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Off-the-Grid Line Spectrum Denoising and
Estimation with Multiple Measurement Vectors

Yuanxin Li and Yuejie Chi⋆

Abstract—Compressed Sensing suggests that the required num-
ber of samples for reconstructing a signal can be greatly reduced
if it is sparse in a known discrete basis, yet many real-world
signals are sparse in a continuous dictionary.One example is the
spectrally-sparse signal, which is composed of a small number
of spectral atoms with arbitrary frequencies on the unit interval.
In this paper we study the problem of line spectrum denoising
and estimation with an ensemble of spectrally-sparse signals com-
posed of the same set of continuous-valued frequencies fromtheir
partial and noisy observations. Two approaches are developed
based on atomic norm minimization and structured covariance
estimation, both of which can be solved efficiently via semidefinite
programming. The first approach aims to estimate and denoise
the set of signals from their partial and noisy observationsvia
atomic norm minimization, and recover the frequencies via exam-
ining the dual polynomial of the convex program. We characterize
the optimality condition of the proposed algorithm and derive
the expected convergence rate for denoising, demonstrating the
benefit of including multiple measurement vectors. The second
approach aims to recover the population covariance matrix from
the partially observed sample covariance matrix by motivating
its low-rank Toeplitz structure without recovering the signal
ensemble. Performance guarantee is derived with a finite number
of measurement vectors. The frequencies can be recovered via
conventional spectrum estimation methods such as MUSIC from
the estimated covariance matrix. Finally, numerical examples are
provided to validate the favorable performance of the proposed
algorithms, with comparisons against several existing approaches.

Index Terms—basis mismatch, atomic norm, multiple measure-
ment vectors, covariance estimation

I. I NTRODUCTION

Many signal processing applications encounter a signal en-
semble where each signal in the ensemble can be represented
as a sparse superposition ofr complex sinusoids sharing
the same frequencies, for example in remote sensing, array
processing and super-resolution imaging, and the goal is to
recover the set of signals and their corresponding frequencies
from a small number of measurements. While there has been
a long line of traditional approaches [3],Compressed Sensing
(CS) [4], [5] has been recently proposed as an efficient
way to reduce the number of measurements with provable
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performance guarantees by promoting the sparsity prior in the
reconstruction in a tractable manner. In particular, it is shown
that if the frequencies all lie on the DFT grid, the signal of
lengthn can then be recovered exactlyusing convex optimiza-
tion from an order ofr logn randomly selected samples with
high probability [6], wherer ≪ n. CS has also found many
important applications in analog-to-digital conversion [7], [8],
spectrum estimation [9] and hyperspectral imaging [10].

However, most existing CS theories act as a model selection
principle, where the signal is assumed sparse in an a priori
basis, and the goal is to identify the activated atoms in the
basis. There is a modeling gap, however, from physical signals
that are actually composed of a small number ofparameterized
atoms withcontinuous and unknownparameters determined by
the mother nature. An example in this category that garnered
much attention is the spectrally-sparse signal, where the signal
is composed of a small number of spectral atoms with arbitrary
frequencies on the unit interval. Performance degeneration of
CS algorithms is observed and studied systematically in [11]–
[13] when there is an unavoidable basis mismatch between the
actual frequencies and the assumed basis. Many subsequent
works have been proposed to mitigate the effect of basis
mismatch to a great extent(we only cite a partial list [14]–[20]
due to space limits).

Therefore, it becomes necessary to develop aparameter
estimationprinciple, which does not need an a priori basis
for reconstruction while still explores the sparsity prior. One
recent approach is based on atomic norm minimization [21],
which provides a general recipe for designing convex solutions
to parsimonious model selection. It has been successfully
applied to recover a spectrally-sparse signal from a small
number of consecutive samples [22] or randomly selected
samples [23] from the time domain. In particular, Tang et. al.
showed that a spectrally-sparse signal can be recovered from
an order ofr logn log r random samples with high probability
when the frequencies are at least separated by4/ (n− 1) [23]
for line spectra with random amplitudes. This approach is
extended to higher dimensional frequencies in [24]. Another
approach is proposed in [25], [26] based on structured ma-
trix completion, where the problem is reformulated into a
structured multi-fold Hankel matrix completion inspired by
the matrix pencil algorithm [27]. For this approach, it is
shown that an order ofr log4 n randomly selected samples
guarantees perfect recovery with high probability under some
mild incoherence conditions and the approach is also amenable
to higher-dimensional frequencies. Both approaches allow
recovering off-the-grid frequencies at an arbitrary precision
from a number of samples much smaller thann. We refer
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interested readers for respective papers for details.

A. Our Contributions and Comparisons to Related Work

It has been shown in the traditional CS framework that
the availability of multiple measurement vectors (MMV) can
further improve performance by harnessing the joint sparsity
pattern of different signals, also known asgroup sparsity[28]–
[33]. Motivated by recent advances of off-the-grid frequency
estimation in the single measurement vector case [22], [23],
[25], [26], we study the problem of line spectrum estimation
and denoising of multiple spectrally-sparse signals from their
possibly partial and noisy observations, where all the signals
are composed of a common set of continuous-valued frequen-
cies, where we leverage the power of MMV without assuming
the frequencies to lie exactly on a grid.

Two approaches are developed based on atomic norm min-
imization and structured covariance estimation, both of which
can be solved efficiently using Semi-Definite Programming
(SDP). We study both their theoretical properties, and provide
numerical examples to validate their favorable performance
with comparisons to several existing methods, demonstrating
the performance gain when the number of measurement vec-
tors increases.

The first approach can be regarded as a continuous coun-
terpart of the MMV model in CS.Inspired [23], we first
define the atomic norm of multiple spectrally-sparse signals
and characterize its semidefinite program formulation,which
extends the atomic norm for a single spectrally-sparse signal
first defined in [23] to the MMV case. We then consider
signal recovery from their partial noiseless observations, and
signal denoising from their full observations in Additive White
Gaussian Noise (AWGN), based on atomic norm minimization
under the respective observation models. We characterize the
dual problem of the proposed algorithm and outline frequency
recovery by examining the dual polynomial.In the noiseless
case, we show that the same argument in [23] also leads to a
performance guarantee of the MMV case, where we exactly
recover the signal ensemble with high probability, as soon
as the number of samples per measurement vector is on the
order ofr logn log r under the same separation condition.In
the noisy case, we derive the expected convergence rate for
denoising with full observations as a function of the numberof
measurement vectors, demonstrating the benefit of including
MMV.

A disadvantage of the above approach is that the compu-
tational complexity becomes expensive when the number of
measurement vectors is high if we wish to recover the whole
signal ensemble. Recognizing that in many scenarios one
only wishes to recover the set of frequencies, we switch our
focus on reconstructing the covariance matrix rather than the
signal ensemble in the second approach. Covariance structures
can be explored when multiple observations of a stochastic
signal are available [34]. With a mild second-order statistical
assumption on the sparse coefficients, a correlation-aware
approach is proposed in [35], [36] to improve the size of
recoverable support by exploring the sparse representation
of the covariance matrix in the Khatri-Rao product of the

signal sparsity basis. However, due to the earlier-mentioned
basis mismatch issue, the correlation-aware approach cannot
estimate frequencies off the grid.

