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Abstract—Interference alignment (IA) is a promising technique
to efficiently mitigate interference and to enhance the capacity
of a wireless communication network. This paper proposes a
grouping-based interference alignment (GIA) with optimized IA-
Cell assignment for the multiple cells interfering multiple-input
multiple-output (MIMO) multiple access channel (MAC) network
under limited feedback. This work consists of three main parts:
1) an improved version (including some new improvements) of
the GIA with respect to the degrees of freedom (DoF) and
optimal linear transceiver design is provided, which allows for
low-complexity and distributed implementation; 2) based on the
GIA, the concept of IA-Cell assignment is introduced. ThreeIA-
Cell assignment algorithms are proposed with different backhaul
overhead and their DoF and rate performance is investigated; 3)
the performance of the proposed GIA algorithms is studied under
limited feedback of IA precoders. To enable efficient feedback, a
dynamic feedback bit allocation (DBA) problem is formulated
and solved in closed-form. The practical implementation, the
backhaul overhead requirements, and the complexity of the
proposed algorithms are analyzed. Numerical results show that
our proposed algorithms greatly outperform the traditional GIA
under both unlimited and limited feedback.

Index Terms—Interfering MIMO networks, interference align-
ment (IA), IA-Cell assignment, limited feedback, Grassmainn
subspace quantization, dynamic feedback bit allocation.

I. I NTRODUCTION

Small cells is considered the most promising technique to
keep up with the exponential increase of data-rate demand
foreseen for 5G networks [1]. However, more base stations
(BSs) sharing the same spectrum result in increased multi-cell
interference, which is a major limiting factor if not properly
managed [2]. Cooperative Multi-Point (CoMP), already stan-
dardized in long term evolution advanced (LTE-A) [3], aims at
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turning inter-cell interference (ICI) into an advantage byletting
BSs share their data and perform joint precoding/decoding.
This requires the exchange of global channel state information
(CSI) as well as (possibly) user data via high data rate
backbone connections, which might be a problem when the
BSs belong to different operators or have conflicting utilities.
In these cases, coordination schemes among BSs without
global CSI and user data exchange might be feasible [4].

In this work, we consider an interfering multiple-input
and multiple-output (MIMO) multiple access channel (MAC)
network, which is well matched to the multi-cell multi-user
uplink scenario. Multiple cells share their spectrum so as to
form a coordinated cluster. Each BS serves multiple users
within its own cell and each node is equipped with multiple
antennas. The uplink signal is corrupted by both ICI and
inter-user interference (IUI). In order to eliminate both inter-
ference terms, simplelinear transceiverimplementations are
preferred. This was addressed in [5] by applying a coordinated
zero-forcing (ZF) scheme to mitigate both IUI and ICI in the
interfering MIMO broadcast channel (BC). However, ZF alone
fails if a BS does not have sufficient antennas or if degrees of
freedom (DoF) maximization is the goal. With this respect, a
well-established technique called interference alignment (IA)
is helpful [6], [7]. IA is applied to suppress the interference
at a given receiver, thereby reducing the number of antennas
required to implement ZF reception [8]. IA for DoF and sum-
rate optimization inK-user MIMO interference channel is
considered in [9]–[11] by designing the linear IA precoders
and decoders. Generally, it is difficult to obtain the closed-form
linear IA transceiver and iterative algorithms based on global
CSI are usually required, except for the special case of square
and invertible channel matrices, e.g. in [9]. More recently, IA
has been applied to MIMO cellular networks. In [12], a multi-
cell MIMO downlink channel is studied and a distributed IA
algorithm is proposed to suppress or minimize the interference
to non-intended users. Also, [13] develops an IA technique for
a downlink cellular system with CSI-exchange and feedback
within each cell. In [14], [15], conditions for the feasibility
of IA and DoF for MIMO cellular networks are investigated.
To reduce the complexity and CSI requirement, the concept
of grouping-basedIA (GIA) is proposed for a two-cell single-
stream interfering MIMO-BC in [16]. The idea is to let each
cell align its interference to another cell, which will then
require less antennas to implement ZF reception. Moreover,
the GIA enables to compute the closed-form IA transceiver
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based on only local CSI. This GIA is extended to a multi-
cell interfering MIMO-BC in [17], where both the feasible
condition on the GIA and a low complexity IA decoder
design are studied. In addition, some works extend the GIA
to the limited feedback scenario in the two-cell single-stream
interfering MIMO-MAC, e.g., [18]–[20].

The implementation of IA requires a closed-loop transmis-
sion. The feedback is needed in either the downlink or the
uplink scenario1. Since the feedback links are usually capacity-
limited in realistic scenarios, codebook-based feedback is
widely used and already defined in modern wireless standards,
e.g., in LTE [21], to reduce the feedback overhead. The idea
is to map a channel matrix/vector or precoder/decoder to
an index of the closest codeword in a predefined codebook
known at both transmitter and receiver. The feedback of an
index takes only a limited number of feedback bits, while
a performance loss is inevitable because of the quantization
distortion. Thus, it becomes an important issue how to con-
trol/reduce the performance loss under limited feedback [22].
For a MIMO BC with ZF precoder, the performance loss due
to limited feedback is studied in [23], [24] and also with block
diagonalization in [25], [26]. For a MIMO interference channel
with heterogeneous path loss and spatial correlations, [27]
develops a spatial codebook design and performs a subspace
quantization scheme via feedback bit allocation. In [28]–[30],
the feedback bits scaling law to maintain the maximum DoF
for IA on general MIMO interference networks is investigated.

Motivated by this background, we focus on the GIA in
a multi-cell interfering MIMO-MAC under limited feedback,
answering the following fundamental questions:

1) How to design the optimal linear GIA transceiver
with low complexity? We further develop previous re-
lated works (e.g. [16], [17]), providing a low-complexity
restriction-and-relaxationapproach to compute the lin-
ear GIA transceivers which not only nulls out both
ICI and IUI but also maximizes the rate performance.
The tightness of the proposed restriction-and-relaxation
procedure is verified, which implies that the computed
IA transceiver is optimal.

2) How to determine a good IA-Cell assignment?By
the GIA, each cell chooses to align its interference to
another cell. However, this choice clearly impacts the
rate performance. Optimizing the selection of the cell
to/from which a given cell provides/receives the aligned
interference, is a problem which was not considered in
previous works. We refer to this problem asIA-Cell
assignmentand provide three IA-Cell assignment algo-
rithms: a centralized one, which yields global optimality
but requires high complexity and backhaul overhead,
and two distributed ones, which yield a stable or almost
stable assignment with limited complexity and backhaul
overhead.

3) How to efficiently feed back the GIA precoders
to the transmitters? In the uplink MIMO cellular

1In the downlink, the feedback takes two phases: 1) the downlink CSI is
first fed back to BSs and 2) the IA decoders designed at BSs are reported to
users (also called dedicated training phase). In the uplink, the IA precoders
designed at BSs based on the perfect CSIR are fed back to the users.

scenario, the GIA precoders need to be fed back to the
users. We employ Grassmannian subspace quantization,
developing a novel quantized subspace characterization
which allows one to derive a closed-form upper bound
of the single-cell residual interference to noise ratio
(RINR). Based on this upper bound, we formulate and
solve in closed-form a feedback bit allocation problem
for sum-cluster RINR minimization. Furthermore, the
effect of the sum feedback bit budget on the sum-cluster
rate is analyzed.

The three contributions above jointly provide a compre-
hensive holistic design of the multi-cell MIMO MAC system
under limited feedback.

The paper is organized as follows: a complete study of the
GIA on DoF and optimal linear transceiver design is provided
in Section III. In Section IV, the IA-Cell assignment problem
is addressed and solved. The limited feedback scenario is
considered in Section V. In Section VI, we analyze the
practical implementation, backhaul overhead requirements and
complexity of the proposed GIA algorithm with optimized IA-
Cell assignment and under limited feedback. The numerical
results in Section VII show the effectiveness of the proposed
algorithms under unlimited and limited feedback.2

II. SYSTEM MODEL

Consider a MIMO cellular environment withK cells. In
each cell, a central BS simultaneously servesL users in its
own cell, where each BS and each user are equipped withNB

andNU antennas, respectively. In order to increase the spectral
efficiency and occupancy level compared with classical FDMA
and TDMA techniques,K cells form acoordinated cluster
and operate over the same time-frequency resource, while the
introduced IUI and ICI in return corrupt the received desired
signal and limit the detection efficiency or transmission rate.
Thus, interference management is required.

This work focuses on the uplink scenario, where the
setup is modeled as an interfering MIMO-MAC system
(K,L,NB, NU , ds). Each useri in cell k, denoted by user
(i, k), transmitsds symbolsxi,k ∈ Cds×1 with E[xi,kx

H
i,k] =

Ids
to its corresponding BSk. The symbol vectorxi,k is

precoded by a linear precoderV i,k ∈ CNU×ds subject to
Tr(V H

i,kV i,k) ≤ Pi,k wherePi,k is the transmit power budget.
We assume that the local CSIR is perfectly estimated at each

BS based on the orthogonal uplink pilot signals. The received

2Notations:N+
0 denotes the nonnegative integer domain.e denotes the Eu-

ler’s number.[x]int and[x]+int denote the integer and the nonnegative integer
aroundx, respectively. Give aM × 1 vector x, arglist maxm=1,...,M x

generates aM × 1 vector where the elements are re-arranged in decreasing
order. (·)H , rank(·) andTr(·) denote Hermitian transpose, rank and trace,
respectively.λi(X) andUX denote thei-th largesteigenvalue and the eigen-
space ofX , respectively.Span{X} denotes the space spanned by the column

space ofX. ΠX

∆
= X(XH

X)−1X
H denotes the orthogonal projection

onto the column space ofX, andΠ⊥

X

∆
= I − ΠX denotes the orthogonal

projection onto the orthogonal complement of the column space ofX . X⊥ is
defined as theleft null spaceof the matrixX, i.e., the eigen-subspace spanned
by the eigenvectors associated with those zero-eigenvalues of XX

H , such
that (X⊥)HX = 0.
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signal at BSk for user(i, k) is expressed as

yi,k = Hk
i,kV i,kxi,k︸ ︷︷ ︸
desired signal

+

L∑

j=1,j 6=i

Hk
j,kV j,kxj,k

︸ ︷︷ ︸
IUI

+

K∑

ℓ=1,ℓ 6=k

L∑

m=1

Hk
m,ℓV m,ℓxm,ℓ

︸ ︷︷ ︸
ICI

+nk, (1)

whereHℓ
i,k denotes the channel matrix from user(i, k) to

BS ℓ and is modeled as
√
ηℓi,kH

ℓ

i,k, whereηℓi,k denotes the

effect of path-loss, andH
ℓ

i,k ∈ CNB×NU is a Rayleigh fading
channel matrix. Each channel is assumed to be quasi-static
and frequency flat fading.nk ∈ CNB×1 is the additive white
Gaussian noise vector with zero mean and varianceσ2

kINB
.

