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Abstract—A novel Bayesian technique for the joint estimation of
real and integer parameters in a linear measurement model is pre-
sented. The integer parameters take values on a finite set, and the
real ones are assumed to be a Gaussian random vector. The poste-
rior distribution of these parameters is sequentially determined as
new measurements are incorporated. This is a mixed distribution
with a Gaussian continuous part and a discrete one. Estimators
for the integer and real parameters are derived from this poste-
rior distribution. A Maximum A Posteriori (MAP) estimator mod-
ified with the addition of a confidence threshold is used for the in-
teger part and a Minimum Mean Squared Error (MMSE) is used
for the real parameters. Two different cases are addressed: i) both
real and integer parameters are time invariant and ii) the integer
parameters are time invariant but the real ones are time varying.
Our technique is applied to the GNSS carrier phase ambiguity res-
olution problem, that is key for high precision positioning appli-
cations. The good performance of the proposed technique is illus-
trated through simulations in different scenarios where different
kind of measurements as well as different satellite visibility condi-
tions are considered. Comparisons with state-of-the-art ambiguity
solving algorithms confirm performance improvement. The new
method is shown to be useful not only in the estimation stage but
also for validating the estimates ensuring a predefined success rate
through proper threshold selection.

Index Terms—Bayesian estimation, carrier phase ambiguity res-
olution, GNSS, integer parameter estimation.

I. INTRODUCTION

T
HE joint estimation of integer and real parameters is a

problem that is present in an important number of current

applications such as Magnetic Resonance Imaging (MRI),

Interferometric Synthetic Aperture Radar (InSAR), Commu-

nications (especially for multi-input/multi-output channels),
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Acoustic Interferometry, Cryptography, etc [1], [2]. However,

in the last couple of decades much of the emphasis went

to the Global Navigation Satellite Systems (GNSS) Carrier

Phase Ambiguity Resolution. That is the determination of the

unknown integer number of carrier cycles in the phase mea-

surements. Once these integer values are found, carrier phase

information can be used as very precise range measurements.

This is the basis of high precision GNSS positioning and it ap-

plies to a great variety of GNSS applications such as navigation,

attitude determination, surveying, geodesy, and geophysics.

Typically, the ambiguity resolution involves two different

steps i) reduction and ii) search. The reduction stage deals

with the generation of the set of potential integer candidates.

This set should be big enough to ensure that the correct in-

teger vector belongs to it and small enough to allow for a fast

search stage. Two typical reduction techniques are employed

in practice, the Korkine-Zolotareff (KZ) [3] reduction and

the Lenstra-Lenstra-Lovasz (LLL) reduction [4]. Due to the

existence of a polynomial time algorithm for its computation,

the LLL reduction is more widely used in practice. On the

other hand, the search stage focuses on the selection of the

best candidate among all possible ones. To this end, typically

the Integer Least Squares criterion is employed. However, this

criterion makes it difficult to incorporate prior information as

well as to sequentially compute estimates. In addition, in the

case of little or scarce measurements its success rate tends to

be poor.

Most of ambiguity resolution methods discussed in the lit-

erature are based in a coarse estimation followed by a refine-

ment process to find the final estimate [5]. In the case of the

Ambiguity Function Method, the possible integer values are re-

stricted to a grid corresponding to a discretization of the position

variables [6]. In the Least Squares Ambiguity Search method,

a floating solution that does not take into account the discrete

nature of the ambiguities is found first minimizing the mean

squared error. Then, the final result, known as fixed solution,

is searched for in the surroundings of the floating solution [7].

The size of the search space depends on the covariance matrix

of the floating solution and the number of ambiguities to be es-

timated. The LAMBDA (for Least-squares AMBiguity Decor-

relation Approach) method uses a linear integer transformation

to make the covariance matrix near diagonal. This transforma-

tion notably reduces the search space allowing a more efficient

search process. In [2], techniques based in the LLL algorithm
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[8] are proposed for the problem of estimation and verifica-

tion of real and integer parameters. The class of integer equi-

variant (IE) estimators, enclosing integer (I) as well as linear

unbiased estimators, and the Best (i.e., unbiased and minimum

variance in their class) Integer Equivariant (BIE) estimator are

presented in [9]. A unified framework, called integer aperture

(IA), for estimating and validating the GNSS ambiguity solu-

tion is introduced in [10] and expanded in [11]. Based on the

IA theory, the known ratio test used for validating the ambi-

guities solution was revisited in [12]. Finally, the Bayesian ap-

proach was employed in the context of GNSS ambiguity resolu-

tion in [13]–[17]. [13]–[16] yield a posterior distribution for all

variables, discrete and continuous, conditional to the observed

quantities; [16] determines confidence regions for the baseline

estimation based on GPS measurements; and [17] presents sev-

eral well known Bayesian estimation schemes and applies them

to the ambiguity resolution problem.

