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Parallelized Structures for MIMO FBMC under
Strong Channel Frequency Selectivity

Xavier Mestre, David Gregoratti

Abstract—A novel architecture for MIMO transmission and
reception of filterbank multicarrier (FBMC) modulated sign als
under strong frequency selectivity is presented. The proposed
system seeks to approximate an ideal frequency-selective pre-
coder and linear receiver by Taylor expansion, exploiting the
structure of the analysis and synthesis filterbanks. The resulting
architecture is implemented by linearly combining conventional
MIMO linear transceivers, which are applied to sequential
derivatives of the original filterbank. The classical per-subcarrier
precoding/linear receiver configuration is obtained as a special
case of this architecture, when only one stage is fixed at both
transmitter and receiver. An asymptotic expression for the
resulting intersymbol/intercarrier (ISI/ICI) distortio n is derived
assuming that the number of subcarriers grows large. This
expression can in practice be used in order to determine the
number of parallel stages that need to be implemented in the
proposed architecture. Performance evaluation studies confirm
the substantial advantage of the proposed scheme in practical
frequency-selective MIMO scenarios.

Index Terms—Filter-bank multi-carrier modulation, MIMO

I. I NTRODUCTION

The increasing demand for high data rate wireless services
has recently motivated a renewed interest in spectrally effi-
cient signalling methodologies in order to overcome the cur-
rent spectrum scarcity. In this context, filterbank multicarrier
(FBMC) modulations have become very strong candidates
to guarantee an optimum spectrum usage while maintaining
the nice processing properties of multicarrier signals, such as
reduced complexity equalization. Unlike cyclic-prefix OFDM
(CP-OFDM), FBMC modulations do not require the use of a
cyclic prefix and can be constructed via spectrally contained
pulse shaping architectures. This significantly increasesthe
spectral efficiency of the system, improves the spectral lo-
calization of the transmitted signal and reduces the need for
guard bands. FBMC modulations can be combined with multi-
antenna MIMO technology in order to boost the link system
capacity, leading to an extremely high spectral efficiency.

Even though several alternative FBMC modulation formats
have been proposed over the last few years, the most interest-
ing one from the point of view of spectral efficiency remains to
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Centre Tecnològic de Telecomunicacions de Catalunya, Av.de Carl Friedrich
Gauss, 7, 08860 Castelldefels (Barcelona), Spain, Phone: +34 936452900,
Fax: +34 936452901, E-mail:{xavier.mestre,david.gregoratti}@cttc.cat

be FBMC based on offset QAM (FBMC/OQAM) [1], [2]. This
modulation is constructed via a critically sampled uniformly
spaced filterbanks modulated by real-valued symbols. Given
the fact that there is no CP and since the filterbanks are
critically sampled, FBMC/OQAM achieves the largest possible
spectral efficiency in the whole class of FBMC modulations.
Furthermore, by conveniently selecting the prototype filters at
the transmit and receive side, one can perfectly recover the
transmitted symbols at the receiver in the presence of a noise-
less frequency flat channel. For this reason, this modulation is
widely considered as the most prominent FBMC modulation.

A second important class of FBMC modulations are typi-
cally referred to as Filtered Multi Tone (FMT) or FBMC/QAM
[3], [4]. The idea behind these modulations consists in directly
modulating complex QAM symbols instead of real-valued
ones, avoiding again the introduction of a CP. The approach
is clearly more versatile than FBMC/OQAM and since the
signalling is carried out on complex symbols, the modulation
operative becomes very similar to classical CP-OFDM. How-
ever, it can be seen that if the filterbank is critically sampled
it is not possible to perfectly recover the transmitted symbols,
even in the presence of a noiseless frequency flat channel.
For this reason, FBMC/QAM is typically implemented using
oversampled filterbanks1, which clearly reduce the spectral ef-
ficiency of the system. As a consequence of using oversampled
filterbanks, the different constituent filters have little overlap
in the frequency domain, which minimizes potential problems
in terms of inter-carrier interference (ICI) with respect to
FBMC/OQAM. For all these reasons, FBMC/QAM is today
a valid alternative employed in commercial systems such as
the professional mobile radio system TETRA Enhanced Data
System (TEDS) [6]. However, due to the introduction of
redundancy (oversampling) in the transmit/receive filterbanks,
FBMC/QAM can only achieve a portion of the spectral effi-
ciency of a classical FBMC/OQAM modulation.

Several other alternative FBMC modulations have been pro-
posed in the literature, although they typically rely on thein-
troduction of CP, which simplifies the equalization but clearly
incurs in a significant spectral loss. This CP is not needed
in FBMC modulations, because under relatively mild channel
frequency selectivity the channel response can be assumed to
be approximately flat within each subcarrier band. Hence, a

1By critical sampling we mean that the signals at the input of the synthesis
filterbank is interpolated by a factor that is equal to the number of subcarriers.
When the interpolation factor is higher than the number of subcarriers, we
say that the filterbank is oversampled (also overinterpolated). FBMC/QAM
typically uses oversampling ratios between 5/4 and 3/2 [5],[3], which may
be comparable to the efficiency loss in CP-OFDM due to the insertion of the
cyclic prefix.
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single-tap per-subcarrier weighting is in principle sufficient to
equalize the system, as it is the case in CP-OFDM. Unfortu-
nately, in the presence of strong channel frequency selectivity,
the channel can no longer be approximated as flat within each
subcarrier pass band, and FBMC modulations require more
sophisticated equalization systems (see e.g. [7] and references
therein for a review of FBMC equalization techniques). In
practical terms, if the receiver keeps using a single-tap per-
subcarrier equalizer in the presence of a highly frequency-
selective channel, its output will appear contaminated by a
residual distortion superposed to the background noise. In
FBMC/QAM modulations, this distortion will eminently be
related to the inter-symbol-interference (ISI) caused by the
channel within each subband. In FBMC/OQAM modulations,
the strong overlap between the different subband filters will
result in both ICI and ISI at the output in the presence
of a frequency-selective channel. Consequently, the effect of
channel frequency selectivity becomes more problematic in
FBMC/OQAM modulations, a fact that has prevented a more
widespread acceptance of this modulation in spite of its clear
superiority in terms of spectral efficiency.

This residual distortion under channel frequency selectivity
is much more devastating in MIMO transmissions, basically
due to a superposition effect of the multiple parallel anten-
nas/streams [8], [9], [10]. This incremental distortion effect
in MIMO contexts has traditionally been mitigated using
complex receiver strategies, such as sophisticated equalization
architectures [11], [12], [13], or algorithms based on succes-
sive interference cancellation [14], [15], [13]. More recent
approaches have additionally considered the optimizationof
the transmitter architecture in order to mitigate the effect of
the channel frequency selectivity. For example, [16] considers
the optimization of the precoder/linear receiver pair in order
to achieve spatial diversity while minimizing the residual
distortion at the output of the receiver. A related approachcan
be found in [17], [18], where a polynomial-based (multi-tap)
SVD precoder is applied together with an equivalent multi-tap
equalizer at the receiver.

Here we take an approach similar to the one in [19]
and propose a general architecture that can be used to im-
plement multiple MIMO transceivers (precoder plus linear
receiver) in highly frequency-selective channels. Our approach
is substantially different from the one in [16], [17], [18],
because rather than focusing on a particular objective to
optimize the transceiver, the proposed architecture provides
a general framework that can be used to construct a variety
of MIMO transceivers. On the other hand, the results in
this paper generalize [19] in several important aspects, even
under the SISO configuration. First, the approach in [19]
considers the specific case where the transmitter does not apply
any precoding/pre-equalization processing, while the receiver
performs direct channel inversion. Here, we consider a much
more general setting with a generic precoder/pre-equalizer at
the transmitter together with the corresponding equalizerat the
receiver. Second, the asymptotic performance analysis in [19]
is based on the assumption that the prototype pulses are perfect
reconstruction (PR) filters. Here, the analysis is generalized to
the case where the prototypes are not necessarily PR, which

is typically the case in practice. Finally, the analysis in [19] is
only valid for finite impulse response (FIR) channel models.
Here, the analysis is generalized to more general channel
forms, not necessarily having finite impulse response.

Before going into the technical development, it is worth
pointing out that the present study assumes linear, time
invariant and perfectly estimated channel responses. These
assumptions are not perfectly met in a practical situation,
mainly because of the presence of amplifier nonlinearities,
Doppler effects and the use of finite training sequences. Still,
we assume that all these imperfections are negligible for
the sake of analytical tractability. The detrimental effect of
these nonidealities could in principle be reduced by increasing
the cost of the power amplifier and by employing channel
estimates are refreshed frequently enough and obtained with a
sufficiently large training sequence. However, in practicethese
ideal conditions do not hold, and therefore some degradation
in the performance should be expected. Previous analyses
establish that the negative effect of these non-idealitiesin
FBMC is similar to the one in CP-OFDM [20], [21], [22],
which leads us to believe that the associated performance
degradation will not be dramatic.

The rest of the paper is organized as follows. Section
II presents the general MIMO signal model and the ideal
frequency-selective transceiver that is considered in this paper
and Section III presents the proposed parallel multi-stage
approach for general FBMC systems. The asymptotic per-
formance of the proposed MIMO architecture is analyzed in
Section IV for general FBMC/OQAM modulations under the
assumption that the number of subcarriers grows large. Finally,
Section V provides a numerical evaluation of the multi-stage
technique and Section VI concludes the paper. All technical
derivations have been relegated to the appendices.

II. SIGNAL MODEL

We consider a MIMO system withNT transmit andNR

receive antennas. LetH(ω) denote anNR × NT matrix
containing the frequency response of the MIMO channels, so
that the(i, j)th entry ofH(ω) contains the frequency response
between thejth transmit and theith receive antennas. We
assume that the MIMO system is used for the transmission of
NS parallel signal streams,1 ≤ NS ≤ min {NR, NT }, which
correspond to FBMC modulated signals. More specifically, we
will denote bys(ω) an NS × 1 column vector that contains
the frequency response of the signal transmitted at each of the
NS parallel streams. Hence, each entry of the vectors(ω) is
the Fourier transform of a FBMC modulated symbol stream.

