
ar
X

iv
:1

50
1.

04
81

7v
1 

 [c
s.

IT
]  

20
 J

an
 2

01
5

1

Support Recovery with Orthogonal Matching
Pursuit in the Presence of Noise: A New Analysis

Jian Wang
Department of Electrical & Computer Engineering

Duke University
Durham, North Carolina, 27708, USA

E-mail: jian.wang@duke.edu

Abstract—Support recovery of sparse signals from compressed
linear measurements is a fundamental problem in compressed
sensing (CS). In this paper, we study the orthogonal matching
pursuit (OMP) algorithm for the recovery of support under no ise.
We consider two signal-to-noise ratio (SNR) settings: i) the SNR
depends on the sparsity levelK of input signals, and ii) the SNR
is an absolute constant independent ofK. For the first setting, we
establish necessary and sufficient conditions for the exactsupport
recovery with OMP, expressed as lower bounds on the SNR. Our
results indicate that in order to ensure the exact support recovery
of all K-sparse signals with the OMP algorithm, the SNR must
at least scale linearly with the sparsity levelK. In the second
setting, since the necessary condition on the SNR is not fulfilled,
the exact support recovery with OMP is impossible. However,
our analysis shows that recovery with an arbitrarily small but
constant fraction of errors is possible with the OMP algorithm.
This result may be useful for some practical applications where
obtaining some large fraction of support positions is adequate.

Index Terms—Compressed sensing (CS), orthogonal matching
pursuit (OMP), restricted isometry property (RIP), signal-to-
noise ratio (SNR), minimum-to-average ratio (MAR).

I. I NTRODUCTION

We consider the support recovery of a high-dimensional
sparse signal from a small number of linear measurements.
This is a fundamental problem in compressed sensing (CS) [1],
[2] and has also received much attention in the fields of
sparse approximation [3], signal denoising [4], and statistical
model selection [5]. Let x ∈ Rn be aK-sparse signal (i.e.,
‖x‖0 ≤ K ≪ n) and Φ ∈ Rm×n (m < n) be the
measurement matrix. The measurements are given by

y = Φx+ v (1)

wherev is the corrupting noise. The goal of support recovery
is to identify the support (i.e., the positions of nonzero ele-
ments) of the input signalx from the measurement vectory. It
is known that optimal support recovery requires an exhaustive
search over all possible support sets of the sparse signal and
hence is NP-hard [6]. For this reason, much attention has
been drawn to computationally efficient approaches. In this
paper we consider the orthogonal matching pursuit (OMP)
algorithm for solving the support recovery problem. OMP is a
canonical greedy algorithm for sparse approximation in signal
processing [7], [8]. It is also known as greedy least square
regression in statistics [5] and forward greedy selection in
machine learning [9]. The principle of the OMP algorithm is

quite simple: it iteratively identifies the support of the sparse
signal, by adding one index into the list at a time according to
the maximum correlation between columns of measurement
matrix and the current residual. There are several popular
stopping rules for the OMP algorithm that can be implemented
at minimal cost [10]:

i) Stop after a fixed number of iterations:k = K.
ii) Stop when the energy in the residual is small:‖rk‖2 ≤ ǫ.
iii) Stop when no column in the measurement matrix is

strongly correlated with the residual:‖Φ′rk−1‖∞ ≤ ǫ.
See TableI for the mathematical description of a version of
OMP. Both in theory and in practice, the OMP algorithm has
demonstrated competitive performance [11].

Over the years, many efforts have been made to analyze the
performance of OMP in sparse support recovery. In one line
of work, probabilistic analyses have been proposed. Tropp and
Gilbert showed that when the measurement matrixΦ is gen-
erated iid at random, OMP can ensure the accurate recovery
of every fixedK-sparse signal from noise-free measurements
with overwhelming probability with [11]

m ≥ cK logn (2)

for some constantc. Fletcher and Rangan provided an im-
proved scaling law on the number of measurements and also
showed that the scaling law works for noisy scenarios for
which the signal-to-noise (SNR) goes to infinity [12].

Another direction is to develop deterministic conditions for
the exact support recovery with the OMP algorithm [13]–[21].
Those conditions are often characterized by the propertiesof
measurement matrices, such as the mutual incoherence prop-
erty (MIP) [22] and the restricted isometry property (RIP) [23].
A measurement matrixΦ is said to satisfy the RIP of order
K if there exists a constantc ∈ [0, 1) such that

(1− c)‖x‖22 ≤ ‖Φx‖22 ≤ (1 + c)‖x‖22 (3)

for all K-sparse vectorsx. In particular, the minimum value
among all constantsc satisfying (3) is called the isometry
constantδK . In the noise-free case (i.e., when the noise vector
v = 0), Davenport and Wakin showed that [14]

δK+1 <
1

3
√
K

(4)

is sufficient for OMP to accurately recover the support of
the input signal. For further improvements on this condition,
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TABLE I
THE OMP ALGORITHM

Input Φ, y, and sparsity levelK.
Initialize iteration counterk = 0,

estimated supportT 0 = ∅,
and residual vectorr0 = y.

While k < K do
k = k + 1.
Identify1 tk = argmax

i∈Ω\T k−1

|〈φi, r
k−1〉|.

Enlarge T k = T k−1 ∪ tk .
Estimatexk = argmin

u:supp(u)=T k

‖y −Φu‖2.

Update rk = y −Φxk.
End
Output the estimated supportT K and vectorxK .

see [15]–[20], [24], [25]. The deterministic conditions on the
exact support recovery with OMP in the noisy case have been
studied in [9], [25]–[28], in which the researchers considered
the OMP algorithm with residual-based stopping rules and
established sufficient conditions for the exact support recovery
that depend on the properties of measurement matrices and the
minimum magnitude of the nonzero elements of the signal.

The main purpose of this paper is to investigate deter-
ministic conditions of OMP for the support recovery in the
noisy case. Unlike previous studies that considered residual-
based stopping rules for the OMP algorithm, we simply
consider that OMP runsK iterations before stopping, which
is arguably the most natural stopping rule if one is concerned
with the recovery of exact support. We establish necessary and
sufficient conditions for the exact support recovery with OMP,
expressed as lower bounds on the SNR. Our results indicate
that the OMP algorithm can accurately recover the support
of all K-sparse signals only when the SNR scales at least
linearly with the sparsityK. For high-dimensional setting, this
essentially requires the SNR to be unbounded from above.

We also study the situation where the SNR is upper bounded
so that the necessary condition for the exact support recovery
with OMP is not fulfilled. The analysis of OMP with bounded
SNR has been an interesting open problem [12]. We consider
a practical case where the SNR is an absolute constant
independent of the sparsityK. Our result shows that under
appropriate conditions on the SNR and the isometry constant,
OMP can approximately recover the support of sparse signals
with only a small constant fraction of errors.

