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Abstract

We propose a novel adaptive learning algorithm based on iterative orthogonal projections in the Cartesian product
of multiple reproducing kernel Hilbert spaces (RKHSs). Thetask is estimating/tracking nonlinear functions which are
supposed to contain multiple components such as (i) linear and nonlinear components, (ii) high- and low- frequency
components etc. In this case, the use of multiple RKHSs permits a compact representation of multicomponent
functions. The proposed algorithm is where two different methods of the author meet: multikernel adaptive filtering
and the algorithm of hyperplane projection along affine subspace (HYPASS). In a certain particular case, the ‘sum’
space of the RKHSs is isomorphic to the product space and hence the proposed algorithm can also be regarded
as an iterative projection method in the sum space. The efficacy of the proposed algorithm is shown by numerical
examples.

Index Terms

reproducing kernel Hilbert space, multikernel adaptive filtering, Cartesian product, orthogonal projection

I. INTRODUCTION

Using reproducing kernels for nonlinear adaptive filteringtasks has widely been investigated [1]–[11]. See, e.g.,
[12]–[21] for the theory and applications of reproducing kernels. The author has proposed and studiedmultikernel
adaptive filtering, using ‘multiple’ kernels [22]–[24]. Different approaches using multiple kernels have also been
proposed subsequently. Pokharelet al. have proposed a mixture-kernel approach [25], and Gaoet al. have proposed
convex-combinations of kernel adaptive filters [26]. Tobaret al. have proposed a multikernel least mean square
algorithm for vector-valued functions [27]. Multikernel adaptive filtering is effective particularly in the following
situations.

(a) The unknown system to be estimated contains multiple components with different characteristics such as (i)
linear and nonlinear components and (ii) high- and low- frequency components. See [28]–[31].

(b) An adequate kernel is unavailable because (i) the amountof prior information about the unknown system is
limited, and/or (ii) the unknown system is time-varying andso is the adequate kernel for the system.

The situation (b) has mainly been supposed in [22]–[24]. Useof many, say fifty, kernels has been investigated
and kernel-dictionary joint-refinement techniques have been proposed based on double regularization with a pair of
block ℓ1 norms [32], [33]. Our primal focus in the current study is on the situation (a) in which the use of multiple
kernels is expected to allow a compact representation of theunknown system.

Separately from the study of multikernel adaptive filtering, the author has proposed an efficient single-kernel
adaptive filtering algorithm named hyperplane projection along affine subspace (HYPASS) [34], [35]. The HYPASS
algorithm is a natural extension of the naive onlineRreg minimization algorithm (NORMA) proposed by Kivinenet
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MKNLMS [22]–[24]

CHYPASS (Proposed)

KNLMS [7]

NORMA [1]

QKLMS [39]

Dodd et al. [38]

HYPASS [34], [35]

Cartesian product
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Fig. 1. The orientation of the present study. The two streams, MKNLMS (multikernel adaptive filtering) and HYPASS, are united into a
single scheme (CHYPASS) based on the Cartesian-product formulation.

al. [1]. NORMA seeks to minimize a risk functional in terms of a nonlinear function by using the stochastic gradient
descent method in a reproducing kernel Hilbert space (RKHS). This approach builds a dictionary (the set of basic
nonlinear functions to generate an estimate of the unknown system) by using all the observed data. This implies
that the dictionary size grows with the number of data observed. As a remedy for this issue, a simple truncation
rule has been introduced [1]. It would be more realistic to build a dictionary in a selective manner based on some
criterion to evaluate the novelty of a new datum; simple criteria include Platt’s criterion [36], the approximate linear
dependency [2], and the coherence criterion [7]. Introducing one of those criteria to NORMA raises another issue:
if a new datum is regarded to be not sufficiently novel and doesnot enter into the dictionary, then this observed
datum is simply discarded and makes no contributions to estimation even though it can be informative enough
to adjust the coefficients. Moreover, the coefficient of eachdictionary element is updated only when that element
enters into the dictionary. The HYPASS algorithm systematically eliminates this limitation by enforcing the update
direction to lie in the dictionary subspacewhich is spanned by the dictionary elements. It has been extended to a
parallel-projection-based algorithm [35], [37]. HYPASS includes the method of Doddet al. [38] and the quantized
kernel LMS (QKLMS) [39] as its particular case. There are a similarity, and also a considerable dissimilarity,
between HYPASS and the kernel normalized least mean square (KNLMS) algorithm [7] proposed by Richardet
al. Both algorithms share the philosophy of projecting the current estimate onto a hyperplane which makes the
instantaneous error to be zero. The difference is that HYPASS operates the projection in a functional space (i.e., in
a RKHS) while KNLMS operates the projection in a Euclidean space of the coefficient vector (see [35], [40]). The
multikernel adaptive filtering algorithms presented in [22]–[24] are basically extensions of the KNLMS algorithm.
Our recent study, on the other hand, reveals significant advantages of HYPASS over KNLMS (cf. [34], [35], [37]).
It is therefore of significant interests how the two different streams (multikernel adaptive filtering and HYPASS)
meet.

In the present article, we propose an efficient multikernel adaptive filtering algorithm based on iterative orthogonal
projections in a functional space, inheriting the spirit ofHYPASS (see Fig. 1). A multikernel adaptive filter is
characterized as a superposition of vectors lying in multiple RKHSs, namely as a vector in thesum spaceof
multiple RKHSs. In general, a vector in the sum space can be decomposed, in infinitely many ways, into vectors in
the multiple RKHSs, and this would cause a difficulty in computing the inner product in the sum space. To avoid
the difficulty, we first consider the particular case that anypair of the multiple RKHSs intersects only trivially;
i.e., any pair of the RKHSs shares only the zero vector. It covers the important case of using linear and Gaussian
kernels simultaneously (see Corollary 2 in Section III-A).In this case, the decomposition is unique, which means
that the sum space is thedirect sumof the RKHSs, and the inner product can be computed easily in the sum space.
This allows us to derive an efficient algorithm by reformulating the HYPASS algorithm in the sum space which is
known to be a RKHS (Theorem 1). Due to the uniqueness of decomposition, the sum space is isomorphic, as a
Hilbert space, to theCartesian-productof the multiple RKHSs. This implies that the same derivationis possible
through the Cartesian formulation instead of the sum-spaceformulation. This is the key to extending the algorithm
to the general case.
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Now, let us turn our attention to another important case of using multiple Gaussian kernels simultaneously. It
is widely known that Gaussian RKHSs have a nested structure [41]–[43] (see also Theorem 5 in Section IV-B).
This means that the multiple-Gaussian case isnot covered by the first particular case. We therefore consider the
general case in which some pair of the RKHSs may intersect non-trivially; i.e., some pair of the RKHSs may share
common nonzero vectors. In this case, the inner product in the sum space has no closed-form expression, and
hence it is generally intractable to derive an algorithm through the sum-space formulation. The inner product in the
Cartesian product, on the other hand, is always expressed in a closed form. As a result, the algorithm formulated
in the product space for the general case boils down to the same formula as obtained from the sum-space algorithm
for the first case. The proposed algorithm is an iterative projection method in the Cartesian product and, only
in the first particular case, it can be viewed as a sum-space projection method. The proposed algorithm is thus
referred to as the Cartesian HYPASS (CHYPASS) algorithm. The computational complexity is low due to a selective
updating technique, which is also employed in HYPASS. Numerical examples with toy models demonstrate that
(i) CHYPASS with linear and Gaussian kernels is effective inthe case that the unknown system contains linear
and nonlinear components and (ii) CHYPASS with two Gaussiankernels is effective in the case that the unknown
system contains high- and low- frequency components. We also apply CHYPASS to real-world data and show its
efficacy over the KNLMS and HYPASS algorithms.

