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Off-the-Grid Line Spectrum Denoising and
Estimation with Multiple Measurement Vectors

Yuanxin Li and Yuejie Chi

Abstract—Compressed Sensing suggests that the required num- performance guarantees by promoting the sparsity pridnen t

ber of samples for reconstructing a signal can be greatly redced
if it is sparse in a known discrete basis, yet many real-world
signals are sparse in a continuous dictionaryOne example is the
spectrally-sparse signal, which is composed of a small nuneb
of spectral atoms with arbitrary frequencies on the unit interval.
In this paper we study the problem of line spectrum denoising
and estimation with an ensemble of spectrally-sparse sigisacom-
posed of the same set of continuous-valued frequencies fratmeir
partial and noisy observations. Two approaches are developed
based on atomic norm minimization and structured covariane
estimation, both of which can be solved efficiently via semigfinite
programming. The first approach aims to estimate and denoise
the set of signals from their partial and noisy observationsvia
atomic norm minimization, and recover the frequencies via gam-
ining the dual polynomial of the convex program. We characteze
the optimality condition of the proposed algorithm and derive
the expected convergence rate for denoising, demonstratinthe
benefit of including multiple measurement vectors. The secul
approach aims to recover the population covariance matrix fom
the partially observed sample covariance matrix by motivaing
its low-rank Toeplitz structure without recovering the signal
ensemble. Performance guarantee is derived with a finite nubrer
of measurement vectors. The frequencies can be recoveredavi
conventional spectrum estimation methods such as MUSIC fim
the estimated covariance matrix. Finally, numerical exampes are
provided to validate the favorable performance of the propsed
algorithms, with comparisons against several existing appaches.

Index Terms—basis mismatch, atomic norm, multiple measure-
ment vectors, covariance estimation

I. INTRODUCTION

reconstruction in a tractable manner. In particular, itheven
that if the frequencies all lie on the DFT grid, the signal of
lengthn can then be recovered exactiging convex optimiza-
tion from an order ofr logn randomly selected samples with
high probability [6], wherer < n. CS has also found many
important applications in analog-to-digital conversi@h, [[8],
spectrum estimatior [9] and hyperspectral imaging [10].

However, most existing CS theories act as a model selection
principle, where the signal is assumed sparse in an a priori
basis, and the goal is to identify the activated atoms in the
basis. There is a modeling gap, however, from physical $sgna
that are actually composed of a small numbepafameterized
atoms withcontinuous and unknowgarameters determined by
the mother nature. An example in this category that garnered
much attention is the spectrally-sparse signal, whereitmab
is composed of a small number of spectral atoms with arlitrar
frequencies on the unit interval. Performance degeneratio
CS algorithms is observed and studied systematically if-{11
[13] when there is an unavoidable basis mismatch between the
actual frequencies and the assumed basis. Many subsequent
works have been proposed to mitigate the effect of basis
mismatch to a great exte(we only cite a partial list [14]-5[20]
due to space limits)

Therefore, it becomes necessary to developasameter
estimationprinciple, which does not need an a priori basis
for reconstruction while still explores the sparsity pri@Gne
recent approach is based on atomic norm minimizafioh [21],
which provides a general recipe for designing convex smhsti

Many signal processing applications encounter a signal &o- parsimonious model selection. It has been successfully
semble where each signal in the ensemble can be represeajgslied to recover a spectrally-sparse signal from a small
as a sparse superposition of complex sinusoids sharingnumber of consecutive sampleés_[22] or randomly selected
the same frequencies, for example in remote sensing, argaynples[[23] from the time domain. In particular, Tang et. al
processing and super-resolution imaging, and the goal isdieowed that a spectrally-sparse signal can be recoverad fro
recover the set of signals and their corresponding fredaencan order ofr log n log r random samples with high probability
from a small number of measurements. While there has baghen the frequencies are at least separated/ify. — 1) [23]

