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Abstract

This paper studies the problem of sequential Gaussian shift-in-mean hypothesis testing in a distributed

multi-agent network. A sequential probability ratio test (SPRT) type algorithm in a distributed framework

of the consensus+innovations form is proposed, in which the agents update their decision statistics by

simultaneously processing latest observations (innovations) sensed sequentially over time and information

obtained from neighboring agents (consensus). For each pre-specified set of type I and type II error

probabilities, local decision parameters are derived which ensure that the algorithm achieves the desired

error performance and terminates in finite time almost surely (a.s.) at each network agent. Large deviation

exponents for the tail probabilities of the agent stopping time distributions are obtained and it is shown

that asymptotically (in the number of agents or in the high signal-to-noise-ratio regime) these exponents

associated with the distributed algorithm approach that of the optimal centralized detector. The expected

stopping time for the proposed algorithm at each network agent is evaluated and is benchmarked with

respect to the optimal centralized algorithm. The efficiency of the proposed algorithm in the sense of the

expected stopping times is characterized in terms of network connectivity. Finally, simulation studies are

presented which illustrate and verify the analytical findings.
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1. INTRODUCTION

A. Background and Motivation

The focus of this paper is on sequential simple hypothesis testing in multi-agent networks in which

the goal is to detect the (binary) state of the environment based on observations at the agents. By

sequential we mean, instead of considering fixed sample size hypothesis tests in which the objective is to

minimize the probabilities of decision error (the false alarm and the miss) based on a given deterministic

number of samples or observation data collected by the network agents, we are interested in the design

of testing procedures that in the quickest time or using the minimal amount of sensed data samples

at the agents can distinguish between the two hypotheses with guaranteed accuracy given in terms of

pre-specified tolerances on false alarm and miss probabilities. The motivation behind studying sequential

as opposed to fixed sample size testing is that in most practical agent networking scenarios, especially

in applications that are time-sensitive and/or resource constrained, the priority is to achieve inference

as quickly as possible by expending the minimal amount of resources (data samples, sensing energy

and communication). Furthermore, we focus on distributed application environments which are devoid of

fusion centers1 and in which inter-agent collaboration or information exchange is limited to a pre-assigned,

possibly sparse, communication structure.

Under rather generic assumptions on the agent observation models, it is well-known that in a (hy-

pothetical) centralized scenario or one in which inter-agent communication is all-to-all corresponding

to a complete communication graph, the sequential probability ratio test (SPRT) ([1]) turns out to be

the optimal procedure for sequential testing of binary hypotheses; specifically, the SPRT minimizes the

expected detection time (and hence the number of agent observation samples that need to be processed)

while achieving requisite error performance in terms of specified probability of false alarm (α) and

probability of miss (β) tolerances. The SPRT and its variants have been applied in various contexts, see,

for example, spectrum sensing in cognitive radio networks ([2]–[4]), target tracking [5], to name a few.

However, the SPRT, in the current multi-agent context, would require computing a (centralized) decision

statistic at all times, which, in turn, would either require all-to-all communication among the agents or

access to the entire network data at all times at a fusion center. In contrast, restricted by a pre-assigned

possibly sparse collaboration structure among the agents, in this paper we present and characterize a

distributed sequential detection algorithm, the CISPRT , based on the consensus+innovations approach

1By fusion center or center, we mean a hypothetical decision-making architecture in which a (central) entity has access to all

agent observations at all times and/or is responsible for decision-making on behalf of the agents.
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(see, for example [6], [7]). Specifically, focusing on a setting in which the agent observations over time

are conditionally Gaussian and independent and identically distributed (i.i.d.), we study the CISPRT

sequential detection procedure in which each network agent maintains a local (scalar) test statistic which

is updated over time by simultaneously assimilating the test statistics of neighboring agents at the previous

time instant (a consensus potential) and the most recent observations (innovations) obtained by the agent

and its neighbors. Also, similar in spirit to the (centralized) SPRT, each agent chooses two (local) threshold

parameters (design choices) and the test termination at an agent (and subsequent agent decision on the

hypotheses) is determined by whether the local test statistic at the agent lies in the interval defined by the

thresholds or not. This justifies the nomenclature that the CISPRT is a distributed SPRT type algorithm

of the consensus+innovations form. The main contributions of this paper are as follows:

Main Contribution 1: Finite Stopping Property. We show that, given any value of probability of

false alarm α and probability of miss β, the CISPRT algorithm can be designed such that each agent

achieves the specified error performance metrics and the test procedure terminates in finite time almost

surely (a.s.) at each agent. We derive closed form expressions for the local threshold parameters at the

agents as functions of α and β which ensures that the CISPRT achieves the above property.

Main Contribution 2: Asymptotic Characterization. By characterizing the stopping time distribution of

the CISPRT at each network agent, we compute large deviations decay exponents of the stopping time

tail probabilities at each agent, and show that the large deviations exponent of the CISPRT approaches

that of the optimal centralized in the asymptotics of N , where N denotes the number of agents in

the network. In the asymptotics of vanishing error metrics (i.e., as α, β → 0), we quantify the ratio

of the expected stopping time Td,i(α, β) for reaching a decision at an agent i through the CISPRT

algorithm and the expected stopping time Tc(α, β) for reaching a decision by the optimal centralized

(SPRT) procedure, i.e., the quantity E[Td,i(α,β)]
E[Tc(α,β)] , which in turn is a metric of efficiency of the proposed

algorithm as a function of the network connectivity. In particular, we show that the efficiency of the

proposed CISPRT algorithm in terms of the ratio E[Td,i(α,β)]
E[Tc(α,β)] is upper bounded by a constant which is a

function of the network connectivity and can be made close to one by choosing the network connectivity

appropriately, thus establishing the benefits of inter-agent collaboration in the current context.

Related Work. Detection schemes in multi-agent networks which involve fusion centers, where all

agents in the network transmit their local measurements, local decisions or local likelihood ratios to

a fusion agent which subsequently makes the final decision (see, for example, [8]–[11]) have been

well studied. Consensus-based approaches for fully distributed but single snapshot processing, i.e., in

which the agents first collect their observations possibly over a long time horizon and then deploy a
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consensus-type protocol [12]–[14] to obtain distributed information fusion and decision-making have

also been explored, see, for instance, [15], [16]. Generalizations and variants of this framework have

been developed, see for instance [17] which proposes truncated versions of optimal testing procedures to

facilitate efficient distributed computation using consensus; scenarios involving distributed information

processing where some of the agents might be faulty or there is imperfect model information (see, for

example, [18], [19]) have also been studied. More relevant to the current context are distributed detection

techniques that like the CISPRT procedure perform simultaneous assimilation of neighborhood decision-

statistics and local agent observations in the same time step, see, in particular, the running consensus

approach [20], [21], the diffusion approach [22]–[24] and the consensus+innovations approach [25]–[27].

These works address important questions in fixed (but possibly large) sample size distributed hypothesis

testing, including asymptotic characterization of detection errors [21], [24], fundamental performance

limits as characterized by large deviations decay of detection error probabilities in generic nonlinear

observation models and random networks [25], [26], and detection with noisy communication links [27].

A continuous time version of the running consensus approach [21] was studied in [28] recently with

implications on sequential distributed detection; specifically, asymptotic properties of the continuous

time decision statistics were obtained and in the regime of large thresholds bounds on expected decision

time and error probability rates were derived. However, there is a fundamental difference between the

mostly fixed or large sample size procedures discussed above and the proposed CISPRT sequential

detection procedure – technically speaking, the former focuses on analyzing the probability distributions

of the detection errors as a function of the sample size and/or specified thresholds, whereas, in this paper,

we design thresholds, stopping criteria and characterize the probability distributions of the (random)

stopping times of sequential distributed procedures that aim to achieve quickest detection given specified

tolerances on the detection errors. Addressing the latter requires novel technical machinery in the design

and analysis of dynamic distributed inference procedures which we develop in this paper.

We also contrast our work with sequential detection approaches based in other types of multi-agent

networking scenarios. In the context of decentralized sequential testing in multi-agent networks, funda-

mental methodological advances have been reported, see, for instance, [29]–[36], which address very

general models and setups. These works involve fusion center based processing where all agents in the

network either transmit their local decisions, measurements or their quantized versions to a fusion center.

In contrast, in this paper we restrict attention to Gaussian binary testing models only, but focus on a

fully distributed paradigm in which there is no fusion center and inter-agent collaboration is limited to a

pre-assigned, possibly sparse, agent-to-agent local interaction graph.
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Paper Organization : We briefly summarize the organization of the rest of the paper. Section 1-B

presents notation to be used throughout the paper. The sensing models and the abstract problem formula-

tion are stated and discussed in Section 2-A. Section 2-B presents preliminaries on centralized sequential

detection and motivates the distributed setup pursued in this paper. Section 3 presents the CISPRT

algorithm. The main results of the paper are stated in Section 4 which includes the derivation of the

thresholds for the CISPRT algorithm, the stopping time distribution for the CISPRT algorithm and

the key technical ingredients concerning the asymptotic properties and large deviation analysis for the

stopping time distributions of the centralized and distributed setups. It also includes the characterization

of the expected stopping times of the CISPRT algorithm and its centralized counterpart in asymptotics

of vanishing error metrics. Section 6 presents simulation studies. The proofs of the main results appear

in Section 7, whereas, Section 8 concludes the paper.

