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A Minorization-Maximization Method for Optimizing Sum Rate in the

Downlink of Non-Orthogonal Multiple Access Systems

Muhammad Fainan Hanif, Zhiguo Ding Member, IEEE, Tharmalingam Ratnarajah Senior Member, IEEE, and

George K. Karagiannidis Fellow, IEEE

Abstract—Non-orthogonal multiple access (NOMA) systems
have the potential to deliver higher system throughput, com-
pared to contemporary orthogonal multiple access techniques.
For a linearly precoded multiple-input single-output (MISO)
system, we study the downlink sum rate maximization problem,
when the NOMA principle is applied. Being a non-convex and
intractable optimization problem, we resort to approximate it
with a minorization-maximization algorithm (MMA), which is
a widely used tool in statistics. In each step of the MMA, we
solve a second-order cone program, such that the feasibility set
in each step contains that of the previous one, and is always
guaranteed to be a subset of the feasibility set of the original
problem. It should be noted that the algorithm takes a few
iterations to converge. Furthermore, we study the conditions
under which the achievable rates maximization can be further
simplified to a low complexity design problem, and we compute
the probability of occurrence of this event. Numerical examples
are conducted to show a comparison of the proposed approach
against conventional multiple access systems.

Index Terms—Non-orthogonal multiple access, orthogonal
multiple access, convex optimization, zero forcing, spectral ef-
ficiency, connectivity, latency, complexity.

I. INTRODUCTION

Efficient multiple access techniques in wireless systems

has long been a sought after desirable feature. Several facets

haven been considered, while dealing with the design of

multiple access schemes. For example, spectral efficiency,

reliability and quality of service, efficient utilization of radio

resources, and recently, energy efficiency are some of the

objectives, that form the basis of multiple access techniques

in wireless communication systems. Non-orthogonal multiple

access (NOMA) has been conceived as a breakthrough tech-

nology for fifth generation (5G) wireless networks [1]–[3].

The main themes of 5G networks, namely, reduced latency,

high connectivity, and ultra-fast speeds are being attributed
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to devising systems working on the principles of NOMA [1].

NOMA uses power domain to multiplex additional users in

the time/frequency/code, slot already occupied by a mobile

device. The enabling techniques for NOMA are not new and

find their roots in some old principles–superposition coding

(SC) and successive interference cancellation (SIC). SC was

first proposed by Cover in [4], as an achieveability scheme for

a degraded broadcast channel. Likewise, various versions of

SIC have been employed in the past in systems like Vertical-

Bell Laboratories Layered Space-Time (V-BLAST) and Code

Division Multiple Access (CDMA) [5], [6]. Therefore, in

addition to being a candidate for the next generation of 5G

wireless networks, it is very important that NOMA has also

the potential to integrate well with existing multiple access

paradigms.

In NOMA, the base station (BS) transmits a superposition

coded signal, which is a sum of all messages of the users. The

users are arranged with respect to their effective channel gains

i.e., the one with the lowest gain is assumed to be at the bottom

of the sequence, the one with the highest gain at the top, while

the remaining are arranged in an increasing order between the

two. NOMA ensures that the weaker users receive a higher

fraction of the total power budget. When a stronger user is

allowed to access the slot being occupied by a weaker one,

its signal does not adversely impact the performance of the

weaker user, as it is already experiencing a channel fade. At the

same time, the stronger user can get rid of the interference due

to the weaker one, by applying a SIC operation. In traditional

orthogonal multiple access schemes, once the slot has been

reserved for a user, other users are prohibited from accessing

that. This, of course, has a negative impact on the aggregate

system’s throughput. The major outcome of sharing the same

channel slot is that the sum rates are expected to improve, and

with intelligent power allocation the weaker users can also be

efficiently served.

A. Literature

To the best of our knowledge, as of today, NOMA has

mostly been explored for single-input single-output (SISO)

systems. For example, in [7] Ding et al. studied NOMA for the

downlink of a cellular system, and by assuming fixed powers,

they derived expressions for the aggregate ergodic sum rate

and outage probability of a particular user. Interestingly, in

that paper it was concluded that in the absence of a judiciously

chosen target data rate, a user can always be in outage. For

multiple-input multiple-output (MIMO) systems, Lan et al.

[8], explored the impact of error propagation of SIC and user
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velocity on the NOMA performance. Their results showed

that even in the worst error propagation scenario, NOMA

outperforms conventional orthogonal multiple access and can

yield performance gains for different user mobility. Chen et

al. [9], studied NOMA for the downlink of a wireless system,

when BS and receivers are each equipped with two antennas.

Traditional minimum-mean-squared-error (MMSE) precoding

matrices have been used, which do not guarantee maximum

throughput for a given user ordering. Similarly, Timotheou

et al. [10], studied the power allocation for NOMA in a

SISO system from a fairness point of view. Finally, Ding et

al., investigated MIMO-NOMA in [11], and derived outage

probabilities for fixed and more sophisticated power allocation

schemes.

B. Contributions

In this paper, we focus on the downlink of a multiple-input

single-output (MISO) system, in which the transmit signals

of each user are multiplied by a complex precoding vector.

The goal is to design these vectors in order to maximize

the total throughput of the system, while simultaneously

satisfying the NOMA constraints. To solve this problem we

rely on the approximation technique that has been commonly

dubbed as concave-convex procedure (CCP)1 or minorization-

maximization algorithm (MMA)2 [12]–[17]. Under the dif-

ferent name of sequential convex programming a parametric

approach has been proposed in [18]. Recently, in the context

of weighted sum rate maximization and physical layer mul-

ticasting, similar ideas were used by Hanif et al. and Tran

et al. in [19], [20], respectively. In addition, Christopoulos

et al. [21] have studied a successive convex approximation

scheme, which is similar in spirit to the MMA approach, for

multicast multigroup beamforming with applications to large

scale antenna arrays. Due to the flexible nature of MMA

approach, these ideas have also been used in image processing

applications [22].

The main contributions of this paper can be summarized as

follows:

• By incorporating decodability constraints to ensure that

better users can perform SIC, we provide a novel math-

ematical programming based approach to solve the sum

rate maximization problem in the downlink of a MISO

system, relying on NOMA principles. Similarly, con-

straints are also included to guarantee that the desired

signals of the weaker users are strong enough to render

them non-zero data rates.

• Using the MMA concept, we develop an iterative al-

gorithm that solves the NOMA sum rate maximization

problem and obtains complex precoding vectors, which

maximize the aggregate throughput. Unlike traditional

approaches that rely on semidefinite programming (SDP),

to deal with such optimization problems, the MMA based

1If the original problem is a minimization instead of a maximization, the
procedure has been referred to as convex-concave procedure (CCP).

2The MMA has also been called as majorization-minimization algorithm if
the original problem is a minimization problem.

algorithm solves a second-order cone program (SOCP) in

each step.

• We show that the proposed algorithm is provably conver-

gent in few iterations. Moreover, a complexity analysis is

also carried out to show that the worst case complexity of

the SOCP, which we solve in each run, is just polynomial

in design dimensions. Furthermore, under plausible as-

sumptions, the algorithm converges to the Karush-Kuhn-

Tucker (KKT) point of the original problem.