Under the statistical assumption that the frequencies are
uncorrelated which holds in a variety of applications in array
signal processing [3], the full covariance matrix is a Hermi-
tian Toeplitz matrix whose rank is the number of distinct
frequencies. In the second approach, we first calculate the
partial sample covariance matrix from partial observations of
the measurement vectors. A convex optimization algorithm is
formulated to estimate the full Hermitian Toeplitz covariance
matrix whose submatrix on the set of observed entries is close
to the partial sample covariance matrix, with an additional
trace regularization that promotes the Toeplitz low-rank struc-
ture. Trace regularization for positive semidefinite matrices is
a widely adopted convex relaxation of the non-convex rank
constraint. We derive non-asymptotic performance guarantee
of the proposed structured covariance estimation algorithm
with a finite number of measurement vectors assuming full ob-
servations or partial observations using a complete sparseruler
[37]. Finally, the set of frequencies can be obtained from the
estimated covariance matrix using conventional methods such
as MUSIC [38]. Compared with directly applying MUSIC to
the partial sample covariance matrix, the proposed algorithm
has the potential to recover a higher number of frequencies
than the number of samples per measurement vector by taking
advantages of the array geometry, for example the co-prime
array [39] or the minimum sparse ruler [37]. As this algorithm
only requires the partially observed sample covariance matrix
rather than the observed signals, the computational complexity
does not grow with the number of measurement vectors, in
contrast to approaches that aim to recover the signal ensemble.

We note that several recent papers [40], [41] have also
proposed discretization-free approaches for direction-of-arrival
estimation by exploiting low-rank properties of the covariance
matrix under different setups. However, only statistical consis-
tency is established for the algorithm in [40] without a finite
sample analysis. The paper [41] assumes completed obser-
vation of the covariance matrix and applies low-rank matrix
denoising under specific array geometries without performance
guarantees.

B. Paper Organizationand Notations

The rest of the paper is organized as below. Section II
describes the signal model with MMV and defines its atomic
norm. Section III considers line spectrum estimation and
denoising based on atomic norm minimization, and Section IV
presents the second algorithm based onstructured covariance
estimation. Numerical experiments are provided in Section V
to validate the proposed algorithms. Finally, conclusionsand
future work are discussed in Section VI. Throughout the paper,
matrices are denoted by bold capitals and vectors by bold
lowercases. The transpose is denoted by(·)T , and the complex
conjugate or Hermitian is denoted by(·)∗.

II. SIGNAL MODEL WITH MMV AND ITS ATOMIC NORM

In this section we first describe the spectrally-sparse signal
model with multiple vectors, then define and characterize the
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atomic norm associated with the MMV model for spectrally-
sparse signals.

A. Signal Model with MMV

Let x = [x1, . . . , xn]
T ∈ C

n be a spectrally-sparse signal
with r distinct frequency components, written as

x =
r
∑

k=1

cka(fk) , V c, (1)

where each atoma(f) is defined as

a(f) =
1√
n

[

1, ej2πf , . . . , ej2πf(n−1)
]T

, f ∈ [0, 1), (2)

the matrixV is given asV = [a(f1), . . . ,a(fr)] ∈ Cn×r, and
c = [c1, . . . , cr]

T ∈ Cr. The set of frequenciesF = {fk}rk=1

can lie anywhere on the unit interval, so thatfk is continuous-
valued in[0, 1).

In an MMV model, we considerL signals, stacked in a
matrix, X = [x1, . . . ,xL], where each signalxl ∈ Cn, l =
1, . . . , L, is composed of

xl =
r
∑

k=1

ck,la(fk) = V cl, (3)

with cl = [c1,l, . . . , cr,l]
T . HenceX can be expressed as

X = V C, (4)

whereC = [c1, · · · , cL] ∈ Cr×L.

B. Atomic Norm of the MMV Model

We follow the general recipe proposed in [21] to define the
atomic norm of a spectrally-sparse signal ensembleX. We
first define an atom for representingX in (4) as

A(f, b) = a(f)b∗, (5)

wheref ∈ [0, 1), b ∈ CL with ‖b‖2 = 1. The atomic set is
defined asA = {A(f, b)|f ∈ [0, 1), ‖b‖2 = 1}. Define

‖X‖A,0 = inf
r

{

X =

r
∑

k=1

ckA(fk, bk), ck ≥ 0

}

, (6)

as the smallest number of atoms to describeX. A natural
objective to describeX is to minimize‖X‖A,0, i.e. to seek
the atomic decomposition ofX with the minimal number of
atoms. It is easy to show that‖X‖A,0 can be represented
equivalently as [23]

‖X‖A,0 = inf
u,W

{

rank(T (u))
∣

∣

∣

[

T (u) X

X∗ W

]

� 0

}

, (7)

whereT (u) is the Hermitian Toeplitz matrix with vectoru as
its first column. Since minimizing (6) is NP-hard, we consider
the convex relaxation of‖X‖A,0, called the atomic norm of
X, as

‖X‖A = inf {t > 0 : X ∈ t conv(A)}

= inf

{

∑

k

ck

∣

∣

∣
X =

∑

k

ckA(fk, bk), ck ≥ 0

}

, (8)

where conv(A) is the convex hull ofA. This definition
generalizes the atomic norm of a single vectorxl in [23],
which becomes a special case of (8) forL = 1.

Encouragingly, the atomic norm‖X‖A admits the follow-
ing equivalent SDP characterization, which implies efficient
computation. The proof can be found in Appendix A.

Theorem 1. The atomic norm‖X‖A can be written equiva-
lently as

‖X‖A = inf
u∈Cn,W∈CL×L

{1

2
Tr(T (u)) +

1

2
Tr(W )

∣

∣

∣

[

T (u) X

X∗ W

]

� 0

}

,

where Tr(X) is the trace ofX.

III. A TOMIC NORM M IMINIZATION WITH MMV M ODEL

In this section, we consider line spectrum estimation and
denoising based on atomic norm minimization from partial
and/or noisy observations of multiple spectral-sparse signals:
(a) signal recovery from their partial noiseless observations;
and (b) denoising from their full observations in AWGN.

We assume that a random or deterministic (sub)set of entries
of each vector inX⋆ defined in (4) is observed, and the obser-
vation pattern is denoted bȳΩ ⊂ {0, . . . , n−1}×{1, . . . , L}.
In the absence of noise, the partially observed signal matrix
is given as

ZΩ̄ = X⋆
Ω̄ = PΩ̄(X

⋆), (9)

wherePΩ̄ is a projection matrix on the set indexed byΩ̄. Note
that we allow the observation pattern of each column ofX⋆

to be different, possibly randomly selected.
We propose the following atomic norm minimization algo-

rithm to recover the complete signalX⋆:

X̂ = argminX ‖X‖A s.t. XΩ̄ = ZΩ̄. (10)

When the measurements are corrupted by noise, give as

ZΩ̄ = X⋆
Ω̄ +N Ω̄,

whereN Ω̄ is the noise term, we consider the atomic norm
regularized algorithm:

X̂ = argminX
1

2
‖XΩ̄ −ZΩ̄‖2F + τ‖X‖A, (11)

whereτ is a carefully-selected regularization parameter(c.f.
[42]). We will first analyze the noiseless algorithm (10) with
partial observations in Section III-A and then the denoisng
algorithm (11) will full observations in Section III-B. The
theoretical analysis of the case with partial noisy observations
is left to future work.

A. Signal Recovery from Partial Noiseless Observations

From Theorem 1, we can equivalently write (10) as the
following semidefinite program:

X̂ = argminX inf
u,W

1

2
Tr(T (u)) +

1

2
Tr(W ) (12)

s.t.