Let us assume that the transmitter applies a frequency-
dependent linear precoder, which will be denoted by the
NT × NS matrix A(ω). The signal transmitted through the
NT transmit antennas can be expressed as

x(ω) = A(ω)s(ω) (1)

where x(ω) is an NT × 1 column vector containing the
frequency response of the transmitted signal. On the other
hand, lety(ω) denote anNR×1 column vector containing the
frequency response of the received signals in noise, namely

y(ω) = H(ω)x(ω) + n(ω)
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wheren(ω) is the additive Gaussian white noise. We assume
that the receiver estimates the transmitted symbols by linearly
transforming the received signal vectory(ω). More specifi-
cally, we consider a certainNR×NS receive matrixB(ω) so
that the symbols are estimated by

ŝ(ω) = BH(ω)y(ω).

The whole ideal frequency-selective transceiver chain is imple-
mented in Fig. 1 for a FBMC-modulated system. The number
of subcarriers is fixed to be even, and will be denoted by2M .

The main problem with the MIMO architecture presented
in Fig. 1 comes from the fact that, in practice, the frequency-
dependent matricesA(ω), B(ω) need to be implemented
using real filters. However, these filters have very large (or
even infinite) impulse responses, which may be difficult to
implement in practice. This can partly be solved in multicarrier
modulations, as long as it can be assumed that the frequency
selectivity is not severe, so that the channel response is
approximately flat at on each subcarrier pass band. When this
is the case, one can construct the MIMO precoder/receiver
operations by applying the matricesA(ωk), B(ωk) to each
subcarrier stream, where hereωk denotes the central frequency
associated with thekth subcarrier. This is further illustrated in
Fig. 2 for the particular case ofNT = NR = 2 antennas in a
FBMC modulation transmission. Observe that the traditional
(per-subcarrier) implementation in Fig. 2 is the result of
changing the position of the precoder/linear receiver with
respect to the FBMC modulator/demodulator in the ideal
implementation.

As pointed out above, the traditional solution essentially
relies on the fact that the channel frequency selectivity is
mild enough to guarantee that each sub-carrier observes a
frequency non-selective channel. However, under severe fre-
quency selectivity, the system will suffer from a non-negligible
distortion that will critically impair the performance of the
MIMO system. This will be confirmed below, both analytically
and via simulations. Next, we propose an alternative solution
that tries to overcome this effect.

III. PROPOSED APPROACH

In this section we propose an alternative solution that,
with some additional complexity, significantly mitigates the
distortion caused by the channel frequency selectivity. We
assume that the transmit and receive filterbanks are constructed
by modulating a given prototype filter, which may be different
at the transmit and receive sides. We will denote asp[n] and
q[n] the real-valued impulse responses of the transmit and
receive prototype pulses, with Fourier transforms respectively
denoted byP (ω) and Q (ω), ω ∈ R/2πZ. Hence, the
frequency response of thekth filter in the transmit filterbank is
assumed to be equal toP (ω − ωk) whereω1, . . . , ω2M denote
the subcarrier frequencies, assumed to be equispaced along
the transmitted bandwidth, namelyωk = 2π (k − 1) / (2M).
The following approach could also be applied to the situation
where P (ω) is different at each subcarrier, as well as in
situations where these subcarriers are not equispaced. However
we prefer to concentrate on the simpler case of uniform
filterbanks to simplify the exposition.

Let us consider the combination of the FBMC transmission
scheme with the frequency-selective MIMO precoderA(ω).
More specifically, consider thekth subcarrier associated with
the nS th MIMO signal stream that is sent through thenT th
transmit antenna. Assuming that theideal frequency-selective
precoder matrixA(ω) is implemented (Fig. 1), this stream will
effectively go through a transmit linear system with equivalent
frequency response proportional to

P (ω − ωk) {A(ω)}nT ,nS
.

The traditional (per-subcarrier) implementation of this pre-
coder is based on the assumption thatA(ω) is almost flat along
the bandwidth ofP (ω − ωk) so that we can approximate

P (ω − ωk) {A(ω)}nT ,nS
≃ P (ω − ωk) {A(ωk)}nT ,nS

.
(2)

In this situation, we can apply a constant precoderA(ωk)
to all the symbols that go through thekth subcarrier, which
means that we can in practice change the order of precoder
and FBMC modulator with respect to the ideal implementation
(cf. Fig. 2). Under strong frequency selectivity of the ideal pre-
coderA(ω), the approximation in (2) does not hold anymore
and a more accurate description ofA(ω) aroundωk is needed.

Assume that the entries of the precoding matrixA(ω) are
analytic functions ofω, so that they are expressible as their
Taylor series development aroundωk, namely

A(ω) =

∞
∑

ℓ=0

1

ℓ!
A(ℓ)(ωk) (ω − ωk)

ℓ

whereA(ℓ)(ωk) denotes theℓth derivative ofA(ω) evaluated
at ω = ωk. The idea behind the classical precoder implemen-
tation in (2) and in Fig. 2 is to truncate this Taylor series
development and to consider only its first term (ℓ = 0). Here,
we suggest to go a bit further and consider the truncation of
the above series representation to include its firstKT terms
(T denoting transmit side), so that the transmitter filter has an
effective frequency response equal to

A(ω) ≃
KT−1
∑

ℓ=0

1

ℓ!
(ω − ωk)

ℓ
A(ℓ)(ωk). (3)

for ω sufficiently close toωk. The main advantage of extending
this truncation to the caseKT > 1 comes from the fact that
one can effectively implement the above filter by usingKT

parallel polyphase FBMC modulators corresponding to the
KT sums in (3), so that each of theKT parallel precoders
consists of single-tap per-subcarrier implementations. To see
this, assume that the prototype pulsep[n] is a sampled version
of an original analog waveformp(t) and define asp(ℓ)[n] a
sampled version ofp(ℓ)(t), namely theℓth derivative of the
analog waveformp(t). These definitions will be more for-
mally presented in Section IV. Then, under certain regularity
conditions on the waveformp(t), the Fourier transform of the
sequencep(ℓ)[n] can be approximated for largeM as

P (ℓ) (ω) ≃ (2M jω)ℓ P (ω) . (4)
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Fig. 1. Ideal implementation of a frequency selective precoder A(ω) and a linear receiverB(ω) in a FBMC modulation system with2M subcarriers.
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Fig. 2. Traditional implementation of the frequecy-selective linear MIMO transmitter and receiver in multicarrier modulations, for the specific case of
NT = 2 transmit antennas,NR = 2 receive antennas and2M subcarriers.

Hence, by conveniently rewriting (3), we see that we can
approximate

P (ω − ωk)A(ω) ≃

≃
KT−1
∑

ℓ=0

1

ℓ!

( −j
2M

)ℓ

P (ℓ) (ω − ωk)A
(ℓ)(ωk). (5)

Now, observe that each term of the above sum has exactly
the same form as the first order (single-tap per-subcarrier)
precoderP (ω − ωk)A(ωk), replacing the actual precoder
matrix A(ωk) and the original prototype pulseP (ω) by their
derivative-associated counterpartsA(ℓ)(ωk), P (ℓ) (ω). From
all this, we can conclude that theKT -term truncation of the
ideal transmit precoder frequency response can be generated
by combining a set ofKT parallel conventional precoders.
This is further illustrated in Fig. 3, where we represent the
suggested implementation of the transmit precoder when the
number of parallel stages was fixed toKT = 2 and the number
of transmit antennas toNT = 2. We have represented in red
the additional stage that needs to be superposed to the original
one (in black), which is the same as in Fig. 2

We can follow the same approach in order to approximate
the ideal frequency-selective linear receiver matrixB(ω) in
combination with the receive prototype pulse. Fig. 4 illustrates
the proposed architecture for the simple case ofNR = 2
receive antennas andKR = 2 parallel stages. From all the
above, we can conclude that we can approximate the ideal
frequency-selective precoder/linear receiver as depicted in Fig.
1 by simply increasing the number of parallel stages (KT , KR)
that are implemented at the transmitter and at the receiver.
In the following section we analyze the performance of the
proposed transceiver architecture in terms of the residual
ISI/ICI distortion at the output of the receiver.

...
...

...

...
...

Fig. 3. Proposed implementation of the frequecy-selectiveprecoder for the
specific case ofNT = 2 transmit antennas andNT = 2 parallel stages.

Let us now provide a more formal description of the
proposed algorithm. Consider the transmission ofN complex-
valued (QAM) multicarrier symbols through each of theNS

MIMO streams. We will denote bySn, n = 1 . . .NS , a
2M × N matrix that contains, at each of its columns, the
multicarrier symbols that are transmitted through thenth
MIMO stream. LetZn, n = 1 . . .NS , denote the2M × Ñ
matrix of received samples corresponding to the reception of
the nth MIMO stream (see further Fig. 1), wherẽN is the
total number of non-zero received samples associated with the
transmission of theN multicarrier symbols (note that̃N ≥ N
due to the memory of the filterbank). Observe thatZn will
inherently have contributions from all the symbol matrices
S1, . . . ,SNS

.

Remark 1 In what follows, given a general frequency-
dependent quantityX = X(ω) we define Λ (X) =
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Fig. 4. Proposed implementation of the frequecy-selectivelinear receiver for
the specific case ofNR = 2 receive antennas andKR = 2 parallel stages.

diag{X(ω1), . . . , X(ω2M )}, i.e. a diagonal matrix containing
the value of the functionX at the pointsω1, . . . , ω2M .
We will also write HnR,nT

= {H (ω)}nR,nT
, A

(ℓ)
nT ,n

S
=

A
(ℓ)
nT ,n

S
(ω) =

{

A(ℓ)(ω)
}

nT ,n
S

and B
(ℓ)
nR,n = B

(ℓ)
nR,n(ω) =

{

B(ℓ)(ω)
}

nR,n
. We will sometimes omit the dependence on

ω in several frequency-dependent quantities when this fact is
clear from the context.