a long line of traditional approaches [$fompressed Sensingfor line spectra with random amplitudes. This approach is
(CS) [], [B] has been recently proposed as an efficiemixtended to higher dimensional frequencieslin [24]. Anothe
way to reduce the number of measurements with provaldpproach is proposed in [25]. [26] based on structured ma-
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trix completion, where the problem is reformulated into a
structured multi-fold Hankel matrix completion inspire¢ b
the matrix pencil algorithm[]27]. For this approach, it is
shown that an order of log*n randomly selected samples
guarantees perfect recovery with high probability undenso
mild incoherence conditions and the approach is also antenab
to higher-dimensional frequencies. Both approaches allow
recovering off-the-grid frequencies at an arbitrary psigi
from a number of samples much smaller thanWe refer
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interested readers for respective papers for details. signal sparsity basis. However, due to the earlier-meetion
basis mismatch issue, the correlation-aware approachotann
estimate frequencies off the grid.
Under the statistical assumption that the frequencies are
It has been shown in the traditional CS framework thaincorrelated which holds in a variety of applications iragirr
the availability of multiple measurement vectors (MMV) casignal processing [3], the full covariance matrix is a Hermi
further improve performance by harnessing the joint sparstian Toeplitz matrix whose rank is the number of distinct
pattern of different signals, also known@®up sparsityf28]- frequencies. In the second approach, we first calculate the
[33]. Motivated by recent advances of off-the-grid frequengyartial sample covariance matrix from partial observatioh
estimation in the single measurement vector case [22], [28)e measurement vectors. A convex optimization algoritem i
[25], [26], we study the problem of line spectrum estimatioformulated to estimate the full Hermitian Toeplitz covada
and denoising of multiple spectrally-sparse signals frogirt matrix whose submatrix on the set of observed entries igclos
possibly partial and noisy observations, where all thea®nto the partial sample covariance matrix, with an additional
are composed of a common set of continuous-valued frequétace regularization that promotes the Toeplitz low-rainkcs
cies, where we leverage the power of MMV without assumingre. Trace regularization for positive semidefinite nuatsi is
the frequencies to lie exactly on a grid. a widely adopted convex relaxation of the non-convex rank
Two approaches are developed based on atomic norm mionstraint. We derive non-asymptotic performance guasant
imization and structured covariance estimation, both oftlvh of the proposed structured covariance estimation alguorith
can be solved efficiently using Semi-Definite Programmingith a finite number of measurement vectors assuming full ob-
(SDP). We study both their theoretical properties, and il®v servations or partial observations using a complete spatse
numerical examples to validate their favorable perforrean{37]. Finally, the set of frequencies can be obtained from th
with comparisons to several existing methods, demonsgatiestimated covariance matrix using conventional methodb su
the performance gain when the number of measurement vas-MUSIC [38]. Compared with directly applying MUSIC to
tors increases. the partial sample covariance matrix, the proposed alyorit
The first approach can be regarded as a continuous cobias the potential to recover a higher number of frequencies
terpart of the MMV model in CSinspired [23] we first than the number of samples per measurement vector by taking
define the atomic norm of multiple spectrally-sparse signaidvantages of the array geometry, for example the co-prime
and characterize its semidefinite program formulatishich array [39] or the minimum sparse rulér [37]. As this algarith
extends the atomic norm for a single spectrally-sparseasigonly requires the partially observed sample covarianceirmat
first defined in [[28] to the MMV caseWe then consider rather than the observed signals, the computational cotityle
signal recovery from their partial noiseless observatiamsl does not grow with the number of measurement vectors, in
signal denoising from their full observations in Additivenit¢é  contrast to approaches that aim to recover the signal edesemb
Gaussian Noise (AWGN), based on atomic norm minimization We note that several recent papelrs] [40],] [41] have also
under the respective observation models. We charactdrize proposed discretization-free approaches for directibardval
dual problem of the proposed algorithm and outline frequenestimation by exploiting low-rank properties of the coaage
recovery by examining the dual polynomi&h the noiseless matrix under different setups. However, only statisticasis-
case, we show that the same argumentin [23] also leads tteacy is established for the algorithm in[40] without a #nit
performance guarantee of the MMV case, where we exactigmple analysis. The papeér [41] assumes completed obser-
recover the signal ensemble with high probability, as soamtion of the covariance matrix and applies low-rank matrix
as the number of samples per measurement vector is on de®oising under specific array geometries without perfocaa
order ofrlognlogr under the same separation conditibm. guarantees.
the noisy case, we derive the expected convergence rate for
denoising with full observations as a function of the numtfer B. Paper Organizatiorand Notations
measurement vectors, demonstrating the benefit of inadudin The rest of the paper is organized as below. Sedfibn I
MMV. describes the signal model with MMV and defines its atomic
A disadvantage of the above approach is that the commerm. Section[Tll considers line spectrum estimation and
tational complexity becomes expensive when the number @énoising based on atomic norm minimization, and Se€fion 1V
measurement vectors is high if we wish to recover the whopeesents the second algorithm basedstctured covariance
signal ensemble. Recognizing that in many scenarios ogstimation Numerical experiments are provided in Secfidn V
only wishes to recover the set of frequencies, we switch oter validate the proposed algorithms. Finally, conclusiand
focus on reconstructing the covariance matrix rather tihan tfuture work are discussed in Sectfon VI. Throughout the pape
signal ensemble in the second approach. Covariance stesctunatrices are denoted by bold capitals and vectors by bold
can be explored when multiple observations of a stochasléwercases. The transpose is denoted-bY, and the complex
signal are availablé [34]. With a mild second-order sta@idt conjugate or Hermitian is denoted Igy)*.
assumption on the sparse coefficients, a correlation-aware
approach is proposed i [35], [36] to improve the size ofl!. SIGNAL MODEL WITH MMV AND ITS ATOMIC NORM
recoverable support by exploring the sparse representatio In this section we first describe the spectrally-sparseasign
of the covariance matrix in the Khatri-Rao product of thenodel with multiple vectors, then define and characterize th

A. Our Contributions and Comparisons to Related Work



atomic norm associated with the MMV model for spectrallywhere cony.A) is the convex hull of.A. This definition

sparse signals. generalizes the atomic norm of a single vectgrin [23],
which becomes a special case [of (8) for= 1.
A. Signal Model with MMV Encouragingly, the atomic norfhX || , admits the follow-

ng equivalent SDP characterization, which implies effitie

Letx = [z1,...,7,]T € C" be a spectrally-sparse signai . .

with r distinct frequency components, written as computation. The proof can be found in Appeniik A.
. Theorem 1. The atomic normj| X || 4 can be written equiva-
@ =) cal(fe) £ Ve, (1) lently as
k=1 1 1
X|a= inf = Tr (T = Tr(W
where each atom(f) is defined as 114 uGCT",lVril/GCLXL{ 2 (T{w) + 2 ( )‘
1 o , -7 T(u) X
a(f) = NG [l,eﬂ”,...,eﬂ”ﬂ" 1)} , f€]0,1), (2 {X* w EO},

the matrixV is given asV’ = [a(f1), ..., a(f,)] € C**", and Where Tr(X) is the trace ofX.

c=le1,...,c,|T € C". The set of frequencie® = {fi}7_,

can lie anywhere on the unit interval, so ttfatis continuous- 1. AToMIC NORM MIMINIZATION WITH MMV M ODEL

valued in0, 1). In this section, we consider line spectrum estimation and
In an MMV model, we consided. signals, stacked in a denoising based on atomic norm minimization from partial
matrix, X = [zy,..., ], where each signat; € C", | = and/or noisy observations of multiple spectral-sparsaaigg
1,...,L, is composed of (a) signal recovery from their partial noiseless obseovet]
- and (b) denoising from their full observations in AWGN.
x = Z craalfy) = Ve, (3) We assume that a random or deterministic (sub)set of entries
— of each vector inX* defined in[(%) is observed, and the obser-
. vation pattern is denoted by c {0,...,n—1} x{1,...,L}.
with ¢ = [e1,-. ¢r]". HenceX can be expressed as | ino apsence of noise, the p{artially obse}rveg signal }matri
X =VcC, (4) s given as
WhereC’:[ch--- 7CL]€(C’I‘><L' Zl—XQ_PQ(X )a (9)

wherePg, is a projection matrix on the set indexed Qy Note
B. Atomic Norm of the MMV Model that we allow the observation pattern of each columnXof

) ] to be different, possibly randomly selected.
We follow the general recipe proposed in|[21] to define the \ye propose the following atomic norm minimization algo-
atomic norm of a spectrally-sparse signal ensem¥leWe  (ithm to recover the complete sign&*:

first define an atom for representidj in (4) as

. X =argminy | X||la st Xg=Zg. (20)
A(f,b) = a(f)b", (5) .
) ) ~ When the measurements are corrupted by noise, give as
where f € [0,1), b € CL with ||b||2 = 1. The atomic set is )
defined asd = {A(f,b)|f € [0,1),]|b||» = 1}. Define Zo=Xg+ Ng,

where N is the noise term, we consider the atomic norm
, (6) regularized algorithm:

[ X |40 = inf {X =3 cxA(frbr),ck > 0
k=1
o ,
as the smallest number of atoms to descri¥ie A natural X = argminx §HXQ = Zgllp + 7| X4, (11)

objective to describeX is to minimize | X||.u0, i.e. to seek yherer is a carefully-selected regularization parametef.
the atomic decomposition aX with the minimal number of [42]). We will first analyze the noiseless algorithirl10) with
atoms. It is easy to show thatX |40 can be represented ,iia| ohservations in SectidiTIFA and then the denoisng
equivalently as[[23] algorithm [I1) will full observations in Section 1IBB. The
. T(u) X theoretical analysis of the case with partial noisy obsésa
1X a0 = Jnf {rank(T(u))‘ [ x* wl|Z=% O isleft to future work.

whereT (u) is the Hermitian Toeplitz matrix with vectar as Signal R ¢ Partial Noiseless Ob :
its first column. Since minimizind{6) is NP-hard, we consideA' ignal Recovery from Partial Noiseless Observations

the convex relaxation off X || 4.0, called the atomic norm of ~From Theoren{ll, we can equivalently write (10) as the
X, as following semidefinite program:

IX|la = inf{t>0: X et conA)} X = argming inf %Tr(’T(u)) + %Tr(W) (12)

— inf {;Ck‘X = ;CkA(fmbk)ack > 0}7 (8) s.t. [C(gf) ;f,] =0,Xq = Zg.