With the linear single-user decoding scheme, the received
signal vectoryi,k for user (i, k) can be decoded aŝxi,k =

UH
i,kyi,k by the decoderU i,k ∈ CNB×ds . In order to make

efficient detection of the desired signal, the desired signal
should be linearly independent of the interference, i.e., the
following conditions need to be satisfied:

UH
i,kH

k
j,kV j,k = 0, ∀j 6= i (2a)

UH
i,kH

k
m,ℓV m,ℓ = 0, ∀ℓ 6= k, ∀m (2b)

rank(UH
i,kH

k
i,kV i,k) = ds, ∀i, k, (2c)

where (2a) and (2b) enable the mitigation of IUI and ICI,
respectively, and (2c) guarantees the transmission ofds data
streams per user. Then, the achievable rate for user(i, k) is

Ri,k = log2 det

(
Ids

+
1

σ2
k

UH
i,kH

k
i,kV i,kV

H
i,kH

k,H
i,k U i,k

)
.

(3)

For the conditions (2a)-(2c) to be fulfilled in the system
(K,L,NB, NU , ds), any user(i, k) needs to satisfy

UH
i,k

[
{Hk

j,kV j,k}
L
j=1,j 6=i, {F k

ℓ }
K
ℓ=1,ℓ 6=k

]

, UH
i,kF i,k = 0 (4)

whereF i,k ∈ C
NB×(KL−1)ds denotes the interference matrix.

Sufficient and Necessary Conditions:(4) is fulfilled if and
only if NB ≥ rank(F i,k) + ds such that BSk could provide
at least arank(F i,k)-dimensional subspace to nullify all the
interference to user(i, k) and simultaneously guaranteeds
DoF per user.

Due to rank(F i,k) ≤ (KL − 1)ds, it is sufficient to fulfill
(4) by only exploiting the ZF decoding ifNB ≥ KLds. In
general, we haverank(F i,k) = (KL− 1)ds if no restrictions
is on the transmission through Rayleigh fading channels. In
this paper, we study the interference mitigation in the non-
trivial case((K − 1)L+ 1)ds ≤ NB < KLds where the sole
ZF decoding fails and IA is required. Instead of developing
iterative IA algorithms, we deal with the problem oflow-
complexityIA transceiver design, also considering the problem
of IA-Cell assignment and limited feedback.

For future reference, we first give the following defi-

nitions: The channel set from users in cellk to BS ℓ:
Hℓ

k , {Hℓ
i,k}

L
i=1. The local CSIR of BSℓ: Hℓ

,

{Hℓ
k}

K
k=1. The interference from cellk to cell ℓ: F ℓ

k ,

[Hℓ
1,kV 1,k, . . . ,H

ℓ
L,kV L,k] ∈ CNB×Lds . The IUI of user

(i, k): F IUI
i,k , [{Hk

j,kV j,k}
L
j=1,j 6=i] ∈ C

NB×(L−1)ds .

III. I NTERFERENCEALIGNMENT AND M ITIGATION

In this section, we develop arestriction-relaxation two-
stage algorithm based on the GIA method in [16], [17], which
enables to compute the optimal IA transceiver in closed-form.

A. Feasible Conditions for the GIA

The GIA method in [17] is a generalization of the non-
iterative grouping scheme originally proposed in [16] to com-
pletely suppress the interference.The basic idea of the GIA
method in [17] is to group all the users in one cell to generate
a joint precoder aligning their interference to another cell. Let
Cell k

IA
−→ Cell k′ denote that cellk aligns its interference

to cell k′. The feasible conditions for the GIA method and its
DoF performance are shown in the following proposition.

Proposition 1 For a multi-cell interfering MIMO-MAC sys-
tem(K,L,NB, NU , ds), at leastds DoF per user andKLds
sum DoF can be achieved by the GIA method if

NU ≥
L− 1

L
NB +

1

L
ds and NB ≥ ((K − 1)L+ 1)ds. (5)

Proof: Without loss of generality, to fix ideas we consider
the following scenario.

Cell 1
IA
−→ Cell 2

IA
−→ . . .

IA
−→ Cell K

IA
−→ Cell 1. (6)

In particular, the procedure ofCell k
IA
−→ Cell k + 1 can

be implemented by finding{V i,k} such that the following IA
condition

F
k+1

k , Span{Hk+1
1,k V 1,k} = . . . = Span{Hk+1

L,k V L,k},

(7)

is fulfilled subject to the per-user transmit power constraint
Tr(V i,kV

H
i,k) ≤ Pi,k, ∀i = 1, . . . , L.

Since the transmit power constraints do not influence the IA
condition (i.e., subspaces alignment in (7)), we firstrestrict the
IA condition (7) to find those precoding matrices such that

Hk+1
1,k V in

1,k = . . . = Hk+1
L,k V

in
L,k. (8)

In this restriction stage(in fact, only on the ”power” ofV in
i,k),

(8) is rewritten as



Hk+1

1,k −Hk+1
2,k 0 · · · 0

...
...

...
. . .

...
Hk+1

1,k 0 0 · · · −Hk+1
L,k







V in
1,k

V in
2,k
...

V in
L,k




, Ak+1
k V in

k = 0 (9)

whereAk+1
k ∈ C(L−1)NB×LNU and V in

k ∈ CLNU×ds . To
fulfill (9), the joint IA precoderV in

k should lie in the null
space ofAk+1

k , which requiresLNU ≥ (L− 1)NB + ds such
thatAk+1

k has a at leastds-dimensional null space.
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By (9), the originalLds-dimensional interference subspace
of F k+1

k is aligned to ads-dimensional subspace ofF
k+1

k

because (7) holds, while the interferenceF ℓ
k ∀ℓ 6= k, k+ 1 is

still with Lds dimensions. For the scenario (6), it is sufficient
for each BSk to remove the complete interference for user
(i, k) by the ZF decoding ifNB ≥ ((K − 1)L+ 1)ds.

Remark 1 By the feasible conditions (5) in Proposition 1, we
gain the following insights on system design.

1) Given (K,L,NB, NU ), each user achieves at most
min(LNU − (L− 1)NB,

NB

(K−1)L+1) DoF;
2) Given (K,L,NB, ds), each user needs at least((L −

1)(K − 1) + 1)ds antennas to guarantee itsds DoF;
3) Given (K,NB, NU , ds), each cell serves at most

min( NB−ds

NB−NU
, NB−ds

(K−1)ds
) users;

4) Given(L,NB, NU , ds), at mostNB−ds

Lds
+ 1 cells can be

scheduled to form a cluster with the sum DoF ofKLds
if NU ≥ L−1

L NB + 1
Lds.

If the inequalities in both feasible conditions (5) become
equalities, the required number of BS and user antennas are
the smallest. �

B. Transceiver Optimization for the GIA

As in [17], [31], we hereafter focus on the worst-case that
NB = ((K − 1)L + 1)ds and NU = ⌈L−1

L NB + 1
Lds⌉. In

this case, the optimal GIA transceiver are computed in closed-
form.

Proposition 2 Let us define

T i , [0NU×(i−1)NU
, INU

,0NU×(L−i)NU
] (10)

V in
k =

(
A

k+1,H
k

)⊥
(11)

F
IA,k−1
i,k ,

[
F IUI

i,k ,
{
F k

ℓ

}K

ℓ=1,ℓ 6=k,k−1
, F

k

k−1

]
. (12)

Considering (6) and the uniform power allocation policy, the
achievable rate of each user(i, k) in (3) is maximized by the
optimal transceiver

V i,k =

√
Pi,k

ds
T iV

in
k (V in,H

k TH
i T iV

in
k )−

1
2 (13)

U i,k =
(
F

IA,k−1
i,k

)⊥
. (14)

Proof: Without loss of generality, we consider the sce-
nario (6). First, we observe thatV in

k must lie in the null
space ofAk+1

k to fulfill (9), thereby (11). Based on the fact
Span(V in

i,kX) = Span(V in
i,k) where X ∈ Cds×ds is an

arbitrary full-rank matrix variable, the IA precoder for each
user(i, k) can be defined as

V i,k , V in
i,kV

out
i,k = T iV

in
k V out

i,k (15)

whereT i is a selection matrix defined in (10) andV in
k is

an inner precoderdefined in (11), andV out
i,k ∈ Cds×ds is

an outer precodersubject to the transmit power constraint
Tr(V out,H

i,k V
in,H
i,k V in

i,kV
out
i,k ) ≤ Pi,k, which is used torelax

the ”power” restriction from (7) to (8), since the transmit
power constraint was not jointly considered in the restriction

stage. The optimal precoderV i,k can be determined by further
optimizingV out

i,k .
Also due toSpan(Hk

j,ℓV
in
j,ℓV

out
j,ℓ ) = Span(Hk

j,ℓV
in
j,ℓ), it is

sufficient to design the ZF decoderU i,k only based onV in
j,ℓ

but without knowledge ofV out
j,ℓ . The ZF decoder for user(i, k)

can be designed to nullify the total received interference by

U i,k =
(
F

IA,k−1
i,k

)⊥
, (16)

where F
IA,k−1
i,k defined in (12) is aNB × (K − 1)Lds

interference matrix with the aligned interference from cell
k − 1.

