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Closed-Form Expressions for Time-Frequency
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Abstract—The product, convolution, correlation, Wigner distri-
bution function (WDF) and ambiguity function (AF) of two Her-
mite functions of arbitrary order n and m are derived and ex-
pressed as a bounded, weighted sum of n 4+ m Hermite functions. It
was already known that these mathematical operations performed
on Gaussians (Hermite functions of the zeroth-order) lead to a re-
sult which can be expressed as a Gaussian function again. We gen-
eralize this reciprocity to Hermite functions of arbitrary order.
The product, convolution, correlation, WDF, and AF operations
performed on two Hermite functions of arbitrary order lead to
remarkably similar closed-form expressions, where the difference
between the operations is primarily determined by distinct phase
changes of the weights of the Hermite functions in the result. The
closed-form expressions are generalized to the class of square-inte-
grable functions. A key insight from the closed-form expressions is
applied to the design of orthogonal, time-frequency localized com-
munication signals which are characterized by an AF with rota-
tional symmetry. In addition to this application, the theoretical
expressions may prove useful for signal analysis in fields ranging
from communications, radar and image processing to quantum
mechanics.

Index Terms—Hermite functions, closed-form solutions, corre-
lation functions, signal analysis, signal detection, ambiguity func-
tion, Wigner distribution function.

I. INTRODUCTION

ERMITE functions form an orthonormal basis for

L?(R), the class of square-integrable functions, and
consist of a Hermite polynomial, a Gaussian window and a
normalization. Hermite functions can be found in various fields
of science and engineering; e.g., they constitute the stationary
states of the quantum harmonic oscillator [1], are eigenmodes in
multi-mode optical fibers [2], eigenfunctions of the (fractional)
Fourier transform and possess maximum energy concentration
in terms of their second-order moments in domains linked by
the Fourier transform [3]. Hermite functions find application
in image processing [4], [5], quantum mechanics [1], optics
[6], electroencephalograph (EEG) processing [7], spectrum
estimation [8], ultra-wideband pulseshaping [9] and as a basis
for multicarrier communications [10], [11].
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Autocorrelation functions of Hermite functions have first
been addressed by Miller in 2003 [12]. In response to that
article, Nadarajah derived the autocorrelation functions for
Hermite functions [13]. Cross-correlation functions for Her-
mite functions have also been derived in terms of associated
Laguerre polynomials [14]. Abreu derived cross-correlation
functions for a generalized class of Hermite functions, called
generalized Hermite wavelets [15]. In that article the author
noticed that his results “strongly suggest that the correlation
functions of generalized Hermite wavelets can also be repre-
sented by generalized Hermite wavelets” [15]. This observation
is investigated in this article. However, we limit the scope to
conventional Hermite functions, being an orthonormal subset
of the class referred to as generalized Hermite wavelets by
Abreu.

It is well known that the product, convolution and the
correlation of two Gaussian functions lead to a result which
is a Gaussian function again. The two-dimensional Wigner
distribution function (WDF) and ambiguity function (AF)
of a Gaussian signal also lead to a Gaussian function (e.g.,
[16]). As the Gaussian is in fact the zeroth-order Hermite
function, the results of the aforementioned operations on the
zeroth-order Hermite functions are well-established. We extend
the Gaussian case and generalize it to Hermite functions of
arbitrary order. As Hermite functions have several well-studied
properties and often serve as an orthonormal signal basis, it is
advantageous to express the results of mathematical operators
in terms of Hermite functions. It allows for subsequent reuse
of the same equations when multiple operations are performed
consecutively.

Section II provides general definitions and identities which
are used in later sections. In Section III the closed-form
expressions for the product, convolution and correlation of
two Hermite functions are derived and expressed in terms of
new Hermite functions. Section IV derives the cross-WDF
and cross-AF involving Hermite functions. In Section V one
generalized closed-form expression is introduced and the
results are generalized to the class of square-integrable func-
tions. Section VI discusses an application of the generalized
closed-form expressions for the orthogonalization of highly
time-frequency localized, spectrally efficient (communication)
signals. Finally, Section VII concludes this article and summa-
rizes the main findings.