Let us first provide a formal description of the receive signal
samplesZn associated with thenth MIMO symbol stream un-
der the traditional per-subcarrier design in Figure 2. ThenS th
symbol stream matrixSnS

is precoded asΛ
(

AnT ,n
S

)

SnS
for

each of the transmit antennasnT = 1, . . . , NT and FBMC-
modulated. The signal that is transmitted through thenT

antenna goes through the channelHnR,nT
and is received by

thenT th antenna and FBMC-demodulated. We will denote by

ZHnR,nT
p,q

(

Λ
(

AnT ,n
S

)

SnS

)

(6)

the2M×Ñ matrix of received samples at the output of the cor-
responding FBMC demodulator, wherep, q are the prototype
filters used at the transmitter and the receiver respectively. In
order to recover the original symbols associated with thenth
MIMO stream, a multiplicative coefficient is finally applied
at this signal at the per-subcarrier level, so that the matrix
in (6) is left multiplied by the diagonalΛ

(

B∗
nR,n

)

. The total
received signal associated with thenth MIMO stream contains
the contribution of all transmit streams, all transmit and all
receive antennas, so that it can be expressed as

Zn =

NR
∑

nR=1

NT
∑

nT=1

Ns
∑

nS=1

Λ
(

B∗
nR,n

)

ZHnR,nT
p,q

(

Λ
(

AnT ,n
S

)

SnS

)

(7)
plus some additive noise that we omit in this discussion. Now,
if the channel and the precoder are sufficiently flat in the
frequency domain, one may approximate (see Appendix A for

a more formal exposition)

ZHnR,nT
p,q

(

Λ
(

AnT ,n
S

)

SnS

)

≃ Λ
(

HnR,nT
AnT ,n

S

)

Yp,q (SnS
)

(8)
where Yp,q (SnS

) = Z1
p,q (SnS

) is the matrix of FBMC-
demodulated samples under an ideal SISO channel. Inserting
this approximation into (7) we see that

Zn ≃
Ns
∑

nS=1

Λ
(

{

BHHA
}

n,nS

)

Yp,q (SnS
) .

If, additionally we forceBHHA = INS
, we will approxi-

mately haveZn ≃ Yp,q (Sn) which will be a close approxi-
mation of the transmitted symbolsSn if the prototype pulses
are well designed.

Next, let us formulate the signal model under the proposed
parallel multi-stage architecture, assuming that the number of
parallel stages isKT at the transmit side andKR at the receive
side. In order to define the derivatives of the prototype pulses
of (4) in a formal manner, we make the following assumption:
(As1) The transmit and receive prototype pulsesp[n],

q[n] have length2Mκ, where κ is the overlapping factor.
Furthermore, these pulses are obtained by discretization of
smooth real-valued analog waveformsp(t), q(t), which are
smooth functionsCR+1 ([−Tsκ/2, Tsκ/2]), R ≥ KT + KR,
so that

p[n] = p

((

n− 2Mκ+ 1

2

)

Ts

2M

)

, n = 1, . . . , 2Mκ

and equivalently forq[n], whereTs is the multicarrier symbol
period. Furthermore, the pulsesp(t), q(t) and theirR+ 1 se-
quential derivatives are null at the end-points of their support,
namely att = ±Tsκ/2.

Thanks to the above assumption, we can definep(r) and
q(r) as the sampled version of therth derivative ofp(t) and
q(t) respectively, that is

p(r)[n] = T r
s p

(r)

((

n− 2Mκ+ 1

2

)

Ts

2M

)

, n = 1, . . . , 2Mκ

and equivalently forq(r). In order to construct the proposed
multi-stage equalization system, we will assume that all quan-
tities are sufficiently smooth in the frequency domain, namely:
(As2) The frequency-depending quantitiesA(ω),B(ω)

and H(ω) are CR′+1 (R/2πZ) functions, whereR′ >
(2R+ 1) (R+ 1). Furthermore2, these matrices are con-
structed so thatBH(ω)H(ω)A(ω) = INs

.
Having established the definition of the time-domain deriva-

tive of the prototype pulses and the smoothness conditions
on precoder and channel, we can now formulate the received
signal model under the proposed parallel multi-stage pre-
coding/receiving architecture. LetZ(ℓ1,ℓ2)

n be defined as the
2M × Ñ received signal matrix (equivalent toZn), when
transmitter and receiver employ theℓ1th and ℓ2th parallel
stages respectively. Keeping in mind that theℓth parallel
stage is constructed by replacing the prototype pulse and the

2The following results can easily be generalized to the case where
BH(ω)H(ω)A(ω) is not necessarily equal to the identity. However, we keep
this assumption in order to simplify the exposition.
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precoder/decoder by their correspondingℓth order derivatives,
we can write

Z(ℓ1,ℓ2)
n =

=

NS
∑

n
S
=1

NR
∑

nR=1

NT
∑

nT=1

Λ
(

B(ℓ2)∗
nR,n

)

ZHnR,nT

p(ℓ1),q(ℓ2)

(

Λ
(

A(ℓ1)
nT ,n

S

)

SnS

)

which is basically the same equation as (7), but replacing
{p,A} by

{

p(ℓ1),A(ℓ1)
}

and {q,B} by
{

q(ℓ2),B(ℓ2)
}

. The
total received signal is therefore described by the linear
combination of the signals that are transmitted and received by
the multiple parallel stages, using the coefficients established
in (5), namely

Zn =

KT−1
∑

ℓ1=0

KR−1
∑

ℓ2=0

(−j)ℓ1+ℓ2

ℓ1!ℓ2! (2M)
ℓ1+ℓ2

Z(ℓ1,ℓ2)
n . (9)

We claim that, assuming that precoder/receiver are constructed
so thatBH(ω)H(ω)A(ω)= INS

, the above signal model is a
very good approximation of the multicarrier signal that would
be received under frequency flat conditions, namelyYp,q (Sn).
This will be more formally established in Section IV, where
we provide an asymptotic characterization of the resulting
distortion error. In order to provide these asymptotic results,
we specifically focus on FBMC/OQAM modulations, which
allow perfect orthogonality conditions under an ideal channel.

A. Specificities of the FBMC/OQAM signal model

The conceptual form of the FBMC/OQAM modulator and
demodulator is illustrated in Fig. 5. As mentioned above, this
modulation is widely considered in the literature, thanks to the
higher spectral efficiency with respect to other filterbank mul-
ticarrier modulations and the possibility of achieving perfect
reconstruction of the transmitted symbols under perfect chan-
nel conditions [2]. It can be described as a uniform, critically
sampled FBMC modulation scheme with different prototype
pulses as the transmitter (p) and the receiver (q), where the
transmitted symbols are drawn from a QAM modulation and
staggered into an offset QAM (OQAM) format.

As in the general description above, we consider that a
total of N complex QAM multicarrier symbols (2N real-
valued symbols) are sequentially transmitted through thenth
stream, and letSn denote a2M×2N matrix that contains the
symbols after the staggering operation. Each pair of columns
of Sn corresponds to a complex multicarrier symbol, and
will be denoted bysn(ℓ), ℓ = 1, . . . , N . We will write
bn(ℓ) = Resn(ℓ) and cn(ℓ) = Imsn(ℓ), and we will denote
as Bn and Cn the 2M × N matrices obtained by stacking
these vectors in columns.bn(ℓ) and cn(ℓ), so thatsn(ℓ) =
bn(ℓ) + jcn(ℓ). The signal matrixZn in (9) gathers the
samples of the received signal associated with thenth MIMO
substreambefore the de-staggering operation(see Fig. 5).

Following the notation in (8), under an ideal SISO channel
and in the absence of precoder/receiver, the received samples
matrix Zn corresponding to the complex symbolsSn will be
denoted byYp,q (Sn). It can be seen [19] that matrixYp,q (Sn)
can be constrained to have dimensions2M×(2N + 2κ). The

number of columns of this matrix corresponds to twice the
number of transmitted multicarrier symbols (2N ) plus some
additional columns (2κ) that account for the tail effects of
the prototypesp, q. From Yp,q (Sn), we can construct two
matricesYodd

p,q (Sn), Yeven
p,q (Sn) which contain its even- and

odd-numbered columns, so that

Yp,q (Sn) = Yodd
p,q (Sn)⊗ [0, 1] + Yeven

p,q (Sn)⊗ [1, 0] (10)

where ⊗ is the Kronecker product. According to the
FBMC/OQAM modulation, the original multicarrier symbols
are retrieved by taking the real/imaginary parts of the appro-
priate columns ofYodd

n (p, q) and Yeven
n (p, q), that is via a

de-staggering operation

ŝn(ℓ) = Re
{

Yodd
p,q (Sn)

}

:,ℓ+κ−1
+ jIm

{

Yeven
p,q (Sn)

}

:,ℓ+κ
.