With the IA transceiver in form of (15) and (16), the
achievable rate of each user(i, k) becomes

RIA
i,k = log2 det

(
Ids

+
1

σ2
k

H̃
k

i,kV
out
i,k V

out,H
i,k H̃

k,H

i,k

)
, (17)

whereH̃
k

i,k is the effective channel from user(i, k) to BS k

H̃
k

i,k , UH
i,kH

k
i,kT iV

in
k . (18)

We observe that after perfect interference mitigation,{V out
i,k }

are decoupled across the users as shown in (17). Then,
{V out

i,k } can be optimally computed by maximizing the in-
dividual rateRIA

i,k in (17) subject to the power constraints
Tr(V out,H

i,k V
in,H
i,k V in

i,kV
out
i,k ) ≤ Pi,k, whereV in

i,k is given in

(11). Clearly, the optimalV out
i,k should diagonalizẽH

k,H

i,k H̃
k

i,k

maybe with the standard water-filling power allocation (if
rank(V out

i,k ) = ds to support theds data streams per user).
Due to practical considerations, we assume uniform power

allocation3. It yields V out
i,k =

√
Pi,k

ds
(V in,H

i,k V in
i,k)

− 1
2 , thereby

(13)-(14).
The improvements of the derived results with respect to

previous works on the GIA [16], [17] are two-fold.

• Lower complexity:The complexity of the GIA mainly
depends on the singular-value decomposition (SVD) ofK

matrices{Ak+1
k }. By the new formulation(9), our GIA

takesKO((L−1)2LN2
BNU ) arithmetic operations, since

eachAk+1
k is a (L − 1)NB × LNU matrix. In contrast,

[17, Eq. (27)] (same as [16]) and [17, Eq. (12)-(13), (15)]
have the complexity ofKO(L2N2

B(LNU + NB)) or
K
(
LO(N3

B +N2
BNU ) + 2(L+ log2(L))O(2N2

BNU )
)
,

respectively. It follows that the complexity of our GIA
by (9) is always lower than [17, Eq. (27)] and also lower
than that by [17, Eq. (12)-(13), (15)] whenL ≤ 3.4

• Tightness of the restriction-and-relaxation:In this work,
we design {V in

i,k} and {V out
i,k }, respectively, in two

stages: 1) designV in
i,k based on the IA condi-

tion restricted from (7) to (8) (the restriction stage)

3Instead of the water-filling based power allocation across the data streams,
the uniform power allocation policy is adopted because of the following
reasons: 1) it is known to be asymptotically optimal for large SNR [25],
2) it guarantees the transmission ofds data streams per user (i.e., condition
(2c)), 3) it has lower complexity compared with water-filling process and 4)
it is not necessary to feed back the outer precoders to users.

4The computation of the left singular-space and the singularvalues of a
M ×N matrix whereM < N is 4NM2 +8M3 arithmetic operations [32].
Based on this the complexity comparison with [17] is done.
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and 2) designV out
i,k subject to the power constraint

Tr(V out,H
i,k V

in,H
i,k V in

i,kV
out
i,k ) ≤ Pi,k (the relaxation

stage). Such a procedure is termed here by therestriction-
relaxation two-stage procedure. The tightness of the
proposed restriction-and-relaxation procedure is proved
by the following lemma.

Lemma 1 The proposed restriction-and-relaxation two-
stage procedure – design{V in

i,k} and{V out
i,k } separately

in two stages – is tight in GIA precoder design. �

Proof: Please refer to the proof in Appendix A.
This tightness guarantees the optimality of the GIA-based
linear transceiver in Proposition 2 under the uniform
power allocation policy, which is designed based on the
restriction-relaxation scheme.

Remark 2 The GIA as a non-iterative algorithm determines
the IA transceiver in a distributed way and with low complex-
ity. For the distributed implementation, BSs need to exchange
their inner precoders{V in

k }Kk=1 with each other, while the
outer precoderV out

k can be designed by each user(i, k)
independently. �

IV. IA-C ELL ASSIGNMENT PROBLEM FORMULATIONS

AND SOLUTIONS

In this section we introduce the concept of IA-Cell assign-
ment, motivate its importance for network performance and
propose three algorithms for assignment optimization.

A. IA-Cell Assignment Problems

1) Observation and Motivation:For Cell k
IA
−→ Cell k′,

we label cellk as theIA-provider for cell k′ and cellk′ as
the IA-receiverfrom cell k. Clearly, this poses an assignment
problem between IA-providers and IA-receivers – how should
we select the IA-receiver (or IA-provider) corresponding to a
given IA-provider (or IA-receiver)? From the perspective of
spatial resources, a cell will waste part of its transmit spatial
resources if it aligns its interference to other cells because
of the IA constraint. On the other hand, a cell can save its
receive spatial resource if it receives the aligned interference
from other cells. Thus, providing IA and receiving IA can
be considered ascosts and gains, respectively. In order to
gain mutual benefits, it is expected that each cell in a coordi-
nated cluster simultaneously serves as an IA-provider and IA-
receiver (i.e.,gains with costs). This is motivated by fairness
reasons and allows for distributed implementations and self-
organization. The mapping ofK potential aligned interference
to K cells in a coordinated cluster can be formulated as an
IA-Cell assignmentproblem. Now, two questions arise:
Q1: How many possible IA-Cell assignments exist in aK-cell

cluster?
Q2: How to find a good IA-Cell assignment?

2) Effect of Assignment on DoF:In order to answer the
above questions, we start with the following definitions re-
garding the IA-Cell assignment.

Definition 1 (Coordinated Cell and Lone Cell) If a cell re-
ceives the aligned interference from other cells and it also

aligns its own interference to others, this cell is called a
coordinated cell; Otherwise, a cell is called alone cell if it
does not receive an IA from others and also it has no incentive
to and will not provide its IA to others. �

Definition 2 (Strict/Weak IA-Cell Assignment) The assign-
ment is called astrict IA-Cell assignmentif each cell is a
coordinated cell, e.g., the example in (6). Otherwise, we have
a weak IA-Cell assignment. �

For the considered system(K,L,NU , NB), maximum DoF
can be achieved only under the strict IA-Cell assignment,
which can be easily proved by contradiction. Otherwise, the
lone cell has to reduce its transmit data streams because it
receives(K−1)Lds-dimensional interference and thus its de-
siredLds DoF cannot be supported byNB = (K−1)Lds+ds
receive antennas. Under a weak IA-Cell assignment, the lone
cell has onlyds DoF, while other coordinated cells are with
Lds DoF per cell. For instance, the system(K,L,NU , NB) =
(3, 2, 6, 10) can achieve 12 sum DoF (4 DoF per cell) under a
strict IA-Cell assignment, while only10 sum DoF is achieved
when there exists a lone cell (4 DoF per coordinated cell and
2 DoF of the lone cell). Therefore,a lone cell is suboptimalif
either the sum DoF or fairness is concerned. Thus, the focus
will be on the strict IA-Cell assignment from now on.

Question Q1 is answered by the following lemma.

Lemma 2 A K-cell IA-Cell assignment problem whereK ≥

3 hasK!
∑K

k=0
(−1)k

k! −1 strict IA-Cell assignments in total.�

Proof: Let us labelK cells with the index sequence
1, 2, . . . ,K. Under a strict IA-Cell assignment, each cell
simultaneously serves as an IA-provider and IA-receiver and
both for other cells. Therefore, the index sequence ofK IA-
providers or IA-receivers of theK cells in the sequence of
1, 2, . . . ,K should not share the same index at a common
position. It can be formulated as a well-knownderangement
problem: determine the permutations of theK elements of a
set such that none of the elements appear in their original
positions, which hasK!

∑K
k=0

(−1)k

k! derangements [33].

Corollary 1 Under different strict IA-Cell assignments, the
system(K,L,NU , NB) has the same DoF performance.�

Proof: Under an arbitrary strict IA-Cell assignment, the
dimension of the space spanned by the interference to and from
each BS is the same. Therefore, Corollary 1 is concluded in
the homogeneous system.

3) Effect of Assignment on Rate Performance:Different
strict assignments have the same DoF, but they have different
rate performance, because the achievable rate (17) is deter-

mined by the effective channel̃H
k

i,kH̃
k,H

i,k . This effective
channel highly depends on the IA-Cell assignment, because
V in

i,k and U i,k are thin matrices and could select multiple
possible singular-values (or their combinations) ofHk

i,k in
(18), and thus they are varying with the IA-Cell assignment.

Inspired by (18), each cell should have double preferences:
the IA-provider preferenceand the IA-receiver preference,
based on which each cell could find its preferred IA-receiver
and IA-provider. However, it is not possible to determine
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the optimal preferences before assignment because they are
coupled: 1) the preferences of one cell depend on other cells’
assignment and 2) the IA-provider preference and IA-receiver
preference of an individual cell depend on each other. Even
if the approximate preferences are available, there is still a
problem – how to balance the conflicts of multiple cells when
some of them have the same preferred objective. In order
to make the problem solvable and answer question Q2, we
consider three scenarios with different practical constraints
(e.g., different backhaul overhead and coordination levels), and
apply the stable matching or centralized assignment to obtain
a stable or optimal strict IA-Cell assignment for each scenario.

As a desired criterion, the stability of the IA-Cell assign-
ment can be defined as follows.

Definition 3 (Stable Assignment) An IA-Cell assignment is
stable if there does not exist a subset of cells consisting of
more than one cell, in which the reassignment of IAs makes at
least one cell better off but none worse off than their current
assignment. �

B. One-Sided IA-Cell Matching

In this part, we consider the case whenno backhaul over-
head is allowed between BSs before assignment.In this case,
each BS determines its assignment only based on its local
CSIR.