The main contributions of this paper are summarized as
follows.

i) We consider the exact support recovery with OMP in
the noisy scenario. Our analysis shows that OMP can
accurately recover the support of anyK-sparse signal if

√
SNR>

2
√
K(1 + δK+1)

(1− (
√
K + 1)δK+1) ·

√
MAR

, (5)

1There is another popular version of OMP in the literature which normalizes
columns ofΦ before the identification step (see, e.g., [12]). In the present
paper we exclusively consider the version of OMP without column normal-
ization, since results obtained for this version can be readily extended to the
version with normalization via rescaling. Note that whenΦ has normalized
columns (e.g., dictionary atoms), the two versions of OMP become identical.

where MAR is the minimum-to-average ratio of the input
signal (see definitions of the MAR and the SNR in
SectionIII ). We also establish a necessary condition for
the exact support recovery with OMP as

√
SNR>

√
K(1 + δK+1)

(1−
√
KδK+1) ·

√
MAR

. (6)

Therefore, to ensure the perfect support recovery of all
K-sparse signals with OMP, the SNR must at least scale
linearly with the sparsity levelK of input signals.

ii) We also consider the case where SNR is an absolute con-
stant independent of the signal sparsityK. Our analysis
shows that if √

SNR≥ κ

δ
3/4
2K

(7)

whereκ := maxi,j∈supp(x)
|xi|
|xj| , then OMP can recover

the support of anyK-sparse signal with error rate

ρerror ≤ Cκ2δ
1/2
2K , (8)

whereC is a constant. Therefore, with properly chosen
isometry constants, the fraction of errors in the support
recovery can be made arbitrarily small.

The rest of this paper is organized as follows: In SectionII ,
we introduce notations and lemmas that are used in this paper.
In SectionIII , we analyze necessary and sufficient conditions
for the exact support recovery with OMP. In SectionIV,
we provide the results of OMP for the approximate support
recovery of sparse signals. Concluding remarks are given in
SectionV.

II. PRELIMINARIES

A. Notations

We briefly summarize notations used in this paper. LetΩ =
{1, 2, · · · , n} andT = supp(x) = {i|i ∈ Ω, xi 6= 0} denote
the support of vectorx. For S ⊆ Ω, |S| is the cardinality of
S. T \ S is the set of all elements contained inT but not
in S. xS ∈ R|S| represents a restriction of the vectorx to
the elements with indices inS. ΦS ∈ Rm×|S| is a submatrix
of Φ that only contains columns indexed byS. If ΦS is full
column rank, thenΦ†

S = (Φ′
SΦS)−1Φ′

S is the pseudoinverse
of ΦS . span(ΦS) represents the span of columns inΦS . PS =
ΦSΦ

†
S stands for the projection onto span(ΦS). P⊥

S = I−PS
is the projection onto the orthogonal complement of span(ΦS),
whereI denotes the identity matrix.

B. Lemmas

The following lemmas are useful for our analysis.

Lemma 2.1 (Lemma 3 in [23]): If a measurement matrix
satisfies the RIP of both ordersK1 andK2 whereK1 ≤ K2,
then

δK1
≤ δK2

.

This property is often referred to as the monotonicity of the
isometry constant.
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Lemma 2.2 (Direct consequences of RIP [29], [ 30]): Let
S ⊆ Ω. If δ|S| < 1 then for anyu ∈ R|S|,

(1 − δ|S|) ‖u‖2 ≤ ‖Φ′
SΦSu‖2 ≤ (1 + δ|S|) ‖u‖2 ,

1

1 + δ|S|
‖u‖2 ≤ ‖(Φ′

SΦS)
−1u‖2 ≤ 1

1− δ|S|
‖u‖2 .

Lemma 2.3 (Consequences of RIP [31], [ 32]): Let
S1,S2,S3 ⊆ Ω andS1 ∩ S2 ∩ S2 = ∅. If δ|S1|+|S2|+|S3| < 1,
then for any vectorv ∈ R|S2|,

‖Φ′
S1
ΦS2

v‖2 ≤ δ|S1|+|S2| ‖v‖2 ,
‖Φ′

S1
P⊥

S3
ΦS2

v‖2 ≤ δ|S1|+|S2|+|S3| ‖v‖2 .

Lemma 2.4 (Proposition 3.1 in [29]): Let S ⊆ Ω. If δ|S| <
1, then for any vectoru ∈ Rm,

‖Φ′
Su‖2 ≤

√

1 + δ|S|‖u‖2.

Lemma 2.5 (Lemma 5 in [26]): LetS1,S2,⊆ Ω be disjoint
sets and denoteA = Φ′

S1
P⊥

S2
ΦS1

andB = Φ′
S1∪S2

ΦS1∪S2
.

Then the minimum and maximum eigenvalues ofA and B

satisfy

λmin(A) ≥ λmin(B) and λmax(A) ≤ λmax(B).

III. E XACT SUPPORTRECOVERY VIA OMP IN THE

PRESENCE OFNOISE

A. Main Results

In this section, we analyze the condition for the exact sup-
port recovery with OMP in the presence of noise. Following
the analysis in [12], we parameterize the dependence on the
noisev and the signalx with two quantities:

SNR :=
‖Φx‖22
‖v‖22

.

and

MAR =
minj∈T |xj |2
‖x‖22/K

.

The next theorem provides a condition under which OMP can
accurately recover the support of anyK-sparse signalx.

Theorem 3.1 (Sufficient Condition):Suppose that the mea-
surement matrixΦ satisfies the RIP withδK+1 < 1√

K+1
.

Then OMP performs the exact support recovery of anyK-
sparse signalx from its noisy measurementsy = Φx + v,
provided that

√
SNR>

2
√
K(1 + δK+1)

(1− (
√
K + 1)δK+1) ·

√
MAR

. (9)

One can interpret from Theorem3.1 that in the high-
dimensional setting, the exact support recovery with OMP can
be ensured in the high SNR region. Moreover, observe that (9)
can be rewritten as

δK+1 <
1− t√

K + 1 + t
, (10)

where

t :=
2
√
K√

SNR· MAR
.

Hence, whent → 0, the condition reduces to

δK+1 <
1√

K + 1
, (11)

which coincides with the recovery condition of OMP in the
noise-free case [19], [20]. The condition in (11) has also
been shown to be nearly necessary for the exact support
recovery with OMP since it cannot be further relaxed to
δK+1 ≤ 1√

K
[19], [20], [33].

The following theorem gives a necessary condition for the
exact support recovery with the OMP algorithm.

Theorem 3.2 (Necessary Condition):If one wish to accu-
rately recover the support of anyK-sparse signalx from its
noisy measurementsy = Φx + v with OMP, then the SNR
should satisfy

√
SNR>

√
K(1 + δK+1)

(1−
√
KδK+1) ·

√
MAR

. (12)

Proof: See AppendixA.