The rest of the paper is organized as follows. Section II presents the sum space model. In Section III, we derive
the proposed algorithm through the sum-space formulation for the particular case mentioned above. We show that
the use of linear and single-Gaussian kernels corresponds to the particular case based on a theorem proved recently
by Minh [44]. In Section IV, we present the CHYPASS algorithmfor the general case as well as its computational
complexity for the two useful cases: the linear-Gaussian and two-Gaussian cases. Section V presents numerical
examples, followed by concluding remarks in Section VI.

II. SUM SPACE MODEL

A. Basic Mathematics

We denote byR andN the sets of all real numbers and nonnegative integers, respectively. Vectors and matrices
are denoted by lower-case and upper-case letters in bold-face, respectively. The identity matrix is denoted byI and
the transposition of a vector/matrix is denoted by(·)T. We denote the null (zero) function by0.

Let U ⊂ R
L andR be the input and output spaces, respectively. We consider a problem of estimating/tracking

a nonlinear unknown functionψ : U → R by means of sequentially arriving input-output measurements. Our
particular attention is focused on the case whereψ contains several distinctive components; e.g., linear andnonlinear
(but smooth) components, high- and low- frequency components, etc. To generate a minimal model to describe
such a multicomponent functionψ, it would be natural to use multiple RKHSs(H1, 〈·, ·〉H1

), (H2, 〈·, ·〉H2
), · · · ,

(HQ, 〈·, ·〉HQ
) overU ; i.e., each of theHqs consists of functions mapping fromU to R. Here,Q is the number of

components ofψ and each RKHS is associated with each component. The positive definite kernel associated with
the qth RKHS Hq, q ∈ Q := {1, 2, · · · , Q}, is denoted byκq : U × U → R, and the norm induced by〈·, ·〉Hq

is
denote by‖·‖Hq

. Theψ is modeled as an element of the sum space

H+ := H1 +H2 + · · · +HQ :=







∑

q∈Q

fq : fq ∈ Hq







.

Given an f ∈ H+, decompositionf =
∑

q∈Q fq, fq ∈ Hq, is not necessarily unique in general. If such
decomposition is unique for anyf ∈ H+, the sum space is specially called thedirect sumof Hqs [45] and is
usually indicated asH+ = H1 ⊕H2 ⊕ · · · ⊕ HQ.

Theorem 1 (Reproducing kernel of sum spaceH+ [12]): The sum spaceH+ equipped with the norm

‖f‖2H+ := min







∑

q∈Q

‖fq‖2Hq
| f =

∑

q∈Q

fq, fq ∈ Hq







, f ∈ H+, (1)

is a RKHS with the reproducing kernelκ :=
∑

q∈Q κq.
Proof: One can apply [12, Theorem in Part I Section 6] recursively toverify the claim. ✷
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Theorem 2:Let κ : U × U → R be the reproducing kernel of a real Hilbert space(H, 〈·, ·〉H). Then, given an
arbitraryw > 0, κw(u,v) := wκ(u,v), u,v ∈ U , is the reproducing kernel of the RKHS(H, 〈·, ·〉H,w) with the
inner product〈u,v〉H,w := w−1 〈u,v〉H, u,v ∈ U .
Proof: It is clear thatκw(·,u) ∈ H for anyu ∈ U . Also, for anyf ∈ H andu ∈ U , we have〈f, κw(·,u)〉H,w =

w−1 〈f,wκ(·,u)〉H = f(u). ✷

By Theorems 1 and 2, we can immediately obtain the following result.
Corollary 1 (Weighted norm and reproducing kernel):Given anywq > 0, q ∈ Q, κw(u,v) :=

∑

q∈Q wqκq(u,v),
u,v ∈ U , is the reproducing kernel of the sum spaceH+ equipped with the weighted norm‖·‖H+,w defined as
‖f‖2H+,w := min

{
∑

q∈Qw
−1
q ‖fq‖2Hq

| f =
∑

q∈Q fq, fq ∈ Hq

}

, f ∈ H+.
Without loss of generality, we letwq = 1, ∀q ∈ Q, in the following. For some batch processing techniques such as
the kernel ridge regression, the sum spaceH+ is easy to handle; see Appendix A. For online/adaptive processing,
on the other hand, it is hard due to the fact that the inner product in H+ has no closed-form expression in general.
Fortunately, however, the inner product has a simple closed-form expression in the case ofdirect sum, allowing us
to build an adaptive algorithm inH+ as shown in Section III.

B. Multikernel Adaptive Filter

We denote byDq,n ⊂ {κq(·,u) | u ∈ U} the dictionary constructed for theqth kernel at timen ∈ N. The
kernel-by-kernel dictionary subspacesare defined asMq,n := span Dq,n ⊂ Hq, q ∈ Q, n ∈ N, and their sum
M+

n := M1,n +M2,n + · · · +MQ,n is the dictionary subspace of the sum spaceH+. The multikernel adaptive
filter at timen is given in the following form:

ϕn :=
∑

q∈Q

ϕq,n ∈ M+
n−1 ⊂ H+, n ∈ N, (2)

whereϕq,n ∈ Mq,n−1. Thus, the dictionaryDq,n contains the atoms (vectors) that form the next estimateϕq,n+1.
If some a priori information is available, we may accordingly define an initial dictionaryMq,−1 and an initial filter
ϕ0. Otherwise, we simply letMq,−1 := {0} andϕ0 := 0. We assume that ‘active’ elements inDq,n−1 remain in
Dq,n so that

ϕn ∈ M+
n ∩M+

n−1. (3)

III. SPECIAL CASE: Hp ∩Hq = {0} FOR ANY p 6= q

In this section, we focus on the particular case thatHp ∩ Hq = {0} for any p 6= q. This is the case of direct
sum (in which anyf ∈ H+ can bedecomposed uniquelyinto f =