II. DEFINITIONS

Hermite functions consist of a Hermite polynomial, a
Gaussian window and a normalization. Without loss of gen-
erality we primarily deal with time- and frequency-varying
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signals. Note that the analysis and forthcoming results apply
equally well to other Fourier pairs such as position and mo-
mentum. A Hermite function h,,(¢) of order n is defined as

1 2
hi(l) = —-Hp(t)- e~ = (1)
= iz M
with H,, being the nth degree Hermite polynomial
d” 2
Ho() = (—1)"et” et 2
(1) = (-1)e’ e @)
Hermite functions form a complete orthonormal set [17]:
o 1 ifn=m
/foo hn(t) - b (t)dt = {O if n % m. 3)

Hermite functions are the eigenfunctions of the unitary frac-
tional Fourier transform (FrFT) operator [18], [19]:

FLhn () Hu) 2 Ko (t,u)hn(t)dt

7 @
- Anhn(u’)7 (5)

where the eigenvalue corresponding to the Hermite function of
order n equals a complex constant \,, = e~ "* with modulus
1, and K, represents the kernel of the FrFT, i.e., [see (6) at the
bottom of the page], where 4() is the Dirac delta function. A
signal transformed by the FrFT leads to a signal representation
over axis u making an angle o« with the time-axis. The FrFT
is known to lead to a rotation of the WDF by an angle « [20].
When « is equal to 7 /2 or —7/2 we obtain a counter-clockwise
or clockwise rotation in time-frequency by 90 degrees and (4)
reduces to the unitary forward and inverse Fourier transform,
respectively. The benefits of using the FrFT to perform opera-
tions like convolution, filtering and multiplexing in the time-fre-
quency domain—e.g., for optical applications—have been un-
derlined in [6].

To derive closed-form expressions involving Hermite func-
tions, we define the product ( - ), convolution (*) and correlation
(%) of two functions f(z) and g(¢), which follow well-known
definitions:

(f g) t)2 f(t)- g(t) (7)
/ F(8) - glr — tydt ®)
(frg)(r / FE - glr + tydt 9

where f(t) represents the complex conjugate of f(¢) and 7 rep-
resents the lag of the convolution and correlation integrals, re-
spectively. The unitary Fourier transforms of the convolution
and correlation integrals equal products of the Fourier trans-
forms of the individual functions f(t) and g(¢):
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III. THE PRODUCT, CONVOLUTION AND CORRELATION OF
HERMITE FUNCTIONS

To arrive at closed-form expressions for the convolution and
correlation of two Hermite functions, this section first addresses
the product of two Hermite functions A,, and A,,,. The product
of two Hermite functions can be written as:

1
Vanrtmplmln

The polynomial multiplication can be calculated using an
identity, first derived by Feldheim [21] and Watson [22]:

min(m,n)

Hy(t) - Hu(t)= >

u=0

B (t) - B (2) H,(t) - Hu(t)e . (11)

mlinl2%
Hn+1n—2u (t)

(12)

(m —w)l{n — u)lu!

leading to a sum of either odd or even Hermite polynomials up
to degree n + m. The Hermite polynomials in the right-hand
side of (12) are not orthogonal when multiplied by the weighting
function ¢ ~** of (11). Therefore, as we aim for a set of orthog-
onal Hermite functions, the polynomials H,, ., 2,(t) are re-
formulated in terms of polynomials H,, |, 2. (¢v/2), which is
achieved by the following identity [23]:
n!

A <%>”(_1)r_ Hy 2 (tV2)
2

72::0 o (n—2r)
The product of two Hermite polynomials as in (11) can now

be written as a vector-matrix-vector product as shown in (14)

with elements corresponding to (12) and (13), respectively.

