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Improving M-SBL for Joint Sparse Recovery

using a Subspace Penalty
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Abstract

The multiple measurement vector problem (MMV) is a generalization of the compressed sensing

problem that addresses the recovery of a set of jointly sparse signal vectors. One of the important

contributions of this paper is to reveal that the seemingly least related state-of-art MMV joint sparse

recovery algorithms - M-SBL (multiple sparse Bayesian learning) and subspace-based hybrid greedy

algorithms - have a very important link. More specifically, we show that replacing thelog det(·) term

in M-SBL by a rank proxy that exploits the spark reduction property discovered in subspace-based joint

sparse recovery algorithms, provides significant improvements. In particular, if we use the Schatten-p

quasi-norm as the corresponding rank proxy, the global minimiser of the proposed algorithm becomes

identical to the true solution asp → 0. Furthermore, under the same regularity conditions, we show

that the convergence to a local minimiser is guaranteed using an alternating minimization algorithm

that has closed form expressions for each of the minimization steps, which are convex. Numerical

simulations under a variety of scenarios in terms of SNR, andcondition number of the signal amplitude

matrix demonstrate that the proposed algorithm consistently outperforms M-SBL and other state-of-the

art algorithms.
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I. INTRODUCTION

The multiple measurement vector problem (MMV) is a generalization of the compressed sensing

problem, which addresses the recovery of a set of sparse signal vectors that share a common support

[1], [2], [3], [4], [5], [6]. In the MMV model, let m and N denote the number of sensor elements

and snapshots, respectively; andn > m denote the length of the signal vectors. Then, for a given

noisy observation matrixY = [y1, · · · ,yN ] ∈ Cm×N and a sensing matrixA ∈ Cm×n, the multiple

measurement vector (MMV) problem can be formulated as:

minimize ‖X‖0 (1)

subject to ‖Y −AX‖F < δ,

wherexj ∈ Rn is the j-th signal,X = [x1, · · · ,xN ] ∈ Rn×N , xi is the i-th row of X, and‖X‖0 =

|suppX|, where suppX = {1 ≤ i ≤ n : xi 6= 0} is the set of indices of nonzero rows inX. The

Frobenius norm is used to measure the discrepancy between the data and the model. Classically, pursuit

algorithms such as alternating minimization algorithm (AM) and MUSIC (multiple signal classification)

algorithm [7], S-OMP (simultaneous orthogonal matching pursuit) [8], [2], M-FOCUSS [3], randomized

algorithms such as REduce MMV and BOost (ReMBo)[4], and model-based compressive sensing using

block-sparsity [9], [10] have been applied to the MMV problem.

An algebraic bound for the recoverable sparisity level has been theoretically studied by Feng and

Bresler [7], and by Chen and Huo [2] for noiseless measurement Y . More specifically, ifX ∈ Rn×N

satisfiesAX = Y and

‖X‖0 <
spark(A) + rank(Y )− 1

2
, (2)

wherespark(A) denotes the smallest number of linearly dependent columns of A, thenX is the unique

solution of (1). This indicates that the recoverable sparsity level may increase with an increasing number

of measurement vectors. Indeed, for noiseless measurement, a MUSIC algorithm by Feng and Bresler [7]

is shown to achieve the performance limit when the measurement matrix is full rank. However, except

for MUSIC in full rank cases, the performance of the aforementioned classical MMV algorithms is not

generally satisfactory, falling far short of (2) even for the noiseless case, when only a finite number of

snapshots are available.

In a noisy environment, Obozinskiet al showed that a near optimal sampling rate reduction up

to rank(Y ) can be achieved usingl1/l2 mixed norm penalty [11]. A similar gain was observed in
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computationally inexpensive greedy approaches such as compressive MUSIC (CS-MUSIC) [1] and

subspace augmented MUSIC (SA-MUSIC) [6]. More specifically, Kim et al [1] and Lee et al [6]

independently showed that a class of hybrid greedy algorithms that combine greedy steps with a so

called generalized MUSICsubspace criterion [1], or equivalently, with subspace augmentation [6], can

reduce the required number of measurements by up torank(Y ) in noisy environment. Furthermore, using

a large system MMV model, Kimet al further showed that for an i.i.d. Gaussian sensing matrix, their

algorithm can asymptotically achieve the algebraic performance limit whenrank(Y ) increases with a

particular scaling law [1]. Leeet al [6] also showed that MUSIC can do this in the noisy case and full

rank, non-asymptotically with finite data, and for realistic Fourier sensing matrices.

While the aforementioned mixed norm approach and subspace based greedy approaches provide

theoretical performance guarantees, there also exist a very different class of powerful MMV algorithms

that are based on empirical Bayesian and Automatic Relevance Determination (ARD) principles from

machine learning. Among these, the so-called multiple sparse Bayesian learning (M-SBL) algorithm

is best known [12]. Even though M-SBL is more computationally expensive than greedy algorithms

such as CS-MUSIC or SA-MUSIC, empirical results show that M-SBL is quite robust to noise and to

unfavorable restricted isometry property constant (RIC) of the sensing matrix [13]. Moreover, M-SBL

is more competitive than mixed norm approaches. Since Bayesian approaches are very different from

classical compressed sensing, such high performance appears mysterious at first glance. However, a recent

breakthrough by Wipf et al unveiled that M-SBL can be converted to a standard compressed sensing

framework with an additionallog det(·) (log determinant) penalty - a non-separable sparsity inducing

prior [14]. The presence of the non-separable penalty term is so powerful that M-SBL performs almost

as well as MUSIC. However, the guarantee only applies to the full row rank case ofX with noise-

free measurement vectors [15], [12]. However, despite its excellent performance, compared to the mixed

norm approaches or subspace greedy algorithms, other than the work by Wipf et al [14], the fundamental

theoretical analysis of M-SBL has been limited.