Similarly, (I1) can be recast as a semidefinite program als wés sufficient to guarantee that we can recovrvia (1) with
Interestingly, one can recover the set of frequencies frgmmobability at leastl — Lé.

the solution of the dual problem of (10). Defifd”, X) =

Tr(X'Y), and (Y, X)r = Re((Y, X)). The dual norm of

| X ||l can be defined as

From Theoreni]2 we can see that the atomic norm mini-
mization succeeds with high probability as soon as the numbe
of samples is slightly above the information-theoreticavér

Y[ = sup (Y,X)m boun_d_@(r_L) by I_ogarithmic factqrs, give_n a mild sepa_ration
1X]a<1 condition is satisfied. Theordm 2 is a straightforward esitem
= sup (Y,a(f)b")r of the single vector case = 1 studied in[[23], by constructing
felo1),]bll=1 each row of Q(f) in the same manner a5 |23], hence the
= sup (b, Y a(f))]| proof is omitted. On average, the number of samples per
felo,1),]|bll=1 measurement vector is abodt|/ L, which is on the order of
= sup |[|[Y'a(f)ll2= sup [|Q(f)-2- rlognlogr, similar to the single vector case [23]. Nonethe-
felo.1) felo.n less, we demonstrate in the numerical examples in Selcfion V
The dual problem of{10) can be written as that indeed the inclusion of multiple vectors can improve th

A reconstruction performance. Therefore, it will be intéres
Y = argmaxy (Y, Zg)r SL|Y ][4 <1,Yq. =0. (13) to see whether one can relax either](15)[od (16) given more
Follow 73, 75, 26 " . measurement vectdis.
ollowin 2], , , , one can recover the set o . : .
frequenc?es u]sing ; dua]I pol ]nomua@(f)u _ HY*a(f)H emark 1. (Connection to the single vector case) It is pos-
Y ABA 2 sible to employ the atomic norm minimization for the MMV

constructed from the dual solutiok”, by identifying the del t tiallv ob q trall .
frequencies that satisfi/f € [0,1) : |Q(f)]|2 = 1}. Once the mode' 1o recover a partially observed spectra y-spalgsme_du

: . s . ; Specifically, consider a Hankel matrix constructed franin
frequencies are identified, their amplitudes can be reealver

by solving a follow-up group sparsity minimization problem as
Let (X,Y) be primal-dual feasible td(10) and{13), we Tl Tz Tp—pil
have (Y, X)r = (Y,X")g. Strong duality holds since Tz X3 v Tnopg2
Slater’'s condition holds [43, Chapter 5], and it impliesttha H(x,p) = : : . : ) (17)

the solutions of[(10) and_(13) equal if and only¥f is dual
optimal and X is primal optimal. Using strong duality, we
have the following proposition to certify the optimality tife wherep is a pencil parameter. We can then view the columns
solution of [I0) whose proof can be found in Appendix B. of H(x,p) as an ensemble of spectrally-sparse signals sharing
the same frequencies. We may propose to minimize the atomic
norm of H(z, p) as

Ip prrl e Tn

Proposition 1. The solution of(Id) X = X* is its unique
optimizer if there exist¥” such thatY q. = 0 and Q(f) =

Y*a(f) satisfies T4 = argmin, |H(x,p)l|la St xo=zq, (18)
Q(fy) =bp, Vfi€F, 14 which can be reformulated as
1QU)ll2 <1, Vf ¢ F. min Te(T(u)) + Te(W2) (19)
Propositiori 1L offers a way to certify the optimality B {1@) a ‘ T(u)  H(x,p) - B
long as we can find a dual polynomi@\( f) that satisfied(14). S, pr oW, | 2D T R

Borrowing the dual polynomials constructed for the single This draws an interesting connection to the Enhanced Ma-

measurement vector case [23]’ we can easily show trt]r"’})t( Completion (EMaC) algorithm proposed in_[25], [26],
the atomic norm minimization for MMV models succeeds , . L

. : o - Which recoverse by minimizing the nuclear norm of(x, p)
with high probability under the same frequency separation
condition when the size of2 exceeds certain threshold. We

have the following theorem. Zemac = argmin,, | H(x,p)|. St.xq = zq, (20)

Theorem 2. Let ) be a set of indices selected uniformlywhich can be reformulated as
at random from{0,...,n — 1} x {1,...,L}. Additionally,

assume the signs, ;/|cy| are drawn i.i.d. from the uniform Wffl‘}‘?w Tr(W1) + Te(W2) (21)
distribution on the complex unit circle and that
S.t. W N H(z,p) =0, zqg = zq.
A:=minl|fy — fi| > ———+— (15) . .
kL [(n—1)/4] Comparing [(I0) and[{21), the EMaC algorithm can be

which is the minimum separation between frequency pafigdarded as a relaxation df {19) by dropping the Toeplitz
wrapped around on the unit circle. Then there exists a ngonstraint (which allows handling of damping modes) of the

merical constanC’ such that 1A recent preprint[[44] appeared on Arxiv while this work wasder
n} (16) preparation slightly improves the probability of succesTbeorem[2 from

n
< 5 1 — Lé to 1 — +/Lé using more refined arguments.