• We present an approximation to the original optimization

program, with the main goal of complexity reduction. To

provide more insight, we study conditions under which

this approximation is tight. Moreover, for the special case

of orthogonal precoding vectors, we provide a proba-

bilistic insight regarding the tightness of the proposed

approximation.

• Finally, numerical examples are presented to show the

validity of the proposed algorithm. These results reveal

that the NOMA transmission outperforms the conven-

tional orthogonal multiple access schemes, particularly

when the transmit signal-to-noise ratio (SNR) is low,

and the number of users are greater than the number

of BS antennas. We also investigate the scenario, where

the proposed approximation exactly matches the original

problem. In this case, it is shown that the distance

between the users and the BS plays a crucial role and

affects the system’s throughput.

C. Structure

The rest of the paper is organized as follows. In Section

II, we describe the system model and formulate the problem.

In Section III, we present the preliminaries, needed to outline

the algorithm in the next section. The algorithm is developed

and analysed in Section IV, while a reduced complexity ap-

proximation is motivated and developed in Section V. Finally,

numerical results and conclusions are presented in Sections VI

and VII, respectively.

D. Notations

Bold uppercase and lowercase letters are used to denote

matrices and vectors, respectively. The symbols Cn,Rn and

R
n
+ are used for n-dimensional complex, real, and nonnegative

real spaces, respectively. For a vector e, its j th coordinate is

denoted by ei. Furthermore, ‖e‖2 is used to represent l2 norm

of a vector e ∈ Cn, which is defined as ‖e‖2 =
∑n

i=1 |ei|2,

where |ei| is the absolute value of ei. O(.) is reserved for

complexity estimates. Unless otherwise specified, calligraphic

symbols are used to represent sets. ⌈x⌉ is the ceiling function,

which returns the smallest integer not less than x. ∇e denotes

gradient of a vector e. min(.) gives the minimum of the

quantities passed as its argument. ℜ(c) and ℑ(c) denote the

real and imaginary parts of a complex number c, respectively.

Pr(E) denotes the probability of event E. Any new or

unconventional notation used in the paper is defined in the

place where it occurs.



3

1
N

1+−kUE

kUE −

1−−kUE

Decodable at
Interference at

T

kUE − kUE −

Fig. 1. The system setup. A BS with T antennas serves N users. The user
UE-k receives interference from the users UE-k + 1 to UE-N . The signals
of remaining users from UE-1 to UE-k − 1 are cancelled at UE-k.

II. SYSTEM SETUP

We consider the downlink of a BS, equipped with T
antennas and serving N single antenna users. NOMA principle

is used for transmission purposes (please refer to Fig. 1).

We further assume that the transmitted signal of each user

equipment (UE) is linearly weighted with a complex vector.

Specifically, to all N users, the BS transmits a superposition

of the individual messages, wisi for all i, where wi ∈ CT and

si are the complex weight vector and the transmitted symbol

for UE-i, respectively. Therefore, under frequency flat channel

conditions the received signal yi at UE-i is

yi = hH
i





N
∑

j=1

wjsj



+ ni =

N
∑

j=1

hH
i wjsj + ni,

i = 1, . . . , N, (1)

where hi =
√

d−γ
i gi ∈ C

T (column vector), with di being

the distance between ith UE and the BS, γ is the path

loss exponent, gi ∼ CN (0, I), and ni represents circularly

symmetric complex Gaussian noise with variance σ2. Subse-

quently, NOMA proposes to employ SIC at individual UEs,

based on the particular ordering. For instance, the works in

[2], [7] use the fact that for a single-input single-output (SISO)

system, once the channels are arranged in a particular order

(increasing or decreasing), then a UE-k decodes all those

UE-i signals, whose index i < k (increasing order) and

i > k (decreasing order). An illustration of this process is

also given in Fig. 1. However, simple SISO ordering cannot

be transformed to the MISO setup. The present work does not

focus on the optimal ordering problem, but in the design of the

complex weighting vectors, wi, that maximize the aggregate

throughput of the system, for a given UE ordering. Next, we

assume that the channel state information (CSI) is perfectly

known at all nodes.

A. Problem Formulation

We assume that the UE-1 is the weakest (and hence cannot

decode any interfering signals), while UE-N is the strongest

user, and is able to nullify all other UE interference by

performing SIC. The other UEs are placed in an increasing

order with respect to their index numbers. For instance, UE-

m is placed before UE-n if index m < n. Increasing channel

strengths can be used to order the users. It is pertinent to

mention here that, unless otherwise indicated, by channel

strengths we specifically mean to refer to the norm of channel

vectors. But, as mentioned above, this ordering may not be

optimal, and better rates may be achievable for different order

of users. According to NOMA the achievable rate after SIC

operation at the kth user, with k > i for all i = 1, . . . , k − 1,

is [2], [7]

Rk
k = log2

(

1 +
|hH

k wk|2
∑N

j=k+1 |hH
k wj |2 + σ2

)

, 1 ≤ k ≤ N − 1.

(2)

An important observation should be noted here. For the above

rate to be achievable at UE-k, it is necessary for all UE-j,
with j > k, to satisfy

Rk
j = log2

(

1 +
|hH

j wk|2
∑N

m=k+1 |hH
j wm|2 + σ2

)

≥ Rth

j = k + 1, . . . , N (3)

where Rk
j is the rate of UE-j to decode the message of kth

UE, and Rth is some target data rate for user Rk
k. In addition,

to allocate non-trivial data rates to the weaker users, which

present a lower decoding capability in a given order, the

following condition must also be satisfied

|hH
k w1|2 ≥ . . . |hH

k wk−1|2 ≥ |hH
k wk|2 ≥

|hH
k wk+1|2 . . . ≥ |hH

k wN |2. (4)

As a further insight, (3) ensures that the signal-to-

interference-plus-noise ratio (SINR) of UE-j to decode other

user k’s message (i.e. SINR corresponding to Rk
j ) , where

j > k, is higher compared to the SINR of UE-k needed to

decode its own message (i.e., SINR corresponding to Rk
k).

Once this condition is satisfied, all users, which are assumed to

be at a ‘higher’ level in the given ordering, are able to perform

SIC. Therefore, we propose to maximize the minimum of the

SINRs of ‘desired messages’ and ‘other users’ messages’. To

further exemplify, consider a three user system with UE-1 the

lowest and the UE-3 the highest in the ordering. Now, assume

that SINR1
1 ≥ Tth and SINR1

w < Tth, w = 2, 3, where Tth
is some threshold rate. In this scenario, both users 2 and 3
are unable to decode the message of UE-1 as the SINR1

1 is

at least as large as Tth, and therefore, SIC cannot be applied.

Motivated by this, we aim at obtaining such precoders that

ensure, we have Tth ≤ SINR1
w, w = 1, 2, 3. Moreover, the

sequence of inequalities in (4) helps to boost up the desired

signal level of the ‘lower’ level users, and in the absence of this

guarantee it is likely that most, if not all, radio resources are

allocated to the users that receive very low or no interference.