Hp(t) (13)

H,(t)-Hy (%)
ap
ay
a

Amin(m,n)

[ﬂ0,0 /80.1 »30,2 Tt

Bo, | (m+n) /2] ]
0 Br1 512

B1, (m+n)/2)

0 0 822 Boimn)/2

0 0 0 ;

0 0 0 0 ﬂ111in(m.n),L(m+n)/2J
Hn+m(\/§t)

Hn+7n72(\/§t)

Hn+7n74(\/§t) (14)
FE{(fxg)r)y =V2r-FE{f()}- Fi{g(t)} (10) :
FH(fxg)(r)} = Va2 - FE{F(0)} - FE{g(®)}. (1) Ho(V2t) or Hy(v2t)
1*]‘;701—‘6(&) . el "2;t2 cot{a) , efjutcsc(a)
oty u) 2 ifa#tp m
Ka(t,u) It —u if a = pp~ 2 ©

fat+r=p-2r, pcl,
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min!2¥

ith a,, =
W (m — u)l(n — u)lu!

(n+m — 2u)!

(k= w)l(n+m—2k)!

r=k—n
I=n+m-2u

which can be written as:

=32 ]
k=0
min(k,n,m)
Z au'ﬂu,k
u=0
B (—1)kntm!

min(k,n,m) (_4)u(n +m — QU)!

2, ul(m—w)(n—u)!l(k—u)!

u=0
This reformulation allows to write the polynomial product as a
weighted sum of |m + n| /2 Hermite polynomials as shown by
(15). Substituting the result of (15) in (11), (10) and (11) leads
us to the product, convolution and cross-correlation functions
of two Hermite functions of degree n and m. The results are
shown in (16a), (16b) and (16c¢), respectively.

Hnerka: (\/it)

. A
with Xknm =

(15)

ha(t) - b (%)
_ 1
Vartmplmls
=4
Z Xkmn.m *

Lm+‘n

Hn+m—2k (ﬁt)67t2

)
L ©

(16a)

(16b)

== \/_ m Z Ckn,m * n+m 2k< 12 ) (160)
!
2k /20t m) (n + m — 2k)/7

(
min(k,n,m)

(—4)*(n 4+ m — 2u)!
2. ul(m — u)

w)l(n — u)l(k — u)!

with ¢g . m 2

u=0
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Wf,g (t7 w)

Fig. 1. Coordinate system of the Wigner distribution function (WDF).

IV. WIGNER DISTRIBUTION AND AMBIGUITY FUNCTIONS OF
HERMITE FUNCTIONS

The Wigner distribution function (WDF) transforms a one-
dimensional time-varying signal f (t) to a two-dimensional joint
time-frequency description. A more general formulation for the
WDF of two signals f(t) and g(t) has been found in the cross-
WDF, being defined as [20]

oo N T 77N,
Wf,g(t,w)é/ f<t+7;> <t—%>e’“’tdt’ (17)

which can be interpreted as a joint time-frequency cross-spec-
trum distribution function. Substitution of ¢ = u cos{«) and w
= usin(a) changes the coordinate system to polar coordinates,
where the axis in time-frequency is v = v/#? + w? and « repre-
sents the angle with the time axis as shown in Fig. 1. The slice
of the WDF making an angle « with the time axis can be ex-
pressed as the correlation of the fractional Fourier transformed

signals f(t) and g(t) [24]:

Wy o(ucos(), usin(a))
PR PRl 2)
F g /)

(18)

where the v axis is making an angle o — /2 with the time-axis.
The cross-WDF for two Hermite functions h,, () and h,, (%) is

Wi, b (u cos(a), usin(a))
= Fr2N 2 - Fo 2 by (0} (W /2)
F Fom 2 by (8w /2) }

(19

As Hermite functions form the eigenfunctions of the FrFT op-
erator, the FrFT of h,, is straightforward and only yields a com-
plex multiplication by the eigenvalue ),, = ¢ /%" as shown in
(5). Substitution in (19), calculating the product of two Hermite
functions in correspondence to (16a) and the inverse Fourier
transform give for the WDF of two Hermite functions

Wh, b, (ucos(a), usin{a))
— Agedn—m)ati(ntm) 5

|25

(71)m Z ck,n,mhn+m—2k(\/§u)7

k=0

(20)
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Ayg(0,7)

Fig. 2. Coordinate system of the ambiguity function (AF).

with ¢k .., as given by (16). In Cartesian coordinates, the
closed-form expression is given by

\/Eeja(nfm)

L=

' (+j)n7m Z Ck,n,mhn+m—2k
k=0
(V2 V1 4 w?)