)

r

,rlog5

|| > O'L max {1og2 log



first diagonal block in EMaC. Whep = 1, (19) is equivalent To put it differently, the coefficients from different sigeaare
to the atomic norm minimization algorithm in[23]. Note thauncorrelated, and the coefficients for different frequesdn
Theoreni 2 cannot be applied to guarantee the succeEs]of (th®) same signal are also uncorrelated. As an exaniple, (24) is
since the signs of each vector are not independent, andsatisfied ifc;;'s are generated i.i.d. frol@A (0,0—,3).
practice this formulation does not provide performancengai Assume each vector iX is observed at the same location
over the atomic norm minimization algorithm in"[23]. Hence) of size m. Without ambiguity, we usé&? to denote both
we present this formulation just for theoretical interests  the observation pattern of the signal ensemKlg and each
signalzg, ;. Instead of focusing on reconstructing the complete

B. Signal Denoising for MMV Model signal matrix X, we explore the low-dimensional structure of
. . . . its covariance matrix. Givef (R4), it is straightforwarathhe
In this section, we consider the problem of line spectrum’ . ) . ! .
denoising in AWGN when full observations are available. Theovanance matrix of the signal; in @) can be written as
algorithm can be rewritten as r

’ Fﬂ) 1 ) S =Emai] = ) ota(fi)a(fr)"€C™",  (25)

X = argming 7| X ~ Z|[7 +7 X[, (22) =
L . . which is a Positive Semi-Definite (PSD) Hermitian Toeplitz

where the subscripl is dropped withZ = X* + IV and matrix. This matrix is low-rank with ranfZ*) = r < n.

N is the additive noise. This algorithm can be efficientIY . .
: ) . ) n other words, the spectral sparsity translates into thallsm
implemented via ADMM, of which we provide the procedurerank of the covariance matrix. Let the first column®f be

in Appendix [BE. We have the following theorem for the _ ﬁzzﬂ o2a(f,) € C", then =* can be rewritten

ted te bfl(22) when th ise is AWGN. :
_(Ia_ﬁgegrgofcigr;\r:e';%%r;cn%irg Bi(22) when the noise is asX¥* =T (u*). Fromu* or ¥*, the set of frequencies can

be estimated accurately by well-studied spectrum estimati
Theorem 3. Assume the entries ofV are composed algorithms such as MUSIC [38] and ESPRIT][45]. Therefore,
of iid. Gaussian entries CN'(0,0%). Set 7 = we focus ourselves on reconstruction of the covarianceixnatr

o (1+ 2 );§L+1og(ozL)+ 2Llog(aL)+\/§+1)%’2*.

logn
wherea = 87mnlogn, then the expected convergence rate is
bounded as A. Structured Covariance Estimation with SDP
lEHX _x* 2 < 27 12X 4 - (23) The covariance matrix of the partially observed samples
L P L A xq, can be given as

From Theorerfil3r is set on the order of/ L. If || X*|| , =

o(VL), then the per-measurement vector Mean Squared
Error (MSE) vanishes ad increases. This is satisfied, forwherePq is a mask operator that only preserves the submatrix
example by a correlated signal ensemble where the normidfthe rows and columns indexed 1%

each row of coefficient matridxC is o(v/Z). On the other If ¢ can be perfectly estimated, e.g. using an infinite num-
hand, if all entries inC are selected with unit amplitude,ber of measurement vectors, one might directly seek a low-
then | X*||, = O(VL) and the per-measurement vectofank Hermitian Toeplitz matrixy (u) which agrees withey,
MSE may not vanish with the increase @f Nonetheless, restricted on the submatrix indexed by Unfortunately, the
our numerical examples in Sectibn ¥-B demonstrate that ti#eal covariance matrix ir(26) cannot be perfectly obtdjne
per-measurement vector MSE decreases gracefully with ftaher, we will first construct the sample covariance matfix

26 = ]E[wQ,leJ] = PQ(E*) S (Cme7 (26)

increase ofL. the partially observed samples as
L
IV. STRUCTURED COVARIANCE ESTIMATION FOR MMV Sor= %Zwsz,lwé,l — lXQXg c cmxm, (27)

MODEL =1 L

as demonstrated in Sectign]lll, the computational cost al%OZlL_lflecf- We then seek a low-rank PSD Hermitian
increases dramatically whefn is large. In many applications, Toeplitz matrix whose restriction on the submatrix indexed

one is only interested in the set of frequencies, and thg () is close to the sample covariance matkx, ; in (Z7).
covariance matrix of the signal carries sufficient inforimat A natural algorithm would be "

to recover the frequencies. In this section, we developustr )
tured covariance estimation algorithm that takgs advastag, — argmingccn = ||[Pa (T () — ESLLHQF + Arank(T (u))
of statistical properties of the frequency coefficients #mel 2
low-dimensional structures of the covariance matrix. st. T (u) =0, (28)

In particular, we assume that the coeff|C|e;;§ s satisfy where) is a regularization parameter balancing the data fitting
Elcx,1] = 0 and the following second-order statistical propert

Yerm and the rank regularization term. However, as directly
o, ifk=K,1=10, minimizing the rank is NP-hard, we consider a convex relax-
0, otherwise

(24) ation for rank minimization over the PSD cone, which reptace

Elckicr ] =



the rank minimization by trace minimization, resulting in  is much smaller than the ambient dimensiar\WWhen(2 forms
1 ) a complete sparse ruler, the average per-entry MSE vanishes
@ = argmin, ccn 5 [P (T (u)) — Ba,llm + ATr (T (u))  as soon ad. is on the order of e (X5)rlogn < 2 logn.

s.t. = 0. 29
T (u) = (29) V. NUMERICAL EXPERIMENTS

The algorithm [(2B) can be solved efficiently using off-the- | this section, we evaluate the performance of the proposed
shelf semidefinite program solvers. Interestingly, thmdraalgorithms [(ID), [[Z2) and[{29). In particular, we examine

minimization of 7 (u) is equivalent to minimizing the atomic the influence of the number of measurement vectors and
norm of u under the nonnegative constraiifu) = 0 since the number of samples per signal on the performance of

[l a = Tr(T(w)) if T(u) = 0. Therefore we carquiva- frequency estimation, and compare the proposed algorithms
lently write (29) as an atomic norm regularized algorithm: against several existing approaches.

1 2
u = i n = -3 . S
%= atgiiiluect IPa (T (w)) a.rlp+ Alulla A. Atomic Norm MinimizatiofI0) for MMV Model

st. T (u) =0. Let n = 64 andm = 32. In each Monte Carlo experiment,

The proposed algorithm works with the sample covariant¥® 9eneratel, spectrally-sparse signals with frequencies
matrix Xq, ;. rather thanX , directly. Therefore, it does not Fandomly located irf0, 1) that satisfy a separation condition
require storingX ¢ of size mL, but only B¢ ; of sizem?2, A = mingz[fy — fif = 1/n. This separation condition is
which greatly reduces the storage space whene I and @boutd times weaker than the condition asserted in Thediem 2
may be updated online if the measurement vectors arrifgguarantee the success[ofl(10) with high probability. ohe
sequentially. frequency component, we randomly generate its amplitudes

It is also worthwhile to compare the proposed algoritim (269" €ach signal. We rur({10) *and cal*culate the normalized
with the correlation-aware method i [35].136]. The methoffconstruction error ag X — X*||r-/|| X™||, and claim the
in [35], [36], when specialized to a unitary linear array ¢z experiment is successful if it is below)—°. For each pair of
regarded as a discretized version of our algoritAm (29),rehd” @nd L, we run a total of50 Monte Carlo experiments and
the atomsz(f1.)'s in the covariance matrif{26) are discretize@utput the average success rate. Fig. 1 shows the success rat

over a discrete grid. Further numerical comparisons amecar Of reéconstruction versus the sparsity levefor L =1, 2, and
out in Sectio V. 3 respectively. As we increask, the success rate becomes

higher for the same sparsity level.