Elaborating a bit more, the gain inequalities in (4) are arranged

in such a manner that the higher the ordered position of a

user, the lower is its place in these inequalities. This helps
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boost the SINRs needed to decode other users’ messages. In

order to understand it further, let us reconsider the three user

example quoted above. We note that UE-3 decodes all three

users, UE-1 is able to decode its own signal only, and the UE-

2 can decode both UE-1’s and its own messages. Particularly,

the SINRs decoded at the three nodes read as follows

SINR1
1 =

|hH
1 w1|2

|hH
1 w2|2 + |hH

1 w3|2 + σ2
(5)







SINR2
2 =

|hH
2
w2|

2

|hH
2
w3|2+σ2

,

SINR1
2 =

|hH
2
w1|

2

|hH
2
w2|2+|hH

2
w3|2+σ2

(6)







SINR3
3 =

|hH
3
w3|

2

σ2 , SINR2
3 =

|hH
3
w2|

2

|hH
3
w3|2+σ2

,

SINR1
3 =

|hH
3
w1|

2

|hH
3
w2|2+|hH

3
w3|2+σ2

. (7)

Now, for the three users under consideration, the inequalities

generated by the sequence in (4) are










|hH
1 w1|2 ≥ |hH

1 w2|2 ≥ |hH
1 w3|2,

|hH
2 w1|2 ≥ |hH

2 w2|2 ≥ |hH
2 w3|2,

|hH
3 w1|2 ≥ |hH

3 w2|2 ≥ |hH
3 w3|2.

(8)

It can be seen that, due to the constraints in (8), the numerators

(which define the powers of the signals to be decoded) are

made greater than the individual interfering terms in the

denominators of the SINRs defined in (5), (6) and (7). The

interference from stronger users occupies a lower position

in the decreasing sequence of powers, cf. (8). Based on the

observations and examples presented above, the sum rate,

Rsum, therefore, is given by

Rsum =
N−1
∑

k=1

log2

(

1 + min
(

SINRk
k, . . . , SINRk

N

))

+

log2

(

1 +
|hH

NwN |2
σ2

)

, (9)

where

SINRk
i =

|hH
i wk|2

∑N
m=k+1 |hH

i wm|2 + σ2
, i = 1, . . . , N.

(10)

The optimization problem can be formulated as

maximize
wi

Rsum (11a)

s. t. |hH
k w1|2 ≥ . . . |hH

k wk−1|2 ≥ |hH
k wk|2 ≥

|hH
k wk+1|2 . . . ≥ |hH

k wN |2, 1 ≤ k ≤ N (11b)

N
∑

i=1

‖wi‖22 ≤ Pth, (11c)

where wi ∈ CT , ∀i, and the constraint in (11c) represents

that the total power, which is upper bounded to Pth. It is

important to mention here that in the original NOMA [1],

[2], its concept was applied only to two users. However, our

work is much more general, and not only deals with multiple

antenna systems, but also with a multiuser environment (cf.

(11)).

III. PREREQUISITES

In order to solve the optimization problem in (11), we

will eventually present an iterative algorithm. However, first

it is necessary to transform the original problem and then

to apply approximations that render it tractability. Before

presenting a detailed treatment of our approach, we remark

that minorization-maximization inspired approaches have been

used in different contexts in earlier works, for instance, [19],

[20].

A. Equivalent Transformations

The problem in (11) is non-convex, and it seems that it

is not possible to directly approximate it, since the only

convex constraint is the power constraint. Therefore, several

steps need to be invoked before we can present an algorithm,

which solves this problem approximately. To this end, we first

introduce the vector r ∈ RN
+ and observe that (11) can be

equivalently written as

maximize
wi,r

(

N
∏

k=1

rk

)

1

N

(12a)

s. t. rk − 1 ≤ min
(

SINRk
k, . . . , SINRk

N

)

,

k = 1, . . . , N − 1 (12b)

rN − 1 ≤ |hH
NwN |2
σ2

(12c)

(11b) & (11c), (12d)

where wi ∈ CT , ∀i, r ∈ RN
+ , ri, i = 1, . . . , N , the com-

ponents of r, represent the optimization variables, and the

objective has been obtained by considering that log(·) is

a non-decreasing function, and the geometric mean of the

vector r, i.e.,
(

∏N
k=1 rk

)1/N

, is concave and increasing3. It

is well known that the geometric mean is readily expressible

as a system of second-order cone (SOC) constraints [23]. So

this step has no negative impact on the tractability of the

objective function. However, the overall problem still remains

intractable. In the proposition to follow, we will present

an equivalent formulation which is later used to solve this

problem.

Proposition 1: The optimization problem in (12) can be

equivalently expressed as

maximize
wi,r,w̄,

v

(

N
∏

k=1

rk

)

1

N

(13a)

s. t.

{

w̄krk − w̄k ≤ |hH
k wk|2

∑N
j=k+1 |hH

k wj |2 + σ2 ≤ w̄k

k = 1, . . . , N − 1 (13b)

rkvj − vj ≤ |hH
j wk|2,

N
∑

m=k+1

|hH
j wm|2 + σ2 ≤ vj ,

j = k + 1, . . . , N (13c)

rN − 1 ≤ |hH
NwN |2
σ2

(13d)

T (1, N), . . . , T (k,N), . . . , T (N,N) & (11c).
(13e)

3It is not necessary to explicitly constrain the vector r to be positive, since
for non-zero data rates this condition holds.
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where wi ∈ CT , ∀i, r ∈ RN
+ , w̄ ∈ R

N−1
+ , and v ∈

R
0.5(N2−N)
+ .

Proof: Please, refer to Appendix A.

B. Approximation of the non-convex constraints

Next, we approximate the equivalent formulation in (13).

To this end, note that, excluding the power constraint, the first

set of constraints in (13b), (13c), and the constraints in (13d)

and (13e) are all non-convex. The rest of the constraints are

convex, and in fact admit SOC representation. Consider the

second set of constraints in (13b) i.e.,
N
∑

j=k+1

|hH
k wj |2 + σ2 ≤ w̄k ⇔

∥

∥

∥

∥

∥

∥

∥

∥

∥

∥

∥















hH
k wk+1

...

hH
k wN

σ
w̄k−1

2















∥

∥

∥

∥

∥

∥

∥

∥

∥

∥

∥

2

≤ w̄k + 1

2
, k = 1, . . . , N − 1. (14)

Similarly,
N
∑

m=k+1

|hH
j wm|2 + σ2 ≤ vj ⇔

∥

∥

∥

∥

∥

∥

∥

∥

∥

∥

∥















hH
j wk+1

...

hH
j wN

σ
vj−1
2















∥

∥

∥

∥

∥

∥

∥

∥

∥

∥

∥

2

≤ vj + 1

2
, j = k + 1, . . . , N. (15)

Now, in order to tackle the non-convex constraints, the so

called CCP is used. The CCP has been widely used in

neural computing [15], and has recently found applications in

wireless signal processing [19], [20]. The CCP has also been

referred to as minorization-maximization algorithm (MMA)

[12], [14].