B. Notation

We denote by R the set of reals, R+ the set of non-negative reals, and by Rk the k-dimensional

Euclidean space. The set of k × k real matrices is denoted by Rk×k. The set of integers is denoted by

Z, whereas, Z+ denotes the subset of non-negative integers and Z+ = Z+ ∪ {∞}. We denote vectors

and matrices by bold faced characters. We denote by Aij or [A]ij the (i, j)th entry of a matrix A; ai

or [a]i the ith entry of a vector a. The symbols I and 0 are used to denote the k × k identity matrix

and the k × p zero matrix respectively, the dimensions being clear from the context. We denote by ei

the ith column of I. The symbol > denotes matrix transpose. The k × k matrix J = 1
k11

> where 1

denotes the k × 1 vector of ones. The operator ‖ · ‖ applied to a vector denotes the standard Euclidean

L2 norm, while applied to matrices it denotes the induced L2 norm, which is equivalent to the spectral

radius for symmetric matrices. All the logarithms in the paper are with respect to base e and represented

as log(·). Expectation is denoted by E[·] and Eθ[·] denotes expectation conditioned on hypothesis Hθ

for θ ∈ {0, 1}. P(·) denotes the probability of an event and Pθ(.) denotes the probability of the event

conditioned on hypothesis Hθ for θ ∈ {0, 1}. Q(.) denotes the Q-function which calculates the right

tail probability of a normal distribution and is given by Q(x) = 1√
2π

∫∞
x e−

u2

2 du, x ∈ R. We will use

the following property of the Q(.) function, namely for any x > 0, Q(x) ≤ 1
2e
− x2

2 . For deterministic

R+-valued sequences {at} and {bt}, the notation at = O(bt) denotes the existence of a constant c > 0

such that at ≤ cbt for all t sufficiently large, whereas, at = o(bt) indicates at/bt → 0 as t→∞.
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Spectral Graph Theory. For an undirected graph G = (V,E), V denotes the set of agents or vertices

with cardinality |V | = N , and E the set of edges with |E| = M . The unordered pair (i, j) ∈ E if there

exists an edge between agents i and j. We only consider simple graphs, i.e. graphs devoid of self loops

and multiple edges. A path between agents i and j of length m is a sequence (i = p0, p1, . . . , pm = j) of

vertices, such that (pn, pn+1) ∈ E, 0 ≤ n ≤ m−1. A graph is connected if there exists a path between all

the possible agent pairings. The neighborhood of an agent i is given by Ωi = {j ∈ V | (i, j) ∈ E}. The

degree of agent i is given by the cardinality di = |Ωi|. The structure of the graph may be equivalently

represented by the symmetric N × N adjacency matrix A = [Aij ], where Aij = 1 if (i, j) ∈ E, and

0 otherwise. The degree matrix is represented by the diagonal matrix D = diag(d1 . . . dN ). The graph

Laplacian matrix is represented by

L = D−A.

The Laplacian is a positive semidefinite matrix, hence its eigenvalues can be sorted and represented in

the following manner

0 = λ1(L) ≤ λ2(L) ≤ . . . λN (L).

Furthermore, a graph is connected if and only if λ2(L) > 0 (see [37] for instance). We stress that under

our notation, λ2, also known as the Fiedler value (see [37]), plays an important role because it acts as

an indicator of whether the graph is connected or not.

2. PROBLEM FORMULATION

A. System Model

The N agents deployed in the network decide on either of the two hypothesis H0 and H1. Each agent i

at (discrete) time t makes a scalar observation yi(t) of the form

Under Hθ : yi(t) = µθ + ni(t), θ = 0, 1.

For the rest of the paper we consider µ1 = µ and µ0 = −µ, and assume that, the agent observation noise

processes are independent and identically distributed (i.i.d.) Gaussian processes under both hypotheses

formalized as follows:

Assumption A1. For each agent i the noise sequence {ni(t)} is i.i.d. Gaussian with mean zero and vari-

ance σ2 under both H0 and H1. The noise sequences are also spatially uncorrelated, i.e., Eθ[ni(t)nj(t)] =

0 for all i 6= j and θ ∈ {0, 1}.
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Collect the yi(t)’s, i = 1, 2, . . . N into the N × 1 vector y(t) = (y1(t), . . . , yN (t))> and the ni(t)’s,

i = 1, 2, . . . N into the N × 1 vector n(t) = (n1(t), . . . , nN (t))>.

The log-likelihood ratio at the i-th sensor at time index t is calculated as follows:-

ηi(t) =
f1(yi(t))

f0(yi(t))
=

2µyi(t)

σ2
,

where f0(·) and f1(·) denote the probability distribution functions (p.d.f.s) of yi(t) under H0 and H1

respectively.

We note that,

ηi(t) ∼

N (m, 2m), H = H1

N (−m, 2m), H = H0,

(1)

where N (·) denotes the Gaussian p.d.f. and m = 2µ2

σ2 . The Kullback-Leibler divergence at each agent is

given by

KL = m. (2)

B. Sequential Hypothesis Testing – Centralized or All-To-All Communication Scenario

We start by reviewing concepts and results from (centralized) sequential hypothesis testing theory,

see [38] for example, to motivate our distributed hypothesis testing setup. Broadly speaking, the goal of

sequential simple hypothesis testing is as follows: given pre-specified constraints on the error metrics, i.e.,

upper bounds α and β on the probability of false alarm PFA and probability of miss PM , the decision-

maker keeps on collecting observations sequentially over time to decide on the hypotheses H1 or H0, i.e.,

which one is true; the decision-maker also has a stopping criterion or stopping rule based on which it

decides at each time (sampling) instant whether to continue sampling or terminate the testing procedure.

Finally, after termination, a (binary) decision is computed as to which hypothesis is in force based on all

the obtained data. A sequential testing procedure is said to be admissible if the stopping criterion, i.e.,

the decision whether to continue observation collection or not, at each instant is determined solely on the

basis of observations collected thus far. Naturally, from a resource optimization viewpoint, the decision-

maker seeks to design the sequential procedure (or equivalently the stopping criterion) that minimizes

the expected number of observation samples (or equivalently time) required to achieve a decision with

probabilities of false alarm and miss upper bounded by α and β respectively. To formalize in the current

context, first consider a setup in which inter-agent communication is all-to-all, i.e., at each time instant

each agent has access to all the sensed data of all other agents. In this complete network scenario, each
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agent behaves like a (hypothetical) center and the information available at any agent n at time t is the

sum-total of network observations till t, formalized by the σ-algebra [39]

Gc(t) = σ {yi(s), ∀i = 1, 2, . . . N and ∀1 ≤ s ≤ t} .

An admissible test Dc consists of a stopping criteria, where at each time t the agents’ (or the center in this

case) decision to stop or continue taking observations is adapted to (or measurable with respect to) the

σ-algebra Gc(t). Denote by TDc the termination time of Dc, a random time taking values in Z+ ∪ {∞}.

Formally, by the above notion of admissibility, the random time TDc is necessarily a stopping time with

respect to (w.r.t.) the filtration {Gc(t)}, see [39], and, in this paper, we restrict attention to tests Dc that

terminate in finite time a.s., i.e., TDc takes values in Z+ a.s. Denote by Eθ[TDc ] the expectation of TDc

under Hθ, θ = 0, 1, and ĤDc ∈ {0, 1} the decision obtained after termination. (Note that, assuming TDc

is finite a.s., the random variable ĤDc is measurable w.r.t. the stopped σ-algebra GTDc .) Let PDcFA and

PDcM denote the associated probabilities of false alarm and miss respectively, i.e.,

PDcFA = P0

(
ĤDc = 1

)
and PDcM = P1

(
ĤDc = 0

)
.

Now, denoting by Dc the class of all such (centralized) admissible tests, the goal in sequential hypothesis

testing is to obtain a test in Dc that minimizes the expected stopping time subject to attaining specified

error constraints. Formally, we aim to solve2

min
Dc∈Dc

E1[TDc ],

s.t. PDcFA ≤ α,P
Dc
M ≤ β, (3)

for specified α and β. Before proceeding further, we make the following assumption:

Assumption A2. The pre-specified error metrics, i.e., α and β, satisfy α, β ∈ (0, 1/2).

Noting that the (centralized) Kullback-Leibler divergence, i.e., the divergence between the probability

distributions induced on the joint observation space y(t) by the hypotheses H1 and H0, is Nm where

2Note, in (3) the objective is to minimize the expected stopping time under hypothesis H1. Alternatively, we might be interested

in minimizing E0[TDc ] over all admissible tests; similarly, in a Bayesian setup with prior probabilities p0 and p1 on H0 and H1

respectively, the objective would consist of minimizing the overall expected stopping time p0E0[TDc ] + p1E1[TDc ]. However,

it turns out that, in the current context, the Wald’s SPRT [40] (to be discussed soon) can be designed to minimize each of

the above criteria. Hence, without loss of generality, we adopt E1[TDc ] as our test design objective and use it as a metric to

determine the relative performance of tests.
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m is defined in (1), we obtain (see [40]) for each Dc ∈ Dc that attains PDcFA ≤ α and PDcM ≤ β,

E1[TDc ] ≥M(α, β),

where the universal lower bound M(α, β) is given by

M(α, β) =
(1− β) log(1−β

α ) + β log( β
1−α)

Nm
. (4)

Optimal (centralized) tests: Wald’s SPRT. We briefly review Wald’s sequential probability ratio test

(SPRT), see [40], that is known to achieve optimality in (3). To this end, denote by Sc(t) (the centralized)

test statistic

Sc(t) =

t∑
s=1

1>

N
η(s), (5)

where η(s) denotes the vector of log-likelihood ratios ηi(s)’s at the agents 3. The SPRT consists of a

pair of thresholds (design parameters) γlc and γhc , such that, at each time t, the decision to continue or

terminate is determined on the basis of whether Sc(t) ∈ [γlc, γ
h
c ] or not. Formally, the stopping time of

the SPRT is defined as follows:

Tc = inf{t | Sc(t) /∈ [γlc, γ
h
c ]}. (6)

At Tc the following decision rule is followed:

H =

H0, Sc(Tc) ≤ γlc

H1, Sc(Tc) ≥ γhc .
(7)

The optimality of the SPRT w.r.t. the formulation (3) is well-studied; in particular, in [40] it was shown

that, for any specified α and β, there exist choices of thresholds (γlc, γ
h
c ) such that the SPRT (6)-(7)

achieves the minimum in (3) among all possible admissible tests Dc in Dc.