1) Preference Generation:Since each BSk only knows its
desired channelsHk

k and interference channels{Hk
ℓ }ℓ 6=k, it

can computeK − 1 potential IA precoders{V in
ℓ (k)}ℓ 6=k for

the K − 1 cells (potential IA-providers) based on{Hk
ℓ }ℓ 6=k,

whereV in
ℓ (k), ∀ℓ 6= k denotes the potential IA precoder for

cell ℓ if cell ℓ serves as the IA-provider for cellk, which
can be computed at BSk by (9) and (11) based on the
CSI Hk

ℓ . Under a strict IA-Cell assignment, each BS has
only one IA-provider, and thus each BSk needs to rank the
K−1 potential IA-providers by evaluating their corresponding
interference subspace{F

ℓ

i,k}, where F
ℓ

i,k is the complete
interference subspace for user(i, k) when cell ℓ is the IA-
provider for cellk defined in (12). However, each BS cannot
construct the complete interference subspace because it does
not know the IA precoders of all cells before assignment but
only the potential IA precoders from its potential IA-providers.
Therefore, BSk cannot determine its IA-receiver preference
but its IA-provider preference based on theK − 1 potential
aligned interference subspaces{F

k

ℓ}ℓ 6=k, whereF
k

ℓ , ∀ℓ 6= k

denotes the aligned interference from cellℓ to cell k as shown
in (7).

Let Pp
k with K−1 elements be arranged in decreasing order

be the IA-provider preference list of BSk, i.e.,

Pp
k = arglist max

ℓ 6=k

L∑

i=1

log2 det
(
INU

+ (Hk
i,k)

H
Π

⊥

F
k

ℓ

Hk
i,k

)
.

(19)

The performance metric5 in (19) is to approximately measure

5The performance metric in (19) is derived from
∑L

i=1 log2 det(INU
+

H
k,H
i,k

Π
⊥,H

F
k
ℓ

Π
⊥

F
k
ℓ

H
k
i,k) based on the following propertiesΠ⊥,H

X
= Π

⊥

X

andΠ⊥,H
X

Π
⊥

X
= Π

⊥

X
.

the effect of the potential aligned interference subspace on the
sum rate of cellk without knowledge of its own IA precoders.
Note that by (19) each BS has a singleincomplete preference
list, which excludes itself because it does not desire to be a
lone cell.

2) Modified Residence Exchange Model based IA-Cell
Matching: The one-sided matching problem is modeled by
thestable residence exchange model[34] in whichK families
wish to exchange their residences. Each family has a move-in
preference list consisting of up toK choiceswith the least
choice being its own residence without change. The stable
residence exchange demands that each family owns only one
residence and each residence can only be rented by one family.
This allocation involves a one-to-one matching betweenK

families andK residences. Interpreting cells as families, IAs
as residences, and IA-exchange as residence-exchange, ourIA-
Cell assignment will be well-matched to the stable residence
exchange model if itsincomplete preferencescan be relaxed
by allowing the existence of a lone cell.

a) Relaxation to Weak IA-Cell Assignment:First, we relax
our strict IA-Cell assignment to theweak IA-Cell assignment
by adding itself as the last candidate in the preference list
of each BS. Then, the algorithm originally called theTop
Trading Cycle Methodin [35] and renamed as theForward
Chaining Algorithm (FCA)in [34] always generates a unique
stable solution for this weak IA-Cell assignment problem.

For Cell k′
IA
−→ Cell k, a cycle chain, denoted as

〈Cell k, Cell k′〉, is formed ifCell k
IA
−→ Cell k′. The basic

idea of the FCA is to let each cell sequently choose its current
most preferred until a cycle chain is formed.By the FCA [34],
a stable weak IA-Cell assignment can be always obtained.

Corollary 2 For a K-cell weak IA-Cell assignment, a stable
solution always exists and is unique; The solution generated by
the FCA is stable; No cell can be better off by misrepresenting
its true preferences, assuming other cells keep their prefer-
ences unchanged. Even when several cells try to collude by
misrepresenting their true preferences, it is impossible to make
at least one better off and none worse off among themselves.�

Proof: See [34], [35].

Corollary 3 For aK-cell weak IA-Cell assignment, the stable
matching by the FCA must fall in one of two cases: 1) no cell
is lone cell; 2) only one cell is a lone cell. �

Proof: This corollary can be easily proved by contradic-
tion. Assume that there exist two lone cells. Since each cellhas
a complete IA-provider preference list where the cell itself is
the last choice, these two lone cells surely prefer to exchange
IA with each other rather than keep them.

Remark 3 If a stable matching for the weak IA-Cell assign-
ment has no lone cell, this matching is also stable for the strict
IA-Cell assignment. Otherwise, the strict IA-Cell assignment
has no stable matching. �

b) ”Almost Stable” Matching6 by a Breaking Step:When

6For the assignment problem, if a stable matching does not exist, it is
desired to match as many pairs as possible, i.e., to find a matching with
maximum cardinality (i.e., an as stable as possible matching) [36].
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TABLE I: A toy example of4-cell assignment

Cell IA-Provider preference (utility)
1st (3) 2nd (2) 3rd (1) 4th (0)

1 3 2 4 1
2 1 3 4 2
3 2 1 4 3
4 1 2 3 4

the stable weak IA-Cell assignment has a lone cell, theK− 1
coordinated cells find their preferred IA-providers and each
achievesLds DoF, but the lone cell with onlyds DoF may
reject to join the cluster because its desiredLds DoF cannot be
supported. This in return may degrade theK − 1 coordinated
cells’ rate performance due to losing the spectrum or time
resource shared by the lone cell. To circumvent this drawback,
we modify the FCA byallowing the possibility to break a
cycle and insert the lone cell to form a new larger cycle
(breaking step)such that each cell achievesLds DoF. In this
case, an ”almost stable” matching always has a better DoF
performance than the stable weak matching with a lone cell.
Additionally, it may also improve the sum-utility performance,
as shown in the following toy example. In Table I, by the
FCA, a stable weak IA-Cell assignment is first achieved, i.e.,
< Cell 1, Cell 3, Cell 2 > and< Cell 4 >. Then, by the
breaking step, we insert the lone cellCell 4 into the cycle
chain Cell 3

IA
−→ Cell 1

IA
−→ Cell 2

IA
−→ Cell 3, e.g., by

forcing the lone cell to choose its best preferred one, thereby
forming an extended cycleCell 1

IA
−→ Cell 4

IA
−→ Cell 3

IA
−→

Cell 2
IA
−→ Cell 1. This ”almost stable” assignment with sum

utility of 3+ 1+3+ 3 = 10 and4Lds sum DoF outperforms
the original matching by the FCA only with the sum utility of
3 + 3 + 3 + 0 = 9 and with (3L+ 1)ds DoF.

C. Two-Sided IA-Cell Matching

In this section, we consider a different scenario in which
low backhaul overhead is permitted before assignment. By the
GIA, each BSk can computeK− 1 potentialinner precoders
{V in

ℓ (k)}ℓ 6=k for all the other cells based on{Hk
ℓ }ℓ 6=k,

and then BSk reports the potential inner precoders to the
corresponding BSs via backhaul links, e.g., sendingV in

k′ (k)
to BS k′.

1) Preferences Generation:In this case, each cell not only
knows the potential aligned interference subspace{F

k

ℓ }ℓ 6=k

(corresponding to the potential IA-providers in the one-
sided assignment) but also itspotential inner precoders
{V in

k (k′)}k′ 6=k (corresponding to the potential IA-receivers).
It is possible for each cell to compute double preferences for
its IA-provider and IA-receiver. LetPp

k and Pr
k be the IA-

provider preference list and IA-receiver preference list,and
both areincomplete preferenceswith K − 1 elements. More

precisely,Pp
k is defined in 19) andPr

k can be generated by

Pr
k =arglist max

ℓ 6=k

L∑

i=1

log2 det
(
Ids

+ V H
i,k(ℓ)H

k,H
i,k Hk

i,kV i,k(ℓ)
)
,

(20)

where the performance metric has a ”rate-like” form based on
the available incomplete information.

2) Stable Marriage Model based IA-Cell Matching:In this
two-sided IA-Cell matching, each cell hopes to find its most
preferred IA-provider and IA-receiver, respectively. To balance
the potential preference conflicts, the two-sided matchingis
required to determine a stable matching. In this case, the
problem is well modeled by the well-knownstable marriage
matching with unacceptable partners[37] by considering each
user group and BS as a man and a woman (or reversely),
respectively. Based on [37, Theorem 1.4.2], the following
result holds.

Corollary 4 Consider the strict IA-Cell assignment where
user groupk and BSk are unacceptable to each other. The
stable matching may not exist (only one pair of user group
and BS in a cell is not matched.) but is stable if it exists.�

To obtain the stable matching, following the same line of
the one-sided matching, the strict two-sided IA-Cell assign-
ment problem is first relaxed to a weak two-sided IA-Cell
assignment problem. If the strict IA-Cell assignment has a
stable matching, it can be efficiently determined by the basic
Gale-Shapley algorithm [38]. Otherwise, an ”almost stable”
matching can be obtained by a further breaking step.

We remark that an assignment by either the one-sided
or two-sided stable matching scheme does not necessarily
maximize the sum-cluster rate or the single-cell rate, since the
goal is to find stable matchings and, additionally, only partial
backhaul is used.

D. Centralized IA-Cell Assignment

Finally, we consider the case whenthere exists a central
authority7 and high backhaul overhead is permitted. Without
loss of generality, we assume BSk serves as the cluster head
and performs the assignment for all cells. Each BSk′, ∀k′ 6= k

sends theK − 1 potential IA precoders{V ℓ(k
′)}ℓ 6=k′ and

the direct channel matricesHk′

k′ to BS k. Then, the opti-
mal assignment for a certain problem, e.g., sum-cluster rate
maximization or minimum single-cell rate maximization, can
be determined by BSk by brute-force search and based on
the collected information. Afterwards, BSk announces the
assignment result to the cluster members. We stress that this
rate optimal assignment is not necessary to be stable.