First, the procedure of handling the first set of non-convex

constraints in (13b) is considered. The approximation of the

other non-convex constraints closely follows the same tech-

nique. Consider the kth constraint

w̄krk − w̄k ≤ |hH
k wk|2. (16)

This is non-convex because of the bilinear term on the left

side and the quadratic term on the right side of the inequality.

An equivalent transformation of the above inequality is

w̄krk − w̄k ≤ (θik,k)
2 + (θrk,k)

2 = ‖θk,k‖22,
θrk,k = ℜ

(

hH
k wk

)

, θik,k = ℑ
(

hH
k wk

)

(17)

where θk,k = [θrk,k, θ
i
k,k]

T and f(θk,k) , |hH
k wk|2. Since the

function in the right side of (17) is a convex one, it follows

that [24]

f(θk,k) = ‖θk,k‖22 ≥ ‖θt
k,k‖22 + 2(θt

k,k)
T(θk,k − θ

t
k,k)

, g(θk,k,θ
t
k,k), (18)

where the right side of the inequality in (18) is the first order

Taylor approximation of the function ‖θk,k‖22 around θ
t
k,k.

Clearly, this formulation is linear in the variable θk,k, and

will be used instead of the original norm-squared function.

Three important properties follow here

f(θk,k) ≥ g(θk,k,θ
t
k,k), for all θk (19a)

f(θt
k,k) = g(θt

k,k,θ
t
k,k), (19b)

∇f(θk,k)|θt
k,k

= ∇g(θk,k,θ
t
k,k)|θt

k,k
(19c)

where the notation (·)|
θt
k,k

is used to represent the value

of the function at θ
t
k,k. The basic idea of the approxima-

tion algorithm presented below is to maximize the minorant

g(θk,k,θ
t
k,k) over the variable θk,k, in order to obtain the

next iterate term, θ
t+1
k,k , i.e.,

θ
t+1
k,k = max

θk,k

g(θk,k,θ
t
k,k). (20)

Using these considerations, it can be easily concluded that

f(θt+1
k,k ) = f(θt+1

k,k )− g(θt
k,k,θ

t+1
k,k ) + g(θt

k,k,θ
t+1
k,k ) (21)

(a)

≥ g(θt
k,k,θ

t+1
k,k )

(b)

≥ g(θt
k,k,θ

t
k,k)

(c)
= f(θt

k,k), (22)

where (a) follows from f(θk,k) ≥ g(θk,k,θ
t
k,k), (b) is due

to (20), and the final equality (c) is due to (19b).

Now, to deal with the bilinear product on the left side of

(16), first we observe that for nonnegative w̄k, rk it holds that

w̄krk =
1

4

[

(w̄k + rk)
2 − (w̄k − rk)

2
]

. (23)

The quadratic term being subtracted in the above inequality

can be well approximated by a first order Taylor series around

w̄t
k, r

t
k. Thus, by combining the additional constraints in (17),

the overall approximation of the constraint in (16) reads as

0.25(w̄k + rk)
2 − w̄k − 0.25[(w̄t

k − rtk)
2+

2(w̄t
k − rtk){w̄k − w̄t

k − rk + rtk}] ≤ ‖θt
k,k‖22+

2(θt
k,k)

T(θk,k − θ
t
k,k) , g(θk,k,θ

t
k,k),θk,k = [θrk,k,

θik,k]
T, θrk,k = ℜ

(

hH
k wk

)

, θik,k = ℑ
(

hH
k wk

)

(24)

which is convex in the variables of interest.

Following similar procedure the remaining non-convex con-

straints in (13c), (13d) and (13e) can be approximated as

follows. The j-th constraint in (13c) and that in (13d) can

be written as

0.25(rk + vj)
2 − vj − 0.25[(rtk − vtj)

2+

2(rtk − vtj){rk − rtk − vj + vtj}] ≤ ḡ(θj,k,θ
t
j,k) (25)

σ2(rN − 1) ≤ ḡ(θN,N ,θ
t
N,N), (26)

where

θj,k = [θrj,k, θ
i
j,k]

T,θN,N = [θrN,N , θ
i
N,N ]T,

ḡ(θj,k,θ
t
j,k) = ‖θt

j,k‖22 + 2(θt
j,k)

T(θj,k − θ
t
j,k),

ḡ(θN,N ,θ
t
N,N) = ‖θt

N,N‖22 + 2(θt
N,N)T(θN,N − θ

t
N,N)

and rtk, v
t
j ,θ

t
j,k,θ

t
N,N represent the points around which the

quadratic terms have been linearized.

Finally, the last set of non-convex constraints in (13e) can

be tackled similarly. To demonstrate it, we linearize the first

set of constraints in (44), i.e.,

|hH
k wN |2 ≤ min

m∈[1,N−1]
g̃(φk,m,φ

t
k,m), (27)
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TABLE I
NOMA/MISO SUM RATE MAXIMIZATION

given randomly generated Λ
0 feasible to (11).

t := 0.

repeat

1- Solve (28) labelled as (Pbt).

2- Set Λ
t+1 = Λ

t
.

3- Update t := t+ 1.

until convergence or required number of iterations.

where

φk,m = [φrk,m, φ
i
k,m]T, φrk,m = ℜ(hH

k wm), φik,m = ℑ(hH
k wm)

g̃(φk,m,φ
t
k,m) = ‖φt

k,m‖22 + 2(φt
k,m)T(φk,m −φ

t
k,m)

and φ
t
k,m is the linearization point. Based on this procedure,

the notation T̄ (kt, N t) is used to represent the approximation

of the form given in (27) for the remaining inequalities.

IV. THE PROPOSED SOLUTION

Having set up the stage as above, in this section the

procedure that provides a tractable approximation to the sum

rate maximization problem is outlined.

A. The Procedure

Using the above equivalent transformations and approxima-

tions, in the tth iteration of the algorithm outlined in Table I,

the following optimization problem is solved

maximize
wi,r,w̄,
v,A

(

N
∏

k=1

rk

)

1

N

(28a)

(Pbt) s. t. (14) & (24), k = 1, . . . , N − 1 (28b)

(15) & (25) j = k + 1, . . . , N, (26) (28c)

T̄ (1t, N t), . . . , T̄ (kt, N t), . . . , T̄ (N t, N t) & (11c),
(28d)

where wi ∈ CT , ∀i, r ∈ RN
+ , w̄ ∈ R

N−1
+ ,v ∈

R
0.5(N2−N)
+ , and for all j, k,m,A , {θk,k ∈ R2N−2,θj,k ∈

RN2−N ,θN,N ∈ R2,φk,m ∈ R2N2−2N} represents the

collection of all auxiliary variables. For the sake of notational

convenience, all parameters about which the quadratic terms

are linearized in iterate t are defined as

Λ
t
, [w̄t

k, r
t
k, v

t
j ,θ

t
k,k,θ

t
j,k,θ

t
N,N ,φ

t
k,m]. (29)

The MMA (CCP) algorithm used to solve (28) has been

summarized in Table I. Note, that the convergence criteria

can vary. For NOMA sum rate maximization, this algorithm

terminates when the difference between two successive values

of sum rate is less than a threshold. This aspect is discussed in

more detail in section VI. Before concluding this section, we

stress that (28) is an approximation, and need not to coincide

with the global solution of (13).

