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Abstract

The multiple measurement vector problem (MMV) is a geneadilon of the compressed sensing
problem that addresses the recovery of a set of jointly spaignal vectors. One of the important
contributions of this paper is to reveal that the seemingbst related state-of-art MMV joint sparse
recovery algorithms - M-SBL (multiple sparse Bayesian @ay) and subspace-based hybrid greedy
algorithms - have a very important link. More specificallye whow that replacing thieg det(-) term
in M-SBL by a rank proxy that exploits the spark reductiongedy discovered in subspace-based joint
sparse recovery algorithms, provides significant imprasts In particular, if we use the Schatten-
quasi-norm as the corresponding rank proxy, the globalmiggr of the proposed algorithm becomes
identical to the true solution gs — 0. Furthermore, under the same regularity conditions, wevsho
that the convergence to a local minimiser is guaranteedguam alternating minimization algorithm
that has closed form expressions for each of the minimiaasi®ps, which are convex. Numerical
simulations under a variety of scenarios in terms of SNR, @ition number of the signal amplitude
matrix demonstrate that the proposed algorithm consigtentperforms M-SBL and other state-of-the
art algorithms.
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. INTRODUCTION

The multiple measurement vector problem (MMV) is a gengadiibn of the compressed sensing
problem, which addresses the recovery of a set of sparselsigotors that share a common support
[, 21, 81, [4], [B], [B]. In the MMV model, let m and N denote the number of sensor elements
and snapshots, respectively; and> m denote the length of the signal vectors. Then, for a given
noisy observation matri¥” = [y;,---,yny] € C™Y and a sensing matrid ¢ C™*", the multiple

measurement vector (MMV) problem can be formulated as:

minimize || X]||o 1)

subject to ||Y — AX||p <6,

wherex; € R" is the j-th signal, X = [x1,--- ,xy] € R™¥, x! is thei-th row of X, and || X o =

|suppX|, wheresuppX = {1 < i < n :x' # 0} is the set of indices of nonzero rows . The

Frobenius norm is used to measure the discrepancy betweeatath and the model. Classically, pursuit
algorithms such as alternating minimization algorithm (Adhd MUSIC (multiple signal classification)
algorithm [7], S-OMP (simultaneous orthogonal matchingspit) [8], [2], M-FOCUSS [3], randomized
algorithms such as REduce MMV and BOost (ReMBD)[4], and mbdsed compressive sensing using
block-sparsity([9], [10] have been applied to the MMV prahle

An algebraic bound for the recoverable sparisity level hasnbtheoretically studied by Feng and
Bresler [7], and by Chen and Hubl[2] for noiseless measuremierMore specifically, if X € RN

satisfiesAX =Y and
spark(A) + rank(Y") — 1
2 b

1XTlo < (@)

wherespark(A) denotes the smallest number of linearly dependent colurhas then X is the unique
solution of [1). This indicates that the recoverable spaisvel may increase with an increasing number
of measurement vectors. Indeed, for noiseless measureabtdSIC algorithm by Feng and Breslér [7]
is shown to achieve the performance limit when the measurematrix is full rank. However, except
for MUSIC in full rank cases, the performance of the aforetioered classical MMV algorithms is not
generally satisfactory, falling far short dfl (2) even foethoiseless case, when only a finite number of

snapshots are available.

In a noisy environment, Obozinskit al showed that a near optimal sampling rate reduction up

to rank(Y) can be achieved using /l> mixed norm penalty[[11]. A similar gain was observed in



computationally inexpensive greedy approaches such agpressive MUSIC (CS-MUSIC)[]1] and
subspace augmented MUSIC (SA-MUSIC) [6]. More specificaflim et al [1] and Lee et al [6]
independently showed that a class of hybrid greedy alguosthhat combine greedy steps with a so
called generalized MUSIGubspace criteriori_[1], or equivalently, with subspacenagntation [[6], can
reduce the required number of measurements by wprih(Y") in noisy environment. Furthermore, using
a large system MMV model, Kimet al further showed that for an i.i.d. Gaussian sensing mathigir t
algorithm can asymptotically achieve the algebraic penfoice limit whenrank(Y') increases with a
particular scaling law_[1]. Leet al [6] also showed that MUSIC can do this in the noisy case and ful
rank, non-asymptotically with finite data, and for reatigtiourier sensing matrices.