Remark 4 From Lemma 2, there are few derangements for
the cluster with a small number of cells, e.g.,2 strict IA-
Cell assignments forK = 3 and 8 strict IA-Cell assignments

7In the case of cellular networks this authority could be either a central
controller (e.g., the Cloud-RAN) or a BS who serves as the cluster head and
does the centralized optimization for the network. In particular, the cluster
head could be a fixed or a rotating one.
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for K = 4. In this case, the brute-force search is a rea-
sonable approach. However, asK increases, the number of
derangements increases significantly, e.g.,264 strict IA-Cell
assignments forK = 6, and the resulting backhaul overhead
and the computational load become too large. �

V. DYNAMIC FEEDBACK BIT ALLOCATION UNDER

L IMITED FEEDBACK

Given an IA-Cell assignment, each BSk obtains from
its IA-provider its own IA precoderV in

k . Let
−→
V i,k ,

T iV k(V
H
k TH

i T iV k)
− 1

2 be the precoder patternin (13)
where

−→
V H

i,k

−→
V i,k = Ids

. In order to implement a closed-

loop transmission,
−→
V i,k needs to be fed back to user(i, k).

Since feedback links are usually capacity-limited, subspace
quantization is employed to reduce overhead. A subspace
matrix is mapped to an index in a predefined codebook.
However, the use of a finite codebook inevitably causes a
quantization distortion. As a result, perfect IA is no longer
possible, and a residual interference term is to be managed.
Therefore, the problem of DBA to minimize the sum-cluster
RINR is of interest.

A. Grassmannian subspace quantization

Due to
−→
V H

i,k

−→
V i,k = Ids

, ∀i, k, subspace quantization can
be applied to quantize the precoder patterns. Here, we give
a subspace quantization example of a subspace matrixV ∈
CM×N whereM > N by B feedback bits. Assume that both
BSs and users know the common codebookC, i.e.,

C = {Cn ∈ C
M×N : CH

n Cn = IN , n = 1, . . . , 2B}, (21)

which can be generated and stored offline. The quantized
subspace is determined as the closest codeword inC by
measuring the chordal distance

V̂ , arg min
Cn∈C

d2c(V ,Cn)

= arg min
Cn∈C

N − Tr(V V HCnC
H
n ). (22)

The considered quantization is well-known as Grassmannian
quantization on the Grassmann manifoldG(M,N), defined as
the set of theN -dimensional subspaces in theM -dimensional
complex Euclidean space. Optimal Grassmann codebook de-
signed based onGrassmannian subspace sphere-packingis
a challenging problem, which has attracted many research
efforts [39]–[43] and references therein.

Lemma 3 (Quantized Subspace Characterization) The quan-
tization V̂ ∈ CM×N of the subspaceV ∈ CM×N based on
the subspace quantization can be characterized as

V̂ = V RΓ
1/2GH + V ⊥S(IN − Γ)1/2GH (23)

whereV ⊥ ∈ CM×(M−N) spans the left null space ofV , and
Γ , diag{α1, . . . , αN} whereαj ∈ (0, 1) and

∑N
j=1 αj =

N − d2c(V̂ ,V ), and R ∈ CN×N , G ∈ CN×N and S ∈
C(M−N)×N satisfyRHR = GHG = SHS = IN . �

Proof: Please refer to the proof in Appendix B.

Remark 5 Since popular performance metrics, such as trans-
mit power, minimum square error (MSE) and achievable rate,

are functions ofV̂ V̂
H

, the quantization characterization in
(23) can be further simplified to

V̂ = V RΓ
1/2 + V ⊥S(IN − Γ)1/2, (24)

becauseV̂ V̂
H

is independent of the unitary matrixG in
(23). This quantized subspace characterization in (24) is more
efficient than that in [25, Lemma 1] whereΓ1/2 is an upper
triangular matrix derived based on QR decomposition instead
of a diagonal matrix as in our formulation. �

Based on a Grassmannian subspace sphere-packing code-
bookC, thedeterministicsubspace quantization distortion (22)

is defined byd2c(V , V̂ ) , N − Tr(V V H V̂ V̂
H
). Based on

[44, Theorem 4], the maximum value ofd2c(V , V̂ ) can be
upper bounded by8

d2c(V , V̂ ) ≤ max
∀V ∈G(M,N)

d2c(V , V̂ ) ≤ c(M,N)2−
B

N(M−N) .

(25)

In (25),c(M,N) , c
− 1

N(M−N) is a constant coefficient, where
c is the coefficient of the metric ball volume of a subspace in
the Grassmann manifoldG(M,N) as specified in [45, Eq. (8)].

B. Dynamic IA Precoders Quantization and Feedback

By the Grassmannian subspace quantization in (22), each
subspace matrix

−→
V i,k can be expressed by an index, which

will be sent to user(i, k) through the limited feedback link.
Let Bi,k denote the number of feedback bits for

−→
V i,k subject

to a sum feedback bits constraint
∑K

k=1

∑L
i=1 Bi,k ≤ B.

Consider an IA-Cell assignmentCell k′
IA
−→ Cell k. After

subspace quantization and feedback of{
−→
V i,k′}Li=1, the inter-

ference from cellk′ to cell k with the quantized precoder pat-

tern {V̂ i,k′}Li=1, denoted byF̂
k

k′ , cannot be perfectly aligned
into a ds-dimensional subspace. The imperfectly aligned in-
terference spreads into a higher dimensional subspace, which
cannot be completely removed by the ZF decoding. Thus,
residual interference exists.

The total RINR from cellk′ to cell k is defined as

Ik
k′ ,

L∑

i=1

Ii,k
k′ , (26)

whereIi,k
k′ denotes the RINR from cellk′ to user(i, k), i.e.,

Ii,k
k′ , Tr


Û

H

i,k

L∑

j=1

Pj,k′

dsσ
2
k

(
Hk

j,k′ V̂ j,k′ V̂
H

j,k′H
k,H
j,k′

)
Û i,k


 ,

(27)

8For engineering purpose, this upper bound is obtained by omitting the

o(2
−

B
2N(M−N) ) term in [44, Theorem 4] for large codebooks due to

limB→+∞ 2
−

B
2N(M−N) → 0.
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where the decoder̂U i,k is designed as

Û i,k ,

([
F̂

IUI

j,k ,
{
F̂

k

ℓ

}K

ℓ=1,ℓ 6=k′

, Hk
i,k′V

in
i,k′

])⊥

, (28)

by which the interference from other cellsℓ 6= k′ (except for
the IA-provider cellk′) can be completely removed at BSk.

Let Ik ,
∑K

ℓ=1 I
k
ℓ denote the total RINR from all cells to

cell k, and thus we haveIk = Ik
k′ because of

∑
ℓ 6=k′ Ik

ℓ = 0
by the decoder (28).

Proposition 3 Without loss of generality, under the IA-Cell
assignmentCell k′

IA
−→ Cell k, the total RINR to cellk is

upper bounded as

Ik ≤ I
k
, LI

i,k

k′ , (29)

whereI
i,k

k′ denotes the upper bound ofIi,k
k′ , i.e.,

I
i,k

k′ , c(NU , ds)

L∑

j=1

Pj,k′

σ2
kds

λ1(Ω
k
j,k′ )2

−
B

j,k′

ds(NU−ds) , (30)

with

Ω
k
j,k′ ,

(
V

in,⊥
j,k′

)H
H

k,H
j,k′ Π

⊥
Hk

j,k′
V in

j,k′

Hk
j,k′V

in,⊥
j,k′ . (31)

Proof: Please refer to the proof in Appendix C.
In order to reduce the RINR, efficient usage of the limited

feedback bits is desired.

C. Dynamic Feedback Bit Allocation for Precoders

In this section, a DBA algorithm is studied to minimize the
upper bound on the sum-cluster RINR.

min
{{Bi,k}L

i=1}
K
k=1

K∑

k=1

I
k

s.t.

K∑

k=1

L∑

i=1

Bi,k ≤ B; ∀Bi,k ∈ N
+
0

(32)

whereI
k

is given in (29) and (30). Observe that Problem (32)
is a jointly convex problem of{Bi,k} when the non-negative
integer constraint is relaxed and yields the following solutions.

Without loss of generality, we hereafter assume that all the
users transmit with the same uplink transmit power, i.e.,Pi,k =
P, ∀i, k and all the BSs are with the same noise power, i.e.,
σ2
k = σ2, ∀k, and define the transmit power to noise power

ration (TSNR), i.e., SNR= P
σ2 .

Proposition 4 (Bit Allocation Solution) Let us define

a , arglistmax
∀i;∀k

{{log2(λ1(Ω
k+1
i,k ))}Li=1}

K
k=1. (33)

Given an arbitraryB, the number of active users whose al-
located feedback bit is positive can be determined by checking

Na∑

n=1

a(n)−Naa(Na) ≤
B

ds(NU − ds)
≤

Na∑

n=1

a(n)−Naa(Na + 1), (34)

whereNa ∈ {1, . . . ,KL} denotes the number of active users.
After determiningNa, the optimal solution for theNa active
users in Problem (32) is given in closed-form by

B⋆
i,k =

[
ds(NU − ds)

(
log2(λ1(Ω

k+1
i,k ))−

1

Na

Na∑

n=1

a(n)

+
B

Nads(NU − ds)

)]
int

. (35)

And no feedback bits is allocated to those inactive users.�

Proof: The Lagrangian function with multiplierµ for
Problem (32) can be formulated as

L({{Bi,k}
L
i=1}

K
k=1, µ) =

K∑

k=1

L∑

i=1

λ1(Ω
k+1
i,k )2

−
Bi,k

ds(NU−ds)

+ µ
( K∑

k=1

L∑

i=1

Bi,k −B
)
. (36)

With the definitionζ ,
ds(NU−ds)

ln 2 µ, the KKT conditions are

∂L

∂Bk
= −λ1(Ω

k+1
i,k )2

−
Bi,k

ds(NU−ds) + ζ = 0 (37)

∂L

∂ζ
=

K∑

k=1

L∑

i=1

Bi,k −B = 0; ζ > 0, (38)

From (37)-(38), we derive

Bi,k(ζ) = ds(NU − ds)(log2(λ1(Ω
k+1
i,k ))− log2(ζ)), (39)

where ζ is determined such that
∑K

k=1

∑L
i=1 Bi,k(ζ) = B.