B. Performance Guarantees with Finite Samples

........

. 1e—e—e—e—p—e
We analyze the performance df [29) under an additional : —~—L=1
Gaussian assumption, where eachis i.i.d. generated as 0k ‘ , :tjg
c, ~ CN(0,A), and thereforex; ~ CAN(0,X*). Define '
the effective rankof a matrix X as req(X) = Tr(X)/||X]]
which is strictly smaller than- and allows the signal to be g0° i
approximately sparse. We have the following theorem. 8
704 5
Theorem 4. Suppose thai; ~ CN(0,A). Let u* be the
ground truth. Set o2k |
%) log(L ¥5) log(L
A > C’max{ ret( Q)Log( n)’ ref Q)Log( n)} =6 0 ! i -
0 5 10 15 20
sparsity level (r)
for some constant’, then with probability at least — L1, fo 1 s © of o " it § for I
H ofi 1g. 1. uccess rate Or reconstruction versus the spal or =
the solution tO@) satisfies 1,2,3 whenn = 64, m = 32 and the frequencies are generated satisfying a
” T(ﬂ -~ U*)HF < 16/\\/1_" separation conditiod\ > 1/n for the same observation across signals.
if Q corresponds to full observation; and Fig. [ shows the reconstructed dual polynomial for a
1 randomly generated spectrally-sparse signal with= 10.
— |l — u*||F < 16T The amplitudes are generated randomly vk (0, 1) entries
v when no noise is present. It can be seen that although the
if Q2 is a complete sparse ruler such that the unobserved entrigigorithm achieves perfect recovery with both = 1 and
can be deduced from differences of observed ones. L = 3, the reconstructed dual polynomial has a much better

The proof is in AppendikD. Note that the observationQet localization property whed, = 3.

is assumed deterministic in TheorE 4. When full obsermatio ) o

are available, our algorithm yields reliable estimate of tHB- Atomic Norm based Denoisir@2) for MMV Model
covariance matrix as soon as the number of measurementet n = 64 and the sparsity levetl = 8. The frequencies
vectorsL is on the order of e (X*)rlogn < r?logn, which are selected to satisfy the separation conditivn> 1/n.
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Dual Polynomial
= Truth
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We generate the coefficient mat® with c¢;; ~ CA (0, 1).

The noise matrixV is randomly generated witd\ (0,0?),
whereos = 0.1. We solve [2R) via ADMM and calculate per-
measurement vector MSE §sX — X*||2/L. Fig.[3 shows
the per-measurement vector MSE of the reconstruction with
respect to the number of measurement vectors, together witl
the theoretical upper bound obtained from Theofédm 3. The
per-measurement vector MSE decreases with increasirg of 1071 ; ; ;
which demonstrates more accurate denoising results btougl
by MMV. While the theoretical bound is not as tight, it exhgbi

0.2 0.4 0.6 0.8 1
frequency (f)

)L =3

The reconstructed dual polynomial for a randomly egated
spectrally-sparse signal with = 64, r = 10, andm = 32: (@) L = 1,

similar trends as the empirical performance.

Fig. 3.

MSE || X - X*|[3/L

‘| —— Numerical results
e6H FORPPRPPS .| =°—Theoretical bounds

0] 20 40 60 80 100

the number of measurement vectors L

The per-measurement vector MSE of reconstructiord #s
theoretical upper bound, versus the number of measureneetrs L when

n=64,r =8 ando = 0.1.

C is generated with i.i.dCN (0,1) entries, and the noise
is generated with i.i.dCA (0,0?) entries, wherer = 0.3.

For eachL, we obtain the frequency estimates from the dual
solution of [22), and 2calculate the MSE of each frequency

estimate as fk — fr) , where fk is the estimate of real

frequency fi, averaged over 500 Monte Carlo runs with
respect to the noise realizations. We compare this against
the CRB, which can be derived from the following Fisher
information matrixJ (f) assuming fixed coefficients:

8m2 &
=1

|Cl,l|2 Z?;Ol ;2 clJC;,l Z?;Ol i2e32m(f1—f2)i
ciC2, Sy i2es2mfamfii lea? 320y 42

Fig.[4 shows the average MSE and the corresponding CRB
with respect to the number of measurement vecfar§Vith

the increase of., the average MSE of frequency estimates
approaches to CRB while CRB approache$to

—e— Average MSE for f 1

« - Average MSE for f 2
—e— CRB for f 1
e-CRB forf2

1
2 4 6 8 10 12 14
the number of measurement vectors L

Fig. 4. The comparison between average MSE of frequencynates and
CRB with respect taL whenn = 14, r = 2 ando = 0.3.

C. Structured Covariance Estimatidg@9d) for MMV Model

We conduct several numerical experiments to validaté (29).
In particular, we examine the influence of the number of
measurement vectoré on the performance of covariance
estimation and frequency estimation. Unfortunately weruatn
directly use Theorerl 4 to setsinceX* is not known. In all
the experiments, we set = 2.5 x 1073/ ((log L)Qlogm)
which gives good performance empirically.

We first examine the influence of on estimating the
structured covariance matrix. We fix = 64, and select
m = 15 entries uniformly at random from each measurement
vector. The frequencies are selected uniformly fior), and
the coefficients for each frequency are randomly drawn from
CN (0, 1). For various number of measurement vectbrand
sparsity levelr, we conduct the algorithn{_(29) and record

We further examine the influence di on the accuracy the normalized estimation error definedas— w*||, / [|[u* |5,
of frequency estimation with comparison against the Cram#here @ is the estimate obtained frorhi_(29) white* is the
Rao Bound (CRB). Letv = 14 andr = 2. The coefficients first column of the true covariance matrix. Each experiment



is repeated 50 times, and the average normalized estimatibnComparisons Between Different Approaches

error is calculated, which is shown in Fig. 5 with respect® t  The following experiment examines if more measurement
sparsity levelr for L = 20,100,500, 1000 and 5000. It can yectors will lead better estimation of closely-located- fre
be seen that ab increases, the average normalized estimatiqencies. Fixn = 32 andr = 2. In particular, we let
error decreases for a fixed sparsity level. fi = 0 and f» = A which is the separation parameter.
Under the same setting as Fig. 4, we examine the phase
transition of frequency recovery for various pairs (&, L).