While the aforementioned mixed norm approach and subspasedbgreedy approaches provide
theoretical performance guarantees, there also existyadiéerent class of powerful MMV algorithms
that are based on empirical Bayesian and Automatic Relev@atermination (ARD) principles from
machine learning. Among these, the so-called multiple ssp@ayesian learning (M-SBL) algorithm
is best known|[[12]. Even though M-SBL is more computationa&kpensive than greedy algorithms
such as CS-MUSIC or SA-MUSIC, empirical results show thaSBL is quite robust to noise and to
unfavorable restricted isometry property constant (RICjhe sensing matrix [13]. Moreover, M-SBL
is more competitive than mixed norm approaches. Since Bayegpproaches are very different from
classical compressed sensing, such high performance@ppgaterious at first glance. However, a recent
breakthrough by Wipf et al unveiled that M-SBL can be converted to a standard compaessesing
framework with an additionalog det(-) (log determinant) penalty - a non-separable sparsity imduc
prior [14]. The presence of the non-separable penalty tersoipowerful that M-SBL performs almost
as well as MUSIC. However, the guarantee only applies to thleréw rank case ofX with noise-
free measurement vectofs [15], [12]. However, despitexiteient performance, compared to the mixed
norm approaches or subspace greedy algorithms, otherhibamark by Wipf et al [14]], the fundamental
theoretical analysis of M-SBL has been limited.

Therefore, one of the main goals of this paper is to contiree dffort by Wipf et al [14] and
analyze the origin of the high performance of M-SBL, as wallta investigate its limitations. One of
the important contributions of this paper is to show thatseemingly least related algorithms - M-SBL
and subspace-based hybrid greedy algorithms - have a vggrtamt link. More specifically, we show
that thelog det(-) term in M-SBL is a proxy for the rank of a partial sensing matbrresponding to
the true support. We then show that minimising the rank thad discovered in subspace-based hybrid

greedy algorithm to exploit the spark reduction propertyylV can indeed provide a true solution for



the MMV problem. Accordingly, replacingpg det(-) term in M-SBL by a Schattep-quasi-norm rank
proxy provides significant performance improvements.

The resulting new algorithm is no longer Bayesian due to geaf adeterministicpenalty based on a
geometric argument, so we call the new algoritsubbspace-penalized sparse learning (SBY_excluding
term “Bayesian”. We show that gs— 0 in the Schattep-norm rank proxy, the global minimizers of
the SPL cost function are identical to those of the origiaiminimization problem. Furthermore, we
show that SPL can be easily implemented as an alternatingnistion approach.

Using numerical simulations, we demonstrate that comp@aréte current state-of-art MMV algorithms
such as mixed norm approaches, M-SBL, CS-MUSIC/SA-MUSI@ sequential CS-MUSIC [13], SPL
provides superior recovery performance. Moreover, thelt®show that SPL is very robust to noise, and

to the condition number of the unknown signal matrix.

A. Notation

Throughout the papers’ and x; correspond to the-th row and thej-th column of matrix X,
respectively. The(i, j) element of X is represented by;;. When S is an index set X, and Ag
correspond to a submatrix collecting corresponding rows{oind columns ofA, respectively. For a
matrix A, Tr(A) is the trace of a matrix4, A* is its adjoint, AT denotes the Penrose-Moor psuedo-
inverse,| A| refers the determinanfz(A) denotes the range space 4f and P4 (or Pg4)) and P (or
Pﬁ(A)) are the projection on the range space and its orthogonaplemnent, respectively. The vectey
denotes an elementary unit vector whagl element is 1, and denotes an identity matrix.

A sensing matrixA € R™*" is said to have &-restricted isometry property (RIP) if there exist left

and right RIP constants < 6%, 6% < 1 such that
(1= 60)[Ix]1” < [|[Ax[]* < (1+ 68 [1x|”

for all x € R™ such that||x||o < k. A single RIP constanf, = max{d%,5}'} is often referred to as the
RIP constant.

[I. M-SBL: A REVIEW
A. Algorithm Description

Under appropriate assumptions of noise and signal Gausssistics, one can show that M-SBL

minimizes the following cost function in a so-calledspace([12]:

L7(y)=Tr (S,'YY*) + Nlog |S,| (3)



where
Y, =M+ ATA* | T =diag(y) . (4)

With an estimate of’, which typically has a nearly sparse diagonal and may behioided to be exactly

sparse, the solution of M-SBL is given by
X =TA*(\ + ATA*) Y . (5)

One of the most important contributions by Wipf is that thenimization problem of the cost function

(3) can be equivalently represented as the following stahdparse recovery framework [14]:
I%%H‘CX(X)v £X(X) = HY_AXH%'—'_)\ngbI(X) (6)
whereg,,s,;(X) is a penalty given by
gmsbl(X) = min G(Xa 7) (7)
=0
where
G(X;v) =Tr (X*T'X) + Nlog |\ + ATA*| . (8)

Wipf et al [14] gave a heuristic argument showing tlygt,,; corresponds to a non-separable sparsity pro-
moting penalty, and proposed the following alternatingimimation approach to solve the minimization
problem [(6).