Remark 1:
i) Loosely speaking, the lower bounds in (9) and (12) can

be matched within a constant factor of two. Interestingly,
since MAR≤ 1 and δK+1 ≥ 0, one can directly obtain
from (12) that

SNR> K, (13)

which implies that in order for OMP to accurately recover
the support of anyK-sparse signal, the SNR must at
least scale linearly with the sparsity levelK of the signal.
For high-dimensional setting, this essentially requires the
SNR to be unbounded from above.

ii) The sufficient condition for the exact support recovery
with OMP under a similar SNR setting has been studied
in [12], in which the authors considered large random
measurement matrices. They provided asymptotic and
probabilistic results on the scaling law for the number of
measurements that ensures the exact support recovery of
every fixedK-sparse signal when the SNR approaches to
infinity. Our result in Theorem3.1extends that in [12] by
providing a deterministic condition that applies to general
measurement matrices and also holds uniformly for all
K-sparse signals.

iii) The result in Theorem3.1 is also closely related to the
results in [9], [25]–[28], in which the authors considered
the OMP algorithm with residual-based stopping rules by
assuming that the noise level is known a priori. They
established conditions that depend on the properties of
measurement matrices and the minimum magnitude of
nonzero elements in the signalx. In fact, it can be shown
that the conditions proposed in [9], [25]–[28] essentially
impose a similar requirement on the size of measurements
as our result established in Theorem3.1. However, our
analysis differs in 1) that we characterize the sufficient
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condition for the exact support recovery with a lower
bound on the SNR and 2) that we consider the stopping
rule that the OMP algorithm runs exactK iterations
before stopping and does not require the assumption
of knowing the noise level. In addition, we provide in
Theorem 3.2 the necessary condition analysis for the
exact support recovery with OMP, for which there is no
counterpart in the studies of [9], [25]–[28].

iv) For the OMP algorithm, it had become usual, when
recovering aK-sparse signal, to consider the performance
of the algorithm afterK iterations. See, for instance, [11]–
[15], [19], [20], [25]. Compared to stopping rules that are
based on the residual tolerance (e.g., [26]) or the number
of maximally allowed iterations (e.g.,⌈cK⌉ iterations,
c > 1 [17], [18], [34]–[36]), running OMP for K
iterations is very natural in that it directly allows the
algorithm to recover the exact support set without false
alarms or missed detections since theK-th iterate is itself
a K-sparse signal. This feature is appealing when one is
concerned with the exact support recovery.

v) It is worth mentioning that for the noise-free case, the
stopping rule of OMP does not require additional infor-
mation about the data, since it can simply be‖rk‖2 = 0
(or ‖Φ′rk−1‖∞ = 0).2 Whereas, in the noisy case, some
prior information on the signal and the noise is often
needed. For example, residual-based stopping rules may
rely on the prior knowledge of the noise level [9], [25]–
[28], and running OMP forK iterations requires to know
a priori the sparsity levelK of the input signal. The
assumption of knowing the sparsity (or its region) has
been commonly made for the algorithm design and the
performance analysis in the CS field (see, e.g., [29],
[37]–[41]). However, it should be noted that in many
applications, the sparsityK is often not available and
moreover, the underlying signal may not be exactly
sparse. A typical scenario is that the input signal is not
exactly sparse but only approximately sparse with a few
significant nonzero coefficients.3 For this scenario, our
analysis for the recovery of the exactly sparse signal can
be readily extended to the recovery of significant nonzero
coefficients of the signal, by treating the contribution
of those small nonzero coefficients as part of noise and
utilizing the techniques developed in [26], [41].

B. Proof of Theorem3.1

Our proof of Theorem3.1 is essentially an extension of
the proof technique in [42, Theorem 3.4 and 3.5]. Note that
[42, Theorem 3.4 and 3.5] studied the recovery condition
for the generalized OMP (gOMP) algorithm in the noise-
free situation. Our contribution is to generalize the analysis
to the noisy case. We would like to mention that [42] also

2Without noise, the stopping rule of‖rk‖2 = 0 (or ‖Φ′rk−1‖∞ = 0) is
essentially equivalent to running OMP forK iterations.

3Note that if the signal to be recovered is not even approximately sparse,
then compressed sensing technique may not apply.

provided a noisy case analysis but focused only on theℓ2-
norm distortion of the signal recovery and the corresponding
result is also weaker than the result established in this paper
(see SectionIII-C).

The proof works by mathematical induction. For the conve-
nience of stating the results, we say that OMP makes a success
at an iteration if it selects a correct index at the iteration.
We will first give a condition that guarantees the success of
OMP at the first iteration. Then we will assume that OMP
has been successful in the previousk (1 ≤ k < K) iterations
and will derive a condition under which OMP also makes a
success at the(k+1)-th iteration. Finally, we will combine the
two conditions to establish an overall condition for the OMP
algorithm.

• Success at the first iteration:

From TableI, we know that at the first iteration, OMP
selects the indext1 corresponding to the columnφt1 ∈ Φ

that is most strongly correlated with the measurement
vectory. Hence,

|〈φt1 ,y〉| = max
i∈Ω

|〈φi,y〉|
≥ max

i∈T
|〈φi,y〉|

≥
√

1

|T |
∑

i∈T
〈φi,y〉2

=
1√
K

‖Φ′
T y‖2

(a)
=

1√
K

‖Φ′
T ΦT xT +Φ′

T v‖2
(b)

≥ 1√
K

(‖Φ′
T ΦT xT ‖2 − ‖Φ′

T v‖2)
(c)

≥ 1√
K

((1− δK)‖x‖2 − ‖Φ′
T v‖2)

(d)

≥ 1√
K

(

(1 − δK)‖x‖2 −
√

1 + δK ‖v‖2
)

,

(14)

where (a) is becausey = Φx + v, (b) is from the
triangle inequality, (c) is from the RIP, and (d) is due
to Lemma2.4.

On the other hand, if a wrong index is chosen at the first
iteration (i.e.,t1 /∈ T ), then

|〈φt1 ,y〉| = |〈φt1 ,Φx〉+ 〈φt1 ,v〉|
(a)

≤ |〈φt1 ,Φx〉|+ |〈φt1 ,v〉|
= ‖φ′

t1ΦT xT ‖2 + ‖φ′
t1v‖2

(b)

≤ δK+1 ‖x‖2 + ‖φ′
t1v‖2

(c)

≤ δK+1 ‖x‖2 +
√

1 + δ1‖v‖2, (15)

where (a) uses the triangle inequality, (b) follows from
Lemma2.3 and (c) is due to Lemma2.4.
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This, however, contradicts (14) whenever

δK+1‖x‖2 +
√

1 + δ1 ‖v‖2
<

1√
K

(

(1− δK)‖x‖2 −
√

1 + δK ‖v‖2
)

. (16)

Sinceδ1 ≤ δK ≤ δK+1 (by the monotonicity of isometry
constant), (16) is guaranteed by

δK+1‖x‖2 +
√

1 + δK+1‖v‖2
<

1√
K

(

(1− δK+1)‖x‖2 −
√

1 + δK+1‖v‖2
)

. (17)

Or equivalently,
(

1− δK+1√
K

− δK+1

)

‖x‖2

>

(

1 +
1√
K

)

√

1 + δK+1‖v‖2. (18)

Furthermore, since

‖Φx‖2 ≤
√

1 + δK‖x‖2 ≤
√

1 + δK+1‖x‖2, (19)

and also noting that SNR= ‖Φx‖2
2

‖v‖2
2

, we can show that
(18) holds true if

1− δK+1√
K

− δK+1 >
1 + δK+1√

SNR

(

1 +
1√
K

)

. (20)

That is,

√
SNR>

(
√
K + 1)(1 + δK+1)

1− (
√
K + 1)δK+1

, (21)

Therefore, under (21), a correct index is chosen at the
first iteration of OMP.