[

T (u) X

X∗ W

]

� 0,XΩ̄ = ZΩ̄.
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Similarly, (11) can be recast as a semidefinite program as well.
Interestingly, one can recover the set of frequencies from

the solution of the dual problem of (10). Define〈Y ,X〉 =
Tr(X∗Y ), and 〈Y ,X〉R = Re(〈Y ,X〉). The dual norm of
‖X‖A can be defined as

‖Y ‖∗A = sup
‖X‖A≤1

〈Y ,X〉R

= sup
f∈[0,1),‖b‖=1

〈Y ,a(f)b∗〉R

= sup
f∈[0,1),‖b‖=1

|〈b,Y ∗a(f)〉|

= sup
f∈[0,1)

‖Y ∗a(f)‖2 = sup
f∈[0,1)

‖Q(f)‖2.

The dual problem of (10) can be written as

Ŷ = argmaxY 〈Y Ω̄,ZΩ̄〉R s.t.‖Y ‖∗A ≤ 1,Y Ω̄c = 0. (13)

Following [22], [23], [25], [26], one can recover the set of
frequencies using a dual polynomial‖Q(f)‖2 = ‖Ŷ ∗

a(f)‖2
constructed from the dual solution̂Y , by identifying the
frequencies that satisfy{f ∈ [0, 1) : ‖Q(f)‖2 = 1}. Once the
frequencies are identified, their amplitudes can be recovered
by solving a follow-up group sparsity minimization problem.

Let (X,Y ) be primal-dual feasible to (10) and (13), we
have 〈Y ,X〉R = 〈Y ,X⋆〉R. Strong duality holds since
Slater’s condition holds [43, Chapter 5], and it implies that
the solutions of (10) and (13) equal if and only ifY is dual
optimal andX is primal optimal. Using strong duality, we
have the following proposition to certify the optimality ofthe
solution of (10) whose proof can be found in Appendix B.

Proposition 1. The solution of(10) X̂ = X⋆ is its unique
optimizer if there existsY such thatY Ω̄c = 0 and Q(f) =
Y ∗a(f) satisfies

{

Q(fk) = bk, ∀fk ∈ F ,

‖Q(f)‖2 < 1, ∀f /∈ F .
(14)

Proposition 1 offers a way to certify the optimality of (10) as
long as we can find a dual polynomialQ(f) that satisfies (14).
Borrowing the dual polynomials constructed for the single
measurement vector case in [23], we can easily show that
the atomic norm minimization for MMV models succeeds
with high probability under the same frequency separation
condition when the size of̄Ω exceeds certain threshold. We
have the following theorem.

Theorem 2. Let Ω̄ be a set of indices selected uniformly
at random from{0, . . . , n − 1} × {1, . . . , L}. Additionally,
assume the signsck,l/|ck,l| are drawn i.i.d. from the uniform
distribution on the complex unit circle and that

∆ := min
k 6=l

|fk − fl| ≥
1

⌊(n− 1)/4⌋ (15)

which is the minimum separation between frequency pairs
wrapped around on the unit circle. Then there exists a nu-
merical constantC such that

|Ω̄| ≥ CLmax
{

log2
n

δ
, r log

r

δ
log

n

δ

}

(16)

is sufficient to guarantee that we can recoverX via (10) with
probability at least1− Lδ.

From Theorem 2 we can see that the atomic norm mini-
mization succeeds with high probability as soon as the number
of samples is slightly above the information-theoretical lower
boundΘ(rL) by logarithmic factors, given a mild separation
condition is satisfied. Theorem 2 is a straightforward extension
of the single vector caseL = 1 studied in [23], by constructing
each row ofQ(f) in the same manner as [23], hence the
proof is omitted. On average, the number of samples per
measurement vector is about|Ω̄|/L, which is on the order of
r logn log r, similar to the single vector case [23]. Nonethe-
less, we demonstrate in the numerical examples in Section V
that indeed the inclusion of multiple vectors can improve the
reconstruction performance. Therefore, it will be interesting
to see whether one can relax either (15) or (16) given more
measurement vectors.1

Remark 1. (Connection to the single vector case) It is pos-
sible to employ the atomic norm minimization for the MMV
model to recover a partially observed spectrally-sparse signal.
Specifically, consider a Hankel matrix constructed fromx in
(1) as

H(x, p) =











x1 x2 · · · xn−p+1

x2 x3 · · · xn−p+2

...
...

. . .
...

xp xp+1 · · · xn











, (17)

wherep is a pencil parameter. We can then view the columns
of H(x, p) as an ensemble of spectrally-sparse signals sharing
the same frequencies. We may propose to minimize the atomic
norm ofH(x, p) as

x̂A = argminx ‖H(x, p)‖A s.t. xΩ = zΩ, (18)

which can be reformulated as

min
u,W 2,x

Tr(T (u)) + Tr(W 2) (19)

s.t.

[

T (u) H(x, p)
H(x, p)∗ W 2

]

� 0, xΩ = zΩ.

This draws an interesting connection to the Enhanced Ma-
trix Completion (EMaC) algorithm proposed in [25], [26],
which recoversx by minimizing the nuclear norm ofH(x, p)
as

x̂EMaC = argminx ‖H(x, p)‖∗ s.t.xΩ = zΩ, (20)

which can be reformulated as

min
W 1,W 2,x

Tr(W 1) + Tr(W 2) (21)

s.t.

[

W 1 H(x, p)
H(x, p)∗ W 2

]

� 0, xΩ = zΩ.

Comparing (19) and (21), the EMaC algorithm can be
regarded as a relaxation of (19) by dropping the Toeplitz
constraint (which allows handling of damping modes) of the

1A recent preprint [44] appeared on Arxiv while this work was under
preparation slightly improves the probability of success of Theorem 2 from
1− Lδ to 1−

√
Lδ using more refined arguments.
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first diagonal block in EMaC. Whenp = 1, (19) is equivalent
to the atomic norm minimization algorithm in [23]. Note that
Theorem 2 cannot be applied to guarantee the success of (19)
since the signs of each vector are not independent, and in
practice this formulation does not provide performance gains
over the atomic norm minimization algorithm in [23]. Hence
we present this formulation just for theoretical interests.

B. Signal Denoising for MMV Model

In this section, we consider the problem of line spectrum
denoising in AWGN when full observations are available. The
algorithm (11) can be rewritten as

X̂ = argminX
1

2
‖X −Z‖2F + τ ‖X‖A , (22)

where the subscript̄Ω is dropped withZ = X⋆ + N and
N is the additive noise. This algorithm can be efficiently
implemented via ADMM, of which we provide the procedure
in Appendix E. We have the following theorem for the
expected convergence rate of (22) when the noise is AWGN.
The proof is in Appendix C.

Theorem 3. Assume the entries ofN are composed
of i.i.d. Gaussian entries CN (0, σ2). Set τ =

σ
(

1 + 1
logn

)
1

2

(

L+ log (αL) +
√

2L log (αL) +
√

πL
2 + 1

)

1

2

,
whereα = 8πn logn, then the expected convergence rate is
bounded as

1

L
E

∥

∥

∥
X̂ −X⋆

∥

∥

∥

2

F
≤ 2τ

L
‖X⋆‖A . (23)

From Theorem 3,τ is set on the order of
√
L. If ‖X⋆‖A =

o
(√

L
)

, then the per-measurement vector Mean Squared
Error (MSE) vanishes asL increases. This is satisfied, for
example by a correlated signal ensemble where the norm of
each row of coefficient matrixC is o(

√
L). On the other

hand, if all entries inC are selected with unit amplitude,
then ‖X⋆‖A = O(

√
L) and the per-measurement vector

MSE may not vanish with the increase ofL. Nonetheless,
our numerical examples in Section V-B demonstrate that the
per-measurement vector MSE decreases gracefully with the
increase ofL.