For given α and β, exact analytical expressions of the optimal thresholds are intractable in general. A

commonly used choice of thresholds, see [1], is given by

γhc = log
(1− β

α

)
γlc = log

( β

1− α
)
, (8)

3Both the sum and average (over N ) can be taken as the test statistics for the centralized detector. We divide by N for

notational simplicity, so that the centralized decision statistic update becomes a special case of the CISPRT decision statistic

update studied in Section 3.
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which, although not strictly optimal in general, ensures that PcFA ≤ α and PcM ≤ β. (For SPRT procedures

we denote by PcFA and PcM the associated probabilities of false alarm and miss respectively, which depend

on the choice of thresholds used.) Nonetheless, the above choice (8) yields close to optimal behavior,

and is, in fact, asymptotically optimal; formally, supposing that α = β = ε, the SPRT with thresholds

given by (8) guarantees that (see [38])

lim
ε→0

E1[Tc]

M(ε, ε)
= 1,

whereM(·) is defined in (4). In the sequel, given a testing procedure Dc ∈ Dc and assuming α = β = ε,

we will study the quantity lim supε→0 (E1[TDc ]/M(ε, ε)) as a measure of its efficiency. Also, by abusing

notation, when α = β = ε, we will denote M(ε)
.
=M(ε, ε).

C. Subclass of Distributed Tests

The SPRT (6)-(7) requires computation of the statistic Sc(t) (see (5)) at all times, which, in turn,

requires access to all agent observations at all times. Hence, the SPRT may not be implementable beyond

the fully centralized or all-to-all agent communication scenario as discussed in Section 2-B. Motivated

by practicable agent networking applications, in this paper we are interested in distributed scenarios, in

which inter-agent communication is restricted to a preassigned (possibly sparse) communication graph.

In particular, given a graph G = (V,E), possibly sparse, modeling inter-agent communication, we

consider scenarios in which inter-agent cooperation is limited to a single round of message exchanges

among neighboring agents per observation sampling epoch. To formalize the distributed setup and the

corresponding subclass Dd of distributed tests, denote by Gd,i(t) the information available at an agent i

at time t. The information set includes the observations sampled by i and the messages received from

its neighbors till time t, and is formally given by the σ-algebra

Gd,i(t) = σ {yi(s),mi,j(s), ∀1 ≤ s ≤ t,∀j ∈ Ωi} . (9)

The quantity mi,j(s) denotes the message received by i from its neighbor j ∈ Ωi at time s, assumed to

be a vector of constant (time-invariant) dimension; the exact message generation rule is determined by

the (distributed) testing procedure Dd in place and, necessarily, mi,j(s) is measurable w.r.t. the σ-algebra

Gd,j(s). Based on the information content Gd,i(t) at time t, an agent decides on whether to continue taking

observations or to stop in the case of which, it decides on one of the hypothesis H0 or H1. A distributed

testing procedure Dd then consists of message generation rules, and, local stopping and decision criteria
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at the agents. Intuitively, and formally by (9) and the fact that mi,j(s) is measurable w.r.t Gd,j(s) for all

(i, j) and s, we have

Gd,i(t) ⊂ Gc(t) ∀i, t,

i.e., the information available at an agent i in the distributed setting is a subset of the information that

would be available to a hypothetical center in a centralized setting as given in Section 2-B. Formally, this

implies that the class of distributed tests Dd is a subset of the class of centralized or all-possible tests

Dc as given in Section 2-B, i.e., Dd ⊂ Dc. (Intuitively, it means any distributed test can be implemented

in a centralized setup or by assuming all-to-all communication.) In this paper, we are interested in

characterizing the distributed test that conforms to the communication restrictions above and is optimal

in the following sense:

min
Dd∈Dd

max
i=1,2,...,N

E1[TDd,i],

s.t. PDd,iFA ≤ α,P
Dd,i
M ≤ β,∀i = 1, 2, . . . , N. (10)

In the above, TDd,i denotes the termination (stopping) time at an agent i and PDd,iFA , PDd,iM , the respective

false alarm and miss probabilities at i. Note that, since Dd ⊂ Dc, for any distributed test Dd we have

E1[TDd,i] ≥ E1[Tc] for all i at any specified α and β, i.e., a distributed procedure cannot outperform

the optimal centralized procedure, the SPRT given by (6)-(7). Rather than solving (10), in this paper,

we propose a distributed testing procedure of the consensus+innovations type (see Section 3), which is

efficiently implementable and analyze its performance w.r.t. the optimal centralized testing procedure. In

particular, we study its performance as a function of the inter-agent communication graph and show that

as long as the network is reasonably well-connected, but possibly much sparser than the complete or all-

to-all network, the suboptimality (in terms of the expected stopping times at the agents) of the proposed

distributed procedure w.r.t. the optimal centralized SPRT procedure is upper bounded by a constant factor

much smaller than N . Our results clearly demonstrate the benefits of collaboration (even over a sparse

communication network) as, in contrast, in the non-collaboration case (i.e., each agent relies on its own

observations only) each agent would require N times the expected number of observations to achieve

prescribed α and β as compared to the optimal centralized scenario.4

4In the non-collaboration setup, the optimal procedure at an agent is to perform an SPRT using its local observation sequence

only; w.r.t. the centralized, this implies that the effective SNR at an agent reduces by a factor 1/N and hence (see [40]) the

agent would require N times more observations (in expectation) to achieve the same level of false alarm and miss.
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3. A DISTRIBUTED SEQUENTIAL DETECTOR

To mitigate the high communication and synchronization overheads in centralized processing, we propose

a distributed sequential detection scheme where network communication is restricted to a more localized

agent-to-agent interaction scenario. More specifically, in contrast to the fully centralized setup described in

Section 2-B, we now consider sequential detection in a distributed information setup in which inter-agent

information exchange or cooperation is restricted to a preassigned (arbitrary, possibly sparse) communica-

tion graph, whereby an agent exchanges its (scalar) test statistic and a scalar function of its latest sensed

information with its (one-hop) neighbors. In order to achieve reasonable detection performance with such

localized interaction, we propose a distributed sequential detector of the consensus+innovations form.

Before discussing the details of our algorithm, we state an assumption on the inter-agent communication

graph.

Assumption A3. The inter-agent communication graph is connected, i.e. λ2(L) > 0, where L denotes

the associated graph Laplacian matrix.

Decision Statistic Update. In the proposed distributed algorithm, each agent i maintains a test statistic

Pd,i(t), which is updated recursively in a distributed fashion as follows :

Pd,i(t+ 1) =
t

t+ 1

wiiPd,i(t) +
∑
j∈Ωi

wijPd,j(t)


+

1

t+ 1

wiiηi(t+ 1) +
∑
j∈Ωi

wijηj(t+ 1)

 , (11)

where Ωi denotes the communication neighborhood of agent i and the wij’s denote appropriately chosen

combination weights (to be specified later).

We collect the weights wij in an N ×N matrix W, where we assign wij = 0, if (i, j) /∈ E. Denoting by

Pd(t) and η(t) as the vectors [Pd,1(t), Pd,2(t), . . . , Pd,N (t)]> and [η1(t), η2(t), . . . , ηN (t)]> respectively,

(11) can be compactly written as follows:-

Pd(t+ 1) = W

(
t

t+ 1
Pd(t) +

1

t+ 1
η(t+ 1)

)
. (12)

Now we state some design assumptions on the weight matrix W.

Assumption A4. We design the weights wij’s in (11) such that the matrix W is non-negative, symmetric,

irreducible and stochastic, i.e., each row of W sums to one.
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We remark that, if Assumption A4 is satisfied, then the second largest eigenvalue in magnitude of W,

denoted by r, turns out to be strictly less than one, see for example [14]. Note that, by the stochasticity

of W, the quantity r satisfies

r = ||W − J||. (13)

For connected graphs, a simple way to design W is to assign equal combination weights, in which

case we have,

W = I− δL, (14)

where δ is a suitably chosen constant. As shown in [41], [42], Assumption A4 can be enforced by taking δ

to be in (0, 2/λN (L)). The smallest value of r is obtained by setting δ to be equal to 2/(λ2(L)+λN (L)),

in which case we have,

r = ||W − J|| = (λN (L)− λ2(L))

(λ2(L) + λN (L))
. (15)

Remark 3.1. It is to be noted that Assumption A4 can be enforced by appropriately designing the

combination weights since the inter-agent communication graph is connected (see Assumption A3). Several

weight design techniques satisfying Assumption A4 exist in the literature (see, for example, [41]). The

quantity r quantifies the rate of information flow in the network, and in general, the smaller the r the faster

is the convergence of information dissemination algorithms (such as the consensus or gossip protocol on

the graph, see for example [14], [42], [43]). The optimal design of symmetric weight matrices W for a

given network topology that minimizes the value r can be cast as a semi-definite optimization problem

[41].