B. Properties of the Proposed Algorithm

Before describing various characteristics of the algorithm

presented above, let us define the feasible set, the objective

and the set of optimization variables in the tth iteration,

respectively, as

Ft = [wi for all i, r, w̄,v,A|constraints in (Pbt)

are satsified] (30)

Ot = max [(28a)| {wi for all i, r, w̄,v,A} ∈ Ft] (31)

Vt = [wi for all i, r, w̄,v,A]. (32)

1) Convergence:

Proposition 2: The sequence of variables {Vt}t≥0 is feasible

i.e., it belongs to F0, where F0 is the feasibility set of the

original problem (13).

Proof: Please, refer to Appendix B.

Proposition 3: The algorithm in Table I returns a non-

decreasing sequence of objective values i.e., Ot+1 ≥ Ot, and

hence it converges.

Proof: In order to prove this proposition, we note that

Ft+1 ⊇ Ft. From (22) it is clear that the surrogate functions

used in place of non-convex terms are non-decreasing with

iteration number i.e., SF t+1 ≥ SF t, where SF is a generic

representation of these functions used in the paper and is valid

for all of them. Therefore, Ft+1 ⊇ Ft, is an immediate con-

sequence, and the statement in Proportion 3 follows. Hence,

{Ot}t≥0 is non-decreasing, and possibly converges to positive

infinity.

In Proposition 3 the property (20) is used. It is important to

note that the outcome of this proposition remains valid as long

as the surrogate is increasing and does not rely on explicit

maximization. The increasing behaviour of all SF s can be

shown by following arguments similar to those outlined in

[18], [19]. As a remark, we point out that when the feasibility

set is convex and compact, the algorithm converges to a finite

value.

2) KKT Conditions: Under a couple of technical assump-

tions the accumulation point of the algorithm satisfies the KKT

conditions, as summarized in the proposition given below.

Proposition 4: As the iteration number t tends to infinity,

the algorithm in Table I converges to the KKT point of (13).

Proof: Please, refer to Appendix C.

V. A REDUCED COMPLEXITY APPROXIMATION

In the original sum rate function given in (9), it has been

ensured that users with high SNRs are able to decode the

messages of the weaker ones in the superposition coded

signal, and hence apply SIC to remove interference from them.

Optimal ordering of users depends upon physical parameters

like, transmit antennas, precoding vectors etc. However, in

certain situations the channel ordering alone may be sufficient

to support the stronger users to decode the weaker ones. In

scenarios, this is true, only the first term in the min(·) function
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Fig. 2. Variation of Pr(SINR1

2
> SINR1

1
) with the distance of UE-1. T =

6, N = 4, γ = 2.0 and distance of UE-2 = 1 is fixed.

for a user k needs to be retained and the objective becomes

R′
sum =

N−1
∑

k=1

log2(1 + SINRk
k)+

log2

(

1 +
|hH

NwN |2
σ2

)

. (33)

From (33) it can be seen that N(N − 1)/2 SINR terms do

not appear in the simplified sum rates. In turn, this means

that in the formulation of (13), there are not N2 − N in-

equality constraints, and clearly, a complexity improvement is

expected. Before moving on to the complexity analysis section,

for completeness, the updated optimization problem solved in

the tth run of the algorithm in Table I, can be written as

maximize
wi,r,w̄,

Ap

(

N
∏

k=1

rk

)

1

N

(34a)

(Pb′t) s. t. (14) & (24), k = 1, . . . , N − 1, (26) (34b)

T̄ (1t, N t), . . . , T̄ (kt, N t), . . . , T̄ (N t, N t) & (11c),
(34c)

where wi ∈ CT , ∀i, r ∈ RN
+ , w̄ ∈ R

N−1
+ , and now Ap ,

{θk,k,θN,N ,φk,m} has a reduced cardinality compared to

the original set of the variable set A.

In order to provide more insight into the approximation used

above let us consider the following lemma.

Lemma 1: Suppose that hk+1 = ck+1hk, k = 1, . . . , N − 1,

so that hn = cncn−1 . . . ck+1hk, where k+1 ≤ n ≤ N and the

magnitudes of the complex constants cncn−1 . . . ck+1 , ck+1
n

is greater than one. Under this assumption, when (9) reduces

to (33), then

‖h1‖2 < ‖h2‖2 . . . < ‖hN‖2. (35)

Proof: Please, refer to Appendix D.

From Lemma 1 it can be expected that, at least approx-

imately, when that channels are clearly ordered, i.e., the

magnitudes of successive channel vectors differ significantly

and the channel ratio inequalities as given above are satisfied,

the problems in (34) and (28) are equivalent. To further

highlight, we evaluate below the probability of an event of

interest.

Lemma 2: Consider a random unitary precoding matrix,

i.e., WHW = I,4 where W = [w1, . . . ,wN ] and W is

independent of the channel matrices. For i ≥ j

Pr
(

SINRk
i > SINRk

j

)

(36)

is given by

Pr
(

SINRk
i > SINRk

j

)

= 1− e(λi+λj)σ
2

λiσ
2

ψ
(

(λi + λj)σ
2, 2(N − k)

)

− e(λi+λj)σ
2

(N − k)

ψ
(

(λi + λj)σ
2, 2(N − k) + 1

)

, (37)

where

ψ(λ,m) = (−1)m
λm−1Ei(−λ)
(m− 1)!

+

e−λ
m−2
∑

l=0

(−1)lλl

(m− 1) · · · (m− 1− l)
(38)

and Ei(x) is the exponential integral [25].

Proof: Please, refer to Appendix E.

When λj >> λi, (37) can be approximated as

Pr
(

SINRk
i > SINRk

j

)

≈ 1−eλjσ
2

λiσ
2ψ
(

λjσ
2, 2(N − k)

)

− eλjσ
2

(N − k)ψ
(

λjσ
2, 2(N − k) + 1

)

. (39)

It can be seen from (39) that when di decreases (and

thus λi decreases), Pr
(

SINRk
i > SINRk

j

)

increases as well.

Hence, the stronger the channel of UE-i compared to UE-

j, the higher the probability Pr
(

SINRk
i > SINRk

j

)

. In order

to further investigate the probability under consideration, in

Fig. 2, the variation of Pr(SINR1
2 > SINR1

1) is depicted in

terms of the distance of UE-1. With a decrease in the channel

strength of UE-1, Pr(SINR1
2 > SINR1

1) increases, thereby

justifying the use of SINR1
1 instead of SINR1

2. The probability

Pr(SINR1
2 > SINR1

1) varies inversely with the noise variance

for a given UE-1 distance. It can also be seen that for higher

values of noise variance, the interference term dominates and

the probability that SINR1
1 remains below SINR1

2 is increased.