(11)
A exact expression ofYodd

p,q (Sn) andYeven
p,q (Sn) can be found

in [19, (3)-(4)], see further (30) in Appendix A.
It is well known [2] that one can choosep, q to meet some

“bi-orthogonality” or perfect reconstruction (PR) conditions,
which guarantee that̂snS

(ℓ) = snS
(ℓ) in (11). In order to

formulate these conditions, letP andQ denote two2M × κ
matrices obtained by arranging the original prototype pulse
samples in columns. In other words, thekth row ofP (resp.Q)
contains thekth polyphase component of the original pulsep
(resp.q). Next, consider two2M× (2κ− 1) matricesR (p, q)
andS (p, q) obtained as

R (p, q) = P⊛ J2MQ (12)

S (p, q) = (J2 ⊗ IM )P⊛ J2MQ (13)

where⊛ indicates row-wise convolution between matrices and
J2M is the anti-identity matrix of size2M . It is well known
that one can impose PR conditions on the pulsesp andq by
imposing [19]

U+R (p, q) = I, U−S (p, q) = 0 (14)

whereU+ = I2 ⊗ (IM + JM ), U− = I2 ⊗ (IM − JM ), and
whereI is a 2M × (2κ− 1) matrix with ones in its central
column and zeros elsewhere. The above PR conditions can
be significantly simplified whenp = q and assuming that the
prototype pulses are symmetric or anti-symmetric in the time
domain [2].

IV. PERFORMANCE ANALYSIS UNDERFBMC/OQAM

Ideally, one would like to haveZn as similar as possible
to the signal of the output of the decimators in the FBMC
demodulators when the ideal frequency-selective precoderand
linear receiver are used (Fig. 1). In practice, however thisonly
holds approximately, in the sense thatZn in (9) can be written
as

Zn = Yp,q (Sn) + Ep,q (Sn) (15)

for some errorEp,q (Sn). More specifically, decomposingZn

into Zodd
n and Zeven

n as in (10), one would estimate theℓth
multicarrier symbol as

ŝn(ℓ) = Re
{

Zodd
n

}

:,ℓ+κ−1
+ jIm {Zeven

n }:,ℓ+κ . (16)
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Fig. 5. Basic form of a FBMC/OQAM modulator and demodulator.Here, P (ω) and Q(ω) are the transmit and receive prototype pulses, andφk =
e−jπ(M+1)(k−1)/(2M).

Two different sources of error will be present in this estimation
of the symbols: an implementation error due to the frequency
selectivity of the system, namelyEp,q (SnS

), plus a representa-
tion error which arises from the fact that the PR conditions in
(14) may not hold. In this section, we characterize the behavior
of the total resulting error by assuming that the number of
subcarriers is asymptotically large (M → ∞). The following
additional assumptions will be needed in order to provide the
corresponding result:

(As3) The transmitted complex symbols are drawn from a
bounded constellation.

(As4) The real and imaginary parts of the transmitted sym-
bols are independent, identically distributed random variables
with zero mean and powerPs/2.

Under these assumptions, it is possible to characterize the
behavior of the residual distortion at the output of the receiver,
assuming that the number of subcarriers is asymptotically
high (M → ∞). In order to formulate the result, we need
some additional definitions, that are presented next. Givenfour
integersm,n,m′, n′, we defineη(+,−)

(m,n,m′,n′) as the following
pulse-specific quantity:

η
(+,−)
(m,n,m′,n′) =

Ps

2M
tr

[

R
(

p(m), q(n)
)

RT
(

p(m
′), q(n

′)
)

U+

+ S
(

p(m), q(n)
)

ST
(

p(m
′), q(n

′)
)

U−

]

whereR(·,·) andS(·,·) are defined in (12)-(13). The quantity
η
(−,+)
(m,n) is equivalently defined, but swappingU+ and U−

in the above equation. LetΨ(+,−)
K denote a2 × 2 matrix

constructed as

Ψ
(+,−)
K =

[

η
(+,−)
(K,0,K,0)I{KT=K} η

(+,−)
(K,0,0,K)I{KR=KT }

η
(+,−)
(K,0,0,K)I{KR=KT } η

(+,−)
(0,K,0,K)I{KR=K}

]

(17)
whereI{·} is the indicator function. LetΨ(−,+)

K be constructed

as Ψ
(+,−)
K but changing all instances of(+,−) for (−,+).

The following quantities will take into account the fact that

PR conditions may not hold

δ =
Ps

2M
tr

[

(

R (p, q)− 1

2
I
)(

R (p, q)− 1

2
I
)T

U+

+ S (p, q)ST (p, q)U−

]

µ(m,n) =
Ps

2M
tr

[

(

R (p, q)− 1

2
I
)

RT
(

p(m), q(n)
)

U+

+ S (p, q)ST
(

p(m), q(n)
)

U−

]

µ̃
(K)
(ℓ,m) =

ℓ
∑

j=K

(−1)
j+K

(

ℓ

j

)(

j − 1

K − 1

)

µ(j,m−j).

Indeed, observe that these two quantities are zero under the
PR conditions in (14): clearlyU−S (p, q) = 0 whereas

U+

(

R (p, q)− 1

2
I
)

= U+R (p, q)− I = 0.

We will additionally need some channel-specific functions
α
(m,ℓ)
n,nS (ω), β(m,ℓ)

n,nS (ω) andγn,nS
(ω), defined as

α(m,ℓ)
n,nS

=

√
2 (−j)m

m!

(

m

ℓ

)

{

(

BHH
)(m−ℓ)

A(ℓ)
}

n,nS

(18)

β(m,ℓ)
n,nS

=

√
2 (−j)m

m!

(

m

ℓ

)

{

B(ℓ)H (HA)(m−ℓ)
}

n,nS

(19)

γn,nS
=

√
2 (−j)KR+KT

KT !KR!

{

B(KR)HHA(KT )
}

n,nS

. (20)

where we have omitted the dependence of all quantities on
ω to ease the notation and whereℓ ≤ m. We have now all
the ingredients to characterize the asymptotic distortionpower
associated with thenth parallel symbol stream observed at
the kth subcarrier output of the FBMC/OQAM demodulator,
which will be denoted byPe (k, n), 1 ≤ k ≤ 2M , 1 ≤ n ≤
NS .

Theorem 1 Consider the linear parallelized MIMO FBMC
system presented above, withKT ≥ 1 parallel stages at the
transmitter andKR ≥ 1 parallel stages at the receiver. Let
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ŝn (ℓ) be as defined in (16), i.e. as the estimate ofsn (ℓ), the
ℓth column vector of the complex-valued symbol matrix. As-
sume that(As1)− (As4) hold and letK = min (KT ,KR).
Then for anyℓ ∈ {κ, . . . , N − κ} one can write

E

[

|{ŝn (ℓ)}k − {sn (ℓ)}k|
2
]

= Pe (k, n) + o
(

M−2K
)

as M → ∞. The termPe (k, n) can be decomposed in two
terms, namelyPe (k, n) = Pe,1 (k, n) + Pe,2 (k, n), with

Pe,1 (k, n) = 2δ

−
2K
∑

m=KR

2
√
2

(2M)
m

m
∑

ℓ=KR

µ(0,m)Re
(

β(m,ℓ)
n,n

)

−
2K
∑

m=KT

2
√
2

(2M)m

m
∑

ℓ=KT

µ̃
(KT )
(ℓ,m)Re

(

α(m,ℓ)
n,n

)

+
2
√
2

(2M)
2K

Reγn,nµ(K,K)I{KR=KT }

and

Pe,2 (k, n) =
1

(2M)
2K

NS
∑

n
S
=1

ReT
[

ξ(K,K)
n,nS

]

Ψ
(+,−)
K Re

[

ξ(K,K)
n,nS

]

+
1

(2M)2K

NS
∑

n
S
=1

ImT
[

ξ(K,K)
n,nS

]

Ψ
(−,+)
K Im

[

ξ(K,K)
n,nS

]

where ξ(m,ℓ)
n,nS (ω) =

[

α
(m,ℓ)
n,nS (ω) , β

(m,ℓ)
n,nS (ω)

]T

and where all

the frequency-dependent quantities (α
(m,ℓ)
n,nS , β

(m,ℓ)
n,nS , γn,n) are

evaluated atω = ωk.

Proof: See Appendix A.
According to the above result, the inherent distortion of the

FBMC/OQAM modulation can be asymptotically decomposed
into two terms,Pe,1 (k, n) and Pe,2 (k, n). The first term
basically accounts for the fact that the prototype pulsesp, q
need not have PR conditions. It can readily be observed
that this term is identically zero when the conditions in
(14) hold. The second termPe,2 (k, n) inherently describes
the effect of the residual distortion caused by the channel
frequency selectivity, even when PR conditions hold. This term
essentially decays asO

(

M−2K
)

when M → ∞, whereK
is the minimum between transmit and receive parallel stages.
This means that if both the transmit and the receive processing
matrices are frequency-selective, it does not make much sense
to increase the number of parallel stages at one side of the
communications link beyond the number of stages at the other,
since the asymptotic behavior will ultimately be dictated by
the minimum between the two. The situation is different when
only one of the matrices (eitherA(ω) or B(ω)) is frequency-
selective. In this case, the frequency flat matrix can be seenas
its exact representation in Taylor series, which is equivalent
to stating that the matrix is approximated using an infinite
number of terms (most of which are zero), i.e.KT = ∞ or
KR = ∞. In this situation, increasing the number of stages
that implement the frequency-selective matrix will alwayshave
a beneficial effect.

On the other hand, one should also observe from the
expression ofPe (k, n) that the total residual distortion power
that is observed at thenth receive symbol stream is an additive
combination of the distortion associated with each of the
transmit symbol streams (note the sum fromnS = 1 to NS

in the asymptotic expression forPe,2 (k, n)). This justifies the
claim that general MIMO processing is very vulnerable to
the presence of highly frequency-selective channels, since the
higher the number of parallel streams, the higher the residual
distortion power that will be observed at the output of the
receiver. Furthermore, the expression ofPe (k, n) provides a
very convenient way of fixing the number of parallel stages at
the transmitter and receiver (K) in order to guarantee a certain
degree of performance. Given a triplet of channel, precoder
and linear receiver (A(ω), H(ω) andB(ω)) one only needs
to evaluatePe (k, n) in order to obtain the minimumK that
guarantees a sufficiently low distortion power.