1) Step 1: Minimization with respect t&§: For a given estimatg(®*) at thet-th iteration, we can find

a closed form solution foX in (6):
X0 =1OA* A+ ATW Ay, 1O = diagy®).

For large scale problems, this can be computed using a sthiedajugate gradient algorithm with an

appropriate preconditioner.

2) Step 2: Minimization with respect ta In this step, for a givetk ® we need to solve the following
minimization problem:

~#H1) = arg min G(X(t) )
=0



where

G(XD ) = Tr (X(t)*F—IX(t)) + Nlog|%,| . ©)

Wipf et al [14] find the solution toVG(X®), ~) = 0. More specifically, the derivative with respect to

each component is given by

() . ;L'(t) 2
8G()6( 0] _ _ZJ | 2” | + NaZH(/\I + AFA*)_lai (10)
Yi i

since
I|%,|

ox
yl 102y
v |X,| Tr (Ey 9 ) .

Setting the derivative to zero after fixirig := I'¥), this observation leads to the following fixed point

update of+:

t 2
(t+1) _ % Zj |5L"z('j)|2
v all(\ + ATO A 1a; |

(11)

B. Role of the Non-separable Penalty in M-SBL

In order to develop a new joint sparse recovery algorithnt itn@roves on M-SBL, we provide here
a new interpretation of the role of the regularization temM-SBL. Note that due to the non-negativity
constraint fory, a critical solution to the minimization problem inl (7) shawsatisfy the following first

order Karush-Kuhn-Tucker (KKT) necessary conditions {16]

T4 2
%%‘f”) = v (—miz]’JrNalH()\IJrAPA*)_lai) =0, Vi
i Vi

Hence, as\ — 0, this leads to the following fixed point equation:

ZHZ

lim ~; = lim %”X
A50 T A50 yar (M + ATA%) Ta;

If [[¥|lo < m, using the matrix inversion lemma, we have

1 1 1 1 1
A + ATAY)™! = [ AT </\I+F5A*AF5) s A*

— Pr+AMADT (MA34s) 7 +Ts) AL (12)



where S = supp(+y) denotes a nonzero supportefand P4, denotes the orthogonal projection on the
span of the columns afl indexed byS. Accordingly,

1
)l\g%al (M + AT A*) " a; = aj (Ag)" Ty Aga; %, i€S.

Therefore, we have

. I S
iy = SIIX% €5 (13)

Substituting [(IB) into[{7) yields

gmsp(X) = minTr (X*I7'X) + Nlog |\l + AT A*|
Yz

N |S| + Nlog |\ + AT A%|

&Q

= Nl|vllo + Nlog |\ + AT A*| (14)

Note that the first term in[(14) imposes row sparsity Bnsincery; = 0 for ||x‘| = 0 due to [IB).
Hence, the first term of M-SBL penalty is in fagf||o. Then, what is the meaning of theg | - | term

? Wipf et al [14] showed that the superior performance of the M-SBL isngnio the non-separability
of the termlog |A\I + AT"A*| with respect toy, which can avoid many local minimizers. In addition to
this interpretation, the following section shows anotimepartant geometric implications of theg det(-)

term.

I1l. SUBSPACEPENALIZED SPARSELEARNING

A. Key Observation

In this section, we provide another interpretation of thé&SBE penalty, which suggests a new algorithm
called subspace-penalized sparse learning (SPL) that@wess the limitation of M-SBL. Note that for

any matrix Z € R™*" with m < n, we have
log |ZZ* + AI| = Y log(07(Z) +A), (15)
i=1

whereo;(Z) denote the singular values &f. Therefore, thdogdet() function is a concave proxy for
nonzero singular values, hence in the limit)of- 0, (18) acts as a proxy farank(Z) [17], [18]. This

leads us to another interpretation: the penalty term in M-&Bequivalent to

1 gyt (X) = N|v]lo + N Rprox(AI'z) (16)



whereRprox(-) dentoes a rank proxy. Thus, the penalty simultaneously sepdhe row sparsity ok
as well as the low rank of the matri4T'z. By inspection, the first sparsity penalty term[inl(16) istgui
intuitive, but it is not clear whyRank(AT'z) needs to be minimized.

In fact, the main contribution of this paper is that we needejglace the second terrﬂ,prox(AF%),

by geometrically more intuitive rank proxy as follows:
g5pL(X) = Nvllo + N Rprox(Q*AI'?) (17)

where @ denotes a basis for the noise subspace denotdd(@$ = R (Y). In the following, we will

describe in detail how we arrive at the new rank penalty.