∑

q∈Q fq, fq ∈ Hq) and includes some useful
examples as will be discussed precisely in Section III-A. Due to the unique decomposability, the norm in (1) is
reduced to

‖f‖2H+ =
∑

q∈Q

‖fq‖2Hq
, (4)

and accordingly the inner product betweenf =
∑

q∈Q fq ∈ H+ andg =
∑

q∈Q gq ∈ H+ is given by

〈f, g〉H+ :=
∑

q∈Q

〈fq, gq〉Hq
. (5)

It is clear that, under the correspondence betweenf and theQ-tuple (fq)q∈Q, the sum spaceH+ is isomorphic to
the Cartesian product

H× := H1 ×H2 × · · · × HQ := {(f1, f2, · · · , fQ) : fq ∈ Hq, q ∈ Q} ,
which is a real Hilbert space equipped with the inner productdefined as

〈f, g〉H× :=
∑

q∈Q

〈fq, gq〉Hq
, f = (fq)q∈Q, g = (gq)q∈Q ∈ H×. (6)
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A. Examples

We present three cerebrated examples of positive definite kernel below (see, e.g., [16]).
Example 1 (Positive definite kernels):

1) Linear kernel: Givenc ≥ 0,

κL(x,y) := xTy + c, x,y ∈ U . (7)

2) Polynomial kernel: Givenc ≥ 0 andm ∈ N
∗ := N \ {0},

κP(x,y) := (xTy + c)m, x,y ∈ U . (8)

3) Gaussian kernel (normalized): Givenσ > 0,

κG,σ(x,y) :=
1

(
√
2πσ)L

exp

(

−‖x− y‖2
RL

2σ2

)

, x,y ∈ U . (9)

For the linear kernel,c = 1 is a typical choice. If one knows that the linear component ofψ is zero-passing, one
can simply letc = 0. The following theorem has been shown by Minh in 2010 [44].

Theorem 3 ( [44]): Let U ⊂ R
L be any set with nonempty interior andHκG,σ

the RKHS associated with a
Gaussian kernelκG,σ(x,y) for an arbitraryσ > 0 together with the input spaceU . Then,HκG,σ

does not contain
any polynomial onU , including the nonzero constant function.

The following corollary is obtained as a direct consequenceof Theorem 3.
Corollary 2 (Polynomial and Gaussian RKHSs):Assume that the input spaceU has nonempty interior. Given

arbitrary c ≥ 0, m ∈ N
∗, and σ > 0, denote byHκP

and HκG,σ
the RKHSs associated respectively with the

polynomial and Gaussian kernelsκP andκG,σ. Then,

HκP
∩HκG,σ

= {0}. (10)

In particular, (10) form = 1 implies that

HκL
∩HκG,σ

= {0}. (11)
We mention that a (manually-tuned) convex combination of linear and Gaussian kernels has been used in [46]

within a single-kernel adaptive filtering frameworkfor nonlinear acoustic echo cancellation. The case of linear plus
Gaussian kernels is of particular interest when the unknownfunction ψ contains linear and nonlinear (smooth)
components [28]–[30]. (Our recent work in [47] is devoted tothis important case.) We will present a dictionary
design for this case in the following subsection.

B. Dictionary Design: Linear Plus Gaussian Case

The dictionaries are designed on a kernel-by-kernel basis.With Corollary 2 in mind, we present a possible
dictionary design for the case ofQ = 2 with κ1 := κL for c := 1 andκ2 := κG,σ, assuming that the input space
U has nonempty interior. Due to the interior assumption onU , it is seen that the dimension ofH1 is L+ 1. It is
clear thatκ1(·,0) = c andκ1(·,ej) − κ1(·,0) = eTj (·), whereej ∈ R

L is the unit vector having one at thejth
entry and zeros elsewhere. Based on this observation, one can see that

D1 := {κ1(·,ej)− κ1(·,0)}Lj=1 ∪ {κ1(·,0)} (12)

gives an orthonormal basis of theL + 1 dimensional spaceH1. We thus letD1,n := D1 for all n ∈ N, which
implies thatM1,n = H1 and hencePM1,n

(κ1(·,u)) = κ1(·,u) for any u ∈ U . Note that, in the case ofc := 0,
the dimension ofH1 is L and one can removeκ1(·,0) from the dictionaryD1.

On the other hand, the dictionaryD2,n for the Gaussian kernel needs to be constructed in online fashion. In
general, one may consider growing and pruning strategies toconstruct an adequate dictionary. A growing strategy
is given as follows: (i) start withD2,−1 := ∅, and (ii) add a new candidateκ2(·,un) into the dictionary at each time
n ∈ N only when it is sufficiently novel. In this case,D2,n = {κ2(·,uj)}j∈Jn

for someJn ⊂ {0, 1, 2, · · · , n}. As a
possible novelty criterion for the present example, we use Platt’s criterion [36] with a slight modification:κ2(·,un)

is regarded to be novel ifcH2
(D2,n, κ2(·,un)) = max

j∈Jn

exp

(

−‖uj − un‖2RL

2σ2

)

< δ for someδ ∈ (0, 1) and if
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|dn − ϕn(un)|2 > ε |ϕn(un)|2 for someε > 0. Here, given a RKHSH with its associated kernelκ : U × U → R

and a dictionaryD := {κ(·,uj)}j∈J with an index setJ ⊂ N, the coherence is defined ascH(D, κ(·,u)) :=

max
j∈J

|κ(uj ,u)|
√

κ(uj ,uj)
√

κ(u,u)
. Pruning can be done based, e.g., onℓ1 regularization; see, e.g., [24], [40], [48], [49].

C. Adaptive Learning Algorithm in Sum Space

At every time instantn ∈ N, a new measurementun anddn arrives, andϕn is updated toϕn+1 based on the
new measurement. A question is how to exploit the new measurement for obtaining a better estimator within the
subspaceM+

n . A simple strategy accepted widely in adaptive filtering is the way of the normalized least mean
square (NLMS) algorithm [50], [51], projecting the currentestimate onto a zero-instantaneous-error hyperplane in a
relaxed sense. See [9], [52], [53] and the references therein for more about the projection-based adaptive methods.
As we assume that the search space is restricted toM+

n , we consider the following hyperplane inM+
n :

Πn :=
{

f ∈ M+
n | f(un) = 〈f, κ(·,un)〉H+ = dn

}

. (13)

Note here thatΠn can also be represented as

Πn = M+
n ∩ΠH+

n ,

whereΠH+

n := {f ∈ H+ | f(un) = 〈f, κ(·,un)〉H+ = dn} is a hyperplane in the whole spaceH+. The update
equation is given by

ϕn+1 := ϕn + λn(PΠn
(ϕn)− ϕn) ∈ M+

n , n ∈ N, (14)

whereλn ∈ (0, 2) is the step size. Here, for anyf ∈ H+ and any linear variety (affine set)V ⊂ H+, PV(f) :=
argming∈V ‖f − g‖H+ denotes the orthogonal projection off onto the setV [45]. The projectionPΠn

(ϕn) in (14)
can be computed with the following theorem.