Finally, it is worth pointing out that the asymptotic residual
distortion expression presented in Theorem 1 generalizes the
one obtained in [19] for SISO channels in different important
aspects. Here, both transmit and receive frequency-selective
processing structures are considered, whereas only receive
processing (equalization) was assumed in [19]. Furthermore,
the above expression ofPe (k, n) above does not assume PR
conditions on the prototype pulses, which was not the case in
[19]. Section V shows that this asymptotic expression provides
an extremely accurate description of the system behavior under
severe channel frequency selectivity.

A. Computational Complexity and Latency

Contrary to multi-tap filter-based solutions that process the
signal per subcarrier using a finite impulse response (FIR)
filter, the proposed parallel multi-stage architecture incurs in
no additional penalty in terms of latency. This is because
all the constituent stages can be implemented in parallel,
avoiding all the unnecessary delays of other multi-tap based
filtering approaches. Note that the insertion of a multi-tap
processor per subcarrier will generally incur in a latency
increase proportional to the product between the number of
taps and the number of subcarriers, which may not be tolerable
in delay-critical applications.

As for the associated complexity of the proposed multi-stage
architecture, we can evaluate it in terms of the total number
of real-valued multiplications and sums. We will consider
a transmit/receive filterbank implementation using an FFT-
based polyphase architecture [2], assuming that the numberof
subcarriers is a power of2 and that the prototype pulses are
symmetric in the time domain. Using the split-radix algorithm,
one can implement an FFT by only using2M (log2 M − 1)+4
real-valued multiplications and6M log2 M + 4 real valued
sums [23]. Using this together with the fact that the prototype
pulse is real-valued and that each complex product can be
implemented with3 real-valued multiplication plus5 real-
valued sums, we can establish the total number of real-valued
sums and multiplications of the multi-stage architecture given
in Table I. In this table, we have disregarded the terms
of order o(M) and have also introduced the complexity of
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Algorithm Real-valued products
Multi-stage (TX) 2MKT [NT log2 M + (κ+ 2)NT + 2NSNT ]
Multi-stage (RX) 2MKR [NR log2 M + (κ+ 2)NR + 3NRNS ]
Multi-tap (RX) 2M [NR log2 M + (κ+ 2)NR + 3NSNR (Ntaps + 1)]
Algorithm Real-valued sums
Multi-stage (TX) 2MKT [3NT log2 M + (2κ+ 1)NT + 2NSNT ]
Multi-stage (RX) 2MKR [3NR log2 M + (2κ+ 3)NR + (7NR − 2)NS ]
Multi-tap (RX) 2M [3NR log2 M + (2κ+ 3)NR + (7NR − 2)NSS

+((7NR − 5)Ntaps − 2)N ]

TABLE I
TOTAL NUMBER OF REAL-VALUED SUMS AND MULTIPLICATIONS

ASSOCIATED WITH THE PARALLEL MULTI-STAGE ARCHITECTURE AND A

MULTI -TAP MIMO EQUALIZER WITH Ntaps MATRIX COEFFICIENTS.

a MIMO multi-tap equalizer [12] for comparison purposes.
These numbers will be used in the numerical analysis of the
following section.

V. NUMERICAL ANALYSIS

In this section, we analyze the performance of the pro-
posed precoding/linear receiver architectures in an LTE-like
FBMC/OQAM system with an intercarrier separation of
15kHz and QPSK modulated symbols. We will assume that the
channel state information is perfectly known at the receiver,
and also at the transmitter whenever the use of frequency-
selective processing is considered. As for the actual FBMC
modulation, we consider the PHYDYAS non-perfect recon-
struction (NPR) prototype pulse [24], [25] with overlapping
factor equal toκ = 3. The same prototype pulse is used at both
transmitter and receiver. All MIMO channels were simulated
as independent, static and frequency-selective with a power
delay profile given by the ITU Extended Vehicular A (EVA)
and Extended Typical Urban (ETU) models [26].

A. Validation of the asymptotic ICI/ISI distortion expressions

In order to validate the expressions for the residual ICI/ISI
distortion provided in Theorem 1, we considered a noiseless
scenario with512 subcarriers and two fixed channel impulse
responses drawn from the EVA and the ETU channel models.
The number of antennas was fixed to2 at both the transmitter
and the receiver, namelyNT = NR = 2, and two different
symbol streams were transmittedNS = 2. Fig. 6 shows
the eigenvalues of the simulated channel in the frequency
domain. A set of10000 multicarrier symbols was randomly
drawn from a QPSK modulation and the corresponding signal
to distortion power ratio was measured at the output of the
receiver. The simulated transceiver consisted of an eigenvector-
based precoder, whereA(ω) was selected as the dominant
eigenvectors ofHH(ω)H(ω) and whereB(ω) inverted the
resulting channel.

Figs. 7 and 8 compare the simulated and asymptotic per-
formance as predicted by Theorem 1 for different values
of the number of parallel stages at the transmitter/receiver,
i.e. KT , KR. In these two figures, solid lines represent the
theoretical performance as described byPe (k, n) whereas
cross markers are simulated performance values. Observe that
there is a perfect match between them, and the simulated
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Fig. 6. Eigenvalues of the MIMO channels used in the first partof the
simulations, drawn from the EVA and ETU channel models.

results are virtually indistinguishable from the theoretical ones,
even for relatively moderate values ofM . The only rare
differences between simulated and asymptotic performance
become apparent in situations where the coefficient of the
second order term becomes substantially high and the first
order characterization so that the first order fails to capture
the actual distortion behavior.
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Fig. 7. Signal to distortion power ratio measured at the output of the receiver
when the transmitter uses SVD-type precoding and the receiver performs
channel inversion. The simulated channel was the one represented in the upper
plot of Fig. 6.

As for the actual performance of the multi-stage transceiver
architecture, it is clearly seen that substantial gains canbe
achieved in terms of residual ICI/ISI reduction by simply im-
plementing a second parallel stage at the transmitter/receiver.
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Fig. 8. Signal to distortion power ratio measured at the output of the receiver
when the transmitter uses SVD-type precoding and the receiver performs
channel inversion. The simulated channel was the one represented in the lower
plot of Fig. 6.

On the other hand, simulations confirm the fact that the
performance is roughly dictated by the minimum number of
parallel stages used at the transmit and receive sides, thatis the
minimum betweenKR andKT . In other words, when using
frequency-selective processing at both transmitter and receiver,
the most important gains can be obtained by considering the
proposed architecture at both sides of the communications link,
but using the same number of parallel stages.

B. Performance under general frequency-selective channels

In this subsection, we evaluate the performance under
background noise and under a large set of randomly drawn
channel frequency responses. The total number of subcarriers
was set to1024 and the number of antennas was fixed to
NT = 2 andNR = 4, and two different symbol streams were
transmittedNS = 2. The transmitter was fixed toA(ω) = INT

(pure spatial multiplexing) whereas a LMMSE processor was
considered at the receiver, i.e.

B(ω) = H(ω)
(

HH(ω)H(ω) + σ2/PSINT

)−1
.

Figs. 9 and 10 represent the cumulative distribution function
of the measured mutual information per stream correspond-
ing to 100 realizations of EVA and ETU channel models
respectively, for different values of the signal to noise power
ratio. These mutual informations were estimated assuming
Gaussian signaling and disregarding the statistical dependence
between distortion and information symbols. Apart from the
performance of the proposed receiver with multiple parallel
stages, we also represent the performance of the multi-tap
MIMO equalizer in [12], based on the frequency sampling
technique, as well as the optimum performance under fre-
quency flat equivalent channels. In the legend of the figures,
we represent the percentage of increase of the corresponding

technique in terms of real-valued multiplications (M%) and
additions (A%) with respect to the traditional single tap per-
subcarrier channel inversion (obtained asKR = 1). Observe
that the parallel multi-stage architecture withKR = 2 presents
a computational complexity that is comparable to a multi-tap
processor withNtaps = 3, but achieves a much better output
SNDR, especially at low values of the background noise. In
terms of the global SNDR distribution, two parallel stages are
sufficient to provide a performance comparable to a multi-tap
filter with Ntaps = 7 taps at a much lower computational
complexity.
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Fig. 9. Mutual information distribution (bits per stream) for different levels
of the background noise withNT = 2, NR = 4 and spatial multiplexing
(EVA channel model).
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Fig. 10. Mutual information distribution (bits per stream)for different levels
of the background noise withNT = 2, NR = 4 and spatial multiplexing
(ETU channel model).

Next, we considered a scenario withNT = 4 andNR = 2
where the precoder used the two left singular vectors asso-
ciated with the largest singular values of the channel matrix.
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The linear filter at the receiver was fixed in order to invert
the resulting channel matrix. Figs. 11 to 12 show the distri-
bution of the estimated mutual information obtained with100
random realizations of the EVA and the ETU channel models
respectively and for different values of the background noise
power. Here again, we observe that high gains can be obtained
with the proposed multi-stage MIMO architecture using only
two stages at the transmitter and at the receiver.
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Fig. 11. Mutual information distribution (bits per stream)for different levels
of the background noise withNT = 4, NR = 2 and SVD-based precoding
(EVA channel model).
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Fig. 12. Mutual information distribution (bits per stream)for different levels
of the background noise withNT = 4, NR = 2 and SVD-based precoding
(ETU channel model).

VI. CONCLUSIONS

A novel parallel multi-stage MIMO architecture for FBMC
transmissions under strong frequency selectivity has been
presented. The rationale behind the approach consists in
implementing a Taylor expansion of the ideal precoder and

linear receiver at the central frequency of each subband.
By properly exploiting the filterbank structure, it has been
shown that the global system can be implemented using
conventional per-subcarrier precoders/linear receiversin com-
bination with parallel filterbanks constructed from sequential
derivatives of an original prototype pulse. For the specificcase
of FBMC/OQAM, an asymptotic expression for the ICI/ISI
distortion power has been obtained. It has been shown that
the global performance of the system essentially depends on
the minimum between the number of parallel stages imple-
mented at the transmitter and the receiver. Finally, numerical
evaluation studies indicate that the asymptotic performance
assessment provides a very accurate approximation of the
reality for moderate values of the number of subcarriers, and
that significant gains can be obtained using the proposed
architecture under strong frequency selectivity.