IV. STRUCTUREDCOVARIANCE ESTIMATION FOR MMV
MODEL

While the availability of MMV improves the performance
as demonstrated in Section III, the computational cost also
increases dramatically whenL is large. In many applications,
one is only interested in the set of frequencies, and the
covariance matrix of the signal carries sufficient information
to recover the frequencies. In this section, we develop a struc-
tured covariance estimation algorithm that takes advantages
of statistical properties of the frequency coefficients andthe
low-dimensional structures of the covariance matrix.

In particular, we assume that the coefficientsck,l’s satisfy
E[ck,l] = 0 and the following second-order statistical property:

E[ck,lck′,l′ ] =

{

σ2
k, if k = k′, l = l′,
0, otherwise.

(24)

To put it differently, the coefficients from different signals are
uncorrelated, and the coefficients for different frequencies in
the same signal are also uncorrelated. As an example, (24) is
satisfied ifck,l’s are generated i.i.d. fromCN

(

0, σ2
k

)

.
Assume each vector inX is observed at the same location

Ω of size m. Without ambiguity, we useΩ to denote both
the observation pattern of the signal ensembleXΩ and each
signalxΩ,l. Instead of focusing on reconstructing the complete
signal matrixX, we explore the low-dimensional structure of
its covariance matrix. Given (24), it is straightforward that the
covariance matrix of the signalxl in (3) can be written as

Σ
⋆ = E [xlx

∗
l ] =

r
∑

k=1

σ2
ka (fk)a (fk)

∗ ∈ C
n×n, (25)

which is a Positive Semi-Definite (PSD) Hermitian Toeplitz
matrix. This matrix is low-rank with rank(Σ⋆) = r ≪ n.
In other words, the spectral sparsity translates into the small
rank of the covariance matrix. Let the first column ofΣ

⋆ be
u⋆ = 1√

n

∑r
k=1 σ

2
ka (fk) ∈ Cn, then Σ

⋆ can be rewritten
asΣ⋆ = T (u⋆). Fromu⋆ or Σ⋆, the set of frequencies can
be estimated accurately by well-studied spectrum estimation
algorithms such as MUSIC [38] and ESPRIT [45]. Therefore,
we focus ourselves on reconstruction of the covariance matrix
Σ

⋆.

A. Structured Covariance Estimation with SDP

The covariance matrix of the partially observed samples
xΩ,l can be given as

Σ
⋆
Ω = E[xΩ,lx

∗
Ω,l] = PΩ(Σ

⋆) ∈ C
m×m, (26)

wherePΩ is a mask operator that only preserves the submatrix
in the rows and columns indexed byΩ.

If Σ⋆
Ω can be perfectly estimated, e.g. using an infinite num-

ber of measurement vectors, one might directly seek a low-
rank Hermitian Toeplitz matrixT (u) which agrees withΣ⋆

Ω

restricted on the submatrix indexed byΩ. Unfortunately, the
ideal covariance matrix in (26) cannot be perfectly obtained;
rather, we will first construct the sample covariance matrixof
the partially observed samples as

ΣΩ,L =
1

L

L
∑

l=1

xΩ,lx
∗
Ω,l =

1

L
XΩX

∗
Ω ∈ C

m×m. (27)

Further denote the sample covariance matrix asΣL =
1
L

∑L
l=1 xlx

∗
l . We then seek a low-rank PSD Hermitian

Toeplitz matrix whose restriction on the submatrix indexed
by Ω is close to the sample covariance matrixΣΩ,L in (27).
A natural algorithm would be

û = argminu∈Cn

1

2
‖PΩ (T (u))−ΣΩ,L‖2F + λrank(T (u))

s.t. T (u) � 0, (28)

whereλ is a regularization parameter balancing the data fitting
term and the rank regularization term. However, as directly
minimizing the rank is NP-hard, we consider a convex relax-
ation for rank minimization over the PSD cone, which replaces
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the rank minimization by trace minimization, resulting in

û = argminu∈Cn

1

2
‖PΩ (T (u))−ΣΩ,L‖2F + λTr (T (u))

s.t. T (u) � 0. (29)

The algorithm (29) can be solved efficiently using off-the-
shelf semidefinite program solvers. Interestingly, the trace
minimization ofT (u) is equivalent to minimizing the atomic
norm of u under the nonnegative constraintT (u) � 0 since
‖u‖A = Tr(T (u)) if T (u) � 0. Therefore we canequiva-
lently write (29) as an atomic norm regularized algorithm:

û = argmin
u∈Cn

1

2
‖PΩ (T (u))−ΣΩ,L‖2F + λ‖u‖A

s.t. T (u) � 0.

The proposed algorithm works with the sample covariance
matrix ΣΩ,L rather thanXΩ directly. Therefore, it does not
require storingXΩ of sizemL, but only ΣΩ,L of sizem2,
which greatly reduces the storage space whenm ≪ L and
may be updated online if the measurement vectors arrive
sequentially.

It is also worthwhile to compare the proposed algorithm (29)
with the correlation-aware method in [35], [36]. The method
in [35], [36], when specialized to a unitary linear array, can be
regarded as a discretized version of our algorithm (29), where
the atomsa(fk)’s in the covariance matrix (26) are discretized
over a discrete grid. Further numerical comparisons are carried
out in Section V.

B. Performance Guarantees with Finite Samples

We analyze the performance of (29) under an additional
Gaussian assumption, where eachcl is i.i.d. generated as
cl ∼ CN (0,Λ), and thereforexl ∼ CN (0,Σ⋆). Define
the effective rankof a matrix Σ as reff(Σ) = Tr(Σ)/‖Σ‖
which is strictly smaller thanr and allows the signal to be
approximately sparse. We have the following theorem.

Theorem 4. Suppose thatcl ∼ CN (0,Λ). Let u⋆ be the
ground truth. Set

λ ≥ Cmax

{
√

reff(Σ
⋆
Ω) log(Ln)

L
,
reff(Σ

⋆
Ω) log(Ln)

L

}

‖Σ⋆
Ω‖

for some constantC, then with probability at least1 − L−1,
the solution to(29) satisfies

‖ T (û − u⋆)‖F ≤ 16λ
√
r

if Ω corresponds to full observation; and

1√
n
‖û− u⋆‖F ≤ 16λ

√
r

if Ω is a complete sparse ruler such that the unobserved entries
can be deduced from differences of observed ones.

The proof is in Appendix D. Note that the observation setΩ
is assumed deterministic in Theorem 4. When full observations
are available, our algorithm yields reliable estimate of the
covariance matrix as soon as the number of measurement
vectorsL is on the order ofreff(Σ

⋆)r logn ≤ r2 logn, which

is much smaller than the ambient dimensionn. WhenΩ forms
a complete sparse ruler, the average per-entry MSE vanishes
as soon asL is on the order ofreff(Σ

⋆
Ω)r log n ≤ r2 logn.

V. NUMERICAL EXPERIMENTS

In this section, we evaluate the performance of the proposed
algorithms (10), (22) and (29). In particular, we examine
the influence of the number of measurement vectors and
the number of samples per signal on the performance of
frequency estimation, and compare the proposed algorithms
against several existing approaches.