Combining thatBi,k is a nonnegative integer, we have

B⋆
i,k = [ds(NU − ds)(log2(λ1(Ω

k+1
i,k ))− log2(ζ))]

+
int, (40)

whereζ satisfies
∑K

k=1

∑L
i=1 B

⋆
i,k = B.

To obtain the closed-form expression without variableζ,
the water-filling principle implies that only the active users
are allocated to the positive feedback bits. If there areNa

active users whereNa ∈ {1, . . . ,KL}, with the definition in
(33), the water-level satisfies

a(Na + 1) ≤ log2(ζ) ≤ a(Na). (41)

In the case of (41), plugging (40) into (38) yields

log2(ζ) =
1

Na

Na∑

n=1

a(n)−
B

Nads(NU − ds)
. (42)

Again plugging (42) into (39) yelids (35) under the condition
(34) that is obtained by combining (42) and (41). There
are KL cases, i.e.,n ∈ {1, . . . ,KL}. Given aB, we can
determine how many and which users are active by checking
(34) and thus the closed-form bit allocation in (35).

D. Performance Analysis

By treating residual interference as additive noise, we define
the throughput under limited feedback of user(i, k) as [27]
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R̂i,k = log2 det
(
Ids

+
SNR
ds

×

(Û
H

i,kH
k
i,kV̂ i,k)(Û

H

i,kH
k
i,kV̂ i,k)

H(Ids
+Ci,k)

−1
)
, (43)

whereCi,k , SNR
ds

∑
(j,ℓ) 6=(i,k) Û

H

i,kH
k
j,ℓV̂ j,ℓ(Û

H

i,kH
k
j,ℓV̂ j,ℓ)

H

denotes the overall residual interference matrix of user(i, k).
In the unlimited feedback case, (43) is the same as (3).

In order to further motivate the consideration of Problem
(32), we study the effect of sum feedback bit budget on
the average sum cluster-rate under the IA-Cell assignment
Cell k′

IA
→ Cell k.

R̂sum ,

K∑

k=1

L∑

i=1

E(R̂i,k) >

K∑

k=1

L∑

i=1

E

(
log2

(
Tr
(
Û

H

i,kH
k
i,kV̂ i,k(Û

H

i,kH
k
i,kV̂ i,k)

H
)

ds

SNR Tr (Ids
+Ci,k)

))

(44)

≥
K∑

k=1

L∑

i=1

E(log2(Tr(Û
H

i,kH
k
i,kV̂ i,k(Û

H

i,kH
k
i,kV̂ i,k)

H)))

︸ ︷︷ ︸
,Rsum

−

K∑

k=1

L∑

i=1

E

(
log2

( ds

SNR
(ds + I

i,k

k′ )
))

(45)

≈ Rsum −

K∑

k=1

L∑

i=1

E

(
log2

( ds

SNR
I
i,k

k′

))
(46)

= R
′

sum −

K∑

k=1

L∑

i=1

E

(
log2

( L∑

j=1

λ1(Ω
k
j,k′)2

−
B

j,k′

ds(NU−ds)

))

(47)

≥ R
′

sum −

K∑

k=1

L∑

i=1

E

(
log2

(
2
−

B
i,k′

ds(NU−ds)

L∑

j=1

λ1(Ω
k
j,k′)

))

(48)

= R
′′

sum − E

(
log2

( K∏

k=1

L∏

i=1

2
−

Bi,k
ds(NU−ds)

))
(49)

= Rsum +
1

ds(NU − ds)
B (50)

where the inequality in (44) is based on [46, Theorem 1] and
log(1 + x) > log(x), and the inequality in (45) is based
on Tr(Ci,k) = Ii,k

k′ ≤ I
i,k

k′ , whereI
i,k

k′ is the RINR upper
bound of user(i, k) shown in (30). The approximation (46)
is under the assumptionIi,k ≫ ds (we will discuss this
assumption in the following). Based on (30) and the definition
of R

′

sum , Rsum − KL log2(c(NU , ds)), we equivalently
have (47). Under the assumptionB1,k′ = . . . = BL,k′ (i.e.,
equal feedback bits among the users within each cell), (48)
surely serves as an lower bound of the DBA. Equation (48)
is obtained based on the definition ofR

′′

sum , R
′

sum −∑K
k=1

∑L
i=1 E

(
log2

(∑L
j=1 λ1(Ω

k
j,k′ )

))
. Finally, (50) holds

recalling that
∑K

k=1

∑L
i=1 Bi,k = B.

Remark 6 From (46), we observe that the lower bound of
the average sum cluster-rate is approximately decreasing with
RINR, which implies that it is reasonable to design the feed-
back bit allocation policy to suppress the residual interference,
as our formulated problem(32).

From (50), recalling the expression ofR
′′

sum, we observe
that in R

′′

sum only the termRsum is related to the feedback
bits, because the quantized precoderV̂ i,k is a combination of
V i,k andV ⊥

i,k with different weights (related toB). However,
the componentsV i,k and V ⊥

i,k of V̂ i,k in (24) are isotropic
and have the same effect in probability onHk

i,k, sinceV i,k

and alsoU i,k are designed independently ofHk
i,k. Therefore,

B has a slight influence onRsum and thusR
′′

sum. In this case,
the proposed lower bound of the average sum-cluster rate is
linearly scaled by the third term with the rate of 1

ds(NU−ds)
.�

Discussion on the Assumption ofI
i,k

k′ ≫ ds: This assump-
tion is equivalent toI

i,k

k′ ≥ ρds where ρ is a scalar much
larger than one9. By (30), it is equivalent to

c(NU , ds)
SNR
ds

L∑

j=1

λ1(Ω
k
j,k′ )2

−
B

j,k′

ds(NU−ds) ≥ ρds (51)

⇔ c(NU , ds)
SNR
ds

Lζ ≥ ρds (52)

⇔ log2(ζ) ≥ log2

( ρd2s
Lc(NU , ds)SNR

)
(53)

⇔ B ≤ ds(NU − ds)×

( Na∑

n=1

a(n)−Na log2

( ρd2s
Lc(NU , ds)SNR

))
, (54)

where (52) is based on (37), since the feedback bits are
allocated based on Proposition 4. Plugging (42) into (53)
yields (54). Therefore, combining (34) and (54), we have

SNR≥
ρd2s

Lc(NU , ds)2a(Na)
, (55)

which implies that the assumptionI
i,k

k′ ≫ ds has different
SNR requirements for different scenarios.

VI. I MPLEMENTATION AND ANALYSIS

In this section, we analyze the following aspects of the
proposed algorithm: 1) implementation, 2) required overhead
and 3) complexity.

A. Implementation

The outline of the implementation of the proposed algorithm
is shown as follows, where each step could be a time slot.

9By Ii,k = ρds, we havelog2(ds +Ii,k) = log2((1+ρ)ds). In oder to
measure the accuracy of the approximation oflog2((1+ρ)ds) ≈ log2(ρds).
Defineη ,

log2(ρds)
log2((1+ρ)ds)

=
log2(ρ)+log2(ds)

log2(1+ρ)+log2(ds)
≥

log2(ρ)
log2(1+ρ)

. Therefore, it

is sufficient to determine the value ofρ such thatη >
log2(ρ)

log2(1+ρ)
≈ 1, e.g.,

η > 0.9900 andη > 0.9978 for ρ = 29 andρ = 100, respectively.



11

• Step 1 (CSIR estimation): Each BSk estimates its local
CSIR{Hk

ℓ}
K
ℓ=1 based on orthogonal uplink pilot signals;

• Step 2 (IA percoder computation): Each BSk employs
the GIA method to computeK−1 potentialIA precoders
{V in

ℓ (k)}Kℓ=1,ℓ 6=k for K−1 cells based on{Hk
ℓ}

K
ℓ=1,ℓ 6=k;

• Step 3 (IA-Cell assignment): A suitable IA-Cell assign-
ment is chosen from the following three schemes for the
considered system configuration.

– With no Backhaul Overhead Before Assignment (Dis-
tributed): Based on only{V in

ℓ (k)}Kℓ=1,ℓ 6=k at each
BS k, one-sided matching is implemented;

– With low Backhaul Overhead Before Assignment
(Distributed): Each BS k reports its computed
{V in

ℓ (k)}Kℓ=1,ℓ 6=k to theK − 1 corresponding BSs.
Based on the collected IA precoders and its local
CSIR, two-sided matching is implemented;

– With high Backhaul Overhead Before Assignment
(Centralized): Assume that BSk is the cluster
head. Each BSk′ 6= k reports its computed
{V in

ℓ (k′)}Kℓ=1,ℓ 6=k′ and its direct channelsHk
k′ to

the cluster head BSk via backhaul links. Based on
the collected informations, BSk finds the optimal
assignment by brute force search and communicates
the assignment to each cell;

Once a good IA-Cell assignment is found by the chosen
IA-Cell assignment scheme, its corresponding assigned
perfect IA precoders and decoders can be determined.

• Step 4 (DBA): After determining the perfect IA
transceivers for a given IA-Cell assignment, each BS
k needs to feed back its IA precoder patternsV i,k

to its users. In order to enable efficient feedback of
{{

−→
V i,k}

L
i=1}

K
k=1, the DBA is performed and yields the

solution {{Bi,k}
L
i=1}

K
k=1 for the quantization ofKL

precoder patterns;
• Step 5 (Quantization under limited feedback): Each

BS k quantizes the precoder patterns{
−→
V i,k}

L
i=1 to

{V̂ i,k}
L
i=1 by Grassmannian subspace codebooks with

size{2Bi,k}Li=1 and broadcasts the indexes to its users;
• Step 6 (Uplink transmission): Based on the received

index, each user(i, k) selects the corresponding code-
word from the codebook, i.e.,̂V i,k, as its IA precoder
pattern. Then, the quantized uplink precoder designed by
(15) will be used for uplink transmission during the whole
coherence time period.