APPENDIX A
PROOF OFTHEOREM 1

We begin the proof by introducing a technical result that
will be used throughout this appendix, which will be separately
proven.

Proposition 1 Let Yp,q (Sn) be the FBMC receive sample
matrix corresponding to the symbol matrixSn when the
channel is ideal and the prototype pulsesp, q are used
at the transmit/receive sides respectively. LetF (ω) de-
note a CR′+1 (R/2πZ) function for some integerR′ >
(2R+ 1) (R+ 2), and let ZF

p,q (Sn) denote the matrix of
received samples at the output of the decimators corresponding
to Yp,q (Sn), when the signal goes through a channel with
frequency responseF (ω). Under (As1) − (As3) for any
integerR > 0 we can write

ZF
p,q (Sn) =

R
∑

r=0

(−j)r

r! (2M)
rΛ
(

F (r)
)

Yp,q(r) (Sn) + o
(

M−R
)

(21)

=

R
∑

r=0

(−j)r

r! (2M)
rYp(r),q

(

Λ
(

F (r)
)

Sn

)

+ o
(

M−R
)

(22)

whereF (r) denotes therth order derivative of the function
F and whereo

(

M−R
)

for an integerR denotes a matrix of
potentially increasing dimensions whose entries decay to zero
faster thanM−R whenM → ∞. Furthermore, the above
identities hold true also if eitherp in (21) or q in (22) are
replaced byp(k) and q(k) for any integerk ≤ R.

Proof: The identity in (21) is proven in [19, Proposition
1] when F (ω) is the Fourier transform of a finite length
sequence. The proof of the present result follows along the
same lines, see further Appendix B.
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Corollary 1 Under the above conditions, letG(ω) denote
anotherCR′+1 (R/2πZ) function. Then,

ZFG
p,q (Sn) =

R
∑

k=0

(−j)k

k! (2M)k
Λ
(

G(k)
)

ZF
p,q(k) (Sn) + o

(

M−R
)

=

R
∑

k=0

(−j)k

k! (2M)
k
ZF

p(k),q

(

Λ
(

G(k)
)

Sn

)

+ o
(

M−R
)

.

Furthermore, the above identities also hold when the zeroth
order derivativesp and q are replaced byp(k) and q(k) for
any integerk ≤ R.

Proof: We will only prove the first identity, the proof of
second one being completely equivalent. Noting thatq(k) ∈
CR−k and replacingZF

p,q(k) (Sn) by the corresponding expres-

sion in (21), withR replaced byR−k andq replaced byq(k),
we see that

R
∑

k=0

(−j)k

k! (2M)k
Λ
(

G(r)
)

ZF
p,q(k) (Sn)

=

R
∑

k=0

R−k
∑

r=0

(−j)k+r

k!r! (2M)
k+r

Λ
(

G(r)F (k)
)

Yp,q(k+r) (Sn)

+ o
(

M−R
)

(a)
=

R
∑

m=0

(−j)m

m! (2M)m
Λ
(

(FG)
(m)
)

Yp,q(m) (Sn) + o
(

M−R
)

(b)
= ZFG

p,q (Sn) + o
(

M−R
)

where in (a) we have replaced the indexr by the indexm =
k + r and swapped the two sums and in (b) we have used
again (21) withF replaced byFG.

This corollary will be very useful in order to characterize
the asymptotic distortion error. Consider the expression of the
received signal matrixZn in (9), which can be expressed as

Zn =
∑

n
S
,nT ,nR

KR−1
∑

ℓ2=0

(−j)ℓ2

ℓ2! (2M)
ℓ2
Λ
(

B(ℓ2)∗
nR,n

)

×

×
KT−1
∑

ℓ1=0

(−j)ℓ1

ℓ1! (2M)
ℓ1
ZHnR,nT

p(ℓ1),q(ℓ2)

(

Λ
(

A(ℓ1)
nT ,n

S

)

SnS

)

Applying Corollary 1 forR = KT +KR, we can write

KT−1
∑

ℓ1=0

(−j)ℓ1

ℓ1! (2M)
ℓ1
ZHnR,nT

p(ℓ1),q(ℓ2)

(

Λ
(

A(ℓ1)
nT ,n

S

)

SnS

)

= ZHnR,nT
AnT ,n

S

p,q(ℓ2) (Sn)

−
KT+KR
∑

ℓ1=KT

(−j)ℓ1

ℓ1! (2M)
ℓ1
ZHnR,nT

p(ℓ1),q(ℓ2)

(

Λ
(

A(ℓ1)
nT ,n

S

)

SnS

)

+ o
(

M−(KT+KR)
)

and therefore inserting this into the expression ofZn above
and applying again Corollary 1 with respect to all the sums in
the indexℓ2, we obtain

Zn =
∑

n
S
,nR,nT

[

ZB∗

nR,nHnR,nT
AnT ,n

S
p,q (SnS

) + En,nT ,nR
(SnS

)
]

where

En,nT ,nR
(SnS

)

= −
KT+KR
∑

ℓ2=KR

(−j)ℓ2

ℓ2! (2M)ℓ2
Λ
(

B(ℓ2)∗
nR,n

)

ZHnR,nT
AnT ,n

S

p,q(ℓ2) (SnS
)

−
KT+KR
∑

ℓ1=KT

(−j)ℓ1

ℓ1! (2M)
ℓ1
ZB∗

nR,nHnR,nT

p(ℓ1),q

(

Λ
(

A(ℓ1)
nT ,n

S

)

SnS

)

+
(−j)KR+KT

KT !KR! (2M)
KR+KT

Λ
(

B(KR)∗
nR,n

)

×

×ZHnR,nT

p(KT ),q(KR)

(

Λ
(

A(KT )
nT ,n

S

)

SnS

)

+ o
(

M−(KT+KR)
)

.

Now, using the linearity of the transmission from different
antennas and the fact thatBH(ω)H(ω)A(ω) = INs

we obtain

Zn = Yp,q (Sn) +

NT
∑

nT=1

NR
∑

nR=1

NS
∑

n
S
=1

En,nT ,nR
(SnS

)

Using now Proposition 1 and disregarding all terms of higher
order, we can readily see that (15) holds with

Ep,q (Sn) = E(1)
p,q (Sn)+E(2)

p,q (Sn)+E(3)
p,q (Sn)+o

(

M−(KT+KR)
)

(23)
where we have introduced the matrices

E(1)
p,q (Sn) = −

NS
∑

n
S
=1

ΥnS
(24)

E(2)
p,q (Sn) = −

NS
∑

n
S
=1

KT+KR
∑

m=KR

Λ

(

m
∑

ℓ2=KR

β(m,ℓ)
n,nS

) Yp,q(m)

(

Sn
S

)

√
2 (2M)m

(25)

E(3)
p,q (Sn) =

NS
∑

n
S
=1

Λ (γn,nS
)
Yp(KT ),q(KR) (SnS

)
√
2 (2M)

KR+KT
(26)

whereβ(m,ℓ)
n,nS andγn,nS

are defined in (19) and (20) respec-
tively, and where

ΥnS
=

KT+KR
∑

m=KT

(−j)m

(2M)
m
m!

NT
∑

nT=1

m
∑

ℓ1=KT

(

m

ℓ1

)

×

×Λ
{

(

BHH
)(m−ℓ1)

}

n,nT

Yp(ℓ1),q(m−ℓ1)

(

Λ
(

A(ℓ1)
nT ,n

S

)

SnS

)

.

Next, we transformΥm,nS
into a linear combination of

matrices of the typeYp(i),q(j) (SnS
) for some integersi, j.

The following lemma will be instrumental in this objective.

Lemma 1 Under the assumptions of Proposition 1, we have

Yp,q (Λ (F )Sn) =
R
∑

m=0

(−j)m

(2M)
m
m!

Λ
(

F (m)
)

Y(m)
p,q (Sn)

+ o
(

M−R
)

where we have defined

Y(m)
p,q (Sn) =

m
∑

r=0

(

m

r

)

(−1)
r Yp(r),q(m−r) (Sn) .
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Proof: For ℓ = 0, . . . , R, we consider the identities in
(21)-(22) in Proposition 1 withp andF replaced byp(ℓ) and
F (ℓ) respectively, that is
R−ℓ
∑

r=0

(−j)r+ℓ

r! (2M)
r+ℓ

Yp(r+ℓ),q

(

Λ
(

F (r+ℓ)
)

Sn

)

=

R−ℓ
∑

r=0

(−j)r+ℓ

r! (2M)
r+ℓ

Λ
(

F (r+ℓ)
)

Yp(ℓ),q(r) (Sn) + o
(

M−R
)

.

This forms a system ofR + 1 linear equations withR + 1
unknowns, which can be expressed in matrix form as

ARxR = yR + o
(

M−R
)

wherexR = [x0, . . . , xR]
T , yR = [y0, . . . , yR]

T ,

xr =
(−j)r

(2M)r
Yp(r),q

(

Λ
(

F (r)
)

Sn

)

yr =

R−r
∑

m=0

(−j)m+r

m! (2M)m+rΛ
(

F (m+r)
)

Yp(r) ,q(m) (Sn) (27)

and whereAR is anR × R upper triangular Toeplitz matrix
with the entries of themth upper diagonal fixed to1/m!,
m = 0, . . . , R. We are interested in obtaining the solution
associated with the first entry ofxR, so that we will be able
to write

x0 = Yp,q (Λ (F )Sn) =

R
∑

j=0

ξjyj + o
(

M−R
)

(28)

where ξj are the entries of the upper row ofA−1
R . We can

iteratively obtain the solution toξj by observing that we can
partition this matrix as

AR =

[

AR−1 JR−1aR
0 1

]

whereaR = [a1, . . . , aR]
T , so that

A
−1
R =

[

A
−1
R−1 −A

−1
R−1JR−1aR

0 1

]

and this basically implies thatξ0 = 1 and

ξR = −
R−1
∑

m=0

ξmaR−m = −
R−1
∑

m=0

1

(R−m)!
ξm.