In addition, this figure also validates the analytical results

derived above.

A. Complexity

In each iteration of the procedure presented in Table I,

we solve an SOCP. The total number of iterations are fixed

and only variables are updated in each run of the algorithm.

Hence, the worst case regarding the complexity is determined

by the SOCP in each step. Therefore, to provide a complexity

estimate, the worst case complexity of the SOCP given by (28)

or (34) is estimated. It is well known that for general interior-

point methods the complexity of the SOCP depends upon the

number of constraints, variables and the dimension of each

SOC constraint [23]. The total number of constraints in the

formulations of (28) and (34) are 0.5N3+0.5N2+2N+c and

0.5N3−0.5N2+3N+c, respectively, where the non-negative

integer constant, c, refers to the SOC constraints with different

4Extending this lemma without the orthogonality constraint remains an open
problem.
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Fig. 3. Variation of the per iteration complexity of the exact and approximate
NOMA formulations with the number of users N for given values of T and
c = 10.

N . This happens because of the equivalent SOC representation

of the geometric mean, given in the objective function, also

see [23]. Therefore, for both problems the number of itera-

tions needed to reduce the duality gap to a small constant

is upper bounded by O(
√
0.5N3 + 0.5N2 + 2N + c) and

O(
√
0.5N3 − 0.5N2 + 3N + c), respectively [23]. In order

to calculate the dimension of all SOCs in (28) we provide an

upper bound because the sums of the dimensions for some con-

straints have been bounded from above by definite integrals of

increasing functions. This estimate is found to be ⌈1.833N3+
3N2+8N +NT +3c− 5.83333⌉ for (28). The interior-point

method’s per iteration worst case complexity estimate of (28)

is O((3.5N2+1.5N+2NT +c−1)2(⌈1.833N3+3N2+8N
+NT +3c−5.83333⌉)), where 3.5N2+1.5N+2NT +c−1
is the number of optimization variables in (28). Likewise,

the interior-point method’s per iteration complexity to solve

the SOCP in (34) is given by O((2N2 + 3N + 2NT +
c − 1)2(1.5N3 − N2 + 10.5N + NT + 3c − 4)), where

2N2+3N+2NT+c−1 and 1.5N3−N2+10.5N+NT+3c−4
are the optimization variables and the total dimension of the

SOC constraints in (34).

To provide further insight, we plot the per iteration com-

plexity estimates of the SOCPs in Fig. 3. The SOCP in (28) is

called complete NOMA (C-NOMA), while the one in (34)

is dubbed as approximate NOMA (A-NOMA). The figure

quantifies the increase in the complexity as a function of both

N and T .

VI. NUMERICAL RESULTS

In this section we investigate the performance of the pro-

posed solution to the NOMA sum rate maximization problem.

For a given set of antennas T and users N , the channels as

hi =
√

d−γ
i gi are generated, where gi ∼ CN (0, I), and the

distances of all users are fixed, such that they are equally

spaced between distances of 1 and D0 from the BS. It should

be noted here that in simulations the user distances are fixed

and the average is taken over the fast fading component of
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Fig. 4. Achievable sum rates vs. normalized transmit power called TX-SNR.
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the channel vectors. For each set of results the values of γ
and D0 are mentioned, while it is assumed that σ = 1 for

all users. Similarly, the transmit power is normalized with

respect to noise, whose variance is taken to be unity. For

the simulations the CVX package [26] is used. For sum rates

comparison, in addition to traditional techniques, we will also

use the approach developed in Christensen et al. [27].

In Fig. 4, we plot the average sum rates versus the transmit

power for a three user system and a BS equipped with three

antennas. We take γ = 2, D0 = 50, and therefore, the

three users are placed at 1, 25.5 and 50 meters from the

BS, respectively. Unless specifically pointed out, γ and D0

retain the same value. It is noted that for transmit power

up to 25 dB, the sum rates of the complete NOMA (C-

NOMA) formulation and the its approximation (A-NOMA)

are equal. This observation is because of the distance effect,

the ordering of the channels ‖h1‖2 ≤ ‖h2‖2 ≤ ‖h3‖2 is

valid for all realizations of gi. As a consequence, SINR1
1 <

min
(

SINR1
2, SINR1

3

)

, and SINR2
2 < SINR2

3. Therefore, the

objective function in (9) matches with that in (33). Because

of the wide range of multiplicative distance factor, this obser-

vation can be attributed as a result of the Lemma 1. Several

other factors like Gaussian noise, transmit SNR, etc. can also

influence the results. For example, once the transmit power

crosses a certain value (25 dB in our case), the ordering of

users need not to be the optimal one and hence the two curves

deviate from each other. The A-NOMA approach produces

better rates because the interference free rates of the last user

are boosted more compared to the C-NOMA. This comes with

a degradation in the sum rates of the N − 1 users (excluding

UE-N ) as we will see in the next experiment. Interestingly, the

competing zero-forcing (ZF) solution performs very poorly for

lower SNRs, and only produces significant sum rates, when the

transmit power is sufficiently high. This poor performance of

the ZF scheme can be attributed to the distance effect, which

makes the channel matrix poorly-conditioned [28]. At higher

transmit SNRs this poor condition of the channel matrix is

partially circumvented and hence a notable increase in ZF

rates is observed. In Fig. 4, we have also plotted the sum

rates obtained using the technique proposed in [27]. The curve

lies below the sum rates obtained by the proposed algorithm.

Although the approach in [27] is numerical in nature, the

higher data rates of the proposed algorithm in paper may

be attributed to the nature of the cost function in which the

strongest user sees no interference, while this does not hold

true in the case of the cost function in [27].

The next set of results presented in Fig. 5 depict the average

sum rates of all users excluding UE-N as a function of

transmit power, with N = T = 4. Basically, Fig. 5 can be

seen as complementing the observations made in Fig. 4, where

also at high transmit SNR A-NOMA has better total sum rates,

compared to C-NOMA. It is seen that for low SNRs the curves

for A-NOMA and C-NOMA overlap. As the the transmit

power is further boosted, C-NOMA outperforms A-NOMA.

The reason for the equality of the rates in both techniques

is the same as mentioned above. However, at higher transmit

SNR the C-NOMA provides better data rates, because of lack

of optimality in the users’ ordering, the beamformers of A-

NOMA will not necessarily produce optimum min
k≤j≤N

(SINR
j
k)

for all k. In addition, we have also included curves, when D0

is decreased from 50 to 10 meters. It is evident that because

of the shorter distance the net effect of distance attenuation,

which orders the channels, is diminished. Hence, the gap

between the graphs of C-NOMA and A-NOMA is enlarged.

Nonetheless, overall higher data rates are reported in this case

because of better channel conditions for the users.

It can be concluded from the previous discussions, that

distance plays an important role in determining the aggregate

data rates of the NOMA system. Therefore, to further explore

its impact we set N = T = 4 and plot the curves for the sum

rates of C-NOMA and ZF, with γ = 2. The sum rates of the

ZF scheme are shown in Fig. 6 as the distance D0 is decreased

from 50 m to 10 m. As the distance is decreased, the effect of

path loss is minimized and we have better conditioned channel

matrices. Therefore, the sum rates of ZF are considerably
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enhanced at D0 = 10 m. We have also compared our rates

with those obtained using [27] in Fig. 6.