B. Subspace Criteria

A solution X for Y = AX that satisfie§| X||p < m is called abasic feasible solutioBFS) [14].

Among BFSs, a solution of the followiny MMV problem is calledmaximally sparsesolution:
(PO) : n}}n IX|lo , subjecttoy = AX. (18)

To address[(18), subspace-based greedy algorithms sucB-84JSIC [1] and SA-MUSICI[6] exploit
the spark reduction principler or an equivalent subspace criterion usingaagmented signal subspace
More specifically, ifr = rank(Y") and %k denotes the number of the non-zero rows, the algorithms first
estimatek — r partial support index;_,, then the remaining components of the support are found
using the subspace criterion.

One of the main contributions of this paper is that this twepsapproach is not necessary. Instead,
for noiseless measurements, a direct minimization of th& of Q* A; with respect to indeX, |I| > k,
still guarantees to obtain the true support as shown in Eme@.1. We believe that this is an extremely
powerful result that provides an important clue to overcdhee limitation of existing greedy subspace
methods|[1],[[6] .

Theorem 3.1:Assume thatd € R™*", X € R™", Y € R™*" satisfy AX =Y, where||X|o = &,
and the columns oY are linearly independent. i satisfies a RIP conditiod < 6%, _ ., (A4) <1, then
we have

k — r = min rank (Q*AI) )
|| >k

and

suppX = arg min rank (Q*Ay).
[1|>k



Proof: Since min|;_;rank(Q*A;) is a nondecreasing function of, we may consider
min|;—; rank(Q*As). By the rank-nullity Theoremdim(N(Q*A;)) + dim(R(Q*A;)) = k for I C
{1,--- ,n} with |I| = k. Furthermore, becaus€(Q*) =Y,

N(Q*A;) ={veRF: Ajve R(Y)} (19)

and because < k, N(Ar) = {0} by the RIP conditiord < d9_,+1(A4) < 1. SinceN(A;) = {0}, we
havedim(N(Q*Ar)) = dim(R(Y) N R(Ar)) so that

dim(N(Q*A7)) = dim(R(Y) N R(A7)) < dim(R(Y)) = r, (20)

which also implies thatank(Q*A;) > k — r for any |I| = k. Hence, denotingupp(X) = S, it is
enough to show that

rank(Q*Ag) =k —r (21)

and

rank(Q*Ay) > k—r, for |I| =k and I # S. (22)

First we will show that[(2iL) holds. Becau$é(As) = {0} andY = A5X®, we have thatank(Y) =
rank(X®) or dim(R(X?)) = r. Also, sinceY = AsX*, by (I9), we haveR(X?) C N(Q*Ag). Hence
dim(N(Q*Ag)) > r. On the other hand, by (R0), the dimensiondfQ* Ag) is at most-, which implies
dim(N(Q*As)) = r, so that we haveank(Q*Ag) =k —r.

Then, [22) is the only a remaining part to prove. Supposeviegtave an index sgtcC {1,--- ,n} such
that|/| = k£ andrank(Q*Ar) = k — r. Then, it must hold that

dim(N(Q*Ar)) = dim(R(Y) N R(Ar)) = r = dimR(Y).

It follows that R(Y') = R(Y) N R(A;) C R(Ar). Then, for each columg; of Y, y; € R(Y) C R(Ay)
so that there exists; € Rl such thatd;z; = y;. Then,A;[z; --- z,] =[y1 --- y,] =Y so that there
is a X € R™" such thaty’ = AX with suppX C I.

Sincerank(X) = r and (x*) = 0 for anyi ¢ S = suppX, it follows that X° has rankr. Hence,
because the row rank of a matrix equals its column raxik, must haver linearly independent rows.

Therefore, there is a subs&tof suppX such thatZ| = r, and the rows ofXZ are linearly independent.

Since XZ ¢ R™*", for everyi € Z there is a nonzero vector; € N(X?\{"}), so that we have

| Xw;llo <k —r+1andi € supp(Xw;), sincex’w; # 0 by the linearly independence of the rows of
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X%, SinceY = AX = AX, we haveA(Xw; — Xw;) = 0.
Now, becauseupp(X) c I, we havesupp(Xw;) C supp(X) C I. Hence| Xw;| < |I| = k. It
follows that

| Xw; — Xwillo <k —r+1+]|I|=2k—r+1.