Theorem 4 (Orthogonal projection in sum space):Let (Hq, 〈·, ·〉Hq
), q ∈ Q, be a RKHS overU with its repro-

ducing kernelκq and define the sum spaceH+ := H1+H2+ · · ·+HQ with its kernelκ :=
∑

q∈Q κq. Let Mq be a
subspace ofHq and define its sumM+ := M1+M2+· · ·+MQ. Also defineΠ := {f ∈ M+ | f(u) = 〈f, κ(·,u)〉H+

= d} for someu ∈ U andd ∈ R. Then, the following hold.

1) For anyφ ∈ M+,

PΠ(φ) = φ+
d− φ(u)

‖PM+(κ(·,u))‖2H+

PM+(κ(·,u)). (15)

2) Assume thatHp ∩Hq = {0} for any p 6= q. Then, for anyf =
∑

q∈Q fq ∈ H+ with (fq)q∈Q ∈ H×,

PM+(f) =
∑

q∈Q

PMq
(fq). (16)

Proof: See [35] for (15). DefineM× := M1 ×M2 × · · · ×MQ ⊂ H×. By (4), we have

PM+(f) = argmin
g∈M+

‖f − g‖H+

= argmin
∑

q∈Q
gq ∈ M+

s.t. (gq)q∈Q ∈ M×

∑

q∈Q

‖fq − gq‖2Hq

=
∑

q∈Q

argmin
gq∈Mq

‖fq − gq‖Hq

=
∑

q∈Q

PMq
(fq).

✷

We stress that Theorem 4.2 only holds under the assumption that Hp ∩Hq = {0} for any p 6= q. From (15) and
(16), the computation ofPΠ(φ) involvesPMq

(κq(·,u)) which can be computed with the following lemma.
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Lemma 1 ( [45]): Let H denote a RKHS associated with an input spaceU and a positive definite kernelκ :
U × U → R. Let D := {κ(·,xj)}rj=1 for xj ∈ U , j = 1, 2, · · · , r, andM := span D. Then, given anyf ∈ H,

PM(f) =

r
∑

j=1

αjκ(·,xj), αj ∈ R, (17)

where the coefficient vectorα := [α1, α2, · · · , αr]
T ∈ R

r is characterized as a solution of the following normal
equation:

Kα = b, (18)

whereK ∈ R
r×r is the kernel (or Gram) matrix whose(i, j) entry is κ(xi,xj) and b := [f(x1), f(x2), · · · ,

f(xr)]
T ∈ R

r.
If f = κ(·,xj) for somej ∈ {1, 2, · · · , r}, we obtain a trivial solutionαj = 1 andαi = 0 for i 6= j which yields
PM(κ(·,xj)) = κ(·,xj).

D. The Sum-space HYPASS Algorithm: Complexity Issue and Practical Remedy

Theorem 4 and Lemma 1 indicate that the computation ofPΠn
(ϕn) in (14) would involve the inversion of the

kernel matrix (if invertible) for each kernel as well as the multiplication of the inverse matrix by a vector, where
the size of the kernel matrix and the vector is determined by the dictionary size. Note here that this computation
is unnecessary when the dictionary is orthonormal such as inthe case of linear kernel (see Section III-A). In the
case of Gaussian kernels, the inversion needs to be computedand a practical remedy to reduce the complexity is
the selective update which is described below.

Let D̃q,n be a selected subset of the dictionaryDq,n for the qth kernelκq. For instance, in the case ofκ1 := κL
and κ2 := κG,σ (the case of linear and Gaussian kernels), one can simply letD̃1,n := D1 and designD̃2,n by
selecting a fewκ2(·,uj)s in D2,n that are most coherent toκ2(·,u); i.e., chooseκ2(·,uj) such thatκ2(uj ,u) is
the largest [34], [35], [37]. In other words, we chooseujs such that‖uj − un‖RL is the smallest (or the neighbors
of un are collected in short). Geometrically, the maximal coherence implies the least angle betweenκ2(·,uj) and
PM2,n

(κ2(·,un)) which gives the direction of update in the exact form of (14);see [35], [37]. This means that
the selectedκ2(·,uj) approximates the exact directionPM2,n

(κ2(·,un)) best in the Gaussian dictionaryD2,n. The
coherence-based selection is therefore reasonable, as justified by numerical examples in Section V.

Now, we define the subspace spanned by each selected dictionary as

M̃q,n := span D̃q,n ⊆ Mq,n (19)

and its sumM̃+
n := M̃1,n ⊕ M̃2,n ⊕ · · · ⊕ M̃Q,n. To update only the coefficient(s) of the selected dictionary

element(s) and keep the other coefficients fixed, the next estimateϕn+1 is restricted toV+
n := M̃+

n + ϕn, rather
than toM+

n (cf. (13)). Accordingly, the update equation in (14) is modified into

ϕn+1 := ϕn + λn(PΠ̃n
(ϕn)− ϕn) ∈ M+

n , n ∈ N, (20)

where

Π̃n :=
{

f ∈ V+
n | f(un) = 〈f, κ(·,un)〉H+ = dn

}

. (21)

In the trivial case thatD̃q,n = Dq,n for all q ∈ Q, (20) is reduced to (14). Indeed, the algorithm in (20) is a
sum-space extension of the HYPASS algorithmproposed in [34]. The following proposition can be used, together
with Theorem 4 and Lemma 1, to computePΠ̃n

(ϕn).
Proposition 1: For anyφ ∈ H+ and a subspaceM+ of H+, let V+ := M++φ andΠV+ := {f ∈ V+ | f(u) =

〈f, κ(·,u)〉H+ = d} for someu ∈ U andd ∈ R. Then, for anyf ∈ V+,

PΠ
V+

(f) = f +
d− f(u)

‖PM+(κ(·,u))‖2H+

PM+(κ(·,u)). (22)

The computational complexity of the proposed algorithm under the selective updating strategy stated above will be
given in Section IV-E.
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IV. GENERAL CASE

We consider the general case in which it may happen thatHp ∩ Hq 6= {0} for somep 6= q. In this case, given
an f ∈ H+, decompositionf =

∑

q∈Q fq, fq ∈ Hq, is not necessarily unique, and thus Theorem 4.2 does not
generally hold anymore, although Theorem 4.1 and Proposition 1 still hold. This implies thatPΠ̃n

(ϕn) in (22)
cannot be obtained simply in general. In the following, we show that this issue can be overcome by considering
the Cartesian productH× rather than sticking to the sum spaceH+.