• Success at the general iteration:

Assume that OMP has been successful in each of the
previousk (1 ≤ k < K) iterations. Then,

|T ∩ T k| = k. (22)

Under this assumption, we will derive a condition that
ensures OMP to make a success at the(k+1)-th iteration
as well.

For analytical convenience, we introduce two quantities.
Let u denote the largest value in{|〈φi, r

k〉|}i∈T \T k and
let v denote the largest value in{|〈φi, r

k〉|}i∈Ω\(T ∪T k).
Note thatT \T k andΩ\(T ∪T k) are the set of remaining
correct indices and the set of remaining incorrect indices,
respectively. Then it is clear that if

u > v, (23)

a good index will be selected at the(k+1)-th iteration of
OMP. The following proposition characterizes the lower
bound ofu and the upper bound ofv.

Proposition 3.3:

u ≥ 1√
K − k

(

(1 − δK)‖xT \T k‖2 −
√

1 + δK‖v‖2
)

,

v ≤ δK+1‖xT \T k‖2 +
√

1 + δ1 ‖v‖2.
Proof: See AppendixB.

Using Proposition3.3, we obtain the sufficient condition
to u > v as

1√
K − k

(

(1− δK)‖xT \T k‖2 −
√

1 + δK ‖v‖2
)

> δK+1‖xT \T k‖2 +
√

1 + δ1 ‖v‖2,
or equivalently,

(

1− δK+1√
K − k

− δK+1

)

‖xT \T k‖2

>

(

1 +
1√

K − k

)

√

1 + δK+1‖v‖2. (24)

Note that

‖xT \T k‖

≥
√

|T \T k|min
j∈T

|xj |

(a)

≥
√
K − k

(√
MAR · ‖x‖2√

K

)

(b)

≥
√

K − k

K(1 + δK+1)
·
√

MAR · ‖Φx‖2

(c)
=

√

K − k

K(1 + δK+1)
·
√

MAR · SNR· ‖v‖2, (25)

where (a) is from the definition of MAR, (b) is from (19),
and (c) is because SNR= ‖Φx‖2

2

‖v‖2
2

.

Using (24) and (25), we can showu > v holds true if
(

1− δK+1√
K − k

− δK+1

)

√

K − k

K(1 + δK+1)
·
√

MAR · SNR

>

(

1 +
1√

K − k

)

√

1 + δK+1. (26)

That is,

√
SNR>

(1 + δK+1)(
√
K − k + 1)

√
K

(1 − (
√
K − k + 1)δK+1)

√
K − k ·

√
MAR

.

(27)
Furthermore, observe that

(1 + δK+1)(
√
K − k + 1)

√
K

(1− (
√
K − k + 1)δK+1)

√
K − k ·

√
MAR

=

√
K(1 + δK+1)

(1− (
√
K − k + 1)δK+1) ·

√
MAR

×
(

1 +
1√

K − k

)

(a)
<

2
√
K(1 + δK+1)

(1− (
√
K + 1)δK+1) ·

√
MAR

, (28)

where (a) is from the assumption that1 ≤ k < K and
hence1 ≤

√
K − k <

√
K.

Hence, using (27) and (28), we can show thatu > v is
also ensured by

√
SNR>

2
√
K(1 + δK+1)

(1 − (
√
K + 1)δK+1) ·

√
MAR

, (29)
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Therefore, under (29), OMP makes a success at the(k+
1)-th iteration.

So far, we have obtained condition (21) for the success
of the first iteration and condition (29) for the success of
the general iteration. We now combing the two conditions to
obtain an overall condition that ensures the selection of all
support indices with the OMP algorithm.

Clearly the overall condition will be determined by the more
restrictive one between conditions (21) and (29). Thus we
compare the right-hand-side of (21) and (29). Since

2(1 + δK+1)
√
K

(1 − (
√
K + 1)δK+1) ·

√
MAR

≥ (1 + δK+1)(
√
K + 1)

1− (
√
K + 1)δK+1

,

condition (29) is more restrictive than (21) and hence becomes
the overall condition for the OMP algorithm. The proof is thus
complete.

C. Recovery Distortion inℓ2-norm

When all support indices ofx have been recovered with
OMP (i.e.,T K = T ), we have

‖x− xK‖2
(a)
= ‖xT K −Φ

†
T Ky‖2

= ‖xT K −Φ
†
T K (ΦT xT + v)‖2

(b)
= ‖xT K −Φ

†
T K (ΦT KxT K + v)‖2

= ‖Φ†
T Kv‖2

(c)

≤ ‖ΦT KΦ
†
T Kv‖2

√

1− δ|T K |

=
‖PT Kv‖2√

1− δK

≤ ‖v‖2√
1− δK

, (30)

where (a) is becauseT K = T and

xK = argmin
u:supp(u)=T K

‖y −Φu‖2,

(b) is due toT K = T , and (c) is from the RIP.
One can interpret from (30) that the upper bound of theℓ2-

norm recovery distortion with OMP is just proportional with
the noise energy, which outperforms the result in [42] that sug-
gested a recovery distortion upper bounded byO(

√
K)‖v‖2.

IV. A PPROXIMATE SUPPORTRECOVERY VIA OMP IN THE

PRESENCE OFNOISE

In the last section we have shown that the exact support
recovery with OMP requires the SNR to scale linearly with
the sparsity leverK. For high-dimensional setting, this would
require the SNR to be unbounded. However, in practical
applications, we are often facing with the situation where
the SNR is bounded from above. A particularly interesting
case might be the case where the SNR is an absolute constant
independent of the problem size. In this case, of course, the
necessary condition (in SectionIII ) is not fulfilled so that
the exact support recovery of all sparse signals with OMP

is impossible. However, we will show that recovery with an
arbitrarily small but constant fraction of errors is possible.

The following theorem demonstrates that for properly cho-
sen isometry constants, there exists an absolute constant SNR,
under which OMP can approximately recover the support of
anyK-sparse signal with a small constant fraction of errors.

Theorem 4.1:Let κ := maxi,j∈T
|xi|
|xj| . Then if SNR ≥

κ2δ
−3/2
2K , OMP recovers the support ofK-sparse signalx from

its noisy measurementsy = Φx+ v with error rate

ρerror ≤ Cκ2δ
1/2
2K

whereC is a constant.

Remark 2:
i) It is intuitively easy to see that the bound of error rate

in Theorem4.1 is reasonable because in the special case
of orthonormal matrixΦ (i.e., δ2K = 0), the result in
Theorem4.1 suggests that if SNR= ∞, then the error
rateρ = 0, which matches with the trivial fact that when
there is no noise andΦ is an orthonormal matrix, OMP
can identify a correct index at each iteration and will
accurately recover the whole support of signalx in exact
K iterations.

ii) An interesting point we would like to mention is that our
result for the approximate support recovery with OMP
only requires the isometry constantδ2K to be an absolute
constant, which essentially imposes a mild constraint on
the measurement matrixΦ. For example, for random
Gaussian measurement matrices, it can be satisfied with

m ≥ cK log
n

K
(31)

for some constantc [23], [43]. In CS, this implies that
OMP can essentially perform the approximate support
recovery of sparse signals with optimal number of random
measurements up to a constant.