e For each Monte Carlo simulation, it is considered succé#sfu

P 2 3 oo .
DR Sorey (fe— fk> /r < 107°, where f}, is the estimate of.
[~ L=5000 We implement the two proposed algorithms with full obser-

vations and half randomly-selected observations respdgti

.
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Fig. 5. The normalized estimation error with respect to thersity levelr = O a0
for various L. whenn = 64 andm = 15 for algorithm [29).
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We next examine the influence 6fon frequency estimatio
using the obtained Toeplitz covariance matrix. This is dion
MATLAB via applying the "rootmusic" function with the tru
model order (i.e. the sparsity level. We fix n = 64, and pick
m = 8 entries uniformly at random from each measuren
vector. Fig.[6 (a) shows the ground truth of the set
frequencies, where the amplitude of each frequency is ¢
as the variance if{24). Figl 6 (b)-(d) demonstrate the s
estimated frequencies whén= 50, 200, and400 respectively. (c) Atomic norm minimization (d) Structured covariance estimation
As we increasd., the estimates of the frequencies get morith half randomly-selected observations with half randomly-selected observations
accurate, especially at separating close-located frexe®nt Fig. 7. Phase transitions of the proposed algorithms fajueecy estimation
is also worth noticing that the amplitudes of the fre ueﬂcié"ith respect to the number of measurement vectbrand the separation

. 9 P q parameter whem = 32, r = 2 ando = 0.3.
are not as well estimated, due to the small valuenof

Fig.[@ shows the successful rate of frequency estimation for

() Ground truth (b) L=50 atomic norm minimization in (a) and (c), and for structured

covariance estimation in (b) and (d). Indeed, the succdss ra
increases as one increadedor a fixed separation parameter.
Alternatively, to achieve the same success rate, a smaller
separation is possible with a larger Furthermore, the perfor-
mance also increases as more samples per measurement vector
is available. The structure covariance estimation approac
achieves better phase transition compared to the atomia nor
minimization approach.

We first compare qualitatively the performance of frequency
estimation using different algorithms, including CS using
group sparsity with a DFT framé [29], the correlation-aware
approach([36], atomic norm minimization {10), and struetlr
covariance estimation[_(29). For CS and correlation-aware
method, we assume a DFT frame with an oversampling factor
4. For the correlation-aware method, we empirically set its
regularization parameter d@s = 2 x 10~/ (log L - log m)?

Fig. 6. Frequency estimation usirlg129) for differebs whenn = 64, which gives good performance [36].

m = 8 andr = 6. (a) Ground truth; (b)L = 50; (c) L = 200; and (d) Let n = 64, L = 400 andr = 6. We generate a spectrally

L = 400. sparse ground truth scene in Fig. 8 (a) in the same way as
Fig. [@ (a). Fig.[B (b)-(e) respectively show the estimated




Ground truth CS with DFT frame Correlation-aware with DFT frame. ‘Atomic norm minimization Structured covariance estimation

2
1
0.
1
0 0

-1 -1 -1 -1 -1

1

05

o e

ko D e ;o
o
o

"

o N
o
o

-

o [

ko B ok o N
o
o

-

o e

N
o
o

-

ko o e @

Ground truth €S with DFT frame. Correlation-aware with DFT frame Atomic norm minimization Structured covariance estimation

1
0 0

-1 -1 -1 -1 -1

1 1

0. 0.

o =
ko D oe ow
o
o
-
R T
o
o
"
o e
ko B ok GoN
o
o
-
o -
ko o e o
o
o
R T

@ (b) (© (d) (e)

Fig. 8. Frequency estimation with noiseless measuremesing ulifferent algorithms when = 64 and L = 400. First row: m = 8, r = 6; Second row:
m =5, r = 6. (@) Ground truth; (b) CS with the DFT frame; (c) Correlatmmare with the DFT frame; (d) Atomic norm minimization; (8jructured
covariance estimation.
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Fig. 9. Frequency estimation with measurements corrupyeaoiseCA (0, 0.22) using different algorithms when = 64 and L = 400. First row:m = 8,
r = 6; Second rowm = 5, r = 6. (a) Ground truth; (b) CS with the DFT frame; (c) Correlatmmare with the DFT frame; (d) Atomic norm minimization;
(e) Structured covariance estimation.

frequencies on a unit circle for different methods, with= 8 We next compare the average performance of frequency
andm =5 at Q = {0,32,39,47,57} respectively in the first estimation between different algorithms. Let = 12 and

row and the second row. The structured covariance estimatio= 8. We fix a set of frequencies that satisfies the separation
algorithm works well to locate all the frequencies accuyatecondition A > 1/n. The coefficient matrixC' is generated

in both cases. Due to the off-the-grid mismatch, CS amdth i.i.d. CN (0,1) entries, and the noise matridv is
correlation-aware techniques predict frequencies onattieé generated with i.i.dCN (0,0.32) entries. Fig[ 0 (a) shows

of the DFT frame, and result in a Iargerl number of estimatg Fo— fk)2 /r, where
frequencies. On the other hand, atomic norm minimizatio

fails to distinguish the two close frequencies and misses of IS the estimate off; for different algorithms over 200
frequency due to insufficient number of measurements d}gpnte Carlo trials. It can be seen that the structured canag
vector. We then repeat the experiment of Hify. 8 where t§8timation algorithm achieves superior performance whé
signals are corrupted by AWGRA (0,52), wheres = 0.2. §ma||,_ while the_atomlc norm m|n|m|zat|on_algor|thm dramat
Fig.[d shows the performance of each method in a unit circl§ally improves its performance as soonlass large enough,
Notice that the structured covariance estimation algoritan and both are much better than the grid-based approaches. We
still work well to locate all the frequencies accuratelyspige then on purposely move two pairs of frequencies to violage th

there is certain inaccuracy on the corresponding amplitug@Paration condition, and rerun the same simulation. [Flg. 1
estimation. (b) shows the average MSE under this setting, where similar

/

ﬁe average MSE, calculated 33, _,
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behaviors are observed. However, the atomic norm minimizz:, _; cka(fi)a(fi)*. It is obvious that
tion algorithm requires more measurement vectors in omler t
approach the performance of structured covariance estimat N r X

X Zk:l Ckbkbk

_ [22—1 cea(fr)alfr)* >j_; cka(fi)by
22:1 ckbka(fk)* 22:1 Ckbkbz

= ;Ck {agj)} la(fr)* by =0,
and § Tr(T (u)) + 5 Te(W) = 370 e = || X 4, therefore

| X7 < | X]||4- On the other hand, suppose that for any
and W that satisfy

10’6 L L L L 10’6 L L L L T(u) X >_ O
* [
R S C o M, > S 1% ’
(a) Separation condition is satisfied (b) Separation candis not satisfied  with T(u) =VDV* D = diag(di), d; > 0,andV is a

Vandermonde matrix. It follows thaX is in the range ofV/,
henceX = V B with the columns ofB” given byb,. Since
W is also PSD,W can be written ad¥ = B*EB where
E is also PSD. We now have

S i R

? é > 0 and E = D! by the Schur

Iﬁgomplement lemma. Now observe

Fig. 10. The comparisons of average frequency estimatiorE'™8ith
respect toL whenn = 12, r = 8 ando = 0.3.