Stopping Criterion for the Decision Update. We now provide a stopping criterion for the proposed

distributed scheme. To this end, let Sd,i(t) denote the quantity tPd,i(t), and let γhd,i and γld,i be thresholds

at an agent i (to be determined later) such that agent i stops and makes a decision only when,

Sd,i(t) /∈ [γld,i, γ
h
d,i] (16)

for the first time. The stopping time for reaching a decision at an agent i is then defined as,

Td,i = inf{t |Sd,i(t) /∈ [γld,i, γ
h
d,i]}, (17)

and the following decision rule is adopted at Td,i :

H =

H0 Sd,i(Td,i) ≤ γld,i

H1 Sd,i(Td,i) ≥ γhd,i.
(18)
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We refer to this distributed scheme (11), (17) and (18) as the consensus+innovations SPRT (CISPRT )

hence forth.

Remark 3.2. It is to be noted that the decision statistic update rule is distributed and recursive, in that,

to realize (11) each agent needs to communicate its current statistic and a scalar function of its latest

sensed observation to its neighbors only; furthermore, the local update rule (11) is a combination of a

consensus term reflecting the weighted combination of neighbors’ statistics and a local innovation term

reflecting the new sensed information of itself and its neighbors. Note that the stopping times Td,i’s are

random and generally take different values for different agents. It is to be noted that the Td,i’s are in

fact stopping times with respect to the respective agent information filtrations Gd,i(t)’s as defined in (9).

For subsequent analysis we refer to the stopping time of an agent as the stopping time for reaching a

decision at an agent.

We end this section by providing some elementary properties of the distributed test statistics.

Proposition 3.3. Let the Assumptions A1, A3 and A4 hold. For each t and i, the statistic Sd,i(t), defined

in (16)-(18), is Gaussian under both H0 and H1. In particular, we have

E0[Sd,i(t)] = −mt and E1[Sd,i(t)] = mt,

and

E0

[
(Sd,i(t) +mt)2

]
= E1

[
(Sd,i(t)−mt)2

]
≤ 2mt

N
+

2mr2(1− r2t)

1− r2
.

Proof: Recall from (1), ηi(t) is distributed as N (m, 2m), ∀i = 1, 2, · · · , N , when conditioned on

hypothesis H1 and where m is the Kullback-Leibler divergence as defined in (2). Hence,

E1[Sd,i(t)] =

t∑
j=1

e>i W
t+1−jE1[η(j)]

= m

t∑
j=1

e>i W
t+1−j1

⇒ E1[Sd,i(t)] = mt.
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We note that Sη = Cov(η(t)) = 2mI. By standard algebraic manipulations we have,

V ar(Sd,i(t)) = E1

[
(Sd,i(t)−mt)2

]
=

t∑
j=1

e>i W
t+1−jSηW

t+1−jei

=

t∑
j=1

e>i (Wt−j − J)Sη(W
t−j − J)ei +

t∑
j=1

e>i JSηJei

= 2m

t∑
j=1

ei
>(W2(t−j) − J)ei + 2m

t∑
j=1

ei
>Jei

= 2m||
t∑

j=1

ei
>(W2(t−j) − J)ei||+

2mt

N

≤ 2m

t∑
j=1

||ei>(W2(t−j) − J)ei||+
2mt

N

≤ 2m

t∑
j=1

||eiTei||||W2(t−j) − J||+ 2mt

N

= 2m

t−1∑
j=0

r2j + +
2mt

N

≤ 2mt

N
+

2m(1− r2t)

1− r2
.

The assertion for hypothesis H0 follows in a similar way.

4. MAIN RESULTS

We formally state the main results in this section, the proofs being provided in Section 7.

A. Thresholds for the CISPRT

In this section we derive thresholds for the CISPRT , see (16)-(18), in order to ensure that the procedure

terminates in finite time a.s. at each agent and the agents achieve specified error probability requirements.

We emphasize that in the proposed approach, a particular agent has access to its one hop neighborhood’s

test statistics and latest sensed information only. Moreover the latest sensed information is accessed

through a scalar function of the latest observation of the agents in an agent’s neighborhood. Recall, by

(11) and (16) the (distributed) test statistic at agent i is given by

Sd,i(t) =

t∑
j=1

e>i W
t+1−jηj .
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For the proposed CISPRT , we intend to derive thresholds which guarantee the error performance in terms

of the error probability requirements α and β, i.e., such that Pd,iFA ≤ α and Pd,iM ≤ β, ∀i = 1, 2, . . . , N ,

where Pd,iFA and Pd,iM represent the probability of false alarm and the probability of miss for the ith agent

defined as

Pd,iFA = P0(Sd,i(Td,i) ≥ γhd,i)

Pd,iM = P1(Sd,i(Td,i) ≤ γld,i),

with Td,i as defined in (17).

Theorem 4.1. Let the Assumptions A1-A4 hold.

1) Then, for each α and β there exist γhd,i and γld,i, ∀i = 1, 2, . . . , N , such that Pd,iFA ≤ α and Pd,iM ≤ β

and the test concludes in finite time a.s. i.e.

P1(Td,i <∞) = 1,∀i = 1, 2, . . . , N,

where Td,i is the stopping time for reaching a decision at agent i.

2) In particular, for given α and β, any choice of thresholds γhd,i and γld,i satisfying

γhd,i ≥
8(k + 1)

7N

(
log

(
2

α

)
− log(1− e

−Nm
4(k+1) )

)
= γh,0d (19)

γld,i ≤
8(k + 1)

7N

(
log

(
β

2

)
+ log(1− e

−Nm
4(k+1) )

)
= γl,0d , (20)

where m is defined in (2) and k is defined by

Nr2 = k,

with r as in (13), achieves a.s. finite stopping at an agent i while ensuring that Pd,iFA ≤ α and Pd,iM ≤ β.

The first assertion ensures that for any set of pre-specified error metrics α and β (satisfying Assumption

A2), the CISPRT can be designed to achieve the error requirements while ensuring finite stopping a.s.

It is to be noted that the ranges associated with the thresholds in (19)-(20) provide sufficient threshold

design conditions for achieving pre-specified performance, but may not be necessary. The thresholds

chosen according to (19)-(20) are not guaranteed to be optimal in the sense of the expected stopping

time of the CISPRT algorithm and there might exist better thresholds (in the sense of expected stopping

time) that achieve the pre-specified error requirements.



17

Remark 4.2. We remark the following: 1) We have shown that the CISPRT algorithm can be designed

so as to achieve the pre-specified error metrics at every agent i. This, in turn, implies that the probability

of not reaching decision consensus among the agents can be upper bounded by Nβ when conditioned

on H1 and Nα when conditioned on H0. It is to be noted that with α→ 0 and β → 0, the probability of

not reaching decision consensus conditioned on either of the hypothesis goes to 0 as well; 2) The factor

k in the closed form expressions of the thresholds in (19) and (20) relates the value of the thresholds to

the rate of flow of information r and, hence, in turn, can be related to the degree of connectivity of the

inter-agent communication graph under consideration, see (13)-(14) and the accompanying discussion.

From Assumption A4, we have that r < 1. As r goes smaller, which intuitively means increased rate of

flow of information in the inter-agent network, the value of thresholds needed to achieve the pre-specified

error metrics become smaller i.e. the interval [γld,i, γ
h
d,i] shrinks for all i = 1, 2, . . . , N .

B. Probability Distribution of Td,i and Tc

We first characterize the stopping time distributions for the centralized SPRT detector (see Section 2-B)

and those of the distributed CISPRT . Subsequently, we compare the centralized and distributed stopping

times by studying their respective large deviation tail probability decay rates.

Theorem 4.3. ([44], [45]) Let the Assumptions A1 and A2 hold and given the SPRT for the centralized

setup in (5)-(7), we have

P1(Tc > t) ≥ exp

(
Nµγlc
σ2

)
K∞t

(
γhc

)
− exp

(
Nµγhc
σ2

)
K∞t

(
γlc

)
, (21)

where

KS
t (a) =

σ2π

N(γhc − γlc)2

S∑
s=1

l(−1)l+1

Nm
4 + σ2s2π2

2N(γhc−γlc)2
exp

(
−
(
Nm

4
+

σ2s2π2

2N(γhc − γlc)2

)
t

)
sin

(
sπa

γhc − γlc

)
,

whereas, Tc is defined in (6) and γhc and γlc are the associated SPRT thresholds chosen to achieve

specified error requirements α and β.

The above characterization of the stopping distribution of Wald’s SPRT was obtained in [44], [45]. In

particular, this was derived by studying the first passage time distribution of an associated continuous

time Wiener process with a constant drift; intuitively, the continuous time approximation of the discrete

time SPRT consists of replacing the discrete time likelihood increments by a Wiener process accompanied

by a constant drift that reflects the mean of the hypothesis in place. This way, the sequence obtained

by sampling the continuous time process at integer time instants is equivalent in distribution to the
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(discrete time) Wald’s SPRT considered in this paper. The term on the R.H.S. of (21) is exactly equal

to the probability that the first passage time of the continuous time Wiener process with left and right

boundaries γlc and γhc respectively is greater than t, whereas, is, in general, a lower bound for the discrete

time SPRT (as given in Theorem 4.3) as increments in the latter happen at discrete (integer) time instants

only.

We now provide a characterization of the stopping time distributions of the CISPRT algorithm.