Whereas the WDF provides insight in the time-frequency dis-
tribution, the ambiguity function (AF) gives the two-dimen-
sional time-frequency correlation of two functions with a rel-
ative time-lag 7 and frequency-lag 8. The AF finds application
in time-frequency analysis, waveform design and radar signal
processing [16]. The symmetric and narrowband cross-AF of
two functions f(¢) and g(¢) is defined as [20]:

Af,g(a,r)é/w

— o

Wi )by (6 w) =

e2y)

)ejetdu

)i

where 6 and 7 represent the radial frequency and time shift,
respectively.

We use a similar approach for the AF as for the WDF. Sub-
stitution of 8 = wcos(¢) and 7 = usin(y) changes the coor-
dinate system to polar coordinates, where u = /8% + 72 and ¢
represents the angle with the frequency-shift axis as shown in
Fig. 2. The u-axis of the AF making an angle v/ with the 8 axis
can be expressed as the multiplication of the fractional Fourier
transformed signals f(¢) and g(¢) [24]:

Ap g(ucos(y), usia(0))
— R P} TP

(22)

(23)

The cross-AF for Hermite functions h,, () and h,, (¢} along
the u-axis making an angle ¥ with the frequency-lag axis ¢ leads
to:

Ah,, hy (ucos(ip), usin())
= F 2 F b (t)} - F9hm (£) ).

In a similar fashion, as we calculated the WDF, we can sim-
plify this expression such that the AF becomes

Ay (w0s(h), usin(y)) = e/ mmv—dmtm) 3

mtn
L ] 1
n+m—2k (ﬁu> ) (25)

24

NG z
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with ¢ ,,.m as given by (16). In Cartesian coordinates the
cross-AF for Hermite functions is provided in

Ahn(t).hm(t) (9, T) — \/Ee]‘r”(n*m)
L)

(=g Z Ch.mm Pntm— 2k
k=0

(L Veie )
< 7 0% + 7 (26)
Apart from a constant, the AF reduces to the cross-correlation
operation in time or frequency when § = 0 or 7 = 0, respec-
tively. It is noteworthy that the closed-form expressions are re-
markably similar for the one- and two-dimensional operations
which can be seen in (16), (21), and (26)respectively.

V. GENERALIZATIONS

A. One Generalized Closed-Form Expression for Operations
Involving Hermite Functions

Given the similarity among the closed-form expressions de-
rived for mathematical operations involving Hermite functions,
a generalized form can be deduced. The 1-dimensional oper-
ations—product, convolution and correlation—as well as the
2-dimensional operations—WDF and AF—can be described by

the following generalized form:
=5

Ty = -Az : E Di Cknom * h
k=0

where r; represents the outcome of a product, convolution, auto/
cross-correlation, auto/cross-WDF or auto/cross-AF operation
in accordance with the definitions in Table I. For each of the
discussed operations on two Hermite functions of order n and
m, the normalization .4, phase term p and argument u are as
given in Table I. A remarkable outcome—although it is a log-
ical consequence of the FrFT eigenfunction property of Hermite
functions—is that the difference between all these operations
(involving Hermite functions) is primarily determined by the
phase term p. Once we have the outcome of a cross-correlation
operation we can easily interchange the result to a product, or a
product to the WDF and so forth, just by projecting again the re-
sult on the orthogonal Hermite basis and changing the phase and
argument of the individual Hermite functions. This is particu-
larly useful when Hermite functions are the basis of choice, like
in many quantum-mechanical applications or when one wants
to perform multiple operations in cascade (e.g., first a correla-
tion in time and then a correlation in frequency) like in Her-
mite-based communication systems [11].