VI. CONCLUSION AND FUTURE WORK

which yields
In this paper, we study the problem of line spectru
estimation and denoising of multiple spectrally-spargmais

from their possibly partial and noisy observations, whdte a Tr(W) =Tr(B*EB) > Tr(B*D 'B
p y P y
the signals are composed of a common set of continuous- -1 * -1 2
. =T (D "BB") = d; " ||bi]|*.
valued frequencies. Two approaches are developed andisolve ( ) zl: o lIbl

efficiently via semidefinite programming. The first algonith ‘
aims to recover the signal ensemble based on atomic noTPFfe ore,
minimization, which has a higher computational cost whenl 1 1 1
' S = Te(T(w)) + = Te(W) = = Te(D) + = Te(W

the number of measurement vectors is high. The second r(T () 2 (W) 2 x(D) (W)
algorithm aims to recover the structured covariance matrix > +/Tr(D) - Tr(W)
from the partially observed sample covariance matrix. Téte s
of frequencies can be recovered either via characterizatio Zd_ Zd'_1||b'”2
the dual polynomial, or using directly traditional methash - — —
as MUSIC. Theoretical performance guarantees are derdred f
both approaches under different scenarios. The effecasof > Z i > | X | .4,
Fhe proposed mgthods are f_urtherdemonstrgtgd throughmu%ich gives|| X |+ > ||X||.4. Therefore)|X |+ = | X|l... m
ical examples with comparisons against existing appraache

We outline a few future research directions, such as derivi .
theoretical performance guarantees for atomic norm miami % Proof of F-’roposmor[ll o . .
tion from partially observed noisy observations. Moreover Proof: First, anyY” satisfying [1#) is dual feasible. We
is desirable to study the fundamental trade-offs between thave
separation condition, the number of measurement vectods, a *

o . izt . 1X 4 > 1 X7 allY 1
the noise level using convex optimization based techniques

V

>(Y, X" )r=(Y,> ca(fe)by)r
=1

= Re(cr(Y,a(fi)b;))

k=1

— Z Re(cr(bx, Q(fr)))
k=1

APPENDIX

A. Proof of Theorerhll

Proof: Denote the value of the right hand side as
| X7 Suppose the atomic decomposition Xf is given as r r
X = >0, cra(f)b;. By the Vandermonde decomposition = Z Re(ck (br, br)) = ch > | X[ 4
lemma [46], there exists a vectar such that7 (u) = k=1 k=1
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Hence(Y, X*)gr = || X*||4. By strong duality we haveX* Where [3B) follows by plugging |n|:(32)|]}34) foIIows from
is primal optimal andY” is dual optimal. Zl 1 SUP ey [wi (f P < Lsupyco ) Zz 1w (f )|?, and
For uniqueness, supposk is another optimal solution the last equallty follows from(31).

which has support outsidé. It is trivial to justify if X Let D be a grid size that we will specify later, then by

and X™ have the same support, they must coincide S'n%‘ﬁowmg f2 to take any of theD values on the grid points
the set of atoms W|th frequencies iA is independent. Let {0, % 1} we have

X =3, éxa(fi)b,. We then have the dual certificate ' D

(Y. X)z = > Re(a(b. Q1) + Y Re(a(bQ(f))

- “ L 2
fveF fi¢F £ 2 d drnL
. IV <  max E wy (—)’ + IV )
< a+ > a=X]a (INTA)" < gnep =1 \D (NI
freF figF

which contradicts strong duality. Therefore the optimdlso
tion of (I0) is unique. m Thus,||N|’ can be bounded as

C. Proof of Theoreril3
Proof: We first record([42, Proposition 1 and Theorem 11|N||* - (1 47mL) —3 ( XL:
< (1-
1

that applies to our atomic norm denoising formulation.

1
2)2

()

Lemma 1. If E|N|* < 7, the solution tof22) satisfies that (35)
R 2 DenoteQq 2 2 S°F | |wi (&)|* which is a chi-squared
E HX - X" g 27 || X*|| 4 - (30) random variable witl2L degrees of freedom. We first analyze

E[||N|]. From [35), we have that
Lemmal[l immediately |mpI|es that we can characterize

the expected convergence rate of the atomic norm denoising
algorithm [22) if the behavior of | N ||, can be understood. .
According to the definition of dual norm, we can write ]E[HNHA

*\ 2 _ 1 1
(HNH_A) as S <1 _ 47T71L) : (0._2) (]E |: max Qd:|)
. ) 2 d=0,...,D—1

‘a D
(||N||A) —fSL[1p)HN s N ) )
- g ™
< 2 D .
2 1)f2 _<2> <1+ D ) (E L—(}?%leD (36)
= sup oy ed2m(i—
f601)lz; \/—Z
Note that
= sup Z|wl , (31)
refo,1) 7

Where ¢i1 is the (i,[)th entry of N, and w;(f) = oo
Sy ¢r,e??™ DI For fi, f, € [0,1), by Bernstein's E L_OI}}?’%_IQd] —/0 P [d_ max 1Qd > t} dt

tﬁeorem [[ZV] and also a partial result in 42, Appendix C], we oo
can obtain that <4 +/ P [

ma. >t dt
e 1Qd z }

lwi (f1)] = [wi (f2)] §47Tn|f1—f2|le[tl?l) jwi ()] (32) <5+D/ Qa>1]d (37)
Therefore, we can write
Z (f))? = Z'wl )2 where the last line follows by the union bound. Recall the

following lemma which bounds the tail behavior of a chi-
squared random variable.