It is well known that recovering sparse signals with nonzero
elements of same magnitude is a particularly challenging case
for the OMP algorithm [17], [39]. The following corollary
provides the result of OMP on the approximate support
recovery for this type of input signals.

Corollary 4.2: ConsiderK-sparse signalsx with nonzero
elements of equal magnitude. Then if SNR≥ δ

−3/2
2K , OMP

can recover the support ofx from its noisy measurements
y = Φx+ v with error rate

ρerror ≤ Cδ
1/2
2K

whereC is a constant.

Our analysis is inspired by the recent work of Livshitz and
Temlyakov [36] and will also rely on some proof techniques
in [35]. The main idea behind our analysis is that most of
support indices can essentially be identified inK iterations
of OMP and the number of false alarms is small. The proof
of Theorem4.1 follows along a similar line as the proofs
in [36], but with three important distinctions. Firstly, the main
goals of proofs are different. While our analysis is based on
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the approximate support recovery ofK-sparse signals with
K iterations of OMP, the analysis in [36] concerned the
exact support recovery with OMP in more thanK iterations.
Secondly, compared to the result in [36], our result is more
general in that it applies to input signals with arbitrary sparsity
level K and with nonzero elements of arbitrary magnitudes.
Note that the analysis of [36] assumed thatK ≥ δ

−1/2
2K , which

essentially applies to the situation where the sparsityK of the
input signal is nontrivial. In addition, [36] considered only the
recovery of signals with magnitudes of nonzero elements upper
bounded by one. Thirdly, and most importantly, we consider
the scenario where the measurement noise is present and build
conditions based on the SNR. Whereas, the analyses in [36]
focused only on the situation without noise.

A. Proof of Theorem4.1

Before we proceed to the details of the proof, we introduce
some useful notations and definitions. For notational simplic-
ity, let δ := δ2K . At the k-th iteration (0 ≤ k ≤ K), let
Γk := T \T k denote the set of missed detection of support
indices. For given constantτ ∈ (0, 1], let Γk

τ denote the
subset ofΓk corresponding to the⌈τK⌉ largest elements (in
magnitude) ofxΓk . Also, let xk

τ denote the⌈τK⌉-th largest
element (in magnitude) inxΓk . Following the idea in [36], we
will fix τ = δ1/2. If ⌈τK⌉ > |Γk|, then setΓk

τ = Γk and
xk
τ = 0. Since OMP totally runsK iterations before stopping,

the error rate of the support recovery can be given by

ρerror :=
|T K\T |

|T | . (32)

The proof of Theorem4.1 consists of two parts. In the
first part, we will provide a lower bound on the reduction
of residual energy at each iteration of OMP (Proposition4.3).
In the second part, by means of the lower bound obtained
in Proposition4.3, we will estimate the remaining energy in
the residual vectorrK . The estimate of the energy ofrK will
then allow us to derive an upper bound on the number of
missed detections (i.e.,|ΓK |). Since the OMP algorithm totally
choosesK indices, it is easy to see that the number missed
detections (afterK iterations) is equal to the number of false
alarms. i.e.,

|ΓK | = |T K\T |, (33)

which implies that

ρerror =
|ΓK |
K

. (34)

Therefore, from the upper bound of|ΓK | we can directly
obtain an upper bound of the error rate for the support recovery
with OMP.

Proposition 4.3:For any 0 ≤ k ≤ K − ⌈δ1/2K⌉, the
residual of OMP satisfies

‖rk‖22 − ‖rk+1‖22 ≥ (1 − 7δ1/2)
(

xk
δ1/2

)2
.

Proof: We shall prove Proposition4.3 in two steps. First,
we show that the residual power difference of OMP satisfies

(see AppendixC)4

‖rk‖22 − ‖rk+1‖22 ≥
‖Φ′rk‖2∞
1 + δ1

. (35)

In the second step, we show that (see AppendixD)

‖Φ′rk‖2∞ ≥ (1− 7τ)
(

xk
τ

)2
. (36)

Using (35) and (36), we have

‖rk‖22 − ‖rk+1‖22 ≥
(

1− 6τ

1 + δ1

)

(xk
τ )

2

(a)

≥
(

1− 6τ

1 + δ

)

(xk
τ )

2

=

(

1− 6τ

1 + τ2

)

(xk
τ )

2

=

(

1− 7τ +
τ − τ2 + 7τ3

1 + τ2

)

(xk
τ )

2

(b)

≥ (1− 7τ) (xk
τ )

2

= (1− 7δ1/2)
(

xk
δ1/2

)2
, (37)

where (a) is becauseδ = δ2K ≥ δ1 and (b) is fromτ = δ1/2 ∈
[0, 1), which establishes the proposition.

In Proposition4.3, we have shown that each iteration of
OMP makes non-trivial progress by providing the lower bound
on the reduction of residual energy at each iteration. Next,
using the bound obtained in Proposition4.3, we will derive an
upper bound on the number of missed detections in the support
recovery of OMP. Without loss of generality we assume that
T = {1, · · · ,K} and that the elements of{xi}Ki=1 are in a
descending order of their magnitudes. Then from the definition
of xk

τ we have that for anyk ≥ 0, k + ⌈τK⌉ ≤ K,

|xk
τ | ≥ |xk+⌈τK⌉|. (38)

By applying Proposition4.3, we have

‖rK‖22 = ‖r0‖22 −
K−1
∑

k=0

(‖rk‖22 − ‖rk+1‖22)

(a)

≤ ‖y‖22 −
K−⌈τK⌉
∑

k=1

(‖rk‖22 − ‖rk+1‖22)

≤ ‖y‖22 −
K−⌈τK⌉
∑

k=1

(1− 7τ) (xk
τ )

2

(b)

≤ ‖y‖22 −
K−⌈τK⌉
∑

k=1

(1− 7τ) (xk+⌈τK⌉)
2

= ‖y‖22 −
K
∑

k=⌈τK⌉+1

(1− 7τ) (xi)
2 (39)

where (a) uses the facts that⌈τK⌉ ≥ 1 and that the energy of
residual of the OMP algorithm is always non-increasing with
the number of iterations (i.e.,‖rk‖22 ≥ ‖rk+1‖22, k ≥ 0), and
(b) is from (38).

4This proof is essentially identical to a result in [35]. Since it will play a
key role in the proof of (36), we include the proof for completeness.
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Note that

‖y‖22 = ‖Φx+ v‖22
(a)

≤ (1 + τ)‖Φx‖22 + (1 + 1/τ) ‖v‖22
(b)

≤ (1 + τ)(1 − δ)‖x‖22 + (1 + 1/τ) ‖v‖22
(c)

≤ (1 + 3τ)‖x‖22 + (1 + 1/τ) ‖v‖22

= (1 + 3τ)
K
∑

i=1

(xi)
2 + (1 + 1/τ) ‖v‖22, (40)

where (a) is from the fact that

‖u+ v‖22 ≤ (1 + τ)‖u‖22 + (1 + 1/τ) ‖v‖22

with u = Φx, (b) is due to the RIP, and (c) is from that

(1 + τ)(1 + δ) ≤ (1 + τ)2 ≤ 1 + 3τ.