A. Atomic Norm Minimization(10) for MMV Model

Let n = 64 andm = 32. In each Monte Carlo experiment,
we generateL spectrally-sparse signals withr frequencies
randomly located in[0, 1) that satisfy a separation condition
∆ = mink 6=l |fk − fl| ≥ 1/n. This separation condition is
about4 times weaker than the condition asserted in Theorem 2
to guarantee the success of (10) with high probability. For each
frequency component, we randomly generate its amplitudes
for each signal. We run (10) and calculate the normalized
reconstruction error as‖X̂ − X⋆‖F/‖X⋆‖F , and claim the
experiment is successful if it is below10−5. For each pair of
r andL, we run a total of50 Monte Carlo experiments and
output the average success rate. Fig. 1 shows the success rate
of reconstruction versus the sparsity levelr for L = 1, 2, and
3 respectively. As we increaseL, the success rate becomes
higher for the same sparsity level.
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L = 1
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Fig. 1. Success rate of reconstruction versus the sparsity level r for L =

1, 2, 3 whenn = 64, m = 32 and the frequencies are generated satisfying a
separation condition∆ ≥ 1/n for the same observation across signals.

Fig. 2 shows the reconstructed dual polynomial for a
randomly generated spectrally-sparse signal withr = 10.
The amplitudes are generated randomly withCN (0, 1) entries
when no noise is present. It can be seen that although the
algorithm achieves perfect recovery with bothL = 1 and
L = 3, the reconstructed dual polynomial has a much better
localization property whenL = 3.

B. Atomic Norm based Denoising(22) for MMV Model

Let n = 64 and the sparsity levelr = 8. The frequencies
are selected to satisfy the separation condition∆ ≥ 1/n.
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Fig. 2. The reconstructed dual polynomial for a randomly generated
spectrally-sparse signal withn = 64, r = 10, andm = 32: (a) L = 1,
(b) L = 3.

We generate the coefficient matrixC with ck,l ∼ CN (0, 1).
The noise matrixN is randomly generated withCN

(

0, σ2
)

,
whereσ = 0.1. We solve (22) via ADMM and calculate per-
measurement vector MSE as‖X̂ − X⋆‖2F/L. Fig. 3 shows
the per-measurement vector MSE of the reconstruction with
respect to the number of measurement vectors, together with
the theoretical upper bound obtained from Theorem 3. The
per-measurement vector MSE decreases with increasing ofL,
which demonstrates more accurate denoising results brought
by MMV. While the theoretical bound is not as tight, it exhibits
similar trends as the empirical performance.
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Numerical results
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Fig. 3. The per-measurement vector MSE of reconstruction, and its
theoretical upper bound, versus the number of measurement vectorsL when
n = 64, r = 8 andσ = 0.1.

We further examine the influence ofL on the accuracy
of frequency estimation with comparison against the Cramér
Rao Bound (CRB). Letn = 14 and r = 2. The coefficients

C is generated with i.i.d.CN (0, 1) entries, and the noise
is generated with i.i.d.CN

(

0, σ2
)

entries, whereσ = 0.3.
For eachL, we obtain the frequency estimates from the dual
solution of (22), and calculate the MSE of each frequency

estimate as
(

f̂k − fk

)2

, where f̂k is the estimate of real
frequency fk, averaged over 500 Monte Carlo runs with
respect to the noise realizations. We compare this against
the CRB, which can be derived from the following Fisher
information matrixJ (f) assuming fixed coefficients:

J (f) =
8π2

nσ2

L
∑

l=1

Re

[

|c1,l|2
∑n−1

i=0 i2 c1,lc
∗
2,l

∑n−1
i=0 i2ej2π(f1−f2)i

c∗1,lc2,l
∑n−1

i=0 i2ej2π(f2−f1)i |c2,l|2
∑n−1

i=0 i2

]

.

Fig. 4 shows the average MSE and the corresponding CRB
with respect to the number of measurement vectorsL. With
the increase ofL, the average MSE of frequency estimates
approaches to CRB while CRB approaches to0.
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CRB for f
1
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Fig. 4. The comparison between average MSE of frequency estimates and
CRB with respect toL whenn = 14, r = 2 andσ = 0.3.

C. Structured Covariance Estimation(29) for MMV Model

We conduct several numerical experiments to validate (29).
In particular, we examine the influence of the number of
measurement vectorsL on the performance of covariance
estimation and frequency estimation. Unfortunately we cannot
directly use Theorem 4 to setλ sinceΣ⋆ is not known. In all
the experiments, we setλ = 2.5 × 10−3/

(

(logL)
2
logm

)

which gives good performance empirically.
We first examine the influence ofL on estimating the

structured covariance matrix. We fixn = 64, and select
m = 15 entries uniformly at random from each measurement
vector. The frequencies are selected uniformly from[0, 1), and
the coefficients for each frequency are randomly drawn from
CN (0, 1). For various number of measurement vectorsL and
sparsity levelr, we conduct the algorithm (29) and record
the normalized estimation error defined as‖û− u⋆‖2 / ‖u⋆‖2,
where û is the estimate obtained from (29) whileu⋆ is the
first column of the true covariance matrix. Each experiment
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is repeated 50 times, and the average normalized estimation
error is calculated, which is shown in Fig. 5 with respect to the
sparsity levelr for L = 20, 100, 500, 1000 and 5000. It can
be seen that asL increases, the average normalized estimation
error decreases for a fixed sparsity level.
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Fig. 5. The normalized estimation error with respect to the sparsity levelr
for variousL whenn = 64 andm = 15 for algorithm (29).

We next examine the influence ofL on frequency estimation
using the obtained Toeplitz covariance matrix. This is donein
MATLAB via applying the "rootmusic" function with the true
model order (i.e. the sparsity levelr). We fix n = 64, and pick
m = 8 entries uniformly at random from each measurement
vector. Fig. 6 (a) shows the ground truth of the set of
frequencies, where the amplitude of each frequency is given
as the variance in (24). Fig. 6 (b)–(d) demonstrate the set of
estimated frequencies whenL = 50, 200, and400 respectively.
As we increaseL, the estimates of the frequencies get more
accurate, especially at separating close-located frequencies. It
is also worth noticing that the amplitudes of the frequencies
are not as well estimated, due to the small value ofm.
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Fig. 6. Frequency estimation using (29) for differentL’s when n = 64,
m = 8 and r = 6. (a) Ground truth; (b)L = 50; (c) L = 200; and (d)
L = 400.

D. Comparisons Between Different Approaches

The following experiment examines if more measurement
vectors will lead better estimation of closely-located fre-
quencies. Fixn = 32 and r = 2. In particular, we let
f1 = 0 and f2 = ∆ which is the separation parameter.
Under the same setting as Fig. 4, we examine the phase
transition of frequency recovery for various pairs of(∆, L).
For each Monte Carlo simulation, it is considered successful if
∑r

k=1

(

f̂k − fk

)2

/r ≤ 10−5, wheref̂k is the estimate offk.
We implement the two proposed algorithms with full obser-
vations and half randomly-selected observations respectively.
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Fig. 7. Phase transitions of the proposed algorithms for frequency estimation
with respect to the number of measurement vectorsL and the separation
parameter whenn = 32, r = 2 andσ = 0.3.

Fig. 7 shows the successful rate of frequency estimation for
atomic norm minimization in (a) and (c), and for structured
covariance estimation in (b) and (d). Indeed, the success rate
increases as one increasesL for a fixed separation parameter.
Alternatively, to achieve the same success rate, a smaller
separation is possible with a largerL. Furthermore, the perfor-
mance also increases as more samples per measurement vector
is available. The structure covariance estimation approach
achieves better phase transition compared to the atomic norm
minimization approach.