A Hermite function of order n oscillates between the turning
points [—v/2n + 1, ++/2n + 1] and has exponential decay out-
side this interval [25]. As the maximum order of a Hermite
function for the operations listed in Table I is at most m + n,
the oscillatory behavior for argument u is bounded by the in-
terval [—¢+/2(m + n) + 1, +¢+/2(m + n) + 1] and exponen-
tially decreases outside this region. The parameter ¢ is either
1/ V2 or 2 in correspondence with the dilation of the argu-
ments u listed in Table I. The correlation-type of operations
(convolution, correlation and the AF) have an argument dilated
by a factor two compared to the product and the WDF as shown
by Table I.

n+m—2k (uﬂi)y (27)
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TABLE 1
GENERALIZED DESCRIPTIONS FOR TIME-FREQUENCY OPERATIONS INVOLVING HERMITE FUNCTIONS

[=22]

Generalized description: 7; = A; -

Z DPi - Ckn,m * hn+m—2k (ul)
k=0

Operation Description Index Condition  Scaling A Phase p Argument u
Product (A () - b (1)) (2) i=1 1 (=1)k V2t
Convolution (hn (t) x hn () (1) 1=2 VT 1 %7—
Auto-correlation  (hp, (t) * hm (¢)) (7) i=3 m=n VT (=1)m™ %T
Cross-correlation  (hy, (t) * hm (t)) (T) i=4 m#n VT (=)™ %T
Auto-WDF Wh,, (8),hom (2) (b @) i=5 m=n NS 1 V22 F w2
Cross-WDF Wh,. (£),ham (1) (@) i=6 m#n VT e=de’(n=m) . (Ljyn=m /2. 12 1 o?
Auto-AF A (8 b (1) (05 7) i=7 m=n Nz (=1)n % VOZTF 2
Cross-AF Ahn(t),hm(t) (9 ) i=8 m ;ﬁ n \/7_1' ej'(/)'(nfm) . (7j)"+m % . \/W
with o/ = Arg(t 4 j - w), ' = Arg(0 + 35 - 7), Ckn,m = 2k\/2<n+m\<ﬁ!m TSI ZZ‘;%(k’n’m) u!((r;f):)f(n::z;?;ﬁ!u)!

Thanks to the closed-form expressions, one can evaluate the
product, convolution, correlation, AF and WDF at a single point
simply by evaluating the (bounded) sums. The computational
complexity of evaluating a single point becomes proportional
to N, where N represents the number of Hermite functions in
the end-result. Depending on the size of IV, this can mean a re-
duction in computational complexity compared to the straight-
forward calculations, especially in case of the AF and WDF.

In brief, using the generalized closed-form expression, a
strong similarity between one-dimensional and two-dimen-
sional time-frequency operations involving Hermite functions
can be observed as shown in Table I. Given that the result of
these operations results in a bounded sum of Hermite functions,
some well-known characteristics of Hermite functions apply,
e.g., the resulting functions exhibit exponential decay both in
the time-domain as well as in the frequency-domain.

B. Generalizations to Square-Integrable Functions

As Hermite functions are a complete orthonormal basis for
L?(R), every square-integrable function f(t) can be written as
a sum of Hermite functions f(¢) = limy_ o 22;0 an - h ().
This is especially useful for time-frequency localized signals
which are well-described by a limited set of Hermite functions;
how large N needs to be for a given approximation error de-
pends on the characteristics of the function f(£) [25]. Applying
the results of previous sections, we can give the cross-correla-
tion functions for square-integrable functions f(¢) and g(¢) in
terms of normahzed Hermlte functions:

Z o Z bun/

Lm«#nJ
1
.(71)m Ckon,m * hn m—2k <_7—> ) (28)

where ¢ 1, is as defined before in (16). a,, and b,, are the co-
efficients from the Hermite expansions of f(t) and g(t), respec-

tively:
ané/ Ft) - hn(t)dt

b = / " g0) - h(t)e (29)

Given two square-integrable functions f(¢) and g(¢), the
cross-WDF and cross-AF can be written by Hermite expansions
as well:

Wyglt,w) = Zanb Wh. ) ko (1) (B @)

n,m

Z anbmAh

n,m

(30)

Ay q(8,7) hon (1) (057, 31)

where a,, and b, are as defined in (29). These expressions prove
useful in Section VI.