Hence, we can rewrite (39) as

‖rK‖22 ≤ ‖y‖22 −
K
∑

k=⌈τK⌉+1

(1− 7τ) (xi)
2

≤ (1 + 3τ)

K
∑

i=1

(xi)
2 −

K
∑

i=⌈τK⌉+1

(1− 7τ) (xi)
2

+(1 + 1/τ) ‖v‖22

≤ 10τ

K
∑

i=1

(xi)
2 +

⌈τK⌉
∑

i=1

(xi)
2 + (1 + 1/τ) ‖v‖22

≤ (10τK + ⌈τK⌉)(xmax)
2 + (1 + 1/τ) ‖v‖22

≤ 11⌈τK⌉(xmax)
2 + (1 + 1/τ) ‖v‖22. (41)

On the other hand,

‖rK‖22 = ‖Φ(x− xK) + v‖22
(a)

≥ (1 − τ)‖Φ(x− xK)‖22 − (1/τ − 1) ‖v‖22
(b)

≥ (1 − τ)(1 − δ)‖x− xK‖22 − (1/τ − 1) ‖v‖22
(c)

≥ (1 − 2τ)‖x− xK‖22 − (1/τ − 1) ‖v‖22
≥ (1 − 2τ)‖(x− xK)ΓK‖22 − (1/τ − 1) ‖v‖22
(d)

≥ (1 − 2τ)‖xΓK‖22 − (1/τ − 1) ‖v‖22, (42)

where (a) uses the fact that

‖u+ v‖22 ≥ (1− τ)‖u‖22 − (1/τ − 1) ‖v‖22

with u = Φ(x−xK), (b) follows from the RIP, (c) is because

(1− τ)(1 − δ) ≥ (1 − τ)2 = 1− 2τ + τ2 ≥ 1− 2τ,

and (d) is due to the fact thatxK is supported onT K and
hencexK

ΓK = xK
T \T K = 0.

Using (41) and (42), we have

‖xΓK‖22
≤ 1

1− 2τ

(

11⌈τK⌉(xmax)
2 +

2

τ
‖v‖22

)

(a)

≤ 1

1− 2τ

(

11⌈τK⌉(xmax)
2 + 2τ2(1 + τ2)K(xmin)

2
)

≤ 1

1− 2τ

(

11⌈τK⌉κ2 + 2τ2(1 + τ2)K
)

(xmin)
2

≤
(

11κ2 + 2τ(1 + τ2)

1− 2τ

)

⌈τK⌉(xmin)
2

≤ Cκ2τK(xmin)
2

= Cκ2δ1/2K(xmin)
2, (43)

where (a) is due to the facts 1) that

SNR=
‖Φx‖22
‖v‖22

≥ κ2δ
−3/2
2K =

κ2

τ3
,

and 2) that

‖Φx‖22
RIP
≤ (1 + δ)‖x‖22
≤ (1 + δ)K(xmax)

2

≤ (1 + δ)K(κxmin)
2,

and hence
2

τ
‖v‖22 ≤ 2τ2(1 + δ)K(xmin)

2

= 2τ2(1 + τ2)K(xmin)
2.

Finally, by noting that

‖xΓK‖22 ≥ |ΓK |(xmin)
2,

we have that the number of missed detections satisfies

|ΓK | ≤ Cκ2δ1/2K. (44)

Recall that the number missed detections (afterK iterations)
is essentially equal to the number of false alarms (i.e.,|ΓK | =
|T K\T |). Therefore, the error rate of support recovery with
OMP satisfies

ρerror =
|T K\T |

|T | =
|ΓK |
K

≤ Cκ2δ1/2. (45)

The proof is now complete.

V. CONCLUSION

In this paper, we have studied the performance of OMP
for the support recovery of sparse signals under noise. In the
first part of our analysis, we have shown that in order for the
OMP algorithm to accurately recover the support of anyK-
sparse signal, the SNR must be at least proportional to the
sparsity levelK of the signal. For high-dimensional setting,
our result indicates that the exact support recovery with OMP
is not possible under finite SNR.

In the second part of our analysis, we have considered a
practical scenario where the SNR is an absolute constant in-
dependent of the sparsityK. While the exact support recovery
with OMP is not possible for this scenario, our analysis has
shown that recovery with an arbitrarily small but constant
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fraction of errors is possible. For high-dimensional setting,
our result offers an affirmative answer to the open question of
whether OMP can perform the approximate support recovery
of sparse signals with bounded SNR [12]. We would like to
point out a technical limitation in this result. Unlike existing
results for the exact support recovery that depend on the min-
imum magnitude of nonzero elements in the signal, our result
for the approximate support recovery exhibits the dependence
on the minimum as well as the maximum magnitudes (more
precisely, the ratioκ). Deriving a similar result but without the
dependence on the maximum magnitude would require a more
refined analysis and our future work will be directed towards
this avenue.

APPENDIX A
PROOF OFTHEOREM 3.2

Proof: To prove the necessity of the lower bound of SNR
in (12), it suffices to show that OMP may fail to recover the
support of some sparse signalx when

√
SNR≤

√
K(1 + δK+1)

(1−
√
KδK+1) ·

√
MAR

. (46)

In the following, we will show that there exists a set ofΦ,
x, andv, for which (46) is satisfied but OMP fails to recover
the support ofx.

Consider an identity matrixΦm×m, aK-sparse signalx ∈
Rm with all nonzero elements equal to one, and an1-sparse
noise vectorv ∈ Rm as follows,

Φ =











1
1

. . .
1











,x =





















1
...
1
0
...
0





















, and v =











0
...
0
1











.

Then the measurements are given by

y =

























1
...
1
0
...
0
1

























.

In this case, we haveδK+1 = 0,

SNR=
‖Φx‖22
‖v‖22

= K and MAR= 1.

It is easily verified that condition (46) is satisfied; however,
OMP fails to recover the support ofx. Specifically, OMP is
not guaranteed to make a correct selection at the first iteration.