B. Backhaul overhead

The required backhaul overhead (excluding the feedback
overhead) of the different IA-Cell assignment schemes
are reported in Table II, where ”One-sided”/”Two-
sided”/”Centralized”/”Fixed” denotes that one-sided/two-
sided/centralized/fixed matching is used.

During the IA-Cell assignment by the one/two-sided match-
ing, each BSk has four possible actions to other BSs, namely
”ask”, ”definitely accept”, ”temporarily accept” and ”definitely
reject”, which can be encoded into two bits. In particular,
the one-sided matching by the FCA takesK + (NC − 1)
steps whereNC denotes the number of cycle chains, and each

step has one ”ask” action. The two-sided matching by the
Basic Gale-Shapley algorithm [38] takes[K,K(K − 1) + 1]
proposals. After assignment by the one-sided matching, each
cell needs to send an explicit inner precoder to its corre-
sponding IA-provider, while it is not necessary for the two-
sided matching because it has been already exchanged before
assignment. After the quantization of the precoder patterns,
each BS needs to exchange the corresponding indexes with
other BSs, based on which the new ZF decoder can be
designed. The resulting total backhaul overhead is reported
in Table II.

C. Complexity

As shown in Section III, the complexity of computingK
IA precoders by the GIA isKO((L− 1)2LN2

BNU ).
For the one-sided matching, the complexity mainly depends

on the preference generation (19). The generation ofK

ranked preference lists takesK(K − 1)L(O(NBNUds) +
2L(O(NUN

2
B)+O(N3

U ))+2O(NBd
2
s)+2O(d3s)+KO(K))

arithmetic operations. The FCA withK + (NC − 1) steps
has complexityO(K) where NC denotes the number of
cycle chains. For the two-sided matching, besides generating
(19), K ranked preference lists generation as in (20) re-
quiresK(K−1)L

(
O(2N2

Uds) +O(NUNBds) + 2(O(d3s)
)
+

KO(K) arithmetic operations. The complexity of the Basic
Gale-Shapley algorithm with at mostK2−K+1 steps is upper
bounded byO(K2). The centralized assignment needs to com-
puteK!

∑K
k=0

(−1)k

k! − 1 possible rate performance with com-

plexity (K!
∑K

k=0
(−1)k

k! − 1)K(L(O(2N2
Uds) +O(N2

Bds) +
(L+ 1)O(NBNUds) + (L+ 2)O(d3s) + (L+ 2)O(NBd

2
s))).

Roughly speaking, the one-sided matching, the two-sided
matching and the centralized assignment mainly takeK(K −

1)L, 2K(K−1)L andK!
∑K

k=0
(−1)k

k! −1 ”rate-like” computa-
tions10 , respectively. Fig. 1 shows the approximate complexity
of these three algorithms over the number of cells. It implies
the centralized assignment is a reasonable approach with a
comparable complexity as the distributed algorithms ifK ≤ 4.
Instead, whenK ≥ 5 distributed algorithms are preferable as
far as complexity is concerned.

VII. N UMERICAL RESULTS

In this section, the performance of the GIA with optimized
IA-Cell assignment with both unlimited and limited feedback
is evaluated.

A. System Model and Performance Metrics

We consider a(K,L,NB, NU , ds) = (4, 2, 14, 8, 2) inter-
fering MIMO-MAC. We setσ2

k = 1, ∀k andPi,k = P, ∀i, k,
respectively. Let SNR= 10 log10(P ) denote the TSNR in
dB. The path loss of direct links is set to be1, whereas the
path loss of the cross links is uniformly distributed in[0, 1],
respectively11.

10The computation expression is not the actual rate expression, but has
always the formlog2 det(I +XΠ

⊥

Y
X

H ).
11This is to guarantee that interference channels are not stronger than direct

channels, since a user is usually assigned to the BS who provides it the
strongest link. The user selection and user-BS associationcan be done based
on the uplink CSI available at BSs, which is out of the scope ofthis work.
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TABLE II: Total backhaul overhead ofK cells

Algorithms Before assignment Assignment After assignment
One-sided 0 4(K + (NC − 1)) bit KLNUds cc +(K − 1)B bit
Two-sided K(K − 1)LNUds cc 4[K,K2 −K + 1] bit (K − 1)B bit

Centralized (K−1)2LNUds+
(K−1)LNUNB

cc 0 (K − 1)LNUds cc +(K − 1)B bit
Fixed 0 – KLNUds cc

1) ”cc” denotes the unit of a complex coefficient. 2) Each ask is responsed during the assignment.
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Fig. 1: Complexity comparison of the stable matching and
centralized assignment

To properly measure the performance of the proposed
approaches, we consider two following metrics

Rsum , E

( K∑

k=1

L∑

i=1

R̂i,k

)
, Rmin , E

(
min

k=1,...,K

L∑

i=1

R̂i,k

)
,

where loge(·) is used in the rate expression of̂Ri,k in
(43). Rsum and Rmin are the average sum-cluster rate and
the average minimum single-cell rate over different channel
realizations. These performance functions measure the overall
cluster throughput and the fairness of the cluster, respectively.

B. Performance Comparison with Unlimited Feedback

Under unlimited feedback, the effect of IA-Cell assignment
on Rsum andRmin is evaluated by the following metrics.

• Uppersum andLowersum (Uppermin andLowermin) de-
note the performance achieved bythe bestand the worst
IA-Cell assignment forsum cluster-rate maximization
(minimum cluster-rate maximization), respectively, which
are determined by the centralized assignment;

• Two/One/Fixed: Each channel realization is under the
IA-Cell assignment by the two-sided/one-sided/fixed
matching (6);

• RB: Each precoder
−→
V i,k is a random subspace

and each decoder is the ”matched filter”U i,k =

Hk
i,kV i,k(V

H
i,kH

k,H
i,k Hk

i,kV i,k)
− 1

2 ;
• FDMA: Each user ocuppies an un-overlapped spectrum.
Both Fig. 2 and Fig. 3 show that a large performance gap ex-

ists between the best IA-Cell assignment and the worst IA-Cell
assignment. It implies the IA-Cell assignment has a significant
influence on both the overall throughput and the fairness. This
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Fig. 2: Sum-cluster rate comparison under unlimited feedback
w.r.t. SNR.
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Fig. 3: Minimum single-cell rate comparison under unlimited
feedback w.r.t. SNR.

performance gap regardingRsum is as large as5 dB and that of
Rmin is even larger than10 dB for high SNR. Compared with
the fixed matching, the two-sided and one-sided matching have
a similar performance improvement, i.e., more than1 dB for
Rsum and more than5 dB for Rmin. In Fig. 2, it is observed
that the sum cluster-rate curves by different strict IA-Cell
assignments have different rate performance butin parallel
(with the same slope), which coincides with our theoretical
analysis that different strict IA-Cell assignments yield different
sum cluster-rate performance but the same DoFs (Corollary 1).
The advantage of the GIA is obvious and significant compared
with the random beamforming and FDMA, especially for high
SNR.
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Fig. 4: Sum-cluster rate comparison under limited feedback
w.r.t. sum feedback bit budget.

C. Performance Comparison under Limited Feedback

Under limited feedback, the proposed DBA is evaluated
by comparing with the classical EBA (plotted in dashed
lines in the following figures). The theoretical analysis of
subspace quantization is based on the Grassmannian sphere-
packing codebook. However, since it is extremely difficult
to construct large codebooks based on good Grassmannian
sphere-packings, random subspace codebooks are adopted in
the simulation12.

1) Performance comparison w.r.t. sum feedback bit budget:
The performance w.r.t. the sum feedback bit budget is evalu-
ated when SNR= 25 dB. Fig. 4 shows that the sum-cluster
rate is increasing with the sum feedback bit budgetat an ap-
proximate linear rateof 0.09, which approximately coincides
with 1

log2(e)
1

ds(NU−ds)
= 0.0577 in (50). The proposed DBA

outperforms the EBA in both the sum cluster-rate in Fig. 4
and the minimum single-cell rate in Fig. 5. Compared with
the fixed matching with the EBA, the proposed centralized
assignment and the distributed stable matching with the DBA
can save around80 bit and 40 bit, respectively, to achieve
Rsum = 50 bpcu in Fig. 4, and around120 bit and 80 bit,
respectively, to achieveRmin = 10 bpcu in Fig. 5. The sum-
cluster RINR in10 log10(

∑K
ℓ=1 I

k) dB is linearly decreasing
with sum feedback bit budget as shown in Fig. 6. The DBA
achieves a lower RINR compared with the EBA, which implies
that the effectiveness of minimizing the upper bound of sum-
cluster RINR in (30). The sum-cluster RINR is greatly larger
thands in Fig. 6, making the approximation in (47) feasible.

2) Performance comparison w.r.t. SNR:The proposed al-
gorithms are evaluated by measuring the sum-cluster rate and
the single-cell rate performance w.r.t. SNR for the fixed sum
feedback budgetB = 300 bit andB = 500 bit, respectively.

From Fig. 7 and Fig. 8, it is observed that the performance
with B = 500 bits is significantly better than that with
B = 300 bits and the performance gap enlarges with the SNR.
For SNR= 30 dB, the gap of sum-cluster rate and that of the
single-cell rate are as large as around20 bpcu and8 bpcu,

12Note that the performance by random subspace codebooks constitutes
a lower bounder to the performance by sphere-packing codebooks. In fact,
for large codebooks, random subspace codebooks usually attain a similar
numerical performance to sphere-packing codebooks, e.g.,[30].
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Fig. 5: Minimum single-cell rate comparison under limited
feedback w.r.t. sum feedback bit budget.