A. Examples

We show below, in a slightly general form, the known fact thatthe class of Gaussian kernels has a nested
structure.

Theorem 5:Let U ⊂ R
L be an arbitrary subset andκ1 := w1κG,σ1

and κ2 := w2κG,σ2
Gaussian kernels for

σ1 > σ2 > 0 andw1, w2 > 0. Then, the associated RKHSsH1 andH2 satisfy the following.
1) H1 ⊂ H2.
2)

√
w1 ‖f‖H1

≥ √
w2 ‖f‖H2

for any f ∈ H1.
Proof: Let κ(u,v) := κG,σ2

(u,v) − κG,σ1
(u,v), u,v ∈ R

L and defineγ : RL → R, u 7→ κ(u,0). Then, its

Fourier transform is given bŷγ(w) :=
∫

RL γ(u) exp
(

−
√
−1uTw

)

du = exp
(

−σ2
2

2 ‖w‖2
RL

)

− exp
(

−σ2
1

2 ‖w‖2
RL

)

for w ∈ R
L. The functionγ̂(w) is clearly bounded and also satisfiesγ̂(w) ≥ 0 becauseσ1 > σ2 > 0. Hence,

Bochner’s theorem [17] ensures thatγ(u−v) = κ(u,v) is a positive definite kernel onRL, and so onU as well by
the definition of positive definite kernels. Applying [12, Theorem I in Part I Section 7], we obtainHκG,σ1

⊂ HκG,σ2

and ‖f‖HκG,σ1

≥ ‖f‖HκG,σ2

, which verifies the case ofw1 = w2 = 1. This is generalized to anyw1, w2 > 0

because one can verify under the light of Theorem 2 that
√
wq ‖f‖Hq

= ‖f‖HκG,σq

for any f ∈ Hq = HκG,σq

(q = 1, 2). We remark here that the two RKHSsHq (associated withκq := wqκG,σq
) andHκG,σq

(associated with
κG,σq

) shares the common elements — this is what is meant byHq = HκG,σq
above — but are equipped with

different inner products whenwq 6= 1. ✷

There exist several articles that show some results relatedto Theorem 5. For instance, a special case of Theorem
5 for U = R

L andw1 = w2 = 1 can be found in [41]. The proof in [41] is based on a characterization of a
Gaussian RKHS in terms of Fourier transform. It is straightforward to generalize it to any subsetU ⊂ R

L with
nonempty interior by exploiting [44, Theorem 1] which givesanother characterization of a Gaussian RKHS. Note
that Theorem 5 holds with no assumption on the existence of interior of U . To verify Theorem 5, one can also
follow the way in [43] which proves the case ofL = 1 andw1 = w2 = 1 by using another theorem in place of
Bochner’s theorem. The inclusion operator “id” appearing in [42] would imply Theorem 5.1, and a result related
to a special case of Theorem 5.2 forw1 = w2 = 1 can also be found in [42, Corollary 6].

B. Dictionary Design: Two Gaussian Case

We present our dictionary selection strategy for the case oftwo Gaussian kernelsκ1 := w1κG,σ1
and κ2 :=

w2κG,σ2
for σ1 > σ2 > 0 and w1, w2 > 0. In analogy with Section III-A, we define the dictionary for each

kernel asDq,n := {κq(·,uj)}j∈Jq,n
for q = 1, 2, whereJq,n ⊂ {0, 1, 2, · · · , n}. For the kernelκ1, we simply

adopt the coherence criterion [7]:κ1(·,un) is regarded to be novel ifcH1
(D1,n, κ1(·,un)) < δ1 for someδ1 ∈

(0, 1). The kernelκ2 is complementary in the sense that it only needs to be used in those regions (of the input
spaceU ) where the unknown systemψ contains high frequency components which make the ‘wider’ kernel κ1
underfit the system. To do so, a new elementκ2(·,un) enters into the dictionaryD2,n only when all of the
following three conditions are satisfied: (i)κ1(·,un) does not enter into the dictionaryD1,n (the no-simultaneous-
entrance condition), (ii)cH2

(D2,n, κ2(·,un)) < δ for someδ ∈ (0, 1) (the small-coherence condition), and (iii)
|dn − ϕn(un)|2 > ε |ϕn(un)|2 for someε > 0 (the large-error condition).

C. The Cartesian HYPASS Algorithm

By virtue of the isomorphism between the sum spaceH+ and the product spaceH× in the case ofHp∩Hq = {0},
∀p 6= q, the arguments as in Section III can be translated into the product spaceH×. (See [54] for the direct derivation
in the product space.) Fortunately, the translated arguments can be applied to the general case, including the case
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that Hp ∩ Hq 6= {0} for somep 6= q. This is because, even whenf ∈ H+ can be decomposed in two different
ways like f =

∑

q∈Q fq =
∑

q∈Q f̂q, the two functions
∑

q∈Q fq and
∑

q∈Q f̂q are distinguished in the product
space as(fq)q∈Q 6= (f̂q)q∈Q ∈ H×. Therefore, the product-space formulation delivers the following algorithm for
the general case:

ϕn+1 :=ϕn+λn
dn − ϕn(un)

∑

q∈Q

∥

∥

∥

∥

P
M̃q,n

(κq(·,un))

∥

∥

∥

∥

2

Hq

∑

q∈Q

P
M̃q,n

(κq(·,un)), n ∈ N, (23)

which is seemingly identical to (20) under Proposition 1. Weemphasize here that (20) can be written in the form
of (23) only in the case ofHp ∩Hq = {0}, ∀p 6= q. Namely, in the case ofHp ∩Hq 6= {0}, ∃p 6= q, (23) can be
regarded as a hyperplane projection algorithm in the product spaceH×, but not in the sum spaceH+. We call the
general algorithm in (23) theCartesian HYPASS (CHYPASS)algorithm, since it is a product-space extension of the
HYPASS algorithm. In the case of two Gaussian kernels, the coherence-based selective updating strategy discussed
in Section III-D is applied to each Gaussian kernel.