Hence, by the RIP oft, we must haveXw; = X w;. Sincesupp(Xw;) C I, we also haveupp(Xw;) =
supp(Xw;) C I, which implies thati € supp(Xw;) C I. Sincei can be any element isuppX, we
havei € I for any: € suppX. It implies thatsuppX C I so thatl = suppX since|I| = |suppX| = k.
Hence, in order to satisfyank(Q*A;) = k —r and|I| = k, we must have = suppX. [ |

C. The SPL Penalty

Note that minimizingrank (Q*AF%) with respect toy is equivalent to finding the index sétthat
minimizesrank (Q*Ay). Hence, Theorem 3.1 implies that minimiziﬁgak(Q*AF%) under the constraint
llvllo > & will find ~, that has non-zero values for indices correspondingitep X, where|| X.|o = &
andY = AX,. This observation leads to the second term in the SPL pen&lii7) as a rank proxy to
exploit this geometric finding.

Moreover, rather than just usirgg det(-) as in M-SBL, in this paper, we use more general family of
rank proxies that still satisfy our goals. Specifically, mank proxy is based oB8chatternp quasi horm
with 0 < p < 1 that includes the popular nuclear norm as a special casea Raatrix W € R™*", the

Scattenp-norm proxy for the rank is defined as
Te[W|P = Tr ((WW*)§> =" oPw), (23)
i=1

which corresponds to the nuclear norm wheg 1. Following the derivation that leads 1d (7), we propose

the following SPL penalty:

ggpL(X) EmingspL(‘y,X) (24)
>0
where
Gspr(y, X) = Tr (X*T1X) + NTr ((Q*APA*Q)%) . (25)

Using the proposed SPL penalty, we formulate the followinigeless SPL minimization problem:

I%}HQSPL(X), subject toY = AX . (26)
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Note thatTr ((Q*AFA*Q)g) is a concave function with respect to its singular valueswsocan find

its convex conjugate:
gSPL(77X) = min QSSPL(77X7\II) (27)
veSot
whereGgspr (v, X, ¥) is given as
2 q
Gspr(v, X, 0) =Tr (X*P‘IX) + Np <Tr((Q*APA*Q)\I/) — 5Tr(\1'5)> . (28)

for ¢ such thatl/(p/2) + 1/(¢/2) = 1, and Sp+ denotes the set of symmetric positive semi-definite
matrices:
SO+:{X€SXEO}

The relationship betweeh (28) and(25) can be clearly utaleisby minimizing [(28) with respect td.
Indeed, using@Tr(A¥)/0¥ = A* anddTr (V)20 = ¥9/2-1 [19], we have

U = (Q*ATA*Q) 72— (29)

and
min Tr ((QATA'Q)Y) — “To(¥%) = Tv ((QATA"Q)F)

veSot

1

Here, (Q*AT'A*Q)+2=* should be understood as applying the power operation to dhezaro singular

values ofQ* AT'A*@Q while retaining zero singular values at zero.

Notice that®gpr (v, X, ¥) is a surrogate function that majoriz€g pr, (X, v). Although like [25),
(28) is not jointly convex with respect to the different \aies, the reason to prefer {28) ovierl(25) is
that (28) is convex with respect to each of the variabjeXx’, and ¥ with the other held constant, and
we can obtain a closed-form expression in each step of atiagiminimization. Specifically, recall that
the SPL penalty is given by

— 1 \\J
gspr(X) oauing Gspr(v, X, V) (30)

where
Gspr(y, X, ¥) = Tr (X'T7'X) + Np (Tr (Q ATA* Q)W) - STr@w) |
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Let S denotes the non-zero support setXf Using the KKT condition with respect t9, we have

X U 2|2
a@SPL(77 ) ) — i = _M + Nan\I’Q*aZ — = 0, Vi (31)
i i

which leads toy; = 0 for i ¢ S, whereas for € S

06 2 A
’Yi% =0= —@ + Nvia; Q(Q" AT A*Q) /> Q" a; .

1

Hence,Tr (X°T~X) = NTr ((Q*ATA*Q)' 77 ) = N'Tx ((Q*ATA"Q)%) and we have

gSPL(X) =2N'Tr ((Q*APA*Q)§)> — 2NTI"Q*AP%’Z)

This implies that at the KKT point, the SPL penalty has costfion values equivalent to the Schatpen-
guasi-norm rank penalty fc@*Al“é.