We can solve this recurrence by noting that it can be rewritten
as

R!ξR = −
R−1
∑

m=0

(

R

m

)

m!ξm

which basically implies thatm!ξm = (−1)m. Using this
together with the expression ofyr in (27) and swapping the
two indexes we obtain the result of the lemma.

Applying Lemma 1 we can rewriteΥnS
as

ΥnS
=

KT+KR
∑

m=KT

(−j)m

m! (2M)
m

m
∑

k=KT

k
∑

ℓ1=KT

(

m

k

)(

k

ℓ1

)

×

×Λ

(

{

(

BHH
)(k−ℓ1)

A(ℓ1+m−k)
}

n,nS

)

Y(m−k)

p(ℓ1),q(k−ℓ1) (SnS
)

+ o
(

M−(KT+KR)
)

Using the fact that
(

m

k

)(

k

ℓ1

)

=

(

m

k − ℓ1

)(

m− k + ℓ1
ℓ1

)

(29)

and with the appropriate change of indexes (ℓ = m− k+ ℓ1),
we see that

ΥnS
=

KT+KR
∑

m=KT

1√
2 (2M)

mΛ

(

m
∑

ℓ=KT

α(m,ℓ)
n,nS

)

×

×
m
∑

k=KT+m−ℓ

(

ℓ

m− k

)

Y(m−k)

p(k−(m−ℓ)),q(m−ℓ) (SnS
)+o

(

M−(KT+KR)
)

whereα(m,ℓ)
n,nS is defined in (18). Finally, using the change of

indexes (j = k−m+ ℓ+ r) together with (29), the additional
change of indexess = (j +m− ℓ)− k and the identity

j−KT
∑

s=0

(−1)
s

(

j

s

)

= (−1)
j−KT

(

j − 1

j −KT

)

we finally obtain

ΥnS
=

KT+KR
∑

m=KT

1√
2 (2M)m

Λ

(

m
∑

ℓ=KT

α(m,ℓ)
n,nS

)

×

×
ℓ
∑

j=KT

(−1)
j+KT

(

ℓ

j

)(

j − 1

KT − 1

)

Yp(j) ,q(m−j) (SnS
)

+ o
(

M−(KT+KR)
)

Inserting this into the expression ofE(1)
p,q (Sn) in (24), we

end up with an expression ofEp,q (Sn) in (23) that is a
linear combination of matrices of the formYp(m),q(n) (SnS

) for
different integersm,n. Therefore, we can analyze the asymp-
totic distortion variance by simply analyzing these terms.We
provide more details in what follows.

From the definition of the complex estimated symbolsŝn (ℓ)
in (16), we see that this column vector is a function of two
columns of the matrixZp,q (Sn), namely

zodd
n,ℓ (p, q)

def
=
[

Zodd
p,q (Sn)

]

:,ℓ+κ−1

zeven
n,ℓ (p, q)

def
=
[

Zeven
p,q (Sn)

]

:,ℓ+κ
.

Let us equivalently defineyodd
n,ℓ (p, q) andyeven

n,ℓ (p, q) as above,
replacing Z by Y. We define the error associated to the
estimation of theℓth multicarrier symbol of thenth stream
asen,ℓ (p, q) = ŝn (ℓ)− sn (ℓ), so that

en,ℓ (p, q) = Re
[

zodd
n,ℓ (p, q)

]

+ jIm
[

zeven
n,ℓ (p, q)

]

− sn (ℓ)

Now, from the asymptotic description provided above we have
been able to expressZn (p, q) as a function of matrices of
the formYp(m),q(k) (Sn) whenM → ∞ for several pairs of
integersm, k. Consequently,̂sn (ℓ) is asymptotically described
as a weighted linear combination ofyodd

n,ℓ

(

p(m), q(k)
)

and
yeven
n,ℓ

(

p(m), q(k)
)

for several pairs of integersm, k. In order
to analyze the structure ofYn, let F denote the2M × 2M
orthogonal Fourier matrix, and letF1 andF2 be the matrices
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formed by selecting theM upper and lower rows ofF respec-
tively. The expression ofYodd

n for FBMC/OQAM modulations
can be shown to be [19]

Yodd
p,q (Sn) = 2ΦFH ([FΦ∗Bn,0,0]⊛R (p, q))

+ 2ΦFH

([

0,F2Φ
∗jCn,0

F1Φ
∗jCn,0,0

]

⊛ S (p, q)

)

(30)

where R (p, q), S (p, q) are defined in (12)-(13),Φ is
a diagonal matrix with itsmth diagonal entry equal to
exp

(

−jπM+1
M (m− 1)

)

and0 is an all-zeros column vector
of appropriate dimensions. A similar expression can be given
for Yeven

n , see further [19, eq. (4)].

Now, recalling thatI is a2M × (2κ− 1) matrix with ones
in the central column and zeros elsewhere, we observe that
we are able to write

bn (ℓ) =

{

2ΦFH

(

[FΦ∗Bn,0,0]⊛
1

2
I
)}

:,ℓ+κ−1

(31)

and this identity holds true if we replace the pairbn (ℓ), Bn

by cn (ℓ), Cn. Using (31) and replacingzodd
n,ℓ (p, q) by the

asymptotic expansion, we see that

zodd
n,ℓ (p, q)− bn (ℓ)

= dodd
n,ℓ (p, q)

−
NS
∑

n
S
=1

KT+KR
∑

m=KT

1√
2 (2M)

m

m
∑

ℓ=KT

Λ
(

α(m,ℓ)
n,nS

)

×

×
ℓ
∑

j=KT

(−1)
j−KT

(

ℓ

j

)(

j − 1

KT − 1

)

yodd
nS ,ℓ

(

p(j), q(m−j)
)

−
NS
∑

n
S
=1

KT+KR
∑

m=KR

1√
2 (2M)

mΛ
(

β(m)
n,nS

)

yodd
nS ,ℓ

(

p, q(m)
)

+
1√

2 (2M)
KR+KT

NS
∑

n
S
=1

Λ (γn,nS
)yodd

nS ,ℓ

(

p(KT ), q(KR)
)

+ o
(

M−(KT+KT )
)

whered(∗)
n,ℓ (p, q), (∗) ∈ {odd,even}, is defined asy(∗)

n,ℓ (p, q)

by simply replacingR (p, q) with R (p, q) − 1
2I in (30). An

equivalent expression can be derived forzeven
n,ℓ (p, q)− jcn (ℓ),

which is omitted here due to space constraints. The expressions
presented in Theorem 1 are obtained by computing the vari-
ance of{en,ℓ (p, q)}k and disregarding the higher order terms.
This can be easily done using the following result, which can
be proven as in [19, Appendix B].

Lemma 2 Consider now four generic prototype filters
p1, q1, p2, q2, and denoteRi = R (pi, qi) andSi = S (pi, qi),
i = 1, 2. Write for compactness̄y(∗)

n,ℓ,i = ȳ
(∗)
n,ℓ (pi, qi) , i = 1, 2,

(∗) ∈ {even,odd} and letℓ ∈ {κ, . . . , N − κ}. Under (As4),

and for the FBMC/OQAM signal model we can write

E

[

Re
{

yodd
n,ℓ,1

}

k
Re
{

yodd
n,ℓ,2

}

k

]

= E

[

Im
{

yeven
n,ℓ,1

}

k
Im
{

yeven
n,ℓ,2

}

k

]

= η(+,−)
(

R1RT
2 ,S1ST

2

)

E

[

Im
{

yodd
n,ℓ,1

}

k
Im
{

yodd
n,ℓ,2

}

k

]

= E

[

Re
{

yeven
n,ℓ,1

}

k
Re
{

yeven
n,ℓ,2

}

k

]

= η(−,+)
(

R1RT
2 ,S1ST

2

)

E

[

Re
{

yodd
n,ℓ,1

}

k
Im
{

yodd
n,ℓ,2

}

k

]

= E

[

Re
{

yeven
n,ℓ,1

}

k
Im
{

yeven
n,ℓ,2

}

k

]

= 0

where we have defined fors1, s2 ∈ {+,−},

η(s1,s2)
(

R1RT
2 ,S1ST

2

)

=
Ps

2M
tr
[

R1RT
2 U

s1 + S1ST
2 U

s2
]

.

Furthermore, ify(∗)
n,ℓ,i is replaced byd(∗)

n,ℓ,i = d
(∗)
n,ℓ (pi, qi) in

any of the above expressions, the same results hold replacing
Ri by Ri − 1

2I.

APPENDIX B
PROOF OFPROPOSITION1

Let ZF
n (p, q) denote the2M × 2 (N + 2κ) matrix con-

taining the received samples at the output of the receive
FFT corresponding to thenth transmit stream, assuming
that the transmit and receive prototype pulses arep and q
respectively. For the rest of the proof, we will drop the
dependence onn in that matrix, and we will decompose
ZF (p, q) = ZF

even(p, q)⊗ [1, 0]+ZF
odd(p, q)⊗ [0, 1] . We will

denote byf [ℓ] theℓth coefficient of the Fourier series ofF (ω),
i.e.

f [ℓ] =
1

2π

∫ 2π

0

F (ω)ejωℓdω.