D. Alternative Algorithm: Parameter-space Approach

We present a simple alternative to the CHYPASS algorithm. Let us parametrizeϕq,n by

ϕq,n =
∑

f∈Dq,n

h
(q)
f,nf, q ∈ Q, n ∈ N, (24)

whereh(q)f,n ∈ R. Then,ϕq,n(un) can be expressed as

ϕq,n(un) =
∑

f∈Dq,n

h
(q)
f,nf(un) = hT

q,nkq,n (25)

by defining the vectorshq,n ∈ R
rq,n andkq,n ∈ R

rq,n appropriately that consist ofh(q)f,ns andf(un)s for f ∈ Dq,n,
respectively, whererq,n := |Dq,n|. ConcatenatingQ vectors yieldshn := [hT

1,nh
T

2,n · · ·hT

Q,n]
T ∈ R

rn andkn :=

[kT

1,nk
T

2,n · · ·kT

Q,n]
T ∈ R

rn with rn :=
∑

q∈Q rq,n. Then,ϕn(un) is simply expressed by

ϕn(un) = hT

nkn = 〈hn,kn〉Rrn . (26)

One can therefore build an algorithm that projects the current coefficient vectorhn onto the following zero-
instantaneous-error hyperplane in the Euclidean space:

Hn := {h ∈ R
rn | 〈h,kn〉Rrn = dn} . (27)

This is the idea of the alternative algorithm. The next coefficient vector̂hn+1 ∈ Rrn containingh(q)f,n+1s for f ∈ Dq,n

is computed as

ĥn+1 := hn + λn (PHn
(hn)− hn) , n ∈ N, (28)

whereλn ∈ (0, 2). At the next iteration, ifDq,n = Dq,n+1 (⇒ rn = rn+1), hn+1 ∈ R
rn+1 is given byĥn+1 itself.

Otherwise,hn+1 is obtained withĥn+1 andh(q)f,n+1 = 0 for f ∈ Dq,n+1 \ Dq,n. We call the alternative algorithm
the multikernel NLMS (MKNLMS) since it is essentially the same as the algorithm presented in [24, Section III.A]
except that the dictionary is designed individually for each kernel. MKNLMS with two Gaussian kernels with
individual dictionaries has been studied earlier in [55].

E. Computational Complexity

The computational complexity is discussed in terms of the number of multiplications required for each update,
including the dictionary update, for CHYPASS and MKNLMS in the linear-Gaussian and two-Gaussian cases,
respectively. The complexity is summarized in Table I.
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TABLE I

COMPUTATIONAL COMPLEXITY OF THE ALGORITHMS. THE NUMBER sn OF SELECTED COEFFICIENTS TYPICALLY SATISFIESsn ≤ 5.

NLMS 3L+ 2
KNLMS (L+ 5)rn + 2
HYPASS (L+ 3)rn +O(s3n)

CHYPASS (L+ 3)r2,n + 3L+min{L, sn}+O(s3n)
(Linear-Gaussian)

CHYPASS (L+ 3)rn +O(s3n)
(Two-Gaussian)

MKNLMS (L+ 5)r2,n + 3L+min{L, r2,n}+ 4
(Linear-Gaussian)

MKNLMS (L+ 5)rn +min{r1,n, r2,n}+ 4
(Two-Gaussian)

1) Linear-Gaussian case:The complexity of CHYPASS is(L + 3)r2,n + 3L + min{L, sn} + O(s3n), where
r2,n := |D2,n| is the size of the Gaussian dictionaryD2,n andsn := |D̃2,n| is the size of its selected subsetD̃2,n.
Here,|S| denotes the cardinality of a setS. The termO(s3n) is for the inversion of ansn× sn submatrix (which is
supposed to be small) of ther2,n × r2,n kernel matrix. If one does not make use of the selective updating strategy
and updates all the coefficients ofD2,n, the matrix inversion of ther2,n × r2,n kernel matrix can be computed in
theO((r2,n− 1)2) complexity by using the formula for the inverse of a partitioned matrix together with the matrix
inversion lemma [56]. In addition to that, the inversion needs to be computed only when the dictionary is updated.
The complexity in this computationally demanding case is(L+5)r2,n+3L+min{L, r2,n}+ r22,n. The complexity
of MKNLMS is (L+ 5)r2,n + 3L+ 4 +min{L, r2,n}.

2) Two-Gaussian case:Assume that, for both Gaussian kernels, the number of coefficients updated at thenth
iteration is equal tosn. Let rn := r1,n+ r2,n with rq,n := |Dq,n| for q = 1, 2. The complexity of CHYPASS in this
case is(L + 3)rn + O(s3n). In the computationally demanding case of no coefficient selection, the complexity is
(L + 5)rn + r21,n + r22,n +min{r1,n, r2,n} for the same reason as described in Section IV-E.1. The complexity of
MKNLMS in this case is(L+ 5)rn +min{r1,n, r2,n}.

3) Efficiency of CHYPASS:In analogy with HYPASS [34], [35] and KNLMS [7], the dictionary size of CHYPASS
is finite under the dictionary construction rules presentedin Sections III and IV, provided that the input spaceU
is compact (cf. [7]). This property comes directly from the fact that the coherence is exploited in a part of the
dictionary construction. To enhance the efficiency of CHYPASS, one may extend the shrinkage-based pruning
strategy that has been proposed for HYPASS in [40]. To keep the dictionary size bounded strictly by a prespecified
number, one can extend the simple technique presented for MKNLMS in [33] as well as the pruning strategy.

We emphasize that CHYPASS (as well as MKNLMS) has a potentialto be more efficient than the single kernel
approaches such as HYPASS and KNLMS whenever the unknown system ψ contains multiple components. This
is because the use of multiple kernels allows to represent such a ‘multi-component’ functionψ with a smaller size
of dictionary (i.e., more compactly), as shown in the following section.

V. NUMERICAL EXAMPLES

We show the efficacy of the proposed algorithm for three toy examples and two real data.1 Throughout the section,
we present the curves for CHYPASS and MKNLMS with linear and Gaussian kernels in red and magenta colors,
respectively, and those for CHYPASS and MKNLMS with two Gaussian kernels in green and light-green colors,
respectively. The curves for the existing single-kernel algorithms, KNLMS [7] and HYPASS [34], are presented in
blue and light-blue colors. It is worth mentioning that, in the particular case thatsn = 1 and a Gaussian kernel is
employed, HYPASS is reduced to QKLMS [39]; this is the case for Section V-A, but not for Section V-B.