Lemma 4.4. Let the assumptions A1-A4 hold. Consider the CISPRT algorithm given in (12), (17) and

(18) and suppose that, for specified α and β, the thresholds γhd,i and γld,i, i = 1, · · · , N , are chosen to

satisfy the condtions derived in (19) and (20). We then have,

P1(Td,i > t) ≤ Q
( −γhd,i +mt√

2mt
N + 2mr2(1−r2t)

1−r2

)
, ∀i = 1, 2, . . . , N, (22)

where Td,i is the stopping time of the i-th agent to reach a decision as defined in (17).

C. Comparison of stopping times of the distributed and centralized detectors

In this section we compare the stopping times Tc and Td,i by studying their respective large deviation

tail probability decay rates. We utilize the bounds derived in Theorem 4.3 and Lemma 4.4 to this end.

Corollary 4.5. Let the hypotheses of Lemma 4.3 hold. Then we have the following large deviation

characterization for the tail probabilities of Tc:

lim inf
t→∞

1

t
log(P1(Tc > t)) ≥ −Nm

4
− σ2π2

2N(γhc − γl)2
.

It is to be noted that the exponent is a function of the thresholds γhc and γlc and with the decrease in

the error constraints α and β, Nm
4 + σ2π2

2N(γhc−γl)2
≈ Nm

4 .

Theorem 4.6. Let the hypotheses of Lemma 4.4 hold. Then we have the following large deviation

characterization for the tail probabilities of the Td,i’s:

lim sup
t→∞

1

t
log(P1(Td,i > t)) ≤ −Nm

4
, ∀i = 1, 2, . . . , N.

Importantly, the upper bound for the large deviation exponent of the CISPRT in Theorem 4.6 is inde-

pendent of the inter-agent communication topology as long as the connectivity conditions Assumptions

A3-A4 hold. Finally, in the asymptotic regime, i.e., as N goes to ∞, since σ2π2

2N(γhc−γl)2
= o(Nm), we

have that the performance of the distributed CISPRT approaches that of the centralized SPRT, in the

sense of stopping time tail exponents, as N tends to ∞.
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D. Comparison of the expected stopping times of the centralized and distributed detectors

In this section we compare the expected stopping times of the centralized SPRT detector and the proposed

CISPRT detector. Recall that Ej [Td,i] and Ej [Tc] represent the expected stopping times for reaching a

decision for the CISPRT (at an agent i) and its centralized counterpart respectively, where j ∈ {0, 1}

denotes the hypothesis on which the expectations are conditioned on. Without loss of generality we

compare the expectations conditioned on Hypothesis H1, similar conclusions (with obvious modifications)

hold when the expectations are conditioned on H0 (see also Section 2-B).

Also, for the sake of mathematical brevity and clarity, we approximate α = β = ε in this subsection.

Recall Section 2-B and note that, at any instant of time t, the information σ-algebra Gd,i(t) at any agent

i is a subset of Gc(t), the information σ-algebra of a (hypothetical) center, which has access to the data

of all agents at all times. This implies that any distributed procedure (in particular the CISPRT ) can

be implemented in the centralized setting, and, since M(ε) (see (4)) constitutes a lower bound on the

expected stopping time of any sequential test achieving error probabilities α = β = ε, we have that

E1[Td,i]

M(ε)
≥ 1, ∀ i = 1, 2, . . . , N, (23)

for all ε ∈ (0, 1/2). In order to provide an upper bound on the ratio E1[Td,i]/M(ε) and, hence, compare

the performance of the proposed CISPRT detector with the optimal centralized detector, we first obtain

a characterization of E1[Td,i] in terms of the algorithm thresholds as follows.

Theorem 4.7. Let the assumptions A1-A4 hold and let α = β = ε. Suppose that the thresholds of the

CISPRT be chosen as γhd,i = γh,0d and γld,i = γl,0d for all i = 1, · · · , N , where γh,0d and γl,0d are defined

in (19)-(20). Then, the stopping time Td,i of the CISPRT at an agent i satisfies

(1− 2ε)γhd,i
m

− c

m
≤ E1[Td,i] ≤

5γhd,i
4m

+
1

1− e
−Nm
4(k+1)

,

where k = Nr2, r is as defined in (13), and c > 0 is a constant that may be chosen to be independent

of the thresholds and the ε.

It is to be noted that, when α = β = ε, then γhd,i = −γld,i from (19) and (20). The upper bound derived in

the above assertion might be loose, owing to the approximations related to the non-elementary Q-function.

We use the derived upper bound for comparing the performance of the CISPRT algorithm with that of

its centralized counterpart. The constant c > 0 in the lower bound is independent of the thresholds γld,i

and γhd,i (and hence, also independent of the error tolerance ε) and is a function of the network topology

and the Gaussian model statistics only. Explicit expressions and bounds on c may be obtained by refining
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the various estimates in the proofs of Lemma 7.2 and Theorem 4.7, see Section 4. However, for the

current purposes, it is important to note that c = o(γh,0d ), i.e., as ε goes to zero or equivalently in the

limit of large thresholds c/γh,0d → 0. Hence, as ε → 0, the more readily computable quantity (1−2ε)γhd,i
m

may be viewed as a reasonably good approximation to the lower bound in Theorem 4.7.

Theorem 4.8. Let the hypotheses of Theorem 4.7 hold. Then, we have the following characterization of

the ratio of the expected stopping times of the CISPRT and the centralized detector in asymptotics of

the ε,

1 ≤ lim sup
ε→0

E1[Td,i]

M(ε)
≤ 10(k + 1)

7
, ∀i = 1, 2, . . . , N, (24)

where k = Nr2 and r is as defined in (13).

Theorem 4.8 shows that the CISPRT algorithm can be designed in such a way that with pre-specified

error metrics α and β going to 0 , the ratio of the expected stopping time for the CISPRT algorithm

and its centralized counterpart are bounded above by 10(k+1)
7 where the quantity k depends on r which

essentially quantifies the dependence of the CISPRT algorithm on the network connectivity.

Remark 4.9. It is to be noted that the derived upper bound for the ratio of the expected stopping times of

the CISPRT algorithm and its centralized counterpart may not be a tight upper bound. The looseness in

the upper bound is due to the fact that the set of thresholds chosen are oriented to be sufficient conditions

and not necessary. As pointed out in Remark 4.2 there might exist possibly better choice of thresholds

for which the pre-specified error metrics are satisfied. Hence, given a set of pre-specified error metrics

and a network topology the upper bound of the derived assertion above can be minimized by choosing

the optimal weights for W as shown in [41]. It can be seen that the ratio of expected stopping times

of the isolated SPRT based detector case, i.e., the non-collaboration case, and the centralized SPRT

based detector is N (see Section 2-B). So, for the CISPRT case in order to make savings as far as

the stopping time is concerned with respect to the isolated SPRT based detector, 10(k+1)
7 ≤ N should be

satisfied. Hence, we have that r ≤
√

7N−10
10N is a sufficient condition for the same.

5. DEPENDENCE OF THE CISPRT ON NETWORK CONNECTIVITY: ILLUSTRATION

In this section, we illustrate the dependence of the CISPRT algorithm on the network connectivity, by

considering a class of graphs. Recall from section 3 that the quantity r quantifies the rate of information

flow in the network, and in general, the smaller the r the faster is the convergence of information

dissemination algorithms (such as the consensus or gossip protocol ([14], [42], [43]) on the graph and
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the optimal design of symmetric weight matrices W for a given network topology that minimizes the

value r can be cast as a semi-definite optimization problem [41].

To quantify the dependance of the CISPRT algorithm on the graph topology, we note that the limit

derived in (24) is a function of W and can be re-written as follows :

lim sup
ε→0

E1[Td,i]

M(ε)
≤ 10(Nr2 + 1)

7

.
= R(W), (25)

i.e., the derived upper boundR(W) is a function of the chosen weight matrix W . Based on (25), naturally,

a weight design guideline would be to design W (under the network topological constraints) so as to

minimize R(W), which, by (25) and as discussed earlier corresponds to minimizing r = ‖W−J‖. This

leads to the following upper bound on the achievable performance of the CISPRT :

lim sup
ε→0

E1[Td,i]

M(ε)
≤ min

W
R(W).

By restricting attention to constant link weights, i.e., W’s of the form (I− δL) and noting that

min
δ
‖I− δL− J‖ =

(λN (L)− λ2(L))

(λ2(L) + λN (L))
,

(see (15)), we further obtain

lim sup
ε→0

E1[Td,i]

M(ε)
≤ min

W
R(W) ≤ min

δ
R(I− δL) =

10

7
+

10N(λN (L)− λ2(L))2

7(λ2(L) + λN (L))2
. (26)

The final bound obtained in (26) might not be tight, being an upper bound (there may exist W matrices

not of the form I− δL with smaller r) to a possibly loose upper bound derived in (24), but, nonetheless,

directly relates the performance of the CISPRT to the spectra of the graph Laplacian and hence the graph

topology. From (26) we may further conclude that networks with smaller value of the ratio λ2(L)/λN (L)

tend to achieve better performance. This leads to an interesting graph design question: given resource

constraints, specifically, say a restriction on the number of edges of the graph, how to design inter-agent

communication networks that tend to minimize the eigen-ratio λ2(L)/λN (L) so as to achieve improved

CISPRT performance. To an extent, such graph design questions have been studied in prior work,

see [15], which, for instance, shows that expander graphs tend to achieve smaller λ2(L)/λN (L) ratios

given a constraint on the total number of network edges.