Therefore, one of the main goals of this paper is to continue the effort by Wipf et al [14] and

analyze the origin of the high performance of M-SBL, as well as to investigate its limitations. One of

the important contributions of this paper is to show that theseemingly least related algorithms - M-SBL

and subspace-based hybrid greedy algorithms - have a very important link. More specifically, we show

that thelog det(·) term in M-SBL is a proxy for the rank of a partial sensing matrix corresponding to

the true support. We then show that minimising the rank that was discovered in subspace-based hybrid

greedy algorithm to exploit the spark reduction property ofMMV can indeed provide a true solution for
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the MMV problem. Accordingly, replacinglog det(·) term in M-SBL by a Schatten-p quasi-norm rank

proxy provides significant performance improvements.

The resulting new algorithm is no longer Bayesian due to the use of adeterministicpenalty based on a

geometric argument, so we call the new algorithmsubspace-penalized sparse learning (SPL)by excluding

term “Bayesian”. We show that asp → 0 in the Schattenp-norm rank proxy, the global minimizers of

the SPL cost function are identical to those of the originall0 minimization problem. Furthermore, we

show that SPL can be easily implemented as an alternating minimization approach.

Using numerical simulations, we demonstrate that comparedto the current state-of-art MMV algorithms

such as mixed norm approaches, M-SBL, CS-MUSIC/SA-MUSIC, and sequential CS-MUSIC [13], SPL

provides superior recovery performance. Moreover, the results show that SPL is very robust to noise, and

to the condition number of the unknown signal matrix.

A. Notation

Throughout the paper,xi and xj correspond to thei-th row and thej-th column of matrixX,

respectively. The(i, j) element ofX is represented byxij . When S is an index set,XS , and AS

correspond to a submatrix collecting corresponding rows ofX and columns ofA, respectively. For a

matrix A, Tr(A) is the trace of a matrixA, A∗ is its adjoint,A† denotes the Penrose-Moor psuedo-

inverse,|A| refers the determinant,R(A) denotes the range space ofA, andPA (or PR(A)) andP⊥
A (or

P⊥
R(A)) are the projection on the range space and its orthogonal complement, respectively. The vectorei

denotes an elementary unit vector whosei-th element is 1, andI denotes an identity matrix.

A sensing matrixA ∈ Rm×n is said to have ak-restricted isometry property (RIP) if there exist left

and right RIP constants0 ≤ δLk , δ
R
k < 1 such that

(1− δLk )‖x‖
2 ≤ ‖Ax‖2 ≤ (1 + δRk )‖x‖

2

for all x ∈ Rn such that‖x‖0 ≤ k. A single RIP constantδk = max{δLk , δ
R
k } is often referred to as the

RIP constant.

II. M-SBL: A R EVIEW

A. Algorithm Description

Under appropriate assumptions of noise and signal Gaussianstatistics, one can show that M-SBL

minimizes the following cost function in a so-calledγ space [12]:

Lγ(γ) = Tr
(

Σ−1
y Y Y ∗

)

+N log |Σy| (3)



5

where

Σy = λI +AΓA∗ , Γ = diag(γ) . (4)

With an estimate ofΓ, which typically has a nearly sparse diagonal and may be thresholded to be exactly

sparse, the solution of M-SBL is given by

X = ΓA∗(λI +AΓA∗)−1Y . (5)

One of the most important contributions by Wipf is that the minimization problem of the cost function

(3) can be equivalently represented as the following standard sparse recovery framework [14]:

min
X

Lx(X), Lx(X) = ‖Y −AX‖2F + λgmsbl(X) (6)

wheregmsbl(X) is a penalty given by

gmsbl(X) = min
γ≥0

G(X;γ) (7)

where

G(X;γ) ≡ Tr
(

X∗Γ−1X
)

+N log |λI +AΓA∗| . (8)

Wipf et al [14] gave a heuristic argument showing thatgmsbl corresponds to a non-separable sparsity pro-

moting penalty, and proposed the following alternating minimization approach to solve the minimization

problem (6).

1) Step 1: Minimization with respect toX: For a given estimateγ(t) at thet-th iteration, we can find

a closed form solution forX in (6):

X(t) = Γ(t)A∗(λI +AΓ(t)A∗)−1Y, Γ(t) = diag(γ(t)).

For large scale problems, this can be computed using a standard conjugate gradient algorithm with an

appropriate preconditioner.