A. Toy Models

1) Experiment A1 - Linear Plus Gaussian Case:We consider the following linear-Gaussian model:ψ(u) :=

u + exp

(

−(u− 0.5)2

2× 0.52

)

for u ∈ U := (−2, 2) ⊂ R (i.e., L = 1). We compare the performance of the proposed

1 Another experimental result for a larger real dataset will be presented in a conference [47].
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TABLE II

PARAMETER SETTINGS AND COMPLEXITIES FOREXPERIMENT A1.

parameter complexity
NLMS λn = 0.1 5

KNLMS λn = 0.1 δ = 0.99 193
HYPASS σ = 0.5 δ = 0.99, sn = 1 132

MKNLMS ε = 0.05 δ = 0.95, w2 = 0.5 107
(Linear-Gaussian)

CHYPASS δ = 0.95, w2 = 0.5 75
(Linear-Gaussian) sn = 1
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Fig. 2. Results for Experiment A1: the linear-Gaussian case.

multikernel adaptive filtering algorithm (CHYPASS) with its alternative (MKNLMS) as well as KNLMS and
HYPASS. For fairness, we adopt the same novelty criterion asdescribed in Section III-A, which is basically Platt’s
criterion [36], for KNLMS and HYPASS in all experiments. Forthe multikernel adaptive filtering algorithms, we
employ the linear kernelκ1 := w1κL for c := 1 and a Gaussian kernelκ2 := w2κG,σ for σ := 0.5 (i.e.,Q = 2); the
weight is chosen asw1 = w2 = 0.5 (w1 + w2 = 1). An input sequence(un)n∈N ⊂ U is randomly drawn from the
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uniform distribution over the input spaceU . The output of the unknown system is corrupted by an additivewhite
Gaussian noise; the observed data is given bydn := ψ(un) + vn with the Gaussian noisevn ∼ N (0, 2.0 × 10−3),
n ∈ N. We test 300 independent trials and compute the mean squarederror (MSE) and the mean dictionary size
by averaging the values of(dn − ϕn(un))

2 andrn := r1,n + r2,n, respectively, over the 300 trials at each iteration
n ∈ N. The parameters and complexities for each algorithm are summarized in Table II.

Fig. 2 shows (a) the MSE learning curves, (b) the evolutions of the dictionary size, and (c) an instance of the final
estimate of each algorithm as well as the systemψ to be estimated. For reference, the results of NLMS (the special
case of CHYPASS withQ = 1, κ1 := κL for c = 1) are included. The mean dictionary size was: KNLMS 31.9,
HYPASS 31.6, MKNLMS 17.8, and CHYPASS 17.7. It is seen that both CHYPASS and MKNLMS outperform
their single-kernel counterparts with lower complexity. This is due to the simultaneous use of linear and Gaussian
kernels under the multikernel adaptive filtering framework. In the left panel of Fig. 2(c), it is seen that all the
nonlinear algorithms can estimateψ well globally. The right panel shows the local behaviors in the specific range
[0.5, 2.0] of the input space. One can see that the multikernel algorithms better estimateψ than the single-kernel
ones.

2) Experiment A2 - Sinusoid Plus Gaussian Case:We consider the following model which has a low-frequency

component (sinusoid) and a high-frequency component (Gaussian):ψ(u) := sin
(π

3
u
)

− exp

(

−(u− 0.5)2

2× 0.12

)

for

u ∈ U := (−2, 2) ⊂ R (i.e., L = 1). We compare CHYPASS and MKNLMS with KNLMS and HYPASS. For
the multikernel adaptive filtering algorithms, we employ two Gaussian kernelsκ1 := w1κG,σ1

andκ2 := w2κG,σ2

for w2 := 0.1, w1 := 1 − w2, σ1 := 1.0, andσ2 := 0.02 (i.e., Q = 2). The input and observed data sequences
are generated in a way similar to the previous experiment with the noise variance1.0× 10−3. The parameters and
complexities for each algorithm are summarized in Table III.

Fig. 3 depicts the results. In Fig. 3(b), the curves labeled as CHYPASS-r1 and MKNLMS-r1 show the evolution
of r1,n for each algorithm. The mean dictionary size was: KNLMS 205.0, HYPASS 205.8, MKNLMS 147.6, and
CHYPASS 149.3. As in the results of Experiment A1, CHYPASS and MKNLMS outperform their single-kernel
counterparts with lower complexity. It is also seen that CHYPASS significantly outperforms MKNLMS. This is
because the autocorrelation matrix of the kernelized inputvectorkn has a large eigenvalue spread, whereas the
condition number is improved in CHYPASS by using another metric (cf. [40]). Fig. 3(c) shows that the multikernel
algorithms better estimateψ around the edge.

3) Experiment A3 - Partially Linear Case:We consider the following nonlinear dynamic system which has a
partially linear structure [30]:dn := 0.5dn−1 + 0.2xn + 0.3 sin(dn−1xn) + vn, n ∈ N. Here,xn ∼ N (0, 1) is the
excitation signal andvn ∼ N (0, 1.0 × 10−2) is the noise. Each datumdn is a function ofun and dn−1 and is
therefore predicted withun := [un, dn−1]

T (i.e.,L = 2). We employ the linear kernelκ1 := w1κL for c := 1 and a
Gaussian kernelκ2 := w2κG,σ for σ := 0.5 (i.e.,Q = 2). The parameters and complexities for each algorithm are
summarized in Table IV. Fig. 4 depicts the results. The mean dictionary size was: KNLMS 181.9, HYPASS 180.0,
MKNLMS 104.8, and CHYPASS 104.7. It is consistently observed that CHYPASS and MKNLMS outperform their
single-kernel counterparts with lower complexity.

B. Real Data: Time Series Prediction

1) Experiment B1 - Laser Signal:We use the chaotic laser time series from the Santa Fe time series competition
[57] (cf. [2]). The dataset contains 1,000 samples and we useit twice for learning. The maximum value of the
data is normalized to one and is then corrupted by noisevn ∼ N (0, 1.0× 10−2). We predict each datumdn with a
collection of past dataun := [dn−1, dn−2 · · · , dn−L+1]

T ∈ R
L, n ∈ N, for L = 10. We test two cases of CHYPASS:

the linear-Gaussian case (referred to as CHYPASS-LG) and the two-Gaussian case (referred to as CHYPASS-GG).
The parameters and complexities for each algorithm are summarized in Table V. Note that the Gaussian kernel is
normalized as in (9). In the present case,(

√
2πσ1)

L ≈ 0.98×104 and(
√
2πσ2)

L ≈ 1.0×10−3. The unbalance due
to the use of largeL makes the scale of the autocorrelation matrix ofk2,n be much greater than that ofk1,n both
for CHYPASS and MKNLMS. This causes extremely slow convergence in terms of those coefficients associated
with κ1 and, as a result, the performance of the algorithms becomes almost the same as obtained by the sole use
of κ2. To emphasize the effect ofκ1, a very small value is allocated tow2 so thatw1 := 1 − w2 ≈ 1.0. Fig. 5
depicts the results. The mean dictionary size was: HYPASS 62.2, CHYPASS-LG 49.4, and CHYPASS-GG 43.9.
It is seen that CHYPASS outperforms HYPASS with lower complexity.
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TABLE III

PARAMETER SETTINGS AND COMPLEXITIES FOREXPERIMENT A2.

parameter complexity
NLMS λn = 0.1 5

KNLMS λn = 0.1 δ = 0.8 1232
HYPASS σ = σ2 = 0.02 δ = 0.8, sn = 1 829

MKNLMS ε = 0.01 σ1 = 1.0, δ1 = 0.92 897
(Two-Gaussian) δ = 0.6, w2 = 0.1

CHYPASS σ1 = 1.0, δ1 = 0.92 609
(Two-Gaussian) δ = 0.65, w2 = 0.1

sn = 1
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Fig. 3. Results for Experiment A2: the sinusoid-Gaussian case.