APPENDIX B
PROOF OFPROPOSITION3.3

Proof: We first give a proof of (24). Sinceu is the largest
value in{|〈φi, r

k〉|}i∈T \T k ,

u = max
i∈T \T k

|〈φi, r
k〉|

≥ 1
√

|T \T k|

√

∑

i∈T \T k

〈φi, rk〉2

(a)
=

1√
K − k

‖Φ′
T \T kr

k‖2

=
1√

K − k
‖Φ′

T \T kP
⊥
T k(Φx+ v)‖2

(b)

≥ 1√
K − k

(

‖Φ′
T \T kP

⊥
T kΦx‖2 − ‖Φ′

T \T kP
⊥
T kv‖2

)

,

(47)

where (a) is from (22) and (b) is due to the triangle inequality.
Observe that

‖Φ′
T \T kP

⊥
T kΦx‖2

(a)
= ‖Φ′

T \T kP
⊥
T kΦT \T kxT \T k‖2

(b)

≥
‖x′

T \T kΦ
′
T \T kP

⊥
T kΦT \T kxT \T k‖2

‖x′
T \T k‖2

(c)
=

‖x′
T \T kΦ

′
T \T k(P

⊥
T k)

′P⊥
T kΦT \T kxT \T k‖2

‖xT \T k‖2

=
‖P⊥

T kΦT \T kxT \T k‖22
‖xT \T k‖2

≥ λmin

(

(P⊥
T kΦT \T k)′P⊥

T kΦT \T k

)

‖xT \T k‖22
‖xT \T k‖2

(d)
= λmin

(

Φ′
T \T kP

⊥
T kΦT \T k

)

‖xT \T k‖2
(e)

≥ λmin(Φ
′
T ∪T kΦT ∪T k)‖xT \T k‖2

(f)

≥ (1− δK)‖xT \T k‖2, (48)

where (a) is becauseP⊥
T kΦT k = 0, (b) is from the norm

inequality, (c) and (d) use the fact thatP⊥
T k = (P⊥

T k)
′ =

(P⊥
T k)

2, (e) is from Lemma2.5, and (f) is from the RIP. (Note
that T k ⊂ T and so|T ∪ T k| = |T | = K.) Also,

∥

∥

∥
Φ′

T \T kP
⊥
T kv

∥

∥

∥

2

(a)
=

∥

∥

∥

(

P⊥
T kΦT \T k

)′
v

∥

∥

∥

2

≤
√

λmax

(

(

P⊥
T kΦT \T k

)′
P⊥

T kΦT \T k

)

‖v‖2
(b)
=

√

λmax

(

Φ′
T \T kP

⊥
T kΦT \T k

)

‖v‖2
(c)

≤
√

λmax

(

Φ′
T ∪T kΦT ∪T k

)

‖v‖2
≤

√

1 + δK ‖v‖2 (49)

where (a) and (b) are due toP⊥
T k = (P⊥

T k)
′ = (P⊥

T k)
2 and

(c) is from Lemma2.5.
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Using (47), (48) and (49), we have

u ≥ 1√
K − k

(

(1− δK)‖xT \T k‖2 −
√

1 + δK ‖v‖2
)

.

(50)

Next, we proceed to prove (24). Let w ∈ Ω de-
note the index corresponding to the largest element in
{

|〈φi, r
k〉|
}

i∈Ω\(T ∪T k)
. Then by the definition ofv,

v = |〈φw , r
k〉|

= |〈φw ,P
⊥
T k(Φx+ v)〉|

(a)

≤ |〈φw ,P
⊥
T kΦx〉|+ |〈φw ,P

⊥
T kv〉|

(b)
= |〈φw ,P

⊥
T kΦT \T kxT \T k〉|+ |〈φw ,P

⊥
T kv〉|, (51)

where (a) is from the triangle inequality and (b) is because
P⊥

T kΦT k = 0.

Sincew /∈ T and also noting thatT k ⊂ T (by the induction
hypothesis), we have

|{w} ∪ T k ∪ (T \ T k)| = |{w} ∪ T | = K + 1.

Using this together with Lemma2.3, we have

|〈φw,P
⊥
T kΦT \T kxT \T k〉|

=
∥

∥φ′
w(P

⊥
T kΦT \T k)xT \T k

∥

∥

2

≤ δ|{w}∪T k∪(T \T k)|‖xT \T k‖2
= δK+1‖xT \T k‖2 (52)

and

|〈φw,P
⊥
T kv〉| = |〈(P⊥

T k)
′φw,v〉|

(a)
= |〈P⊥

T kφw,v〉|
(b)

≤ ‖P⊥
T kφw‖2 ‖v‖2

≤ ‖φw‖2 ‖v‖2
(c)

≤
√

1 + δ1 ‖v‖2, (53)

where (a) is due to the fact thatP⊥
T k = (P⊥

T k)
′, (b) is from

Cauchy-Schwarz inequality, and (c) is from the RIP.

Finally, combining (51), (52), and (53) we have

v ≤ δK+1‖xT \T k‖2 +
√

1 + δ1 ‖v‖2, (54)

which completes the proof.

APPENDIX C
PROOF OF(35)

Proof: First, from the definition of OMP (see TableI),
we have that for any integerk ≥ 0,

rk − rk+1 = (y −Φxk)− (y −Φxk+1)
(a)
= PT ky −PT k+1y

(b)
= (PT l+1 −PT l+1PT l)y

= PT l+1P⊥
T ly

= PT l+1rk, (55)

where (a) is from that

xk = argmin
u:supp(u)=T k

‖y −Φu‖2

and henceΦxk = ΦT kΦ
†
T ky = PT ly, (b) is because

span(ΦT k) ⊆ span(ΦT k+1) so thatPT ky = PT k+1(PT ky).

Sincespan(ΦT k+1) ⊇ span(φtk+1), we have

‖rk − rk+1‖22 = ‖PT k+1rk‖22 ≥ ‖Ptk+1rk‖22.

Further, by noting that‖rk − rk+1‖22 = ‖rk‖22 − ‖rk+1‖22,
we have

‖rk‖22 − ‖rk+1‖22 ≥ ‖Ptk+1rk‖22
(a)

≥ ‖(φ†
tk+1)

′φ′
tk+1r

k‖22
(b)
= (φ′

tk+1r
k)2‖φ†

tk+1‖22
(c)
= ‖Φ′rk‖2∞‖φ†

tk+1‖22
(d)

≥ ‖Φ′rk‖2∞

(

‖φ†
tk+1φtk+1‖22
‖φtk+1‖22

)

(e)

≥ ‖Φ′rk‖2∞
1 + δ1

, (56)

where (a) is becausePtk+1 = P′
tk+1 = (φ†

tk+1)
′φ′

tk+1 , (b) is
from thatφ′

tk+1r
k is a scalar, (c) is due to the identification

rule of OMP, (d) is from the norm inequality, and (e) follows
from the RIP.

APPENDIX D
PROOF OF(36)

Proof: The main goal of the proof is to establish a lower
bound on‖Φ′rk‖2∞.

Observing that

(Φ′rk)T k = Φ′
T k(P

⊥
T ky) = (P⊥

T kΦT k)′y = 0,

we have
‖Φ′rk‖2∞ = ‖(Φ′rk)Ω\T k‖2∞ (57)

Then it follows from the Hölder’s inequality that for allw ∈
Rn,

‖Φ′rk‖2∞ ≥ 〈(Φ′rk)Ω\T k ,wΩ\T k〉2
‖wΩ\T k‖21

=
〈Φ′rk,w〉2
‖wΩ\T k‖21

=
〈rk,Φw〉2
‖wΩ\T k‖21

(58)

Let w ∈ Rn be a vector such that

wS =

{

xS S ⊆ T ∩ T k ∪ Γk
τ ,

0 S ⊆ Ω\(T ∩ T k ∪ Γk
τ ).

(59)

whereτ = δ1/2. See Figure1 for an illustration ofsupp(w).
Then (58) can be rewritten as
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The rest of support indices2       support indices

chosen in  iterations            chosen in     iterationscN k k            

support indices in  are chosen within         iterations

 support indices

chosen in  iterations

(support set)

(estimated support set)

 

T
(support set)(estimated support set)

T

( )supp w  ! "TT

 T T 

!