2) Step 2: Minimization with respect toγ: In this step, for a givenX(t) we need to solve the following

minimization problem:

γ
(t+1) = argmin

γ≥0

G(X(t),γ)
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where

G(X(t),γ) = Tr
(

X(t)∗Γ−1X(t)
)

+N log |Σy| . (9)

Wipf et al [14] find the solution to∇G(X(t),γ) = 0. More specifically, the derivative with respect to

each component is given by

∂G(X(t),γ)

∂γi
= −

∑

j |x
(t)
ij |

2

γ2i
+NaHi (λI +AΓA∗)−1ai (10)

since
∂|Σy|

∂γi
= |Σy| Tr

(

Σ−1
y

∂Σy

∂γi

)

.

Setting the derivative to zero after fixingΓ := Γ(t), this observation leads to the following fixed point

update ofγ:

γ
(t+1)
i =

(

1
N

∑

j |x
(t)
ij |

2

aHi (λI +AΓ(t)A∗)−1ai

)

1

2

. (11)

B. Role of the Non-separable Penalty in M-SBL

In order to develop a new joint sparse recovery algorithm that improves on M-SBL, we provide here

a new interpretation of the role of the regularization term in M-SBL. Note that due to the non-negativity

constraint forγ, a critical solution to the minimization problem in (7) should satisfy the following first

order Karush-Kuhn-Tucker (KKT) necessary conditions [16]:

γi
∂G(X,γ)

∂γi
= γi

(

−

∑

j |xij|
2

γ2i
+NaHi (λI +AΓA∗)−1ai

)

= 0, ∀ i

Hence, asλ → 0, this leads to the following fixed point equation:

lim
λ→0

γi = lim
λ→0

1
N ‖xi‖2

γia∗i (λI +AΓA∗)−1ai
.

If ‖γ‖0 < m, using the matrix inversion lemma, we have

λ(λI +AΓA∗)−1 = I −AΓ
1

2

(

λI + Γ
1

2A∗AΓ
1

2

)−1
Γ

1

2A∗

= P⊥
AS

+ λ(A†
S)

∗
(

λ(A∗
SAS)

−1 + ΓS

)−1
A†

S , (12)
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whereS = supp(γ) denotes a nonzero support ofγ andPAS
denotes the orthogonal projection on the

span of the columns ofA indexed byS. Accordingly,

lim
λ→0

a∗i (λI +AΓA∗)−1ai = a∗i (A
†
S)

∗Γ−1
S A†

Sai =
1

γi
, i ∈ S.

Therefore, we have

lim
λ→0

γi =
1

N
‖xi‖2, i ∈ S. (13)

Substituting (13) into (7) yields

gmsbl(X) = min
γ≥0

Tr
(

X∗Γ−1X
)

+N log |λI +AΓA∗|

≈ N |S|+N log |λI +AΓA∗|

= N‖γ‖0 +N log |λI +AΓA∗| (14)

Note that the first term in (14) imposes row sparsity onX sinceγi = 0 for ‖xi‖ = 0 due to (13).

Hence, the first term of M-SBL penalty is in fact‖X‖0. Then, what is the meaning of thelog | · | term

? Wipf et al [14] showed that the superior performance of the M-SBL is owing to the non-separability

of the termlog |λI + AΓA∗| with respect toγ, which can avoid many local minimizers. In addition to

this interpretation, the following section shows another important geometric implications of thelog det(·)

term.

III. SUBSPACE-PENALIZED SPARSELEARNING

A. Key Observation

In this section, we provide another interpretation of the M-SBL penalty, which suggests a new algorithm

called subspace-penalized sparse learning (SPL) that overcomes the limitation of M-SBL. Note that for

any matrixZ ∈ Rm×n with m ≤ n, we have

log |ZZ∗ + λI| =

m
∑

i=1

log(σ2
i (Z) + λ), (15)

whereσi(Z) denote the singular values ofZ. Therefore, thelog det() function is a concave proxy for

nonzero singular values, hence in the limit ofλ → 0, (15) acts as a proxy forrank(Z) [17], [18]. This

leads us to another interpretation: the penalty term in M-SBL is equivalent to

lim
λ→0

gmsbl(X) = N‖γ‖0 +N Rprox(AΓ
1

2 ) (16)
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whereRprox(·) dentoes a rank proxy. Thus, the penalty simultaneously imposes the row sparsity ofX

as well as the low rank of the matrixAΓ
1

2 . By inspection, the first sparsity penalty term in (16) is quite

intuitive, but it is not clear whyRank(AΓ
1

2 ) needs to be minimized.

In fact, the main contribution of this paper is that we need toreplace the second term,Rprox(AΓ
1

2 ),

by geometrically more intuitive rank proxy as follows:

gSPL(X) = N‖γ‖0 +N Rprox(Q∗AΓ
1

2 ) (17)

whereQ denotes a basis for the noise subspace denoted asR(Q) = R⊥(Y ). In the following, we will

describe in detail how we arrive at the new rank penalty.

B. Subspace Criteria

A solution X for Y = AX that satisfies‖X‖0 ≤ m is called abasic feasible solution(BFS) [14].

Among BFSs, a solution of the followingl0 MMV problem is calledmaximally sparsesolution:

(P0) : min
X

‖X‖0 , subject toY = AX. (18)

To address (18), subspace-based greedy algorithms such as CS-MUSIC [1] and SA-MUSIC [6] exploit

thespark reduction principleor or an equivalent subspace criterion using anaugmented signal subspace.