VI. APPLICATION OF THE ROTATIONAL SYMMETRIC AF FOR
THE DESIGN OF COMMUNICATION SIGNALS

This section applies the theoretical results derived in last sec-
tion to design orthogonal, time-frequency localized and spec-
trally efficient waveforms for communications.

It was already stated in [26] that signals constructed by Her-
mite functions of order n = 0,4,...4N are characterized by
a time representation which is equal in magnitude to the fre-
quency representation. We are able to generalize this notice to
a class of signals characterized by a rotationally symmetric AF
based on (26):

An, n,, (wcos(y), usin(y)) = ef(M—mv—ilnrm)g
L= ]

1
\/E g Ckn,m * hn+m—2k <EU> .

The AF of two Hermite functions is isotropic, i.e., the
magnitude of the AF is the same regardless of the angle .
However, when the AF is calculated for signals in L?(R) which
are constructed by sums of Hermite functions, the AF is not
automatically isotropic anymore. The order-dependent phase
terms e/(» ™% cause constructive and destructive summa-
tions of Hermite functions such that the magnitude of the AF
is varying for different angles 3. The key insight is that by
summing Hermite functions of specific orders, we can design
(communication) signals which are time-frequency localized,
orthogonal and achieve nearly the critical symbol density of 1
s-Hz per signal.
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Fig. 3. The magnitude of the ambiguity function (AF) of (a) the zeroth-order Hermite function (Gaussian signal) (b) a highly time-frequency localized signal for
a rectangular grid and (c) a highly time-frequency localized signal for a hexagonal grid. The signals in (a), (b) and (c) are based on Hermite functions of order 0,
{0,4}{0, 6} and are characterized by rotational symmetry of order 1, 4 and 6, respectively. The zeros of the AFs are indicated by circles.
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Fig. 4. Surface plot of superimposed Wigner distribution function (WDFs) of (a) five zeroth-order Hermite functions (Gaussian signals) (b) five highly time-
frequency localized signals for a rectangular grid and (c) seven highly time-frequency localized signals for a hexagonal grid. The signals in (a), (b) and (c) are based
on Hermite functions of order 0, {0, 4}{0, 6} and are characterized by rotational symmetry of order 1, 4 and 6, respectively. By virtue of the orthogonalization
procedure the signal in (b) and (c) in the center is orthogonal to its direct neighbors.

A weighted sum of Hermite functions of order n €
{0,%, 2k, ..., kN} leads to a phase term /¥* which is periodic
with ¢ = 27 /k. E.g., a summation of Hermite functions of
ordern € {0,4,8,...,4N} leads to an AF which is constructed
by Hermite functions of order A, with n = 0,4,8, ... 4N,
which are all rotationally symmetric with ¥y = 2x/4. An
example would be a signal s(t) = hg(t) + psh4(t). Choosing
p4 such that s(t) = 0 at ¥ = C will lead—due to the rotational
symmetry—automatically to four zeros of the AF at the coordi-
nates [04,74] € {[0,C],[C,0],[0,—C],[-C,0]}. This greatly
reduces the computational complexity. Instead of solving a
second-order equation in four variables, we can now force a
zero at each of these coordinates by solving a simple quadratic
equation (assuming p4 is real), i.e.,

A ho (01, ) + 201 Ang 1y (82, 72) + p3 A, 1y (04, 74) = 0.
(32)