100 200 300 400 500
18

20

22

24

26

28

30

32

34

Sum feedback bit budget [bit]

S
um

 R
IN

R
  [

dB
]

 

 

Upper
sum

Two
One
data4

Fig. 6: Sum-cluster RINR comparison under limited feedback
w.r.t. sum feedback bit budget.

respectively. From the perspective of energy consumption,the
feedback ofB = 500 bits results in a higher complexity
and more feedback energy consumption than the feedback of
B = 300 bits, while it is still attractive when battery power
saving is the goal. This feature is very useful since the user
terminals’ battery power can be saved at the expense of a larger
energy consumption at the BSs, where the virtually unlimited
energy supply of the electric grid is available. For example,
15 dB uplink power can be saved by the stable matching to
achieveRsum = 40 bpcu withB = 500 bits compared with
B = 300 bits. Compared to the fixed matching with EBA,
the proposed centralized assignment and stable matching with
DBA can reduce by10 dB and5 dB uplink power, respectively,
at an achieved rate ofRsum = 60 bpcu. And this performance
improvement enlarges with SNR.

VIII. C ONCULSIONS

In this work, we provide a framework for the GIA with
optimized IA-Cell assignment in the interfering MIMO MAC
network under limited feedback. This algorithm yields the
closed-form IA transceiver by distributed implementationat
the BS side if its feasible conditions are satisfied. Furthermore,
the effect of IA-Cell assignment and DBA on either the sum-
cluster rate or minimum single-cell rate are discussed and
illustrated in the simulations.
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Fig. 7: Sum cluster-rate comparison under limited feedback
w.r.t. SNR.
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APPENDIX A
PROOF OFLEMMA 1

Proof: Without loss of generality, let us consider an GIA
example ofCell k

IA
→ Cell k + 1 to align {Hk+1

i,k V i,k} ∈

CNB×ds , ∀i = 1, . . . , L by designing the precoders
{V i,k} ∈ CNU×ds subject to transmit power constraints
Tr(V i,kV

H
i,k) ≤ Pi,k, the GIA demands

{
Span(Hk+1

1,k V 1,k) = . . . = Span(Hk+1
L,k V L,k)

Tr(V i,kV
H
i,k) ≤ Pi,k, ∀i = 1, . . . , L

(a)
⇔

{
Span(Hk+1

1,k Q1,k) = . . . = Span(Hk+1
L,k QL,k)

Tr(Ri,kR
H
i,k) ≤ Pi,k, ∀i = 1, . . . , L

(b)
⇔

{
Hk+1

1,k Q1,kX̃1 = . . . = Hk+1
L,k QL,kX̃L

Tr(Ri,kR
H
i,k) ≤ Pi,k, ∀i = 1, . . . , L

(c)
⇔

{
Hk+1

1,k V in
1,k = . . . = Hk+1

L,k V
in
L,k

Tr(V in
i,kV

out
i,k V

out,H
i,k V

in,H
i,k ) ≤ Pi,k, ∀i = 1, . . . , L

where (a) is based on the QR decomposition ofV i,k ,

Qi,kRi,k and Span(Hk+1
i,k Qi,kRi,k) = Span(Hk+1

i,k Qi,k),
whereQi,k ∈ C

NU×ds andRi,k ∈ C
ds×ds denote the ”sub-

space” and the ”power” ofV i,k, respectively. Based on the

equivalence (a),{V i,k} can be determined via independently
designing{Qi,k} based on the IA constraint and{Ri,k} sub-
ject to the power constraints. The equivalence (b) is because
the restriction of the IA condition has an influence only on the
”power” of Hk+1

i,k Qi,kX̃i by introducing a full rank matrix
X̃i ∈ Cds×ds but not on the its ”subspace”, where{X̃i} are
selected to fulfillHk+1

1,k Q1,kX̃1 = . . . = Hk+1
L,k QL,kX̃L.

Therefore,Hk+1
1,k Q1,kX̃1 = . . . = Hk+1

L,k QL,kX̃L is a
necessary but not sufficientcondition ofSpan(Hk+1

1,k Q1,k) =

. . . = Span(Hk+1
L,k QL,k) in terms of the ”power” because of

the restriction onX̃i (in fact, this ”power” restriction can be
completely eliminated when the transmit power constraintsare
jointly considered), and they areequivalentin terms of the de-
termination of ”subspace”Qi,k. Therefore, the equivalence (b)
in terms of both ”power” and ”subspace” is verified since both
IA condition and transmit power constraints are jointly consid-
ered in the proposed IA transceiver design. The equivalence(c)
is based on the definitionsV in

i,k , Qi,kX̃i,V
out
i,k , X̃

−1

i Ri,k

and the power constraints

Tr(Ri,kR
H
i,k) = Tr(Qi,kRi,kR

H
i,kQ

H
i,k)

= Tr(V in
i,kX̃

−1

i Ri,kR
H
i,k(X̃

−1

i )HQH
i,k)

= Tr(V in
i,kV

out
i,k V

out,H
i,k V

in,H
i,k ).

Due toV in
i,kV

out
i,k = Qi,kRi,k = V i,k, it is equivalent to

determineV i,k via determiningV in
i,k andV out

i,k based on the
equivalence(c) in place of determiningQi,k andRi,k based
on the equivalence(a).

Therefore, the proposed restriction-and-relaxation two
stages – first design{V in

i,k} based onHk+1
1,k V in

1,k = . . . =

Hk+1
L,k V

in
L,k and then design{V out

i,k } to maximize the achiev-
able rate subject toTr(V in

i,kV
out
i,k V

out,H
i,k V

in,H
i,k ) ≤ Pi,k ∀i =

1, . . . , L – is tight.

APPENDIX B
PROOF OFLEMMA 3

Proof: The quantizationV̂ can be exactly expressed by
theN -dimensional full spaceV ∪ V ⊥ as

V̂ = ΠV V̂ +Π
⊥
V V̂ = V C1 + V ⊥C2, (56)

whereC1 ∈ C
N×N andC2 ∈ C

(M−N)×N in (56) denote the
components of̂V projected on theV andV ⊥, respectively.
From (56), it is derived the properties ofC1 andC2 as

V̂
H
V̂ = IN ⇒ CH

1 C1 +CH
2 C2 = IN ; (57)

d2c(V̂ ,V ) = N − Tr(V̂ V̂
H
V V H) ⇒

Tr(C2C
H
2 ) = d2c(V̂ ,V ). (58)

By the singular-value decomposition (SVD),C1 is ex-
pressed byC1 = UC1Λ

1/2
C1

V H
C1

where eigenvaluesΛC1 ,

diag
{
λ1(C

H
1 C1), . . . , λN (CH

1 C1)
}

satisfy λn(C
H
1 C1) ≥

0, ∀n subject to
∑N

n=1 λn(C
H
1 C1) = N − d2c(V̂ ,V ) based

on (57) and (58). From (57), we further deriveCH
2 C2 =

V C1
(IN −ΛC1

)V H
C1

� 0N , which requiresλn(C
H
1 C1) ≤
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1, ∀n. Therefore,C2 can be expressed by

C2 = Ũ(IN −ΛC1
)1/2V H

C1
(59)

whereŨ ∈ C(M−N)×N satisfying Ũ
H
Ũ = IN is to select

a N -dimensional subspace from theM −N -dimensional null
spaceSpan{V ⊥}.

APPENDIX C
PROOF OFPROPSOSITION3

Proof: ConsideringCell k′
IA
−→ Cell k, we have

Ik = Ik
k′ =

L∑

i=1

Ii,k
k′ (60a)

=

L∑

i=1

L∑

j=1

Pj,k′

dsσ
2
k

Tr
(
Û

H

i,kH
k
j,k′ V̂ j,k′ V̂

H

j,k′H
k,H
j,k′ Û i,k

)

(60b)

≤ L

L∑

j=1

Pj,k′

dsσ
2
k

Tr
(
V̂

H

j,k′H
k,H
j,k′ Π

⊥
Hk

j,ℓ
V in

j,k′

Hk
j,k′ V̂ j,k′

)

(60c)

= L

L∑

j=1

Pj,ℓ

σ2
kds

Tr(SH
j,k′Ω

k
j,k′Sj,k′Σj,k′ ) (60d)

≤ L

L∑

j=1

Pj,ℓ

σ2
kds

ds∑

d=1

λd(Ω
k
j,k′)βd

j,k′ (60e)

≤ L

L∑

j=1

Pj,ℓ

σ2
kds

λ1(Ω
k
j,k′)

ds∑

d=1

βd
j,k′ (60f)

= L

L∑

j=1

Pj,ℓ

σ2
kds

λ1(Ω
k
j,k′)d2c(V̂ j,k′ ,

−→
V j,k′) (60g)

≤ c(NU , ds)L

L∑

j=1

Pj,k′

σ2
kds

λ1(Ω
k
j,k′ )2

−
B

j,k′

ds(NU−ds) , (60h)

where (60b) is based on the definition ofIi,k
k′ in (27), and (60c)

is derived based on the definition ofÛ i,k in (28), the inequality
of ||Π⊥

[Y 1,Y 2]Y 3||
2
F ≤ ||Π⊥

[Y 1]Y 3||
2
F and Π

⊥
Hk

1,k′
V in

1,k′

=

. . . = Π
⊥
Hk

L,k′
V in

L,k′

. Plugging (24) into (60c) and removing the

zero-valued terms and based on the definition (31) yield (60d),
whereSj,k′ ∈ C(NU−ds)×ds satisfiesSH

j,k′Sj,k′ = Ids
and

Σj,k′ = diag{β1
j,k′ , . . . , β

ds

j,k′}, ∀j is with βd
j,k′ ∈ (0, 1), ∀d

and
∑ds

d=1 β
d
j,k′ = d2c(V̂ j,k′ ,

−→
V j,k′). The upper bound (60e) is

achieved when the truncated unitary matrixSj,k′ is the eigen-
subspace of the matrixΩk

j,k′ associated with theds largest
eigenvaluesλ1(Ω

k
j,k′ ), . . . , λds

(Ωk
j,k′). (60h) is derived by the

quantization distortion upper bound (25).
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