!

=

k

k

kk

k

Fig. 1. Illustration ofsupp(w).

‖Φ′rk‖2∞ ≥ 〈Φ′rk,w〉2
‖xΓk

τ
‖21

≥ 〈rk,Φw〉2
‖xΓk

τ
‖21

(a)

≥ 〈rk,Φw〉2
|Γk

τ |‖xΓk
τ
‖22

=
〈rk,Φw〉2

⌈τK⌉‖xΓk
τ
‖22

(b)
=

〈rk,Φ(w − xk)〉2
⌈τK⌉‖xΓk

τ
‖22

(60)

where (a) follows from the norm inequality (‖u‖1 ≤
√

‖u‖0 ‖u‖2) and (b) is because

〈rk,Φxk〉 = 〈P⊥
T ky,PT ky〉 = 〈y,P⊥

T kPT ky〉 = 0.

We now consider the term〈rk,Φ(w−xk)〉2 in the numer-
ator of the right-hand-side of (60). Since the residual can be
expressed asrk = Φ(x− xk) + v, we have

〈rk,Φ(w − xk)〉2
= 〈Φ(x− xk) + v,Φ(w − xk)〉2
= (〈Φ(x − xk),Φ(w − xk)〉+ 〈v,Φ(w − xk)〉)2
(a)

≥ (1− τ)〈Φ(x − xk),Φ(w − xk)〉2 − (1/τ − 1)

×〈v,Φ(w − xk)〉2
(b)

≥ (1− τ)〈Φ(x − xk),Φ(w − xk)〉2 − (1/τ − 1)

×‖v‖22 ‖Φ(w− xk)‖22
(c)
=

1− τ

4

(

‖Φ(x− xk)‖22 − ‖Φ(w− x)‖22
+‖Φ(w− xk)‖22

)2 − (1/τ − 1) ‖v‖22 ‖Φ(w − xk)‖22,
(61)

where (a) uses the inequality

(u+ v)2 ≥ (1 − τ)u2 − (1/τ − 1) v2

with u = 〈Φ(x− xk),Φ(w− xk)〉 andv = 〈v,Φ(w− xk)〉,
(b) is due to the Cauchy-Schwarz inequality, and (c) is from
the fact that

〈u, z〉 = 1

2

(

‖u‖22 − ‖u− z‖22 + ‖z‖22
)

with u = Φ(x− xk) andz = Φ(w − xk).

Further, observe that

‖Φ(x− xk)‖22 − ‖Φ(w− x)‖22
(a)
= ‖Φ(x− xk)‖22 − ‖ΦΓk\Γk

τ
xΓk\Γk

τ
‖22

(b)

≥ (1− δ)‖x− xk‖22 − (1 + δ)‖xΓk\Γk
τ
‖22

≥ (1− δ)‖(x− xk)Γk‖22 − (1 + δ)‖xΓk\Γk
τ
‖22

(c)
= (1− δ)‖xΓk‖22 − (1 + δ)‖xΓk\Γk

τ
‖22

= (1− δ)
(

‖xΓk
τ
‖22 + ‖xΓk\Γk

τ
‖22
)

−(1 + δ)‖xΓk\Γk
τ
‖22

= (1− δ)‖xΓk
τ
‖22 − 2δ‖xΓk\Γk

τ
‖22

(d)

≥ (1− δ)⌈τK⌉(xk
τ )

2 − 2δK(xk
τ )

2

≥
(

1− δ − 2δ

τ

)

⌈τK⌉(xk
τ )

2

(e)

≥ (1− 3τ)⌈τK⌉(xk
τ )

2, (62)

where (a) is from (59), (b) is due to the RIP, (c) is because
xk
Γk = 0, (d) is becausexk

τ is the⌈τK⌉-th largest element (in
magnitude) inxΓk and hence is the smallest one inxΓk

τ
, and

(e) is from that

1− δ − 2δ

τ
= 1− δ − 2τ ≥ 1− 3τ.

Using (61) and (62), we have

〈rk,Φ(w − xk)〉2

≥ 1− τ

4

(

(1− 3τ)⌈τK⌉(xk
τ )

2 + ‖Φ(w− xk)‖22
)2

− (1/τ − 1) ‖v‖22‖Φ(w− xk)‖22
(a)

≥ (1− τ)
(

(1 − 3τ)⌈τK⌉(xk
τ )

2
)

‖Φ(w− xk)‖22
− (1/τ − 1) ‖v‖22‖Φ(w− xk)‖22

(b)

≥
(

(1− 4τ)⌈τK⌉(xk
τ )

2 − (1/τ − 1) ‖v‖22
)

×‖Φ(w− xk)‖22
(c)

≥ (1− 5τ)⌈τK⌉(xk
τ )

2‖Φ(w− xk)‖22
(d)

≥ (1− 5τ)⌈τK⌉(xk
τ )

2(1− δ)‖w− xk‖22
(e)

≥ (1− 6τ)⌈τK⌉(xk
τ )

2‖w− xk‖22
≥ (1− 6τ)⌈τK⌉(xk

τ )
2‖(w− xk)Ω\T k‖22

= (1− 6τ)⌈τK⌉(xk
τ )

2‖xΓk
τ
‖22 (63)

where (a) follows from the fact that(u + v)2 ≥ 4uv with
u = (1 − 3τ)⌈τK⌉(xk

τ )
2 and v = ‖Φ(w − xk)‖22, (b) is

because

(1− τ)(1 − 3τ) = 1− 4τ + 3τ2 ≥ 1− 4τ,
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(c) is because 1) the assumption SNR≥ κ2δ−3/2 implies that

‖Φx‖22 = SNR· ‖v‖22
≥ κ2

δ3/2
‖v‖22

=
κ2

τ3
‖v‖22

≥ κ2

τ3

(

1− τ

(

τ − 1

2

)2

− 3τ

4

)

‖v‖22

=
κ2(1 + τ2)(1− τ)‖v‖22

τ3
, (64)

and 2) on the other hand,

‖Φx‖22
RIP
≤ (1 + δ)‖x‖22
≤ (1 + δ)Kx2

max

≤ (1 + δ)K(κxmin)
2

≤ (1 + δ)K(κxk
τ )

2

= (1 + τ2)K(κxk
τ )

2, (65)

and hence

(1/τ − 1) ‖v‖22 ≤ τ2K(xk
τ )

2 ≤ τ⌈τK⌉(xk
τ )

2, (66)

(d) is from the RIP, and (e) follows from that

(1− 5τ)(1− δ) ≥ (1− 5τ)(1− τ) = 1− 6τ +5τ2 ≥ 1− 6τ.

Finally, using (60) and (63), we have

‖Φ′rk‖2∞ ≥ 〈rk,Φ(w − xk)〉2
⌈τK⌉‖xΓk

τ
‖22

≥
(1− 6τ)⌈τK⌉(xk

τ )
2‖xΓk

τ
‖22

⌈τK⌉‖xΓk
τ
‖22

= (1− 6τ)(xk
τ )

2, (67)

which completes the proof.
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