6. SIMULATIONS

We generate planar random geometric networks of 30, 300 and 1000 agents. The x coordinates and

the y coordinates of the agents are sampled from an uniform distribution on the open interval (0, 1).
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Fig. 1: Comparison of Stopping Time Distributions for N=30

We link two vertices by an edge if the distance between them is less than or equal to g. We go on

re-iterating this procedure until we get a connected graph. We construct the geometric network for each

of N = 30, 300 and 1000 cases with three different values of g i.e. g = 0.3, 0.6 and 0.9. The values

of r obtained in each case is specified in Table I. We consider two cases, the CISPRT case and the

r g=0.3 g=0.6 g=0.9

N=30 0.8241 0.5580 0.2891

N=300 0.7989 0.6014 0.2166

N=1000 0.7689 0.5940 0.2297

TABLE I: Values of r

non-collaborative case. We consider α = β = ε and ranging from 10−8 to 10−4 in steps of 10−6. For

each such ε, we conduct 2000 simulation runs to empirically estimate the stopping time distribution

P1(T > t) of a randomly chosen agent (with uniform selection probability) for each of the cases. From

these empirical probability distributions of the stopping times, we estimate the corresponding expected

stopping times. Figure 4 shows the instantaneous behavior of the test statistics in the case of N = 300

with ε = 10−10. In Figures 1, 2 and 3 it is demonstrated that the ratio of the expected stopping time of

the CISPRT algorithm and the universal lower boundM(ε) is less than that of the ratio of the expected

stopping times of the isolated (non-collaborative) case andM(ε). The ratio of the theoretical lower bound

of the expected stopping time of the CISPRT derived in Theorem 4.7 andM(ε) was also studied. More

precisely, we compared the experimental ratio of the expected stopping times of the CISPRT andM(ε)
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with the ratio of the quantity (1−2ε)γhd,i
m (the small ε approximation of the theoretical lower bound given

in Theorem 4.7, see also the discussion provided in Section 4 after the statement of Theorem 4.7) and

M(ε). It can be seen that the experimental ratio of the expected stopping times of the CISPRT and

M(ε) is very close to the ratio of the (approximate) theoretical lower bound of expected stopping time

of the CISPRT and M(ε), which shows that the lower bound derived in Theorem 4.7 is reasonable.

Figure 4 is an example of a single run of the algorithm which shows the instantaneous behavior of the

distributed test statistic Sd,i(t) for N = 300, where we have plotted three randomly chosen agents i.e.

i = 1, i = 10 and i = 50.

7. PROOFS OF MAIN RESULTS

Proof of Theorem 4.1: Let Â = eγ
l
d,i and B̂ = eγ

h
d,i where γhd,i and γld,i ∈ R are thresholds (to be

designed) for the CISPRT . In the following derivation, for a given random variable z and an event A,

we use the notation E[z;A] to denote the expectation E[zIA]. Let T denote the random time which can

take values in Z+ given by

T = inf
{
t|Sd,i(t) /∈

[
γld,i, γ

h
d,i

]}
. (27)

First, we show that for any γhd,i and γld,i ∈ R,

P0 (T <∞) = P1 (T <∞) = 1, (28)

i.e., the random time T defined in (27) is a.s. finite under both the hypotheses. Indeed, we have,

P1 (T > t) ≤ Q

 −γhd,i +mt√
2mt
N + 2mr2(1−r2t)

1−r2


⇒ lim

t→∞
P1 (T > t) = 0

⇒ P1 (T <∞) = 1.

The proof for H0 follows in a similar way.

Now, since (28) holds, the quantity Sd,i(T ) is well-defined a.s. under H0. Now, noting that, under

H0, for any t, the quantity Sd,i(t) is Gaussian with mean −mt and variance upper bounded by 2mt
N +
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2mr2(1−r2t)
1−r2 (see Proposition 3.3), we have,

Pd,iFA = P0(Sd,i(T ) ≥ log B̂) =

∞∑
t=1

P0(T = t, Sd,i(t) ≥ log B̂)

≤
∞∑
t=1

P0(Sd,i(t) ≥ log B̂)

≤
∞∑
t=1

Q
( log B̂ +mt√

2mt
N + 2mr2(1−r2t)

1−r2

)
. (29)

To obtain a condition for γhd,i in the CISPRT such that Pd,iFA ≤ α, let’s define k > 0 such that k = Nr2.

Now, note that k thus defined satisfies

2mr2(1− r2t)

1− r2
≤ 2mkt

N
, ∀t. (30)

Then we have, by (29)-(30),

Pd,iFA ≤
∞∑
t=1

Q
( log B̂ +mt√

2mt
N + 2mr2(1−r2t)

1−r2

)
≤
∞∑
t=1

Q
( log B̂ +mt√

2mt(k+1)
N

)
≤ 1

2

∞∑
t=1

e

−(γh
d,i

)2−m2t2−2γh
d,i
mt

4mt(k+1)
N

=
e
−
Nγh

d,i

2(k+1)

2

( b γhd,i2m
c∑

t=1

e
−N(γh

d,i
)2−Nm2t2

4mt(k+1) +

b
γh
d,i

m
c∑

t=b
γh
d,i

2m
c+1

e
−N(γh

d,i
)2−Nm2t2

4mt(k+1)

+

b
2γh
d,i

m
c∑

t=b
γh
d,i

m
c+1

e
−N(γh

d,i
)2−Nm2t2

4mt(k+1) +

∞∑
t=b

2γh
d,i

m
c+1

e
−N(γh

d,i
)2−Nm2t2

4mt(k+1)

)

≤ e
−
Nγh

d,i

2(k+1)

2

(
e
−
Nγh

d,i

2(k+1)

b
γh
d,i

2m
c∑

t=1

e
−Nmt
4(k+1)

︸ ︷︷ ︸
(1)

+e
−
Nγh

d,i

4(k+1)

b
γh
d,i

m
c∑

t=b
γh
d,i

2m
c+1

e
−Nmt
4(k+1)

︸ ︷︷ ︸
(2)

+ e
−
Nγh

d,i

8(k+1)

b
2γh
d,i

m
c∑

t=b
γh
d,i

m
c+1

e
−Nmt
4(k+1)

︸ ︷︷ ︸
(3)

+

∞∑
t=b

2γh
d,i

m
c+1

e
−Nmt
4(k+1)

︸ ︷︷ ︸
(4)

)

≤ e
−
Nγh

d,i

2(k+1)

2(1− e−
Nm

4(k+1) )

(
e
−
Nγh

d,i

2(k+1) + e
−
Nγh

d,i

4(k+1) e
−
Nγh

d,i

8(k+1) + e
−
Nγh

d,i

8(k+1) e
−
Nγh

d,i

4(k+1) + e
−
Nγh

d,i

2(k+1)

)

≤ 2e
−

7Nγh
d,i

8(k+1)

1− e−
Nm

4(k+1)

. (31)
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In the above set of equations we use the fact that Q(x) is a non-increasing function, the inequality

Q(x) ≤ 1
2e

−x2
2 , and we upper bound (1)− (4) by their infinite geometric sums.

We now note that, a sufficient condition for Pd,iFA ≤ α to hold is the following:

2e
−

7Nγh
d,i

8(k+1)

1− e−
Nm

4(k+1)

≤ α. (32)

Solving (32), we have that, any γhd,i that satisfies

γhd,i ≥ γ
h,0
d =

8(k + 1)

7N

(
log

(
2

α

)
− log(1− e−

Nm

4(k+1) )

)
, (33)

achieves Pd,iFA ≤ α in the CISPRT .

Proceeding as in (29) and (31) we have that, any γld,i that satisfies

γld,i ≤ γ
l,0
d

.
=

8(k + 1)

7N

(
log

(
β

2

)
+ log(1− e−

Nm

4(k+1) )

)
, (34)

achieves Pd,iM ≤ β in the CISPRT .

Clearly, by the above, any pair (γhd,i, γ
l
d,i) satisfying γhd,i ∈ [γh,0d ,∞) and γld,i ∈ (−∞, γl,0d ] (see (33)

and (34)) ensures that Pd,iFA ≤ α and Pd,iM ≤ β. The a.s. finiteness of the corresponding stopping time Td,i

(see (17)) under both H0 and H1 follows readily by arguments as in (28).

Remark 7.1. It is to be noted that the derived thresholds are sufficient conditions only. The approximations

(see (1) − (4) in (31)) made in the steps of deriving the expressions of the thresholds were done so as

to get a tractable expression of the range. By solving the following set of equations

1

2

∞∑
t=1

e
−N(γl

d,i
)2−Nm2t2+2Nγl

d,i
mt

4mt(k+1) ≤ β

1

2

∞∑
t=1

e
−N(γh

d,i
)2−Nm2t2−2Nγh

d,i
mt

4mt(k+1) ≤ α

numerically, tighter thresholds can be obtained.

Proof of Lemma 4.4: Let us define the event Ais as {γld,i ≤ Sd,i(s) ≤ γhd,i}. Now, note that

P1(Td,i > t) = P1(∩ts=1A
i
s),

and

P1(∩ts=1A
i
s) ≤ P1(Ait).
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By Proposition 3.3, under H1, for any t, the quantity Sd,i(t) is Gaussian with mean mt and variance

upper bounded by 2mt
N + 2mr2(1−r2t)

1−r2 . Hence we have, for all i = 1, 2, . . . , N .