In order to investigate the convergence of the proposed

algorithm, we consider a downlink system with T = 5
antennas, serving N = 5 users. As a stopping criteria, we use

successive values of the sum rate returned by the algorithm.

The algorithm exits from the main sequential iteration loop,

when the difference between two consecutive values of the

sum rate is less than or equal to 10−2. With this criterion, as

shown in Fig. 7, the algorithm converges within 25 iterations

for the three values of transmit SNR shown in the figure.

Moreover, as expected, with higher transmit power, we obtain

better sum rate.

As a multiuser system is considered, the proposed approach

is expected to deliver acceptable spectral efficiency when N >
T . The results reported in Fig. 8 show the performance of

C-NOMA, when the number of users N is greater than the

number of transmit antennas T = 3. For comparison we have

also included the sum rates achieved by the C-NOMA and ZF

solutions with N = 3 users only. To obtain these two curves,

we randomly pick three users to be served with C-NOMA

and ZF precoders. It is evident that with fewer users C-NOMA

underperforms. Since, in this case, users are randomly chosen,

it is likely that the effective multiuser diversity [29] is lost and

we see a downward trend in achievable data rates. The lower

data rates of [27] can be attributed to the reason mentioned

above in the description of Fig. 4.

In order to investigate the decoding capability of users

placed higher in the order, consider a three user system

such that the transmitter has three antennas. The quantity

κ , log
(

SINR1

3

SINR1

1

)

, indicates the capability of the third user

(strongest user in the given ordering) to decode the first user

(weakest user in the given ordering). We calculate the average

value of κ, first when the third user is at a distance of 1 m from

the base station, and later, when it is moved away to a distance

of 5 m from the base station. The variation of average value of

κ with transmit SNR is shown in Table II. It is seen that with

an increase in the transmit SNR and the distance of user three

from the transmitter, κ decreases. This observation coupled

with the SINR expressions in (5), (6) and (7), shows that

distance, transmit power and other factors that appear in these

expressions control whether min(SINR1
1, SINR1

2, SINR1
3) =

SINR1
1, holds or not. For instance, when the third user is

sufficiently far from the base station, or the value of the noise

variance is such that we may have SINR1
3 < SINR1

1, the C-

NOMA and the A-NOMA will not be equal anymore. This

fact was observed earlier in Fig. 4, where at a transmit SNR

of 25 dB, the curves for the C-NOMA and A-NOMA deviated

from each other. Then, clearly due to a bigger feasible set, the

A-NOMA produced better rates, albeit with no guarantee on

performing SIC. In summary, the results reported in Fig. 4

indicate that the SIC capability of a higher order user depends

on several factors. Therefore, for a given scenario, knowing

an optimal user ordering is indeed an important problem to

explore.

TABLE II
AVERAGE κ VERSUS TX-SNR

TX-SNR dB κ UE-3 at 1 m κ UE-3 at 5 m

1.0 6.6516 4.2409

5.0 6.0522 4.0985

10.0 4.5938 3.5091

15.0 3.0706 2.4917

20.0 1.6947 1.4773

25.0 0.6991 0.566

30.0 0.0085 0.0018

VII. CONCLUSION

In this paper, we have studied the sum rate maximization

problem of a MISO downlink system based on NOMA. Specif-

ically, we approximate the originally non-convex optimization

problem with a MM method. For the proposed algorithm,

we have solved an SOCP with polynomial computational

complexity in each step. For the scenarios considered, the

algorithm is numerically shown to converge within a few

iterations. Furthermore, we developed a reduced complexity

approximation and explore the conditions under which it is

tight. Finally, we provide an insight into the tightness of

the proposed approximation. Our experimental results reveal

that the NOMA has a superior performance compared to

conventional orthogonal multiple access schemes. High data

rates are obtained with small transmit power. The distance

attenuation has a very low impact on NOMA performance.

NOMA particularly outperforms ZF when the number of users

is higher than the transmit antennas, thus making it an ideal

candidate for enabling multiple access in the next generation

5G networks.

APPENDIX A

PROOF OF PROPOSITION 1

In order to show the equivalence of (12) with (13), the

original formulation in (12) is factored into several different

constraints, and so, these factors can be processed individually.

We first focus on the constraints in (12b), and then move to the

remaining intractable constraints. Without loss of generality,

it holds that

rk − 1 ≤ min
(

SINRk
k, . . . , SINRk

N

)

⇔

rk − 1 ≤
{

SINRk
k

min
(

SINRk
k+1, . . . , SINRk

N

)

,
(40)

for k = 1, . . . , N − 1. The constraint in (12b) has been

purposely written as that in (40), since the first term SINRk
k

is different from the remaining ones. Hence, it is necessary

to deal with the first term and the remaining N − k terms

passed as argument of the min(·) function. By introducing,
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w̄ ∈ R
N−1
+ , it holds that

rk − 1 ≤ |hH
k wk|2

∑N
j=k+1 |hH

k wj |2 + σ2
⇔

{

w̄krk − w̄k ≤ |hH
k wk|2

∑N
j=k+1 |hH

k wj |2 + σ2 ≤ w̄k,
(41)

where w̄k is the kth component of the vector w̄, and the

expression of SINRk
k is used. Likewise, for an arbitrary SINRk

j ,

k+1 ≤ j ≤ N , belonging to the remaining terms in the min(·)
function, we introduce the new variable, v ∈ R

0.5(N2−N)
+ , and

write the corresponding constraint as the following system of

inequalities

rkvj − vj ≤ |hH
j wk|2,

N
∑

m=k+1

|hH
j wm|2 + σ2 ≤ vj , (42)

where vj is the j th element of v. Note, that even if the con-

straints in (12b) have been transformed, the problem remains

intractable. From the inequalities in (11b), it holds that

|hH
k w1|2 ≥ . . . |hH

k wk−1|2 ≥ |hH
k wk|2 ≥

|hH
k wk+1|2 . . . ≥ |hH

k wN |2 (43)

⇔































|hH
k wN |2 ≤ minm∈[1,N−1] |hH

k wm|2
· · ·
|hH

k wk+1|2 ≤ minm∈[1,k] |hH
k wm|2

· · ·
|hH

k w2|2 ≤ |hH
k w1|2.

, T (k,N) (44)

Similarly, equivalent transformations, T (1, N) and T (N,N)
for k = 1, N can be obtained. Now putting together all

transformations developed above, we arrive at the equivalent

transformation given in (13).

