the measurements by performing two dimersimtacte

wavelet transform (DWT) with a 2-level Daubechies-4 wated@plying two dimensional DFT
“These images are decimated from the origirz8 x 128 images [[34]. The raw image data is available onling [33].
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matrix and taking theV randomly chosen frequency-domain image samples. Afteingditie
Gaussian noise to the image, we recover the original imame uke recovery algorithms. We
set N = 358, which corresponds to about 35% of the image size (.= 1024). We could
empirically observe that the location of nonzero coeffitsan wavelet image is slowly changing
(i.e., support change occurs for only a few places), whicliches well with our simultaneous
sparse signal model. In order to capture the most of signalggnwe setk = 152 for all
images. In Fig.[12, we plot the MSE of the several image recovery s@®obtained for each
image. The sKTS algorithm outperforms the basis pursuibdémg (BPDN) [1] and RW1L-
DF [16] and also performs close to the Oracle-based Kalmaoo#imer. Note that we could
not include modified CS scheme in_[34] in our numerical experts since large number of

measurement samples is required for the first image.

V. CONCLUSIONS

In this paper, we studied the problem to estimate the tinmghvg sparse signals when the
sequence of the correlated observation vectors are alailib many signal processing and
wireless communication applications, the support of spaignals changes slowly in time and
thus can be well modeled as simultaneously sparse signapragosed a new sparse signal
recovery algorithm, referred to as sparse Kalman tree BgaiCTS), that identifies the support
of the sparse signal using multiple measurement vectors.pfbposed sKTS scheme performs
the Kalman smoothing to extract tlaeposterioristatistics of the source signals and the greedy
tree search to identify the support of the signal. From tise caudy of sparse channel estimation
problem in orthogonal frequency division multiplexing (DF) and image reconstruction in
dynamic MRI, we demonstrated that the proposed sKTS alguris effective in recovering the

dynamic sparse signal vectors.

SActually, we setK to the the number of coefficient containing.9% of the signal energy.
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APPENDIX A

DERIVATION OF (15)

From (9) and[(14), we get

T(i+1)
’ LR Ve |12 0
Q (sz i ) =C" — n_zT;—HE |f)_gv ||Yn Bndlag(cz)snn Yi15€C; (44)
G
—c"t % >0 {8 | [eRe (Buaing(es,y)] yaric!
Tw n=Ti+1
—E {tr [B,.diag(c;)s,sk diag(c;)BY] |y1.r; € Agl)} } (45)
L TG
e : . A(l) H
= + 0—2 Z {tr {QRe (Bndlag(CZ)E |:Sn Y15 € :| Y. ):|
W n=Ti+1
—tr {Bndiag(c,-)E [ yi1; € ] dlag(cz)BH} } (46)
(47)

whereC” andC” are the terms independent@f Using the property of the trace, ite(ABC) =
tr(BCA) = tr(CAB), we have
yir; 651)} )

yi1; € }dlag(cl)BH] } (48)

APPENDIX B

T(i+1)

Q (c,, Al(l ) =C" + O‘% Z {QRe (nyndiag(c,-)E [sn

W n=Ti+1

- tr | Byding(e) 5,5

DERIVATION OF (26)

Denotingb,, ; as the transpose of thh row vector ofB,,, we can express the lefthand term

of (28) as

M
left term= Z bg’jdiag(ci) (Znu;T +/S\n\1:T/S\7[j|1:T) diag(c;)conj(by, ;). (49

j=1
Sinceb! ;diag(c;) = ¢ diag(by, ;) anddiag(c;)conj(b,, ;) = diag(conj(b, ;))c;, we further have

M
left term= Z c;‘Fdlag(bg’j) (En|1:T —|—/S\n‘1;T/S\£I‘1:T) diag(COHj(an))Ci (50)
=1
M
Z dlag n|l:T +/S\n\1:T/S\£I‘1;T) diag(conj(bm))} C;, (51)
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and hence we finally have

left term= ¢/ (conj (B/B,) ® (Zupr +/S\n|1:T/S\rIjl:T)) c;. (52)
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Fig. 9. The BER performance as a function of SNR for the fostrittive scenarios of a) EVA channel wifh,. = 0.1 and
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Fig. 11. A sequence of cardiac MRI images.
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