P1(Td,i > t) ≤ Q
( −γhd,i +mt√

2mt
N + 2mr2(1−r2t)

1−r2

)
. (35)

Proof of Corollary 4.5: For simplicity of notation, let a = Nm
4 and b = σ2π2

2N(γhc−γlc)2
. From (21), we

have,

1

t
log(P1(Tc > t)) ≥ 1

t
log

(
exp

(
Nµγlc
σ2

)
K∞t

(
γhc

)
− exp

(
Nµγhc
σ2

)
K∞t

(
γlc

))
=

1

t
log (exp (− (a+ b) t))

+
1

t
log

(
b

∞∑
s=1

s(−1)s+1

a+ s2b
exp

(
−b(s2 − 1)t

)
×
(

exp

(
Nµγlc
σ2

)
sin

(
sπγhc
γhc − γlc

)
− exp

(
Nµγhc
σ2

)
sin

(
sπγlc
γhc − γlc

)))
. (36)

For all t, S ≥ 1, let

U(t, S) =
1

t
log

(
b

S∑
s=1

s(−1)s+1

a+ s2b
exp

(
−b(s2 − 1)t

)
×
(

exp

(
Nµγlc
σ2

)
sin

(
sπγhc
γhc − γlc

)
− exp

(
Nµγhc
σ2

)
sin

(
sπγlc
γhc − γlc

)))
and let g = exp

(
Nµγhc
σ2

)
+ exp

(
Nµγlc
σ2

)
.

Note that for all t ≥ 1, the limit

lim
S→∞

U(t, S) (37)

exists and is finite (by Theorem 4.3), and similarly for all S ≥ 1,

lim
t→∞

U(t, S) = lim
t→∞

1

t
log

(
b

S∑
s=1

s(−1)s+1

a+ s2b
exp

(
−b(s2 − 1)t

)
× sin

(
sπγhc
γhc − γlc

)(
exp

(
Nµγlc
σ2

)
+ (−1)s+1 exp

(
Nµγhc
σ2

)))
= lim

t→∞

1

t
log

(
bg

a+ b
sin

(
πγhc

γhc − γlc

))
= 0, (38)

where we use the fact that only the largest exponent in a finite summation of exponential terms contributes

to its log-normalised limit as t→∞ and

sin

(
sπγhc
γhc − γlc

)
= (−1)s sin

(
sπγlc
γhc − γlc

)
.
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Finally, using the fact that there exists a constant c5 > 0 (independent of t and S) such that for all

t, S ≥ 1,

U(t, S) ≤ 1

t
log

(
bg

S∑
s=1

s

a+ s2b
exp

(
−b(s2 − 1)t

))
≤ c5, (39)

we may conclude that the convergence in (37)-(38) are uniform in S and t respectively. This in turn

implies that the order of the limits may be interchanged and we have that

lim
t→∞

lim
S→∞

U(t, S) = lim
S→∞

lim
t→∞

U(t, S) = 0. (40)

Hence, we have from (36) and (40),

lim inf
t→∞

1

t
log(P1(Tc > t)) ≥ −(a+ b)

+ lim
t→∞

lim
S→∞

1

t
log

(
b

S∑
s=1

s(−1)s+1

a+ s2b
exp

(
−b(s2 − 1)t

)
× sin

(
sπγhc
γhc − γlc

)(
exp

(
Nµγlc
σ2

)
− (−1)s exp

(
Nµγhc
σ2

)))
= −(a+ b) + lim

S→∞
lim
t→∞

1

t
log

(
b

S∑
s=1

s(−1)s+1

a+ s2b
exp

(
−b(s2 − 1)t

)
× sin

(
sπγhc
γhc − γlc

)(
exp

(
Nµγlc
σ2

)
+ (−1)s+1 exp

(
Nµγhc
σ2

)))
= −(a+ b) + lim

S→∞
lim
t→∞

1

t
log

(
bg

a+ b
sin

(
πγhc

γhc − γlc

))
= −(a+ b) = −

(
Nm

4
+

σ2π2

2N(γhc − γlc)2

)
.

Proof of Theorem 4.6: We use the following upper bound for Q function in the proof below

Q(x) ≤ 1

x
√

2π
e−x

2/2 (41)
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From (22),(41) and (39), we have,

lim sup
t→∞

1

t
log(P1(Td,i > t))

≤ lim sup
t→∞

1

t
log
( 1√

2π

√
2mt
N + 2m r2(1−r2t)

(1−r2)

(−γhd,i +mt)
e

−N(−γhd,i+mt)
2

4mt+4mN
r2(1−r2t)

(1−r2)

)

≤ lim sup
t→∞

1

t

log
(√ 2mt

N + 2m r2(1−r2t)
(1−r2)√

2π(mt− γhd,i)

)
−

N(γhd,i)
2

4mt+ 4m r2(1−r2t)
(1−r2)

− Nmt

4 + 4 r2(1−r2t)
(t(1−r2))

+
Nmγhd,it

2mt+ 2mN r2(1−r2t)
(1−r2)


⇒ lim sup

t→∞

1

t
log(P1(Td,i > t)) ≤ −Nm

4
.

The proof of Theorem 4.7 requires an intermediate result that estimates the divergence between the agent

statistics over time.

Lemma 7.2. Let the Assumptions A1, A3 and A4 hold. Then, there exists a constant c1, depending on

the network topology and the Gaussian model statistics only, such that

E1

[
sup
t≥0
‖Sd,i(t)− Sd,j(t)‖

]
≤ c1

for all agent pairs (i, j).

Proof: Denoting by Sd(t) = tPd(t) the vector of the agent test statistics Sd,i(t)’s, we have by (12),

Sd(t+ 1) = W (Sd(t) + η(t+ 1)) . (42)

Let Sd(t) denote the average of the Sd,i(t)’s, i.e.,

Sd(t) = (1/N) . (Sd,1(t) + · · ·+ Sd,N (t)) ,

Noting that JSd(t) = Sd(t)1 and WJ = JW = J , we have from (42)

vt+1 = (W − J)vt + ut+1, (43)

where vt and ut, for all t ≥ 0, are given by

vt = Sd(t)− Sd(t)1
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and

ut+1 = (W − J) η(t+ 1).

It is important to note that the sequence {ut} is i.i.d. Gaussian and, in particular, there exists a constant

c2 such that E1[‖ut‖2] ≤ c2 for all t.

Now, by (43) we obtain

‖vt+1‖ ≤ r‖vt‖+ ‖ut+1‖,

where recall r = ‖W − J‖ < 1. Since the sequence {ut} is i.i.d. and L2-bounded, an application of the

Robbins-Siegmund’s lemma (see [46]) yields

E1

[
sup
t≥0
‖vt‖

]
≤ c3 <∞,

where c3 is a constant that may be chosen as a function of r, c2 and E1[‖v0‖]. Now, noting that, for any

pair (i, j),

E1

[
sup
t≥0
‖Sd,i(t)− Sd,j(t)‖

]
≤ E1

[
sup
t≥0
‖Sd,i(t)− Sd(t)‖

]
+ E1

[
sup
t≥0
‖Sd,j(t)− Sd(t)‖

]
≤ 2c3,

the desired assertion follows.

Proof of Theorem 4.7: We prove the upper bound in Theorem 4.7 first. Since P1(Td,i < ∞) = 1,

for the upper bound we have,

E1[Td,i] =

∞∑
t=0

P1(Td,i > t)

(a)

≤
∞∑
0

Q
( −γhd,i +mt√

2mt
N + 2mr2(1−r2t)

1−r2

)

=

b
γh
d,i

m
c∑

0

Q
( −γhd,i +mt√

2mt
N + 2mr2(1−r2t)

1−r2

)
︸ ︷︷ ︸

(1)

+

b
3γh
d,i

2m
c∑

b
γh
d,i

m
c+1

Q
( −γhd,i +mt√

2mt
N + 2mr2(1−r2t)

1−r2

)
︸ ︷︷ ︸

(2)

+

b
2γh
d,i

m
c∑

b
3γh
d,i

2m
c+1

Q
( −γhd,i +mt√

2mt
N + 2mr2(1−r2t)

1−r2

)
︸ ︷︷ ︸

(3)

+

∞∑
b
2γh
d,i

m
c+1

Q
( −γhd,i +mt√

2mt
N + 2mr2(1−r2t)

1−r2

)
︸ ︷︷ ︸

(4)
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(b)

≤
γhd,i
m

+
γhd,i
4m

+
1

2
e
Nγh

d,i

2(k+1)

b
2γh
d,i

m
c∑

b
3γh
d,i

2m
c+1

e
−(Nγh

d,i
)2−Nm2t2

4m(k+1)t +
1

2(1− e
−Nm
4(k+1) )

≤
5γhd,i
4m

+
1

2(1− e
−Nm
4(k+1) )

+
1

2
e

3Nγh
d,i

8(k+1)

b
2γh
d,i

m
c∑

b
3γh
d,i

2m
c+1

e
−Nmt
4(k+1)

≤
5γhd,i
4m

+
1

1− e
−Nm
4(k+1)

,

where (a) is due to the upper bound derived in Lemma 4.4 and (b) is due to the following : 1) ∀t ∈

[0, bγ
h
d,i

m c] in (1), −γhd,i +mt is negative and hence every term in the summation can be upper bounded

by 1; 2) ∀t ∈ [bγ
h
d,i

m c+ 1, b3γhd,i
2m c] in (2), −γhd,i +mt is positive and hence every term in the summation

can be upper bounded by 1
2 ; and 3) for the terms (3) and (4), the inequality Q(x) ≤ 1

2e
−x2/2 is used

and the sums are upper bounded by summing the resulting geometric series.

In order to obtain the lower bound, we first note that conditioned on hypothesis H1, at the stopping

time Td,i, an agent exceeds the threshold γhd,i with probability at least 1−ε and is lower than the threshold

γld,i with probability at most ε. Moreover, with α = β = ε, γhd,i = −γld,i.