We first compare qualitatively the performance of frequency
estimation using different algorithms, including CS using
group sparsity with a DFT frame [29], the correlation-aware
approach [36], atomic norm minimization (10), and structured
covariance estimation (29). For CS and correlation-aware
method, we assume a DFT frame with an oversampling factor
4. For the correlation-aware method, we empirically set its
regularization parameter ash = 2 × 10−4/ (logL · logm)

2

which gives good performance [36].
Let n = 64, L = 400 andr = 6. We generate a spectrally

sparse ground truth scene in Fig. 8 (a) in the same way as
Fig. 6 (a). Fig. 8 (b)–(e) respectively show the estimated
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Fig. 8. Frequency estimation with noiseless measurements using different algorithms whenn = 64 andL = 400. First row:m = 8, r = 6; Second row:
m = 5, r = 6. (a) Ground truth; (b) CS with the DFT frame; (c) Correlation-aware with the DFT frame; (d) Atomic norm minimization; (e)Structured
covariance estimation.

−1

0

1

−1

0

1
0

0.5

1

1.5

2

Ground truth

−1

0

1

−1

0

1
0

0.5

1

1.5

2

CS with DFT frame

−1

0

1

−1

0

1
0

0.5

1

1.5

2

Correlation−aware with DFT frame

−1

0

1

−1

0

1
0

0.5

1

1.5

2

Atomic norm minimization

−1

0

1

−1

0

1
0

0.5

1

1.5

2

Structured covariance estimation

−1

0

1

−1

0

1
0

0.5

1

1.5

2

Ground truth

−1

0

1

−1

0

1
0

0.5

1

1.5

2

CS with DFT frame

−1

0

1

−1

0

1
0

0.5

1

1.5

2

Correlation−aware with DFT frame

−1

0

1

−1

0

1
0

0.5

1

1.5

2

Atomic norm minimization

−1

0

1

−1

0

1
0

0.5

1

1.5

2

Structured covariance estimation

(a) (b) (c) (d) (e)

Fig. 9. Frequency estimation with measurements corrupted by noiseCN
(

0, 0.22
)

using different algorithms whenn = 64 andL = 400. First row:m = 8,
r = 6; Second row:m = 5, r = 6. (a) Ground truth; (b) CS with the DFT frame; (c) Correlation-aware with the DFT frame; (d) Atomic norm minimization;
(e) Structured covariance estimation.

frequencies on a unit circle for different methods, withm = 8
andm = 5 at Ω = {0, 32, 39, 47, 57} respectively in the first
row and the second row. The structured covariance estimation
algorithm works well to locate all the frequencies accurately
in both cases. Due to the off-the-grid mismatch, CS and
correlation-aware techniques predict frequencies on the lattice
of the DFT frame, and result in a larger number of estimated
frequencies. On the other hand, atomic norm minimization
fails to distinguish the two close frequencies and misses one
frequency due to insufficient number of measurements per
vector. We then repeat the experiment of Fig. 8 where the
signals are corrupted by AWGNCN

(

0, σ2
)

, whereσ = 0.2.
Fig. 9 shows the performance of each method in a unit circle.
Notice that the structured covariance estimation algorithm can
still work well to locate all the frequencies accurately, despite
there is certain inaccuracy on the corresponding amplitude
estimation.

We next compare the average performance of frequency
estimation between different algorithms. Letn = 12 and
r = 8. We fix a set of frequencies that satisfies the separation
condition ∆ ≥ 1/n. The coefficient matrixC is generated
with i.i.d. CN (0, 1) entries, and the noise matrixN is
generated with i.i.d.CN

(

0, 0.32
)

entries. Fig. 10 (a) shows

the average MSE, calculated as
∑r

k=1

(

f̂k − fk

)2

/r, where

f̂k is the estimate offk for different algorithms over 200
Monte Carlo trials. It can be seen that the structured covariance
estimation algorithm achieves superior performance whenL is
small, while the atomic norm minimization algorithm dramat-
ically improves its performance as soon asL is large enough,
and both are much better than the grid-based approaches. We
then on purposely move two pairs of frequencies to violate the
separation condition, and rerun the same simulation. Fig. 10
(b) shows the average MSE under this setting, where similar
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behaviors are observed. However, the atomic norm minimiza-
tion algorithm requires more measurement vectors in order to
approach the performance of structured covariance estimation.
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Fig. 10. The comparisons of average frequency estimation MSE’s with
respect toL whenn = 12, r = 8 andσ = 0.3.

VI. CONCLUSION AND FUTURE WORK

In this paper, we study the problem of line spectrum
estimation and denoising of multiple spectrally-sparse signals
from their possibly partial and noisy observations, where all
the signals are composed of a common set of continuous-
valued frequencies. Two approaches are developed and solved
efficiently via semidefinite programming. The first algorithm
aims to recover the signal ensemble based on atomic norm
minimization, which has a higher computational cost when
the number of measurement vectors is high. The second
algorithm aims to recover the structured covariance matrix
from the partially observed sample covariance matrix. The set
of frequencies can be recovered either via characterization of
the dual polynomial, or using directly traditional methodssuch
as MUSIC. Theoretical performance guarantees are derived for
both approaches under different scenarios. The effectiveness of
the proposed methods are further demonstrated through numer-
ical examples with comparisons against existing approaches.

We outline a few future research directions, such as deriving
theoretical performance guarantees for atomic norm minimiza-
tion from partially observed noisy observations. Moreover, it
is desirable to study the fundamental trade-offs between the
separation condition, the number of measurement vectors, and
the noise level using convex optimization based techniques.

APPENDIX

A. Proof of Theorem 1

Proof: Denote the value of the right hand side as
‖X‖T . Suppose the atomic decomposition ofX is given as
X =

∑r
k=1 cka(fk)b

∗
k. By the Vandermonde decomposition

lemma [46], there exists a vectoru such that T (u) =

∑r
k=1 cka(fk)a(fk)

∗. It is obvious that
[

T (u) X

X∗ ∑r
k=1 ckbkb

∗
k

]

=

[
∑r

k=1 cka(fk)a(fk)
∗ ∑r

k=1 cka(fk)b
∗
k

∑r
k=1 ckbka(fk)

∗ ∑r
k=1 ckbkb

∗
k

]

=
r
∑

k=1

ck

[

a(fk)
bk

]

[

a(fk)
∗ b∗k

]

� 0,

and 1
2 Tr(T (u)) + 1

2 Tr(W ) =
∑r

k=1 ck = ‖X‖A, therefore
‖X‖T ≤ ‖X‖A. On the other hand, suppose that for anyu

andW that satisfy
[

T (u) X

X∗ W

]

� 0,

with T (u) = V DV ∗, D = diag(di), di ≥ 0, andV is a
Vandermonde matrix. It follows thatX is in the range ofV ,
henceX = V B with the columns ofBT given bybi. Since
W is also PSD,W can be written asW = B∗EB where
E is also PSD. We now have
[

T (u) X

X∗ W

]

=

[

V

B∗

] [

D I

I E

] [

V ∗

B

]

� 0,

which yields

[

D I

I E

]

� 0 and E � D−1 by the Schur

complement lemma. Now observe

Tr(W ) = Tr(B∗EB) ≥ Tr(B∗D−1B)

= Tr(D−1BB∗) =
∑

i

d−1
i ‖bi‖2.