More specifically, ifr = rank(Y ) andk denotes the number of the non-zero rows, the algorithms first

estimatek − r partial support indexIk−r, then the remainingr components of the support are found

using the subspace criterion.

One of the main contributions of this paper is that this two step approach is not necessary. Instead,

for noiseless measurements, a direct minimization of the rank of Q∗AI with respect to indexI, |I| ≥ k,

still guarantees to obtain the true support as shown in Theorem 3.1. We believe that this is an extremely

powerful result that provides an important clue to overcomethe limitation of existing greedy subspace

methods [1], [6] .

Theorem 3.1:Assume thatA ∈ Rm×n, X ∈ Rn×r, Y ∈ Rm×r satisfyAX = Y , where‖X‖0 = k,

and the columns ofY are linearly independent. IfA satisfies a RIP condition0 ≤ δL2k−r+1(A) < 1, then

we have

k − r = min
|I|≥k

rank (Q∗AI) ,

and

suppX = arg min
|I|≥k

rank (Q∗AI) .
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Proof: Since min|I|=l rank(Q
∗AI) is a nondecreasing function ofl, we may consider

min|I|=k rank(Q
∗AI). By the rank-nullity Theorem,dim(N(Q∗AI)) + dim(R(Q∗AI)) = k for I ⊂

{1, · · · , n} with |I| = k. Furthermore, becauseN(Q∗) = Y ,

N(Q∗AI) = {v ∈ R
k : AIv ∈ R(Y )} (19)

and becauser ≤ k, N(AI) = {0} by the RIP condition0 ≤ δ2k−r+1(A) < 1. SinceN(AI) = {0}, we

havedim(N(Q∗AI)) = dim(R(Y ) ∩R(AI)) so that

dim(N(Q∗AI)) = dim(R(Y ) ∩R(AI)) ≤ dim(R(Y )) = r, (20)

which also implies thatrank(Q∗AI) ≥ k − r for any |I| = k. Hence, denotingsupp(X) = S, it is

enough to show that

rank(Q∗AS) = k − r (21)

and

rank(Q∗AI) > k − r, for |I| = k and I 6= S. (22)

First we will show that (21) holds. BecauseN(AS) = {0} andY = ASX
S , we have thatrank(Y ) =

rank(XS) or dim(R(XS)) = r. Also, sinceY = ASX
S , by (19), we haveR(XS) ⊂ N(Q∗AS). Hence

dim(N(Q∗AS)) ≥ r. On the other hand, by (20), the dimension ofN(Q∗AS) is at mostr, which implies

dim(N(Q∗AS)) = r, so that we haverank(Q∗AS) = k − r.

Then, (22) is the only a remaining part to prove. Suppose thatwe have an index setI ⊂ {1, · · · , n} such

that |I| = k and rank(Q∗AI) = k − r. Then, it must hold that

dim(N(Q∗AI)) = dim(R(Y ) ∩R(AI)) = r = dimR(Y ).

It follows thatR(Y ) = R(Y ) ∩R(AI) ⊂ R(AI). Then, for each columnyi of Y , yi ∈ R(Y ) ⊂ R(AI)

so that there existszi ∈ R|I| such thatAIzi = yi. Then,AI [z1 · · · zr] = [y1 · · · yr] = Y so that there

is a X̃ ∈ Rn×r such thatY = AX̃ with suppX̃ ⊂ I.

Sincerank(X) = r and (xi)T = 0 for any i /∈ S = suppX, it follows thatXS has rankr. Hence,

because the row rank of a matrix equals its column rank,XS must haver linearly independent rows.

Therefore, there is a subsetZ of suppX such that|Z| = r, and the rows ofXZ are linearly independent.

SinceXZ ∈ Rr×r, for every i ∈ Z there is a nonzero vectorwi ∈ N(XZ\{i}), so that we have

‖Xwi‖0 ≤ k − r + 1 and i ∈ supp(Xwi), sincexiwi 6= 0 by the linearly independence of the rows of
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XZ . SinceY = AX = AX̃, we haveA(Xwi − X̃wi) = 0.

Now, becausesupp(X̃) ⊂ I, we havesupp(X̃wi) ⊂ supp(X̃) ⊂ I. Hence‖X̃wi‖ ≤ |I| = k. It

follows that

‖Xwi − X̃wi‖0 ≤ k − r + 1 + |I| = 2k − r + 1.

Hence, by the RIP ofA, we must haveXwi = X̃wi. Sincesupp(X̃wi) ⊂ I, we also havesupp(X̃wi) =

supp(Xwi) ⊂ I, which implies thati ∈ supp(Xwi) ⊂ I. Sincei can be any element insuppX, we

havei ∈ I for any i ∈ suppX. It implies thatsuppX ⊂ I so thatI = suppX since|I| = |suppX| = k.

Hence, in order to satisfyrank(Q∗AI) = k − r and |I| = k, we must haveI = suppX.

C. The SPL Penalty

Note that minimizingrank
(

Q∗AΓ
1

2

)

with respect toγ is equivalent to finding the index setI that

minimizesrank (Q∗AI). Hence, Theorem 3.1 implies that minimizingrank(Q∗AΓ
1

2 ) under the constraint

‖γ‖0 ≥ k will find γ∗ that has non-zero values for indices corresponding tosuppX∗, where‖X∗‖0 = k

andY = AX∗. This observation leads to the second term in the SPL penaltyof (17) as a rank proxy to

exploit this geometric finding.