IV. THE SPL ALGORITHM

A. Alternating Minimization Algorithm

So far, we have analyzed the global minimizer for the nogsefPL algorithm. For noisy measurement,

we propose the following cost function:
min [Y — AX |} + Agspr(X) . (33)

By letting A — 0, the solution of [[38) becomes a solution Bf](26) whenk(AI''/?) = m since then

the constraint is automatically satisfied as follows:

lim AX(\) = lim ATA*(A\] + ATA*)7'Y =Y
A—0 A—0

Similar equivalence can be hold fesank(AT/?) < m if Y € R(AT'/2). Therefore, rather than dealing
with Eqgs. [26) and[(33) separately, we uke] (33) and the higniirgument to discuss a noiseless SPL

optimization problem.

Then, using[(30), a noisy SPL formulation can be written as

i X~ U 34
oy o C(X,~,%) (34)
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where the augmented cost function is given by
CXmw) = IV = AXPE + A { T (0T10) + 8 [T (@ Ara'@w) - 21wt | @)

While C(X,~, V) is not convex for all these variables simultaneously duehto gresence of the bi-
convex termsTr (X*I'"'X) and Tr ((Q* AT A*Q)V), it is convex with respect to each variahlé ~
and ¥ separately. Indeed, this is a typical example of the d.cordlym (DCA) for the difference of
convex functions programming [20], [21], and the altemgutininimization algorithm converges tdacal
minimizer or a critical point.

Specifically, a critical solution should satisfy the follimg first order Karush-Kuhn-Tucker (KKT)

necessary conditions [[16]:

0C(X,~,¥)

= 24%(Y —AX) +\I7IX = 36
o5 ( )+ A 0 (36)
780(}55’% = Np(Q'ATA*Q) — Npw??~! =0 (37)
00X ) o Ll eougra =0, Vi (38)

i 7
piyi = 0, p; >0, =20, Vi (39)

This leads us to the following fixed point iterations:

1) Minimization with respect to{: For a given estimate/®), (38) yields a closed form solution for
X (+1).

XD = O A* (AT + ATO 477y, 1O = diagy®).

2) Determination ofl: For a given estimate/®, using [37), we can find a closed-form solution for
IO je. O = (Q*AT® A*Q) 7T |

3) Estimation ofy: For a given¥(Y) and X®), using Egs.[(38) and (39), we have

OC(X W, ~, wh)
i

| (I ® _
" — 7+ NalQUQTa; | = 0. (40)

Here, if a: QU Q*a; # 0, we have the following update equation:

(t)z'”2 (t)z'”2

ORI i el R Flx :
L \aevien a:Q(Q ATV A°Q) 7 Qra,
Note that the SPL updates appears similar to those of M-SRiegxthey update by[(411), which is

(41)

now modified based on subspace geometry. This is the maiadiggtt for the performance improvement
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of SPL over M-SBL. In the following, we further discuss sealdmportant properties of the SPL penalty.

B. Properties of the SPL Penalty

An interesting case occurs wha;ﬁQ\If(t)Q*ai = 0. In this case, based oh (40), we have the following
two observations: 1)yi(t) — oo when [|x®#||2 £ 0; and 2)7}” can be an arbitrary positive numbér
when ||x?||2 = 0 since the equality in[{20) is satisfied regardless of the azhoif C. Therefore, we
define the followingy; updatg:

00, if afQU®Q*a; =0 and||x®?||2 £ 0
W= e, if a7QU®Q*a; =0 and [|xi||2 =0 (42)
(g )" if arQUOQa; #0
Thanks to[(4R), even ifx()?||2 becomes erroneously zero during the iterations, there issilpility, when
T Q*a; = 0, for 71.(” to become nonzero; hence, the corresponding row 6f can become nonzero
once~; turns into nonzero. Note that this is very different from MBS since in [11) the denominator
term cannot be zero even under the most relaxed RIP corts&;ﬁqi{m 1, so the conditiorj|x®?||2 = 0
will set the correspondingi(k) to zero. Therefore, in M-SBL, once a row &f(*) is set to zero in error,
it will stay zero for all subsequent iterations and the athon is unable to recover from this error.
Second, it is important note that sinté(p/2) +1/(¢/2) = 1, we havelim,_,o p = limg_, 1%2/11 =0;

SO
lim ggpr(X) = lim 2NTr|Q* ALz |P = 2NRank(Q* 4;), (43)
q—0 q—0

wherel denotes the index set of non-zero diagonal elemenks bfence, in this case, the SPL algorithm
with p — 0 is the algorithm that directly minimizes the rank @f A;. In this case, the corresponding

update rule is given by

afQ(Q AN A*Q)~1Q*ay

The main technical challenge is, however, thatjoe ¢ = 0 the cost function[(35) is not well-defined.

® 3 [x®7)2 :
XD = TOA A+ ATO Ay 4 = i - @Y

Therefore, the aforementioned interpretation of the SPhukhbe understood as an asymptotic result

such thatp and ¢ approach zero, but are not exactly zero.