Furthermore, in order to describe the effect of the frequency
selectivity ofF (ω), we introduce the following pulse-specific
matrices, defined for anyℓ ∈ Z such that−M < ℓ ≤ M ,

Rℓ (p, q) = P⊛ J2MQ(ℓ) =

[

P1 ⊛ JMQ2(ℓ)
P2 ⊛ JMQ1(ℓ)

]

Sℓ (p, q) =

[

0,P2 ⊛ JMQ2(ℓ)
P1 ⊛ JMQ1(ℓ),0

]

whereQ(ℓ) is defined as

Q(ℓ) =

[

0,0, {Q}2M−ℓ+1:2M,:

0, {Q}1:2M−ℓ,: ,0

]

, 0 ≤ ℓ ≤ M,

Q(ℓ) =

[

0, {Q}−ℓ+1:2M,: ,0

{Q}1:−ℓ,: ,0,0

]

, −M < ℓ < 0

so thatQ(0) = [0,Q]. Furthermore, given a column vector of
2M entriesu, we defineM(u) as the2M × 2M matrix

M(u) = ΦFHdiag(FΦ∗u)

where F is the 2M Fourier matrix, {F}ij =

(2M)
−1/2 ej2π(i−1)(j−1)/(2M), 1 ≤ i, j ≤ 2M , and

where Φ is a 2M × 2M diagonal matrix with entries
{Φ}kk = e−jπ(M+1)(k−1)/(2M), k = 1, . . . , 2M .

We will provide here the proof of (21), the proof of (22)
following the same line of reasoning. Furthermore, we will
only show that (21) holds for the odd columns ofZF (p, q),
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namelyZF
odd(p, q), since the proof forZF

even(p, q) is almost
identical. Using the above definitions and following [19, eq.
(14)-(15)], we can write3

{

ZF
odd(p, q)

}

:,i
=

= 2

∞
∑

ℓ=−∞

N
∑

j=1

f [ℓ] Θℓ

[

M(bj)
{

R〈ℓ〉2M
(p, q)

}

:,i−j−[ℓ]2M+2

+M(jcj)
{

S〈ℓ〉2M
(p, q)

}

:,i−j−[ℓ]2M+2

]

whereΘ is a diagonal matrix with entries{Θ}kk = e−jωk , k =
1, . . . , 2M , [ℓ]2M returns the integer that is closest toℓ/(2M)
(with the convention that[(2m+ 1)M ]2M = m whenm ∈
Z) and where〈ℓ〉2M = ℓ−[ℓ]2M . Now, following the approach
in [19], we see that we can write
{

ZF
odd(p, q)−

R
∑

r=0

(−j)r

r! (2M)r
Λ
(

F (r)
)

Yodd

(

p, q(r)
)

}

:,i

= 2

∞
∑

ℓ=−∞

N
∑

j=1

f [ℓ] Θℓ

[

M(bj)
{

E1
〈ℓ〉2M ,R

}

:,i−j−[ℓ]2M+2

+M(jcj)
{

E2
〈ℓ〉2M ,R

}

:,i−j−[ℓ]2M+2

]

(32)

where we have defined, for−M < ℓ ≤ M,

E1
ℓ,R = Rℓ (p, q)−

R
∑

t=0

(−ℓ)
t

t! (2M)
tR0

(

p, q(t)
)

E2
ℓ,R = Sℓ (p, q)−

R
∑

t=0

(−ℓ)
t

t! (2M)
tS0

(

p, q(t)
)

and where we have used the fact that (using the integration
by parts formula)

1

2π

∫ 2π

0

F t (ω)ejωℓdω = ℓt (−j)t f [ℓ] , 0 ≤ t ≤ R.

Now, we separate the global sum in (32) into two terms, which
will be bounded in a different way. Consider a parameterδ ∈
(0, 1) and divide the sum with respect toℓ in (32) in two terms,
corresponding to|ℓ| < M δ and |ℓ| ≥ M δ. Let us denote by
χ1 andχ2 these two terms, so that(32) = χ1 + χ2, where
χ1 =

∑

|ℓ|≥Mδ (·) and χ2 =
∑

|ℓ|<Mδ (·). These two terms
will be bounded using different methods, as it is described
next.

A. Bounding the termχ1

First observe that we can bound the(m,n)th entry ofE1
ℓ,R

as
∣

∣

∣

{

E1
ℓ,R

}

m,n

∣

∣

∣
≤
∣

∣

∣
{Rℓ (p, q)}m,n

∣

∣

∣

+

R
∑

t=0

1

t!

∣

∣

∣

∣

ℓ

2M

∣

∣

∣

∣

t ∣
∣

∣

∣

{

R0

(

p, q(t)
)}

m,n

∣

∣

∣

∣

.

3In the following expression, matrices indexed by values that are either
nonpositive or higher than the matrix dimension should be understood as
zero. Observe that the number of terms of the sum inℓ is, in fact, finite.

Now, since the two pulsesp, q and their derivatives are
bounded by assumption, the absolute value of the entries of
Rℓ (p, q) and R0

(

p, q(t)
)

are upper bounded by a positive
constant independent ofM , denoted here byC. Therefore,
since|ℓ| < M in the definition ofE1

ℓ,R,

∣

∣

∣

{

E1
ℓ,R

}

m,n

∣

∣

∣
≤ C + C

R
∑

t=0

1

t!

∣

∣

∣

∣

ℓ

2M

∣

∣

∣

∣

t

≤ C

(

1 +

R
∑

t=0

2−t

t!

)

which is bounded by a positive constant independent ofM . A

similar reasoning can be applied to show that

∣

∣

∣

∣

{

E2
ℓ,R

}

i,j

∣

∣

∣

∣

has

the same property. Therefore, we see that (using the triangular
and the Cauchy-Schwarz inequality),

∣

∣

∣
{χ1}k,i

∣

∣

∣
≤ 2

∑

|ℓ|≥Mδ

|f [ℓ]|

N
∑

j=1

[

∥

∥

∥
{M(bj)}k,:

∥

∥

∥

∥

∥

∥

∥

[

E1
smod(ℓ,M),R

]

:,i−j+[ℓ/(2M)]+2

∥

∥

∥

∥

+

+
∥

∥

∥
{M(jcj)}k,:

∥

∥

∥

∥

∥

∥

∥

[

E2
smod(ℓ,M),R

]

:,i−j+[ℓ/(2M)]+2

∥

∥

∥

∥

]

≤ K1

√
M
(∥

∥

∥
{M(bj)}k,:

∥

∥

∥
+
∥

∥

∥
{M(jcj)}k,:

∥

∥

∥

)

∑

|ℓ|≥Mδ

|f [ℓ]|

≤ K2

√
M

∑

|ℓ|≥Mδ

|f [ℓ]|

for some positive constantsK1,K2 independent ofM , where
in the last equation we have used the fact that

∥

∥

∥
{M(u)}k,:

∥

∥

∥

is bounded above if the entries ofu are bounded (see further
[19, p.3604]). Finally, we need the following result:

Lemma 3 If F ∈ CR′+1 (R/2πZ), thekth Fourier coefficient
f [k] can be bounded by

|f [k]| ≤ c

|k|R′+1

for some positive constantc.

Proof: Applying the partial integration formula to the
definition f [k] consecutivelyR′ + 1 times,

f [k] =
(−1)R

′+1

2π (jk)R
′+1

∫ 2π

0

F (R′+1) (ω)ejωkdω

and therefore the result follows by the triangular inequality for
integrals, takingc = supω∈R/2πZ

∣

∣

∣
FR′+1 (ω)

∣

∣

∣
.

Applying this lemma, we readily see that there exists some
positive constantK such that, for anyǫ > 0,

∣

∣

∣
{χ1}k,i

∣

∣

∣
≤ K

√
M

∑

ℓ≥Mδ

1

ℓR′+1
≤

≤ K

M δ(R′−ǫ)−1/2

∑

ℓ≥Mδ

1

ℓ1+ǫ
= O

(

M−δ(R′−ǫ)+1/2
)

.
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B. Bounding the termχ2

In order to analyze this term, we will use the following
result, which can be proven as in [19, Lemma 1].

Lemma 4 Let ℓ ∈ Z be such that|ℓ| < M . Then, under
(As1),

∣

∣

∣

{

E1
ℓ,R

}

m,n

∣

∣

∣
≤ K

∣

∣

∣

∣

ℓ

M

∣

∣

∣

∣

R+1

,
∣

∣

∣

{

E2
ℓ,R

}

m,n

∣

∣

∣
≤ K

∣

∣

∣

∣

ℓ

M

∣

∣

∣

∣

R+1

for some positive constantK, independent ofM,m, n and ℓ.

Using this, we readily see that, by the Cauchy-Schwarz
inequality,
∣

∣

∣
{χ2}k,i

∣

∣

∣
≤ 2

∑

|ℓ|<Mδ

|f [ℓ]| ×

N
∑

j=1

∣

∣

∣
{M(bj)}k,:

[

E1
ℓ,R

]

:,i−j+2

∣

∣

∣
+
∣

∣

∣
{M(jcj)}k,:

[

E2
ℓ,R

]

:,i−j+2

∣

∣

∣

≤ K
√
M

∑

|ℓ|<Mδ

|f [ℓ]|
∣

∣

∣

∣

ℓ

M

∣

∣

∣

∣

R+1

= O
(

M−(1−δ)(R+1)+1/2
)

for some positive constantK.

C. Concluding the proof

With all the above, we have been able to show that the
entries of (32) are of the orderO(M−D), where

D = min {(1− δ) (R+ 1) , δ (R′ − ǫ)} − 1/2

for anyδ ∈ (0, 1) andǫ > 0. As a function ofδ, the maximum
D is obtained when

δ =
(R + 1)

(R′ − ǫ+R+ 1)

and the corresponding exponent is given by

D =
(R+ 1) (R′ − ǫ)

(R′ − ǫ+R+ 1)
− 1/2.

Now, if we require thatR′ > (2R+ 1) (R+ 1) and we fix
ǫ ∈ (0, R′ − (2R+ 1) (R+ 1)), we haveD > R, showing
that (32) = o

(

M−R
)

.
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