Moreover, rather than just usinglog det(·) as in M-SBL, in this paper, we use more general family of

rank proxies that still satisfy our goals. Specifically, ourrank proxy is based onSchatten-p quasi norm

with 0 < p ≤ 1 that includes the popular nuclear norm as a special case. Fora matrixW ∈ Rm×n, the

Scattenp-norm proxy for the rank is defined as

Tr|W |p = Tr
(

(WW ∗)
p

2

)

=

m
∑

i=1

σp
i (W ) , (23)

which corresponds to the nuclear norm whenp = 1. Following the derivation that leads to (7), we propose

the following SPL penalty:

gSPL(X) ≡ min
γ≥0

GSPL(γ,X) (24)

where

GSPL(γ,X) = Tr
(

X∗Γ−1X
)

+NTr
(

(Q∗AΓA∗Q)
p

2

)

. (25)

Using the proposed SPL penalty, we formulate the following noiseless SPL minimization problem:

min
X

gSPL(X), subject toY = AX . (26)
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Note thatTr
(

(Q∗AΓA∗Q)
p

2

)

is a concave function with respect to its singular values, sowe can find

its convex conjugate:

GSPL(γ,X) ≡ min
Ψ∈S0+

GSPL(γ,X,Ψ) (27)

whereGSPL(γ,X,Ψ) is given as

GSPL(γ,X,Ψ) ≡ Tr
(

X∗Γ−1X
)

+Np

(

Tr ((Q∗AΓA∗Q)Ψ)−
2

q
Tr(Ψ

q

2 )

)

. (28)

for q such that1/(p/2) + 1/(q/2) = 1; and S0+ denotes the set of symmetric positive semi-definite

matrices:

S0+ = {X ∈ S : X � 0}.

The relationship between (28) and (25) can be clearly understood by minimizing (28) with respect toΨ.

Indeed, using∂Tr(AΨ)/∂Ψ = A∗ and∂Tr(Ψ)q/2∂Ψ = Ψq/2−1 [19], we have

Ψ = (Q∗AΓA∗Q)
1

q/2−1 (29)

and

min
Ψ∈S0+

Tr ((Q∗AΓA∗Q)Ψ)−
2

q
Tr(Ψ

q

2 ) =
1

p
Tr
(

(Q∗AΓA∗Q)
p

2

)

Here,(Q∗AΓA∗Q)
1

q/2−1 should be understood as applying the power operation to the non-zero singular

values ofQ∗AΓA∗Q while retaining zero singular values at zero.

Notice thatGSPL(γ,X,Ψ) is a surrogate function that majorizesGSPL(X,γ). Although like (25),

(28) is not jointly convex with respect to the different variables, the reason to prefer (28) over (25) is

that (28) is convex with respect to each of the variablesγ,X, andΨ with the other held constant, and

we can obtain a closed-form expression in each step of alternating minimization. Specifically, recall that

the SPL penalty is given by

gSPL(X) = min
γ≥0,Ψ∈S0+

GSPL(γ,X,Ψ) (30)

where

GSPL(γ,X,Ψ) = Tr
(

X∗Γ−1X
)

+Np

(

Tr ((Q∗AΓA∗Q)Ψ)−
2

q
Tr(Ψ

q

2 )

)

.
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Let S denotes the non-zero support set ofX. Using the KKT condition with respect toγ, we have

∂GSPL(γ,X,Ψ)

∂γi
− µi = −

‖xi‖2

γ2i
+Na∗iQΨQ∗ai − µi = 0, ∀ i (31)

µiγi = 0, µi ≥ 0, γi ≥ 0, ∀ i (32)

which leads toγi = 0 for i /∈ S, whereas fori ∈ S

γi
∂GSPL

∂γi
= 0 = −

‖xi‖2

γi
+Nγia

∗
iQ(Q∗AΓA∗Q)

1

q/2−1Q∗ai .

Hence,Tr
(

X∗Γ−1X
)

= NTr
(

(Q∗AΓA∗Q)
1+ 1

q/2−1

)

= NTr
(

(Q∗AΓA∗Q)
p

2

)

and we have

gSPL(X) = 2NTr
(

(Q∗AΓA∗Q)
p

2 )
)

= 2NTr|Q∗AΓ
1

2 |p.

This implies that at the KKT point, the SPL penalty has cost function values equivalent to the Schatten-p

quasi-norm rank penalty forQ∗AΓ
1

2 .

IV. T HE SPL ALGORITHM

A. Alternating Minimization Algorithm

So far, we have analyzed the global minimizer for the noiseless SPL algorithm. For noisy measurement,

we propose the following cost function:

min
X

‖Y −AX‖2F + λgSPL(X) . (33)

By letting λ → 0, the solution of (33) becomes a solution of (26) whenrank(AΓ1/2) = m since then

the constraint is automatically satisfied as follows:

lim
λ→0

AX(λ) = lim
λ→0

AΓA∗(λI +AΓA∗)−1Y = Y

Similar equivalence can be hold forrank(AΓ1/2) < m if Y ∈ R(AΓ1/2). Therefore, rather than dealing

with Eqs. (26) and (33) separately, we use (33) and the limiting argument to discuss a noiseless SPL

optimization problem.