Therefore,

1

2
Tr(T (u)) +

1

2
Tr(W ) =

1

2
Tr(D) +

1

2
Tr(W )

≥
√

Tr(D) · Tr(W )

≥

√

√

√

√

(

∑

i

di

)(

∑

i

d−1
i ‖bi‖2

)

≥
∑

‖bi‖ ≥ ‖X‖A,

which gives‖X‖T ≥ ‖X‖A. Therefore,‖X‖T = ‖X‖A.

B. Proof of Proposition 1

Proof: First, anyY satisfying (14) is dual feasible. We
have

‖X⋆‖A ≥ ‖X⋆‖A‖Y ‖∗A

≥ 〈Y ,X⋆〉R = 〈Y ,
r
∑

k=1

cka(fk)b
∗
k〉R

=

r
∑

k=1

Re(ck〈Y ,a(fk)b
∗
k〉)

=

r
∑

k=1

Re(ck〈bk,Q(fk)〉)

=

r
∑

k=1

Re(ck〈bk, bk〉) =
r
∑

k=1

ck ≥ ‖X⋆‖A.
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Hence〈Y ,X⋆〉R = ‖X⋆‖A. By strong duality we haveX⋆

is primal optimal andY is dual optimal.
For uniqueness, supposêX is another optimal solution

which has support outsideF . It is trivial to justify if X̂

and X⋆ have the same support, they must coincide since
the set of atoms with frequencies inF is independent. Let
X̂ =

∑

k ĉka(f̂k)b̂
∗
k. We then have the dual certificate

〈Y , X̂〉R =
∑

f̂k∈F

Re
(

ĉk〈b̂k,Q(f̂k)〉
)

+
∑

f̂l /∈F

Re
(

ĉl〈b̂l,Q(f̂l)〉
)

<
∑

f̂k∈F

ĉk +
∑

f̂l /∈F

ĉl = ‖X̂‖A,

which contradicts strong duality. Therefore the optimal solu-
tion of (10) is unique.

C. Proof of Theorem 3

Proof: We first record [42, Proposition 1 and Theorem 1]
that applies to our atomic norm denoising formulation.

Lemma 1. If E‖N‖∗A ≤ τ , the solution to(22) satisfies that

E

∥

∥

∥
X̂ −X⋆

∥

∥

∥

2

F
≤ 2τ ‖X⋆‖A . (30)

Lemma 1 immediately implies that we can characterize
the expected convergence rate of the atomic norm denoising
algorithm (22) if the behavior ofE ‖N‖∗A can be understood.
According to the definition of dual norm, we can write
(

‖N‖∗A
)2

as

(

‖N‖∗A
)2

= sup
f∈[0,1)

‖N∗a (f)‖22

= sup
f∈[0,1)

L
∑

l=1

∣

∣

∣

∣

∣

1√
n

n
∑

i=1

φ∗
i,le

j2π(i−1)f

∣

∣

∣

∣

∣

2

= sup
f∈[0,1)

L
∑

l=1

|wl (f)|2 , (31)

where φi,l is the (i, l)th entry of N , and wl (f) ,
1√
n

∑n
i=1 φ

∗
i,le

j2π(i−1)f . For f1, f2 ∈ [0, 1), by Bernstein’s
theorem [47] and also a partial result in [42, Appendix C], we
can obtain that

|wl (f1)| − |wl (f2)| ≤ 4πn |f1 − f2| sup
f∈[0,1)

|wl (f)| . (32)

Therefore, we can write

L
∑

l=1

|wl (f1)|2 −
L
∑

l=1

|wl (f2)|2

≤
L
∑

l=1

(|wl (f1)|+ |wl (f2)|)
(

4πn |f1 − f2| sup
f∈[0,1)

|wl (f)|
)

(33)

≤ 8πn |f1 − f2|L sup
f∈[0,1)

L
∑

l=1

|wl (f)|2 (34)

= 8πn |f1 − f2|L
(

‖N‖∗A
)2

,

where (33) follows by plugging in (32), (34) follows from
∑L

l=1 supf∈[0,1) |wl (f)|2 ≤ L supf∈[0,1)

∑L
l=1 |wl (f)|2, and

the last equality follows from (31).

Let D be a grid size that we will specify later, then by
allowing f2 to take any of theD values on the grid points
{0, 1

D , . . . , D−1
D }, we have

(

‖N‖∗A
)2 ≤ max

d=0,...,D−1

L
∑

l=1

∣

∣

∣

∣

wl

(

d

D

)
∣

∣

∣

∣

2

+
4πnL

D

(

‖N‖∗A
)2

.

Thus,‖N‖∗A can be bounded as

‖N‖∗A ≤
(

1− 4πnL

D

)− 1

2

(

max
d=0,...,D−1

L
∑

l=1

∣

∣

∣

∣

wl

(

d

D

)∣

∣

∣

∣

2
)

1

2

.

(35)

DenoteQd , 2
σ2

∑L
l=1

∣

∣wl

(

d
D

)
∣

∣

2
which is a chi-squared

random variable with2L degrees of freedom. We first analyze
E[‖N‖∗A]. From (35), we have that

E
[

‖N‖∗A
]

≤
(

1− 4πnL

D

)− 1

2

(

σ2

2

)

1

2
(

E

[

max
d=0,...,D−1

Qd

])
1

2

≤
(

σ2

2

)

1

2
(

1 +
8πnL

D

)
1

2

(

E

[

max
d=0,...,D−1

Qd

])
1

2

. (36)

Note that

E

[

max
d=0,...,D−1

Qd

]

=

∫ ∞

0

P

[

max
d=0,...,D−1

Qd ≥ t

]

dt

≤ δ +

∫ ∞

δ

P

[

max
d=0,...,D−1

Qd ≥ t

]

dt

≤ δ +D

∫ ∞

δ

P [Qd ≥ t] dt, (37)

where the last line follows by the union bound. Recall the
following lemma which bounds the tail behavior of a chi-
squared random variable.

Lemma 2. Let U be a standard chi-squared distribution of
degrees of freedom2L, for anyγ > 0, we have

P

[

U ≥ (1 + γ +
1

2
γ2)2L

]

≤ exp

(

−L

2
γ2

)

. (38)
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Plugging (38) into (37), we obtain

E

[

max
d=0,...,D−1

Qd

]

≤ δ + 2LD

∫ ∞

δ

P

[

Qd ≥ (1 + γ +
1

2
γ2)2L

]

(1 + γ) dγ

(39)

≤ δ + 2LD

∫ ∞

−1+ 1

L

√
L(δ−L)

exp

(

−L

2
γ2

)

(1 + γ) dγ (40)

= δ + 2
√
LD

√
2π ·Q

(

−
√
L+

√

(δ − L)
)

+ 2De
−L

2

(

−1+ 1

L

√
L(δ−L)

)

2

(41)

≤ δ + 2
√
LD

√
2π · 1

2
e
− 1

2

(

−
√
L+

√
(δ−L)

)

2

+ 2De
−L

2

(

−1+ 1

L

√
L(δ−L)

)

2

(42)

= δ +
(√

2π
√
L+ 2

)

De
− 1

2

(

−
√
L+

√
(δ−L)

)

2

,

where (39) follows by lettingt = (1 + γ + 1
2γ

2)2L, (40)
follows from (38), (41) follows by straight calculations using
the definition of theQ function, and (42) follows by the
Chernoff boundQ (x) ≤ 1

2e
−x

2

2 .

Let − 1
2

(

−
√
L+

√

(δ − L)
)2

= − logD, i.e. δ = 2L +

2 logD + 2
√
2L logD, then we can obtain that

E

[

max
d=0,...,D−1

Qd

]

≤ 2L+ 2 logD + 2
√

2L logD +
√
2πL+ 2.