=1
L

<D (e (fo)l + [ (f2)]) <47m [f1 = f2l e |wi (f)l)

=1 Lemma 2. Let U be a standard chi-squared distribution of

(33) degrees of freedoraL, for any~y > 0, we have
L
<8mnlfy = fol L sup D Jwn (f)° (34)
fel0,1) =

= 1 2 L 2
— 8rnlfi — ol L (INI)?, P {U =+ ”4 < exp (‘5” ) - B8



12

Plugging [(38) into[(3]7), we obtain Lemma 3 ( [49]). Suppose thats; is a Gaussian random

vector with mean zero and covariand2 Define the sample
E L mmax Qd] covariance matrixz; = %Zle x;z;. Then with probability
oo ) at least1 — L~ 1,
§6+2LD/5 P[QdZ(l—i—w—F 572)2L] (1+7)dy 1= — 3
(39) %) log(L %) log(L 45
- I S C max Te“( )Log( TL)’ Teff( )Log( n) HEH ( )
<o+ 2LD/ exp (——72) (1+7)dy (40)
L(-1) 2

for some constant.

=6+2\/ED\/%-Q(—\/Z+\/M)

Instantiating[(46) we have with probability at ledst L1,

4 2pe 5 (I EVIGD) @1)  [|=h - Zaul
<6+ 2VLDV2r - 1 -3 (-vI+/G-D)) G { \/reﬁ(z 5)1og(Ln) re(Tg) 1o g(Ln)} 1=
2 =~ 3 ) L Q
1 ope §(FHEVEGD) 42 (46)
=0+ (\/ﬁ\/f + 2) pe~# (VE+V/G-1)) : Now by the triangle inequality,
where [39) follows by lettingt = (1 + v + 1+%)2L, (0) | T ()| = || T(w) = T(w)+T(w)
follows from (38), [41) follows by straight calculationsing < |[H|« + || T(@)| s,
the definition of theQ functzjon, and [(4R) follows by the o .
Chernoff bound) () < 1 % and by the optimality ofi:
Let —1 (—\/_+ w/75 L ) — —logD, ie.d = 2L + —HPQ( (@) — Sa.oll2 + M T (@)

2log D 4+ 2+/2L1og D, then we can obtain that )
< —||7’sz( (u") = BarlF+ A T(w)].,

E L_Omax Qd} < 2L +2log D + 2v/2Llog D 4+ V2rL + 2.

which gives
Therefore, by plugging this into[(B6) and lettin® =  \|| T (u*) — T (@)
8mnLlogn, we obtain 1 )
N 2 51Pa(T(@)) - 23QLllF——||7’Q( (u")) = Ba.Llw
E[|N]%] <o (1 + @) (47)
1 Further since
L 2
-<L—|—1og(aL)+ 2Llog(o¢L)+\/%—|—1> , 1Z0,1 — Pa(T(@)||7

)+ Pa(T(u")) - PQ(T(ﬂ))H%
N+ 1Pa(T (@ — )l
u’) = T(w)),

u
= Zq.L — Pa(T (u*
u

)
= [|Za,L — Pa(T (u")
wherea = 8mnlogn. The proof is completed by setting the +2(Bq,L — X5, T(
right hand side as. ’ ’

m Which gives

IPa(T (4 — uw) %

D. Proof of Theorerhl4 N .
Proof: As the trerEe norm is equivalent to the nuclear norm_ 1%, =PalT (u))”% ~ %0,z = Pa(T (u ))”%
d — 2o - B4, T(u) - T(@))

|- 1|« for PSD matrices, we consider the equivalent algorlthm A N .
ST (") = T(@) ]« +2[Zo,L = B[ - [| T(w" —a)|.

4 = argmin,, 3 HPQ (T (W) = Zarllp + A T (43) < an| T(u* — a).
Denote the tangent space Biu) spanned its column and < 16AIH [« < 16AVF(|Hyllp < 16AV7(| T (@ — u*)] r,

row space asT’, and its orthogonal tangent space BS. \here the first inequality follows froni{%#7) and the Cauchy-
Decompose the error ter(a — u*) = H, + H2 iNto gechwartz inequality, the second inequality follows frdm)4
two terms satisfying rarl#f,) < 2r and H> € T+ and the third inequality follows fron{{44). We consider two
Rephrasing straightforwardly [48, Lemma 1], we have that g geg:
long asA > [Xq — Za 7|l whereXi; =Pq (T (u")), « With full observationPq (7 (i — u*)) = T (@& — u*), we

[ Hall« < 3||Hl]. (44) have| 7 (& — u)||p < 16Ay/T.

. L o « When( is a complete sparse ruler, we have
To obtain a reasonable regularization paraméteve utilize

the following bound in[[49]. |Po(T (& — w)|% > ||a — uw*||%,



which gives
o —u*|[F < 16AV7| T(@ — u*)|p
< 16AVrn||t — u*||F.

Therefore we hav%”ﬂ —u*||p < 16T

E. ADMM Implementation of22)
In order to apply ADMM [50], we reformulaté (22) as
1
min 5 | X = Z|[7 + 3 (Tr(T (w)) + Tr (W)

T(uw) X
X W
whose augmented Lagrangian can then be cast as

s.t. Y_[ },Yto,

U (X, u,W,A,Y) :% 1X = ZI3 4+ 2 (T0 (T (w)) + T (W)

+ <A,Y - [T(“)

)

(1]

(2]

(3]
(4

(5]

(6]

(7]

(8]

X*
Plly  [T(w) X [
oY {X* wl||,’
where Y, W and A are all Hermitian matrices. For [10]
notation simplicity, let A = Ann Anxr| -y
Arxn Arxr
Yo Y”XL} Then the update steps of ADMM are ad™!
Yrixn Yixo
ollows

(X u W) = argming , w ¥ (X, u, W, A" YY)

Y = argming, o ¥ (X7 u T WL ALY

T t+1 Xt+1
At+1 = A! +p (YtH - |:()§:'£L+1)*) Wt+1 )

[12]

[13]

where the superscrigtdenotes théth iteration. Fortunately, [14]

closed-form solutions to the above updates exist and can be

given as
1 1 . T
Wi+l — 5YthL + E(YthL) + P (AtLXL - EI) :
1 * *
Xt — T (Z+2(AL)" +0Y pr + (Y 0n)")

1 .
u'tl = o Y - conj (g (AL ) +0G (Y, — %nel) ,

where conj-) means the conjugate operation on each entrly}3
of a vector or a matrixe; is the first vector in the standard
basis,a = G(A) is a mapping from a matrix to a vector
where theith entry ina is the sum of all the entried,, ,'s of
A satisfyingg — p+ 1 =14, and Y is a diagonal matrix with

)

[15]

[16]

[17]

[

[19]

[20]

[21]

diagonal entriesl’; ; = .——,i=1,...,n.
t+1 t+1
Let ZE' = T(Q:t 1 Xt o= A
X witt P
U'diag{c!})(U")* be its eigenvalue decomposition,

then the update oY can be given as
Y = Utdiag {0t} ) (U")".

[22]

We run the above iterations until both primal and dugﬁ?’]

residuals satisfy the pre-set tolerance level.
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