Then, using (30), a noisy SPL formulation can be written as

min
X,γ≥0,Ψ∈S0+

C(X,γ,Ψ) (34)
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where the augmented cost function is given by

C(X,γ,Ψ) = ‖Y −AX‖2F + λ

{

Tr
(

X∗Γ−1X
)

+Np

[

Tr ((Q∗AΓA∗Q)Ψ)−
2

q
Tr(Ψ

q

2 )

]}

.(35)

While C(X,γ,Ψ) is not convex for all these variables simultaneously due to the presence of the bi-

convex termsTr
(

X∗Γ−1X
)

and Tr ((Q∗AΓA∗Q)Ψ), it is convex with respect to each variableX,γ

and Ψ separately. Indeed, this is a typical example of the d.c. algorithm (DCA) for the difference of

convex functions programming [20], [21], and the alternating minimization algorithm converges to alocal

minimizer or a critical point.

Specifically, a critical solution should satisfy the following first order Karush-Kuhn-Tucker (KKT)

necessary conditions [16]:

∂C(X,γ,Ψ)

∂X
= −2A∗(Y −AX) + λΓ−1X = 0 (36)

∂C(X,γ,Ψ)

∂Ψ
= Np(Q∗AΓA∗Q)−NpΨq/2−1 = 0 (37)

∂C(X,γ,Ψ)

∂γi
− µi = −

∑

j |xij|
2

γ2i
+Na∗iQΨQ∗ai − µi = 0, ∀ i (38)

µiγi = 0, µi ≥ 0, γi ≥ 0, ∀ i (39)

This leads us to the following fixed point iterations:

1) Minimization with respect toX: For a given estimateγ(t), (36) yields a closed form solution for

X(t+1):

X(t+1) = Γ(t)A∗(λI +AΓ(t)A∗)−1Y, Γ(t) = diag(γ(t)).

2) Determination ofΨ: For a given estimateγ(t), using (37), we can find a closed-form solution for

Ψ(t): i.e. Ψ(t) = (Q∗AΓ(t)A∗Q)
1

q/2−1 .

3) Estimation ofγ: For a givenΨ(t) andX(t), using Eqs. (38) and (39), we have

γi
∂C(X(t),γ,Ψ(t))

∂γi
= γi

(

−
‖x(t)i‖2

γ2i
+Na∗iQΨ(t)Q∗ai

)

= 0 . (40)

Here, if a∗iQΨ(t)Q∗ai 6= 0, we have the following update equation:

γ
(t)
i =

(

1
N ‖x(t)i‖2

a∗iQΨ(t)Q∗ai

)
1

2

=

(

1
N ‖x(t)i‖2

a∗iQ(Q∗AΓ(t)A∗Q)
1

q/2−1Q∗ai

)
1

2

. (41)

Note that the SPL updates appears similar to those of M-SBL except theγ update by (41), which is

now modified based on subspace geometry. This is the main ingredient for the performance improvement
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of SPL over M-SBL. In the following, we further discuss several important properties of the SPL penalty.

B. Properties of the SPL Penalty

An interesting case occurs whena∗iQΨ(t)Q∗ai = 0. In this case, based on (40), we have the following

two observations: 1)γ(t)i → ∞ when ‖x(t)i‖2 6= 0; and 2)γ(t)i can be an arbitrary positive numberC

when ‖x(t)i‖2 = 0 since the equality in (40) is satisfied regardless of the choice of C. Therefore, we

define the followingγi update1:

γ
(t)
i =



















∞, if a∗iQΨ(t)Q∗ai = 0 and‖x(t)i‖2 6= 0

C ≫ 0, if a∗iQΨ(t)Q∗ai = 0 and‖x(t)i‖2 = 0
( 1

N
‖x(t)i‖2

a∗

iQΨ(t)Q∗ai

)
1

2

if a∗iQΨ(t)Q∗ai 6= 0

(42)

Thanks to (42), even if‖x(t)i‖2 becomes erroneously zero during the iterations, there is a possibility, when

Ψ(t)Q∗ai = 0, for γ(t)i to become nonzero; hence, the corresponding row ofX(t) can become nonzero

onceγi turns into nonzero. Note that this is very different from M-SBL, since in (11) the denominator

term cannot be zero even under the most relaxed RIP constraint δLk+1 < 1, so the condition‖x(t)i‖2 = 0

will set the correspondingγ(k)i to zero. Therefore, in M-SBL, once a row ofX(t) is set to zero in error,

it will stay zero for all subsequent iterations and the algorithm is unable to recover from this error.

Second, it is important note that since1/(p/2)+1/(q/2) = 1, we havelimq→0 p = limq→0
2

1−2/q = 0;

so

lim
q→0

gSPL(X) = lim
q→0

2NTr|Q∗AΓ
1

2 |p = 2NRank(Q∗AI), (43)

whereI denotes the index set of non-zero diagonal elements ofΓ. Hence, in this case, the SPL algorithm

with p → 0 is the algorithm that directly minimizes the rank ofQ∗AI . In this case, the corresponding

update rule is given by

X(t+1) = Γ(t)A∗(λI +AΓ(t)A∗)−1Y , γ
(t)
i =

(

1
N ‖x(t)i‖2

a∗iQ(Q∗AΓ(t)A∗Q)−1Q∗ai

)
1

2

. (44)

The main technical challenge is, however, that forp = q = 0 the cost function (35) is not well-defined.