To arrive at an effective time-bandwidth product of 1.10 s-Hz
per signal we choose C' = +/1.1-2m = 2.63. Solving the
quadratic equations for [64, 4] = [0,C] gives ps = —0.219,
such that s(t) = hg(¢t) — 0.219 - hy(¢). The ambiguity plot
is shown in Fig. 3(b) and shows the four zeros of the AF at T
= +2.63 s and § = +2.63 rad. This means that the signal
designed is orthogonal to shifted signals in time-frequency by
T = +2.63 s or § = +2.63 rad/s. The WDF of the designed
signal—and four time-frequency shifted ones at the coordinates
of the zeros of the AF—are shown in Fig. 4(b). For compar-
ison, Fig. 4(a) shows five non-orthogonal Gaussians (zeroth-
order Hermite functions). Given the resemblance between the
closed-form equation for the AF and the WDF (Table I), the
WDF is easily and very efficiently calculated once the AF is
known.

Similarly, we can design highly time-frequency lo-
calized pulses suitable for efficient hexagonal packing
of signals in time-frequency. The zeros are placed at
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(66, 7] € {[XC,0],[£1/2C,++/3/2C]} and the second-order
equation to be solved is (assuming pg is real),

processing and spectrum estimation, many applications—be-
yond communications—may benefit from the contributed
closed-form expressions.

Apg.no (065 T6) + 206 Ang he (065 T6) + P Ang hs (865 76) = 0
(33)

Without the rotational symmetry of (26) the orthogonalization
procedure would require solving a second-order equation in six
variables. For an effective time-bandwidth product of 1.10 s-Hz
per signal for the hexagonal lattice C' needs to be approximately
2.83. Solving now (33) leads to pg ~ —0.196 and the AF
is thereby characterized by six zeros at the coordinates of the
hexagon as shown in Fig. 3(c). The designed signal is orthog-
onal to six time-frequency displaced variants (corresponding to
the coordinates of the hexagon). The WDF of the seven signals
in a hexagonal setup are shown in Fig. 4(c).

In brief, the design of orthogonal, rotationally symmetric
WDFs and AFs becomes possible by appropriately selecting and
weighting Hermite functions of order n € {0, k,2k,...,kN}.
For the rectangular grid, the orthogonalized signal consists
of only a Oth and 4th order Hermite function, whereas the
hexagonal grid leads to an orthogonalized signal consisting of
a Oth and 6th order Hermite function. These signals are highly
time-frequency localized and exhibit, as stated in Section V,
exponential tails. The main aim of this application section is il-
lustrating how the closed-form nature of our expressions can be
useful to significantly simplify an orthogonalization procedure
in communication signal design. A comprehensive treatment of
the properties and the use of these insights for rectangular and
hexagonal lattices attaining high spectral efficiencies is outside
the scope of this paper and subject of ongoing work.

VII. CONCLUSION

Closed-form expressions for the product, convolution, corre-
lation, the WDF and AF of two Hermite functions have been
derived. We investigated the proposition posed by Abreu [15]
that the (cross-)correlation operation of two Hermite functions
leads to a new Hermite function. It is prior knowledge that the
product, convolution, correlation, WDF and AF of two Gaussian
functions (the zeroth-order Hermite functions) lead to one- and
two-dimensional Gaussian functions. We generalized this for
Hermite functions of arbitrary order and have shown that the
results of all mentioned operations on two Hermite functions of
order n and m can be expressed as a sum of | (n + m)/2] Her-
mite functions with an order up to n + m.

An interesting resemblance among all mentioned operations
has been found. The differences between the product, convo-
lution, correlation, WDF and AF of two Hermite functions are
primarily determined by distinct phase changes of the individual
Hermite functions of which the resulting function consists.

As an illustration, we have shown the application of
the closed-form expressions for the design of orthogonal,
time-frequency localized communication signals. By con-
structing signals based on Hermite functions of order
n € {n = 0,k,2k,...,kN} the AF of the signals becomes
rotationally symmetric with order k. Application of this key
insight allows for an orthogonalization procedure which leads
to orthogonal, time-frequency localized signals which attain a
high spectral efficiency. Given the usage of Hermite functions
in many scientific fields like quantum mechanics, optics, image
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