In a practical implementation, a tolerance around 0 andefinialues foryft) have to be used.
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Next, as a by product of Theordm B.1, the SPL algorithm is adatnally more efficient than M-
SBL. Note that the computational bottleneck of M-SBL (or $RLdue to the the inversion o) A*
(or Q*AT'® A*Q, respectively). Specifically, unlike th& ®) update step that can be done using the
conjugate gradient (CG) algorithm, the matrix inversiomroat be performed using CG and usually is
performed using the singular value decomposition (SVD)wNwte that the size of matri@* AT A*Q
in SPL is(m —r) x (m —r) compared tan x m for AI'® A*, which reduces the cost of matrix inversion
for SPL compared to M-SBL. In particular, for the case of MGStherem = k + 1 andr = k, matrix
inversion is not necessary for SPL whereas M-SBL still rezpithem x m matrix inversion.

Finally, note that the hyper-parameteris closely related to spectral estimation. For exampletHer
case of MUSIC wheren = k + 1 andr = k, the term(Q*AT' A*Q) in (@4) reduces a scalar and we

have

arQ(Q* AT A*Q)~1Q*a;

1 x|
= 46
VaQGra | JN(Q ATOAQ) (49)

where the first term is the MUSIC spectrum and the second temelated to the magnitude of thigh

11012 >
NOa < o ) (45)

row of X(®). Hence, in the case of full-row rank (i.e., the MUSIC case), SPL can be regarded as an
algorithm that initialises he non-zero support estimatising a spectral estimation technique, followed

by alternating modification using the data fidelity matchargerion.

V. NUMERICAL RESULTS

In this section, we perform extensive numerical experiméntvalidate the proposed algorithm under
various experimental conditions, and compare it with respeexisting joint sparse recovery algorithms.
In particular, we are interested in the SPL algorithm in tegnaptotic region ofp — 0 since it directly
minimises the rank of)*A;.

The elements of a sensing matrikwere generated from a Gaussian distribution with zero medn a
variance ofl /m, and then each column of was normalized to have an unit norm. An unknown signal
X, with rank(X,) = r < k was generated using the same procedure as in [6]. Spegifisallrandomly

generated a suppoft and then the corresponding nonzero signal components ataed by
Xl =vzv, (47)

whereU € R**" was set to random orthonormal columns, ane= diag([o;]i_,) is a diagonal matrix



16
whosei-th element is given by
oi=1, 0<T<I, (48)

andV ¢ R™" was generated using Gaussian random distribution with eman and variance df/N.
After generating noiseless data, we added zero mean whitisSizen noise. We declared success if an
estimated support from a certain algorithm was the same agauppX.

As the proposed algorithm does not require a prior knowlexfgbe sparsity level, we need to define
a stoping criterion. Here, the stopping criterion is defildmonitoring the normalized change in the

variable:
Iy = =Dy

<1073 .
H‘Y(t)||2

From our experiments, usually 20-30 iterations are requioe SPL to converge.

A. Local Minima Property

We first perform experiments to confirm that SPL produces the $olution under milder conditions
than M-SBL. To show this, using-sparse signalX, generated by[(47) withr = 1, we produced
measurementy” = AX, such thatr := rank(Y) < k. Then, we initialized both algorithms witk (*

that satisfies the following:
Y =AXO, IXOlo =m, [suppX. nsuppX | =5 (49)

wheres < k—r, s = k—r ands > k — r, respectively. Note that the initialization corresponalstiocal
minimiser and we are interested in confirming that SPL camamsdrom the local minimizers thanks to
the update in[{42). Recall that it is difficult for M-SBL to adahis type of local minimizers sinc& (¥
has zeros rows at thieth row wherei € S \ suppX (Yand the M-SBL update rule i . (l11) cannot make
the corresponding; nonzero in the subsequent iterations.

Figs.[1(a)-(c) illustrate the perfect recovery ratio frohe tinitialization using SPL and M-SBL at
various SNR conditions for (& =k —r =3, (b) s =2 < k—r, and (c)s =5 > k — r, respectively.
The results clearly demonstrate that SPL finds the globalmiwer nearly perfectly, whereas M-SBL

fails most of the time. This clearly confirms the theoretiadi/antages for SPL.