Therefore, the aforementioned interpretation of the SPL should be understood as an asymptotic result

such thatp andq approach zero, but are not exactly zero.

1In a practical implementation, a tolerance around 0 and finites values forγ(t)
i

have to be used.
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Next, as a by product of Theorem 3.1, the SPL algorithm is computationally more efficient than M-

SBL. Note that the computational bottleneck of M-SBL (or SPL) is due to the the inversion ofAΓ(t)A∗

(or Q∗AΓ(t)A∗Q, respectively). Specifically, unlike theX(t) update step that can be done using the

conjugate gradient (CG) algorithm, the matrix inversion cannot be performed using CG and usually is

performed using the singular value decomposition (SVD). Now, note that the size of matrixQ∗AΓ(t)A∗Q

in SPL is(m−r)× (m−r) compared tom×m for AΓ(t)A∗, which reduces the cost of matrix inversion

for SPL compared to M-SBL. In particular, for the case of MUSIC wherem = k+1 andr = k, matrix

inversion is not necessary for SPL whereas M-SBL still requires them×m matrix inversion.

Finally, note that the hyper-parameterγ is closely related to spectral estimation. For example, forthe

case of MUSIC wherem = k + 1 andr = k, the term(Q∗AΓ(t)A∗Q) in (44) reduces a scalar and we

have

γ
(t)
i =

(

1
N ‖x(t)i‖2

a∗iQ(Q∗AΓ(t)A∗Q)−1Q∗ai

)
1

2

(45)

=
1

√

a∗iQQ∗ai
×

‖x(t)i‖
√

N(Q∗AΓ(t)A∗Q)
(46)

where the first term is the MUSIC spectrum and the second term is related to the magnitude of thei-th

row of X(t). Hence, in the case of full-row rankX (i.e., the MUSIC case), SPL can be regarded as an

algorithm that initialises he non-zero support estimationusing a spectral estimation technique, followed

by alternating modification using the data fidelity matchingcriterion.

V. NUMERICAL RESULTS

In this section, we perform extensive numerical experiments to validate the proposed algorithm under

various experimental conditions, and compare it with respect to existing joint sparse recovery algorithms.

In particular, we are interested in the SPL algorithm in the asymptotic region ofp → 0 since it directly

minimises the rank ofQ∗AI .

The elements of a sensing matrixA were generated from a Gaussian distribution with zero mean and

variance of1/m, and then each column ofA was normalized to have an unit norm. An unknown signal

X∗ with rank(X∗) = r ≤ k was generated using the same procedure as in [6]. Specifically, we randomly

generated a supportI, and then the corresponding nonzero signal components wereobtained by

XI
∗ = UΣV , (47)

whereU ∈ Rk×r was set to random orthonormal columns, andΣ = diag([σi]
r
i=1) is a diagonal matrix
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whosei-th element is given by

σi = τ i, 0 < τ < 1, (48)

andV ∈ Rr×N was generated using Gaussian random distribution with zeromean and variance of1/N .

After generating noiseless data, we added zero mean white Gaussian noise. We declared success if an

estimated support from a certain algorithm was the same as a true suppX.

As the proposed algorithm does not require a prior knowledgeof the sparsity level, we need to define

a stoping criterion. Here, the stopping criterion is definedby monitoring the normalized change in the

variableγ:
‖γ(t) − γ

(t−1)‖2

‖γ(t)‖2
< 10−3 .

From our experiments, usually 20-30 iterations are required for SPL to converge.

A. Local Minima Property

We first perform experiments to confirm that SPL produces the true solution under milder conditions

than M-SBL. To show this, usingk-sparse signalX∗ generated by (47) withτ = 1, we produced

measurementsY = AX∗ such thatr := rank(Y ) ≤ k. Then, we initialized both algorithms withX(0)

that satisfies the following:

Y = AX(0), ‖X(0)‖0 = m, |suppX∗ ∩ suppX(0)| = s , (49)

wheres < k− r, s = k− r ands > k− r, respectively. Note that the initialization corresponds to a local

minimiser and we are interested in confirming that SPL can escape from the local minimizers thanks to

the update in (42). Recall that it is difficult for M-SBL to avoid this type of local minimizers sinceX(0)

has zeros rows at thei-th row wherei ∈ S \ suppX(0)and the M-SBL update rule in (11) cannot make

the correspondingγi nonzero in the subsequent iterations.

Figs. 1(a)-(c) illustrate the perfect recovery ratio from the initialization using SPL and M-SBL at

various SNR conditions for (a)s = k − r = 3, (b) s = 2 < k − r, and (c)s = 5 > k − r, respectively.

The results clearly demonstrate that SPL finds the global minimizer nearly perfectly, whereas M-SBL

fails most of the time. This clearly confirms the theoreticaladvantages for SPL.