B PROOF OF PROPOSITION 2

Without loss of generality, we focus on the function

f(θk,k), its approximation g(θk,k,θ
t
k,k) and the constraint

in which it appears. The same arguments will be applicable

to all non-convex functions, their convex minorants and the

respective constraints. Therefore, it holds that

0.25(w̄k + rk)
2 − w̄k−

g(w̄k, rk, w̄
t
k, r

t
k) ≤ g(θk,k,θ

t
k,k), (45)

where g(w̄k, rk, w̄
t
k, r

t
k) ,

0.25
[

(w̄t
k − rtk)

2 + 2(w̄t
k − rtk){w̄k − w̄t

k − rk + rtk}
]

is

the approximation of the original function (w̄k − rk)
2. Note,

that this constraint is a convex approximation of that in

(16). Now, let us assume that the tuple (w̄t
k, r

t
k,θ

t
k,k) is

feasible to (16). Clearly, the same point also satisfies (45) as

a consequence of (19b). Since g(w̄k, rk, w̄
t
k, r

t
k) ≤ (w̄k− rk)2

and f(θk,k) ≥ g(θk,k,θ
t
k,k), it follows that

0.25(w̄k + rk)
2−w̄k − 0.25(w̄k − rk)

2 − f(θk,k) (46)

≤ 0.25(w̄k + rk)
2 − w̄k − g(w̄k, rk, w̄

t
k, r

t
k)−

g(θk,k,θ
t
k,k). (47)

Hence, (w̄t+1
k , rt+1

k ,θt+1
k,k ) should satisfy (16) because

0.25(w̄t+1
k +rt+1

k )2 − w̄t+1
k − 0.25(w̄t+1

k − rt+1
k )2−

f(θt+1
k,k ) (48)

≤ 0.25(w̄t+1
k + rt+1

k )2 − w̄t+1
k −

g(w̄t+1
k , rt+1

k , w̄t
k, r

t
k)− g(θt+1

k,k ,θ
t
k,k) ≤ 0. (49)

The above conclusion holds for all k and {Vt}t≥0, as the

algorithm was initialized with Λ
(0) ∈ F0.

C PROOF OF PROPOSITION 4

The following assumptions are made before outlining the

arguments.

Assumption 1: We assume that as t → ∞, the sequence

of variables {Vt}t≥0 generated by the algorithm in Table I

converges to a value V∗.

Assumption 2: The constraints in the approximate problem

(28) or (34) are qualified at the accumulation point.

Without explicitly mentioning the constraints, we use abstract

notation to prove the claim made in Proposition 4. First let us

give a generic representation to all convex constraints in (28)

as Ca(V)s ≤ 0, a = 1, . . . , L1, where (V)s denotes the subset

of Vt containing the corresponding variables that appear in

these constraints. Similarly, let us define as Ct
b(V)p ≤ 0, b =

L1 + 1, . . . , L2 the constraints obtained by approximating

the non-convex functions with convex minorants in (28), and

(V)p ⊆ Vt. Let η∗a, η̄
∗
b ∈ R+ for all a, b, denote the dual

variables at convergence. The KKT conditions of the problem

in (28) at (V∗)s, (V∗)p then read as

∇r∗ +

L1
∑

a=1

η∗a∇Ca(V∗)s +

L2
∑

b=L1+1

η̄∗b∇Ct
b(V∗)p = 0 (50)

η∗aCa(V∗)s = 0, a = 1, . . . , L1,

η̄∗bCt
b(V∗)p = 0, b = L1 + 1, . . . , L2. (51)

Since all convex minorants satisfy the properties in (19), it

is easy to conclude that the KKT conditions given above will

reduce to those of the problem in (28). Similar conclusion also

holds for the simplified problem in (34).

D PROOF OF LEMMA 1

For (33) to be valid for all 1 ≤ k ≤ N − 1, it holds that

SINRk
k < min

i∈[k+1,N ]
SINRk

i . (52)

For an arbitrary k ∈ [1, N − 1] and i = n, let us consider the

following inequality,

|hH
n wk|2

∑N
m=k+1 |hH

n wm|2 + σ2
n

>
|hH

k wk|2
∑N

m=k+1 |hH
k wm|2 + σ2

k

,

(53)

where we have assumed that the noise variances at the nth and

the kth nodes are σ2
n and σ2

k, respectively. By substituting the

assumptions made in the lemma, hn = cncn−1 . . . ck+1hk ,
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ck+1
n hk, where k + 1 ≤ n ≤ N . After some simple manipu-

lations
N
∑

m=k+1

|hH
k wm|2 + σ2

k >

N
∑

m=k+1

|hH
k wm|2 + σ2

n/|ck+1
n |2 ⇔

|ck+1
n | > σn

σk
. (54)

Now, if σn = σk, using the condition on |ck+1
n |, we obtain

‖hn‖2 > ‖hk‖2 for all n. Repeating the same argument for

all k, the required proof follows.

E PROOF OF LEMMA 2

The SINRk
i , i ≥ k, can be written as

SINRk
i =

|hH
i wk|2

∑N
m=k+1 |hH

i wm|2 + σ2
. (55)

If a random unitary matrix is used for precoding, |hH
i wk|2 is

still complex Gaussian distributed, since a unitary transforma-

tion of Gaussian vectors is still complex Gaussian distributed.

In addition, |hH
i wk|2 and |hH

i wl|2, k 6= l are independent.

Define xik , |hH
i wk|2 and yik ,

∑N
m=k+1 |hH

i wm|2.

Therefore xik is an exponentially distributed random variable,

with λi , dγi , i.e., fxik
(x) = λie

−λix. Similarly, yik follows

the Chi-square distribution, i.e.,

fyik
(y) =

λN−k
i y(N−k−1)

(N − k − 1)!
e−λiy. (56)

Consequently the cumulative distribution function of SINRk
i

can be calculated from the following

Pr
(

SINRk
i ≤ θ

)

= Pr

(

xik
yik + σ2

≤ θ

)

(57)

=

∫ ∞

0

(

1− e−λiθ(y+σ2)
)

fyik
(y)dy (58)

= 1− e−λiθσ
2

(N − k − 1)!
×

∫ ∞

0

e−(1+θ)λiy(λiy)
(N−k−1)dλiy. (59)

Applying [25, Eq. (3.351.3)], the pdf of SINRk
i can be

obtained as follows:

FSINRk
i
(z) = 1− e−λiσ

2z

(1 + z)N−k
. (60)

Again, following the unitary transformation of Gaussian vari-

ables, the desired probability can be evaluated as

Pr
(

SINRk
i > SINRk

j

)

=

∫ ∞

0

(

1− e−λjσ
2z

(1 + z)N−k

)

fSINRk
i
(z)dz (61)

= 1−
∫ ∞

0

(

λiσ
2e−(λi+λj)σ

2z

(1 + z)2(N−k)
+
(N − k)e−(λi+λj)σ

2z

(1 + z)2(N−k)+1

)

dz. (62)

Applying [25, Eq. (3.351.4)], the above probability can be

expressed as

Pr
(

SINRk
i > SINRk

j

)

= 1− e(λi+λj)σ
2

λiσ
2

ψ
(

(λi + λj)σ
2, 2(N − k)

)

− e(λi+λj)σ
2

(N − k)

ψ
(

(λi + λj)σ
2, 2(N − k) + 1

)

, (63)

and the proof is completed.
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