Therefore, by plugging this into (36) and lettingD =
8πnL logn, we obtain

E
[

‖N‖∗A
]

≤ σ

(

1 +
1

logn

)
1

2

·
(

L+ log (αL) +
√

2L log (αL) +

√

πL

2
+ 1

)
1

2

,

whereα = 8πn logn. The proof is completed by setting the
right hand side asτ .

D. Proof of Theorem 4

Proof: As the trace norm is equivalent to the nuclear norm
‖ · ‖∗ for PSD matrices, we consider the equivalent algorithm

û = argmin
u

1

2
‖PΩ (T (u))−ΣΩ,L‖2F + λ‖ T (u)‖∗. (43)

Denote the tangent space ofT (u) spanned its column and
row space asT , and its orthogonal tangent space asT⊥.
Decompose the error termT (û − u⋆) = H1 + H2 into
two terms satisfying rank(H1) ≤ 2r and H2 ∈ T⊥ [48].
Rephrasing straightforwardly [48, Lemma 1], we have that as
long asλ ≥ ‖Σ⋆

Ω −ΣΩ,T ‖, whereΣ⋆
Ω = PΩ (T (u⋆)),

‖H2‖∗ ≤ 3‖H1‖∗. (44)

To obtain a reasonable regularization parameterλ, we utilize
the following bound in [49].

Lemma 3 ( [49]). Suppose thatxl is a Gaussian random
vector with mean zero and covarianceΣ. Define the sample
covariance matrixΣL = 1

L

∑L
l=1 xlx

∗
l . Then with probability

at least1− L−1,

‖ΣL −Σ‖

≤ Cmax

{
√

reff(Σ) log(Ln)

L
,
reff(Σ) log(Ln)

L

}

‖Σ‖ (45)

for some constantC.

Instantiating (45) we have with probability at least1−L−1,

‖Σ⋆
Ω −ΣΩ,L‖

≤ Cmax

{
√

reff(Σ
⋆
Ω) log(Ln)

L
,
reff(Σ

⋆
Ω) log(Ln)

L

}

‖Σ⋆
Ω‖

:= λ. (46)

Now by the triangle inequality,

‖ T (u⋆)‖∗ = ‖ T (u⋆)− T (û) + T (û)‖∗
≤ ‖H‖∗ + ‖ T (û)‖∗,

and by the optimality of̂u:

1

2
‖PΩ(T (û))−ΣΩ,L‖2F + λ‖ T (û)‖∗

≤ 1

2
‖PΩ(T (u⋆))−ΣΩ,L‖2F + λ‖ T (u⋆)‖∗,

which gives

λ‖ T (u⋆)− T (û)‖∗
≥ 1

2
‖PΩ(T (û))−ΣΩ,L‖2F − 1

2
‖PΩ(T (u⋆))−ΣΩ,L‖2F .

(47)

Further since

‖ΣΩ,L − PΩ(T (û))‖2F
= ‖ΣΩ,L − PΩ(T (u⋆)) + PΩ(T (u⋆))− PΩ(T (û))‖2F
= ‖ΣΩ,L − PΩ(T (u⋆))‖2F + ‖PΩ(T (û− u⋆))‖2F
+ 2〈ΣΩ,L −Σ

⋆
Ω, T (u⋆)− T (û)〉,

which gives

‖PΩ(T (û− u⋆))‖2F
= ‖ΣΩ,L − PΩ(T (û))‖2F − ‖ΣΩ,L − PΩ(T (u⋆))‖2F
− 2〈ΣΩ,L −Σ

⋆
Ω, T (u⋆)− T (û)〉

≤ 2λ‖ T (u⋆)− T (û)‖∗ + 2‖ΣΩ,L −Σ
⋆
Ω‖ · ‖ T (u⋆ − û)‖∗

≤ 4λ‖ T (u⋆ − û)‖∗
≤ 16λ‖H1‖∗ ≤ 16λ

√
r‖H1‖F ≤ 16λ

√
r‖ T (û − u⋆)‖F ,

where the first inequality follows from (47) and the Cauchy-
Schwartz inequality, the second inequality follows from (46),
and the third inequality follows from (44). We consider two
cases:

• With full observationPΩ(T (û−u⋆)) = T (û−u⋆), we
have‖ T (û− u⋆)‖F ≤ 16λ

√
r.

• WhenΩ is a complete sparse ruler, we have

‖PΩ(T (û − u⋆))‖2F ≥ ‖û− u⋆‖2F ,
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which gives

‖û− u⋆‖2F ≤ 16λ
√
r‖ T (û − u⋆)‖F

≤ 16λ
√
rn‖û− u⋆‖F .

Therefore we have1√
n
‖û− u⋆‖F ≤ 16λ

√
r.

E. ADMM Implementation of(22)

In order to apply ADMM [50], we reformulate (22) as

min
X

1

2
‖X −Z‖2F +

τ

2
(Tr (T (u)) + Tr (W ))

s.t. Y =

[

T (u) X

X∗ W

]

,Y � 0,

whose augmented Lagrangian can then be cast as

Ψ(X,u,W ,Λ,Y ) =
1

2
‖X −Z‖2F +

τ

2
(Tr (T (u)) + Tr (W ))

+

〈

Λ,Y −
[

T (u) X

X∗ W

]〉

+
ρ

2

∥

∥

∥

∥

Y −
[

T (u) X

X∗ W

]∥

∥

∥

∥

2

F

,

where Y , W and Λ are all Hermitian matrices. For

notation simplicity, let Λ =

[

Λn×n Λn×L

ΛL×n ΛL×L

]

, Y =
[

Y n×n Y n×L

Y L×n Y L×L

]

. Then the update steps of ADMM are as

follows
(

Xt+1,ut+1,W t+1
)

= argmin
X,u,W Ψ

(

X,u,W ,Λt,Y t
)

;

Y t+1 = argminY �0
Ψ
(

Xt+1,ut+1,W t+1,Λt,Y
)

;

Λ
t+1 = Λ

t + ρ

(

Y t+1 −
[

T
(

ut+1
)

Xt+1

(Xt+1)∗ W t+1

])

,

where the superscriptt denotes thetth iteration. Fortunately,
closed-form solutions to the above updates exist and can be
given as

W t+1 =
1

2
Y t

L×L +
1

2
(Y t

L×L)
∗ +

1

ρ

(

Λ
t
L×L − τ

2
I
)

;

Xt+1 =
1

2ρ+ 1

(

Z + 2(Λt
L×n)

∗ + ρY t
n×L + ρ(Y t

L×n)
∗) ;

ut+1 =
1

ρ
·Υ · conj

(

G
(

Λ
t
n×n

)

+ ρG
(

Y t
n×n

)

− τ

2
ne1

)

,

where conj(·) means the conjugate operation on each entry
of a vector or a matrix,e1 is the first vector in the standard
basis,a = G (A) is a mapping from a matrix to a vector
where theith entry ina is the sum of all the entriesAp,q ’s of
A satisfyingq − p+ 1 = i, andΥ is a diagonal matrix with
diagonal entriesΥi,i =

1
n−i+1 , i = 1, . . . , n.

Let Ξ
t =

[

T
(

ut+1
)

Xt+1

X∗t+1 W t+1

]

− 1
ρΛ

t =

U tdiag({σt
i})(U t)∗ be its eigenvalue decomposition,

then the update ofY can be given as

Y t+1 = U tdiag({σt
i}+)(U t)∗.

We run the above iterations until both primal and dual
residuals satisfy the pre-set tolerance level.
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