Now, denote by Ehi the event Ehi = {Sd,i(Td,i) ≥ γhd,i} and by Eli the event Eli = {Sd,i(Td,i) ≤ γld,i}.

Since P1(Td,i <∞) = 1, we have that

E1 [Sd,i(t)] = E1

[
Sd,i(t).IEhi

]
+ E1

[
Sd,i(t).IEli

]
, (44)

where I{·} denotes the indicator function. We now lower bound the quantities on the R.H.S. of (44). Note

that γhd,i ≥ 0 and Sd,i(t) ≥ γhd,i on Ehi . Hence

E1

[
Sd,i(t).IEhi

]
≥ γhd,iP1

(
Ehi

)
≥ (1− ε)γhd,i. (45)

Now recall the construction in the proof of Lemma 7.2 and note that by (42) we have

Sd,i(t) = Sd,i(t− 1)−
∑
j∈Ωi

wij (Sd,i(t− 1)− Sd,j(t− 1)) + ηi(t).

Hence, we have that

Sd,i(Td,i).IEli (46)

≥ Sd,i(Td,i − 1).IEli −
∑
j∈Ωi

wij‖Sd,i(Td,i − 1)− Sd,j(Td,i − 1)‖ − ‖ηi(Td,i)‖

≥ Sd,i(Td,i − 1).IEli −
∑
j∈Ωi

wij sup
t≥0
‖Sd,i(t)− Sd,j(t)‖ − ‖ηi(Td,i)‖.
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Now, observe that on the event Eli , Sd,i(Td,i − 1) > γld,i a.s. Since γld,i < 0 and P1(Eli) ≤ ε (by

hypothesis), we have that

γld,iε ≤ γld,iP1(Eli) (47)

= E1

[
γld,i.IEli

]
≤ E1

[
Sd,i(Td,i − 1).IEli

]
.

Note that, by Lemma 7.2, we have

E1

∑
j∈Ωi

wij sup
t≥0
‖Sd,i(t)− Sd,j(t)‖


≤
∑
j∈Ωi

wijE1

[
sup
t≥0
‖Sd,i(t)− Sd,j(t)‖

]
≤ |Ωi|c1.

Finally, by arguments similar to [47], [48] for characterizing expected overshoots in stopped random

sums (see, in particular, Theorem 1 in [48]) it follows that there exists a constant c4 (depending on the

Gaussian model statistics and the network topology only) such that

E1 [‖ηi(Td,i)‖] ≤ c4. (48)

In particular, note that, the constant c4 in (48) may be chosen to be independent of the thresholds and,

hence, the error tolerance parameter ε. Substituting (47)-(48) in (46) we obtain

E1

[
Sd,i(Td,i).IEli

]
≥ γld,iε− |Ωi|c1 − c4.

This together with (44)-(45) yield

E1 [Sd,i(Td,i)] ≥ (1− ε) γhd,i + γld,iε− |Ωi|c1 − c4 (49)

= (1− 2ε) γhd,i − c,

where the last equality follows by noting that γhd,i = −γld,i and taking the constant c to c = |Ωi|c1 + c4.

We note that the event {Td,i = t} is independent of ηi, i > t. We also have from Theorem 4.1 that
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P1(Td,i <∞) = 1. Hence, we have,

E1[Sd,i(Td,i)] = E1[

Td,i∑
j=1

ei
>Wt+1−jη(j)]

= E1

 ∞∑
j=1

I{Td,i≥j}ei
>WTd,i+1−jη(j)


=

∞∑
j=1

E1

[
I{Td,i≥j}ei

>WTd,i+1−j
]
E1 [η(j)]

= m

∞∑
j=1

E1

[
I{Td,i≥j}ei

>WTd,i+1−j
]
1

= m

∞∑
j=1

E1

[
I{Td,i≥j}ei

>WTd,i+1−j1
]

= mE1 [Td,i] . (50)

Combining (50) and (49) we have,

(1− 2ε)γhd,i
m

− c

m
≤ E1[Td,i]

and the desired assertion follows.

Proof of Theorem 4.8: From (23), we first note that

E1[Td,i]

E1[Tc]
≥ 1, ∀i = 1, 2, . . . , N. (51)

From the upper bound for the stopping time distribution derived for the CISPRT in (35), we have the

following upper bound for E1[Td,i]

E1[Td,i] ≤
5γhd,i
4m

+
1

1− e
−Nm
4(k+1)

. (52)

We choose the threshold γhd,i to be

γhd,i = γh,0d =
8(k + 1)

7N
(log(

2

ε
)− log(1− e

−Nm
4(k+1) )). (53)

Using (52) and (53), we have

lim sup
ε→0

E1[Td,i]

E1[Tc]
≤ lim

ε→0

10
7 (k + 1) log(2

ε ) +O(1)

(1− 2ε) log(1−ε
ε )

.

Noting that,

lim sup
ε→0

O(1)

(1− 2ε) log(1−ε
ε )

= 0,
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we obtain

lim sup
ε→0

E1[Td,i]

E1[Tc]
≤ 10(k + 1)

7
. (54)

Combining (54) and (51), the result follows.

8. CONCLUSION

In this paper we have considered sequential detection of Gaussian binary hypothesis observed by a

sparsely interconnected network of agents. The CISPRT algorithm we proposed combines two terms :

a consensus term that updates at each sensor its test statistic with the test statistics provided by agents

in its one-hop neighborhood and an innovation term that updates the current agent test statistic with

the new local sensed information. We have shown that the CISPRT can be designed to achieve a.s.

finite stopping at each network agent with guaranteed error performance. We have provided explicit

characterization of the large deviation decay exponents of tail probabilities of the CISPRT stopping and

its expected stopping time as a function of the network connectivity. The performance of the CISPRT

was further benchmarked w.r.t. the optimal centralized sequential detector, the SPRT. The techniques

developed in this paper are of independent interest and we envision their applicability to other distributed

sequential procedures. An interesting future direction would be to consider networks with random time-

varying topology. We also intend to develop extensions of the CISPRT for setups with correlated and

non-linear non-Gaussian observation models.
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[32] V. V. Veeravalli, T. Başar, and H. V. Poor, “Decentralized sequential detection with sensors performing sequential tests,”

Mathematics of Control, Signals and Systems, vol. 7, no. 4, pp. 292–305, 1994.

[33] G. Fellouris and G. V. Moustakides, “Decentralized sequential hypothesis testing using asynchronous communication,”

IEEE Transactions on Information Theory, vol. 57, no. 1, pp. 534–548, 2011.

[34] H. V. Poor and O. Hadjiliadis, Quickest detection. Cambridge University Press Cambridge, 2009, vol. 40.

[35] A. G. Tartakovsky and V. V. Veeravalli, “Change-point detection in multichannel and distributed systems,” Applied

Sequential Methodologies: Real-World Examples with Data Analysis, vol. 173, pp. 339–370, 2004.

[36] A. Tartakovsky and X. Rong Li, “Sequential testing of multiple hypotheses in distributed systems,” in Information Fusion,

2000. FUSION 2000. Proceedings of the Third International Conference on, vol. 2. IEEE, 2000, pp. THC4–17.

[37] F. R. Chung, Spectral graph theory. American Mathematical Soc., 1997, vol. 92.

[38] H. Chernoff, Sequential analysis and optimal design. Siam, 1972, vol. 8.

[39] J. Jacod and A. N. Shiryaev, Limit theorems for stochastic processes. Springer-Verlag Berlin, 1987, vol. 288.

[40] A. Wald and J. Wolfowitz, “Optimum character of the sequential probability ratio test,” The Annals of Mathematical

Statistics, vol. 19, no. 3, pp. 326–339, 1948.

[41] L. Xiao and S. Boyd, “Fast linear iterations for distributed averaging,” Systems & Control Letters, vol. 53, no. 1, pp. 65–78,

2004.

[42] S. Kar and J. M. Moura, “Sensor networks with random links: Topology design for distributed consensus,” IEEE

Transactions on Signal Processing, vol. 56, no. 7, pp. 3315–3326, 2008.

[43] ——, “Distributed consensus algorithms in sensor networks with imperfect communication: Link failures and channel

noise,” IEEE Transactions on Signal Processing, vol. 57, no. 1, pp. 355–369, 2009.

[44] D. A. Darling and A. Siegert, “The first passage problem for a continuous markov process,” The Annals of Mathematical

Statistics, pp. 624–639, 1953.

[45] P. Hieber and M. Scherer, “A note on first-passage times of continuously time-changed brownian motion,” Statistics &

Probability Letters, vol. 82, no. 1, pp. 165–172, 2012.



37

[46] P. Baldi, L. Mazliak, and P. Priouret, Martingales and Markov chains: solved exercises and elements of theory. CRC

Press, 2002.

[47] A. Wald, Sequential analysis. Courier Corporation, 1973.

[48] G. Lorden, “On excess over the boundary,” The Annals of Mathematical Statistics, pp. 520–527, 1970.


	1 Introduction
	1-A Background and Motivation
	1-B Notation

	2 Problem Formulation
	2-A System Model
	2-B Sequential Hypothesis Testing – Centralized or All-To-All Communication Scenario
	2-C Subclass of Distributed Tests

	3 A Distributed Sequential Detector
	4 Main Results
	4-A Thresholds for the CISPRT
	4-B Probability Distribution of Td,i and Tc
	4-C Comparison of stopping times of the distributed and centralized detectors
	4-D Comparison of the expected stopping times of the centralized and distributed detectors

	5 Dependence of the CISPRT on Network Connectivity: Illustration
	6 Simulations
	7 Proofs of Main Results
	8 Conclusion
	9 Acknowledgment
	References