B. Comparison with Other State-of-Art Algorithms

To compare the proposed algorithm with various state-of-art joint sparse recovery methods, the recovery

rates of various state-of-art joint sparse recovery algorithms such as MUSIC, S-OMP, SA-MUSIC,
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Fig. 1. Perfect recovery ratio from initialization using local minimizer that satisfy (49). The results are averaged after 500
runs and the simulation parameters are:k = 10, r = 7, n = 128 andN = 64. (a) s = k − r = 3, (b) s = 2 < k − r, and (c)
s = 5 > k − r, respectively.

sequential CS-MUSIC, M-SBL, and thel1/l2 mixed norm approach are plotted in Fig. 2 along with

those of SPL. Among the various implementation of mixed normapproaches, we used high performance

SGPL1 software [22], which can be downloaded fromhttp : //www.cs.ubc.ca/labs/scl/spgl1/. Since

M-SBL, the mixed norm approach, as well as SPL do not provide an exactk-sparse solution, we used the

support for the largestk coefficients as a support estimate in calculating the perfect recovery ratio. For

MUSIC, S-OMP, SA-MUSIC, sequential CS-MUSIC, we assume that k is known. For subspace based

algorithms such as MUSIC, SA-MUSIC, sequential CS-MUSIC aswell as SPL, we determine the signal

subspace using the following criterion

max
i∈{1,··· ,m}

σi − σi+1

σi − σm
> 0.1,

whereσ1 ≥ σ2 ≥ · · · ≥ σm denotes the singular values ofY Y ∗. A theoretical motivation for such

subspace determination is given in [6]. Here, the success rates were averaged over1000 experiments. The

simulation parameters were as follows:m ∈ {1, 2, . . . , 50}, n = 128, k = 8, r = 5, SNR = 30dB, 10dB,

andN ∈ {32, 128}, respectively. Figs. 2(a)-(d) illustrates the comparisonresults under various snapshot

number and SNR conditions. Note that SPL consistently outperforms all other algorithms at various

snapshots numbers. In particular, the gain increases with increasing number of snapshots, since it provides

better subspace estimation. Also, note that SPL consistently outperforms M-SBL at all SNR ranges.

Figs. 2(e)(f) illustrates that SPL significantly outperforms M-SBL whenX is badly conditioned. Moreover,

as the subspace estimation becomes accurate with increasing N , the performance gain becomes more

significant.

Figs. 3(a)(b)(c) compares the performance of various MMV algorithm by varying the sparsity

http://www.cs.ubc.ca/labs/scl/spgl1/
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Fig. 2. Performance of various joint sparse recovery algorithms atn = 128, k = 10, r = 6 when (a)SNR = 30dB,N =

16, τ = 1, (b) SNR = 30dB,N = 256, τ = 1, (c) SNR = 10dB,N = 16, τ = 1, (d) SNR = 10dB,N = 256, τ = 1, (e)
SNR = 30dB,N = 16, τ = 0.1, (f) SNR = 30dB,N = 256, τ = 0.1, respectively.
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Fig. 3. Performance of various joint sparse recovery algorithms for varying sparsity level atN = 256. The simulation parameters
are (a)m = 40, r = 5, τ = 1 and SNR=30dB, and (b)m = 40, r = 12, τ = 1 and SNR=10dB, and (c)m = 40, r = 15, τ = 0.5

and SNR=30dB, respectively.

level. Here,m and rank(Y ) are fixed and the sparsity levels changes, and we calculated the perfect

reconstruction ratio. Again, SPL outperforms all existingmethods for various SNR and conditions

numbers.

C. Fourier Measurements Cases

Fig. 4 illustrates the results of the comparison when the measurement are from Fourier sensing matrix.

Similar to Gaussian sensing matrix, consistent improvement of SPL over M-SBL and other algorithms

under various conditions have been observed.

VI. CONCLUSION

In this paper, we derived a new MMV algorithm called subspacepenalized sparse learning (SPL) to

address a joint sparse recovery problem, in which the unknown signals share a common non-zero support.

The SPL algorithm was inspired by the observation that thelog det(·) term in M-SBL is a rank proxy

for a partial sensing matrix, and similar rank criteria exist in subspace-based greedy MMV algorithms

like CS-MUSIC and SA-MUSIC. Furthermore, we proved that instead of rank(AΓ1/2), minimizing

rank(Q∗AΓ1/2) is a more direct way of imposing joint sparsity since its global minimizer can provide

the true joint support. To impose such a subspace constraintas a penalty, the SPL algorithm employs

the Schatten-p quasi norm rank penalty and was implemented as an alternating minimisation method.

Theoretical analysis showed that asp → 0, the global minimizer of the SPL is equivalent to the global

minimiser of the l0 MMV solution. We further demonstrated that compared to M-SBL, our SPL is
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Fig. 4. Performance of various joint sparse recovery algorithms atn = 128 when the sensing matrix is from Fourier matrix
and SNR=30dB. The simulation parameters are (a)r = 8, N = 16, τ = 1, k = 10, (b) r = 8, N = 256, τ = 1, k = 10, (c)
r = 5, m = 40, N = 256, τ = 1, (d)r = 15, m = 40, N = 256, τ = 0.5, respectively.

more robust to recovering badly conditionedX∗. With numerical simulations, we demonstrated that SPL

consistently outperforms all existing state-of-the art algorithms including M-SBL.
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