2) Experiment B2 - CO2 Emission Data:We use a real data of the carbon dioxide emissions from energycon-
sumption in the industrial sector during Jan. 1973 to Jun. 2013, available at the Data Market website (http://datamarket.com/).

http://datamarket.com/
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TABLE IV

PARAMETER SETTINGS AND COMPLEXITIES FOREXPERIMENT A3.

parameter complexity
NLMS λn = 0.1 8

KNLMS λn = 0.1 δ = 0.95 1275
HYPASS σ = 0.5 δ = 0.95, sn = 1 906

MKNLMS ε = 0.05 δ = 0.9, w1 = 0.2 729
(Linear-Gaussian)

CHYPASS δ = 0.9, w1 = 0.1 524
(Linear-Gaussian) sn = 1
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Fig. 4. Results for Experiment A3: the partially linear case.

The dataset contains 486 samples and we use it repeatedly forlearning. As in Section V-B.1, the maximum value
of the data is normalized to one and is then corrupted by noisevn ∼ N (0, 1.0 × 10−2). Each datumdn is
predicted withun := [dn−1, dn−2 · · · , dn−L+1]

T ∈ R
L, n ∈ N, for L = 20. We test CHYPASS with two-

Gaussian kernels and compare its performance with that of HYPASS. The parameters and complexities for each
algorithm are summarized in Table VI. Due to the same idea as in Section V-B.1, the weight is designed as
w2 := (

√
2πσ2)

L/(
√
2πσ1)

L ≈ 3.5 × 10−11 and w1 := 1 − w2 ≈ 1.0. Fig. 6 depicts the results. The mean
dictionary size was: HYPASS 268.2, and CHYPASS 191.4. It is seen that CHYPASS significantly outperforms
HYPASS, particularly in the initial phase, with lower complexity.

C. Wrap-up

We finally wrap up this experimental section by reviewing theresults from three aspects.
1) Multikernel and Single-kernel Approaches:Comparing the CHYPASS and MKNLMS algorithms with their

respective single-kernel counterparts, we can see that themultikernel approach exhibit better MSE performances
with smaller dictionary sizes. This indicates that the use of multiple kernels would allow compact representations
of unknown systems as mentioned in Section IV-E.3.

2) Functional and Parameter-space Approaches:It can be observed that the functional approaches (CHYPASS
and HYPASS) outperform the parameter-space approaches (MKNLMS and KNLMS). This would be due to the
decorrelation effectinherent in the functional approach according to our experimental studies of HYPASS and
CHYPASS. To be specific, we have empirically found that the multiplication of the inverse of the kernel matrix
(see Lemma 1) decorrelates the kernelized input vector, yielding the improvements of convergence behaviors.

3) Efficacy of the Selective Updating Strategy:In all the experiments, the sizesn of selected subsets is chosen
so that any further increase ofsn does not improve the performance significantly. In other words, each functional
approach forsn ≤ 5 achieves the best possible performance that is realized by its exact version (i.e.,sn = rn)
which is computationally expensive as explained in SectionIV-E. This clearly shows the efficacy of the selective
updating strategy.
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TABLE V

PARAMETER SETTINGS AND COMPLEXITIES FOREXPERIMENT B1.

parameter complexity
HYPASS λn = 0.1 δ = 0.4, sn = 5 971

CHYPASS σ = σ2 = 0.2 δ = 0.2, sn = 5 698
(Linear-Gaussian) ε = 0.05 w2 = 1.0× 10−3

CHYPASS σ1 = 1, δ1 = 0.6 900
(Two-Gaussian) δ = 0.2, sn = 5

w2 = 1.0× 10−5
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Fig. 5. Results for Experiment B1: the laser signal.

TABLE VI

PARAMETER SETTINGS AND COMPLEXITIES FOREXPERIMENT B2.

parameter complexity
HYPASS λn = 0.1 sn = 5 6331

CHYPASS σ = σ2 = 0.3 σ1 = 1, δ1 = 0.95 4731
(Two-Gaussian) δ = 0.95 sn = 5

ε = 0.01 w2 = 3.5× 10−11
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Fig. 6. Results for Experiment B2: the CO2 emission data.
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VI. CONCLUDING REMARKS

We proposed the CHYPASS algorithm for the task of estimating/tracking nonlinear functions which contain
multiple components. The proposed algorithm is based on iterative orthogonal projections in the Cartesian product
of multiple RKHSs. The proposed algorithm was derived by reformulating the HYPASS algorithm in the product
space. In the particular case (including the linear-Gaussian case), the proposed algorithm can also be regarded as
operating iterative projections in the ‘sum’ space of the RKHSs. The numerical examples with three toy models
and two real data demonstrated that the simultaneous use of multiple kernels led to a compact representation of
the nonlinear functions and yielded better performance than the single-kernel algorithms.

The two streams of multikernel adaptive filtering and HYPASShave met and united. The key idea for the union
was presented in the simplest possible way by focusing on theNLMS-type algorithm. It is our future work of
significant interest to extend CHYPASS to a more sophisticated one such as aΦ-PASS type algorithm;Φ-PASS
is based on parallel projection and thus enjoys better convergence properties than HYPASS [35], [37]. Further
investigations are definitely required to verify the practical value of the proposed Cartesian-product projection
approach in real-world applications. It is also our important future issue to verify thedecorrelation effectmentioned
in Section V-C.2 from the theoretical and/or experimental viewpoints.

APPENDIX A
KERNEL RIDGE REGRESSION INSUM SPACE

We present a basic theorem for the batch case.
Theorem A.1 (Kernel Ridge Regression in Sum Space):Given a set of finite samples{(uj , dj)}rj=1, define a

regularized risk functionalRc(f) of f ∈ H+ as

Rc(f) :=
1

r

r
∑

j=1

(f(uj)− dj)
2 + η ‖f‖2H+ , η > 0. (A.1)

Then, the minimizerf∗ := argminf∈H+ Rc(f) is given by f∗ =
∑r

j=1 αjκ(·,uj) with [α1, α2, · · · , αr]
T :=

(K + ηrI)−1[d1, d2, · · · , dr]T, whereK ∈ R
r×r is the kernel matrix whose(i, j) entry isκ(ui,uj).

The result in [31, Theorem 1] can be reproduced by applying Theorem A.1 with a weighted norm and its
associated kernel given in Corollary 1.
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