B. Comparison with Other State-of-Art Algorithms

To compare the proposed algorithm with various state-pjpat sparse recovery methods, the recovery

rates of various state-of-art joint sparse recovery algors such as MUSIC, S-OMP, SA-MUSIC,
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Fig. 1. Perfect recovery ratio from initialization usingcéd minimizer that satisfy{ (49). The results are averagéer &00
runs and the simulation parameters dre= 10,r =7,n =128 and N =64. @ s=k—r =3, (b) s =2 < k —r, and (c)
s =5 >k —r, respectively.

sequential CS-MUSIC, M-SBL, and thig/l; mixed norm approach are plotted in Fig. 2 along with
those of SPL. Among the various implementation of mixed napproaches, we used high performance
SGPL1 software [22], which can be downloaded fréntp : //www.cs.ubc.ca/labs/scl/spgll/. Since
M-SBL, the mixed norm approach, as well as SPL do not providexactk-sparse solution, we used the
support for the largest coefficients as a support estimate in calculating the perésovery ratio. For
MUSIC, S-OMP, SA-MUSIC, sequential CS-MUSIC, we assumeé thés known. For subspace based
algorithms such as MUSIC, SA-MUSIC, sequential CS-MUSIGval as SPL, we determine the signal

subspace using the following criterion

0; — Oit1
max ——1 0.1,
i€{l,~-,m} O; — O

whereo; > o9 > --- > o, denotes the singular values ®fY*. A theoretical motivation for such
subspace determination is given|in [6]. Here, the succéss veere averaged oven00 experiments. The
simulation parameters were as follows:c {1,2,...,50}, n = 128,k = 8,r =5, SNR = 30dB, 10dB,
and N € {32,128}, respectively. Figd.]12(a)-(d) illustrates the comparisesults under various snapshot
number and SNR conditions. Note that SPL consistently ofdpas all other algorithms at various
shapshots numbers. In particular, the gain increases mgtieasing number of snapshots, since it provides
better subspace estimation. Also, note that SPL condligtentperforms M-SBL at all SNR ranges.
Figs[2(e)(f) illustrates that SPL significantly outperfer M-SBL whenX is badly conditioned. Moreover,
as the subspace estimation becomes accurate with inggeasithe performance gain becomes more
significant.

Figs. [3(a)(b)(c) compares the performance of various MM4odathm by varying the sparsity


http://www.cs.ubc.ca/labs/scl/spgl1/
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Fig. 2. Performance of various joint sparse recovery allgors atn = 128,k = 10, = 6 when (a)SNR = 30dB, N =
16,7 =1, (0) SNR = 30dB,N = 256, 7 =1, (c) SNR = 10dB, N = 16,7 = 1, (d) SNR = 10dB, N = 256, = 1, (e)
SNR =30dB,N =16,7 = 0.1, () SNR = 30dB, N = 256, 7 = 0.1, respectively.
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Fig. 3. Performance of various joint sparse recovery allgors for varying sparsity level & = 256. The simulation parameters
are (&ym = 40,r = 5,7 = 1 and SNR=30dB, and (b} = 40, = 12,7 = 1 and SNR=10dB, and (e) = 40,r = 15,7 = 0.5
and SNR=30dB, respectively.

level. Here,m andrank(Y') are fixed and the sparsity levels changes, and we calculb&gegerfect
reconstruction ratio. Again, SPL outperforms all existingethods for various SNR and conditions

numbers.

C. Fourier Measurements Cases

Fig.[4 illustrates the results of the comparison when thesueanent are from Fourier sensing matrix.
Similar to Gaussian sensing matrix, consistent improvemnéisPL over M-SBL and other algorithms

under various conditions have been observed.

VI. CONCLUSION

In this paper, we derived a new MMV algorithm called subspaeealized sparse learning (SPL) to
address a joint sparse recovery problem, in which the unkreignals share a common non-zero support.
The SPL algorithm was inspired by the observation thatltigelet(-) term in M-SBL is a rank proxy
for a partial sensing matrix, and similar rank criteria &xssubspace-based greedy MMV algorithms
like CS-MUSIC and SA-MUSIC. Furthermore, we proved thattéasl of rank(AI''/2), minimizing
rank(Q*ATI''/?) is a more direct way of imposing joint sparsity since its glbminimizer can provide
the true joint support. To impose such a subspace constai@at penalty, the SPL algorithm employs
the Schattenr quasi norm rank penalty and was implemented as an altegnatinimisation method.
Theoretical analysis showed that ms+ 0, the global minimizer of the SPL is equivalent to the global

minimiser of thel, MMV solution. We further demonstrated that compared to M-SBur SPL is
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Fig. 4. Performance of various joint sparse recovery dligo$ atn = 128 when the sensing matrix is from Fourier matrix
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more robust to recovering badly condition&q. With numerical simulations, we demonstrated that SPL

consistently outperforms all existing state-of-the agoaithms including M-SBL.
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