Very often, the proposed ambiguity resolution methods deal

with the problem of differential positioning, where the differ-

ence of the position of two antennas (with its associated re-

ceivers) is estimated. Usually, one of the receivers acts as a ref-

erence receiver whereas the other is called the rover. The vector

formed by the difference of position from the rover to the refer-

ence is known as the baseline.When both receivers do not move,

the baseline is called static. Conversely, when at least one of the

receivers moves, the baseline is called kinematic. Typically, am-

biguity resolution techniques are thought for static baselines,

but in a kinematic scenario they often become relevant, when

the best accuracy is sought for. Actually, in a kinematic scenario

a new set of baseline Cartesian components is to be estimated

for each measurement epoch, making the ambiguity resolution

process more difficult. However, there are some techniques that

use the baseline movement to improve the success of the ambi-

guity determination.

As opposed to the classical approach where the parameters

to be estimated are seen as deterministic, in the Bayesian ap-

proach they are considered as random variables. The key of

this approach is to start with a prior distribution of the param-

eters, and then to incorporate the knowledge of the available

measurements to form the posterior distribution. Based on this

distribution several estimators can be obtained, like the MAP

and the MMSE [18]. One of the best known Bayesian estima-

tors is the Kalman filter (KF), which is the optimal Bayesian

estimator for a parameter and measurement linear model, with

additive Gaussian noises. The KF is usually implemented se-

quentially, i.e., the estimated values are updated as new mea-

surements become available. Unfortunately, since all the distri-

butions involved are continuous -Gaussian in fact-, the KF can

not be directly applied to the estimation of integer parameters

while retaining its optimality.

In this work, whose main idea was exposed in [19], we in-

troduce a novel technique to jointly estimate real and integer

parameters in linear models. It is based (i) in the Bayesian esti-

mation philosophy and (ii) on the assumption that the integer pa-

rameters belong to a finite set that it is known in advance, while

the real ones come from a realization of a Gaussian random

vector. The basis of the method is to sequentially determine

the posterior distribution of the parameters to be estimated as

new measurements are incorporated. This posterior distribution

is a mixed one, with a Gaussian continuous part and a discrete

part that accounts for the probability of each of the elements

of the finite set. Estimators for the integer and real parame-

ters are derived from the posterior distribution. For the integer

part, it is natural to use a MAP estimator because a MMSE esti-

mator could give non-integer estimates. For the real paramters,

a MMSE estimator is used. In order to get a reliable estima-

tion, a confidence threshold is used in the discrete part so that

the method provides estimates only when they are good enough,

as it will be explained in Sections III-C and VII. The Bayesian

approach was already used in [13]–[15], our technique is sub-

stantially different in several ways such as the optimality crite-

rion, the hypotheses used for the integer parameters and the use

of a sequential implementation. [17] applies several Bayesian

models to the ambiguity resolution problem but it remains in

a general context, somewhat far from practice. Although our

technique is primarily devoted to the estimation of static pa-

rameters, it is extended to time-varying real parameters (e.g.,

as in the case of kinematic baselines in GNSS differential posi-

tioning) following a linear dynamical model. None of the previ-

ously mentioned Bayesian ambiguity resolution techniques are

directly prepared to do that. In this paper, we mainly focus on

the search stage and we provide an example on how to deal with

the reduction stage.

The work is organized as follows. In Section II, Bayesian

estimation is shortly reviewed. The new method is introduced

in Section III. In Section IV, the method is extended to time-

varying real parameters. A comparison with other sequential

techniques based on the Bayesian approach and a brief anal-

ysis of the computational efficiency of our procedure is done in

Section V. Then, in Section VI, this technique is applied to the

GNSS carrier phase ambiguity resolution problem for high pre-

cision applications. The performance of the proposed algorithm

is evaluated via simulations and compared to the LAMBDA

method in Section VII. Finally, Section VIII presents the con-

clusions and describes further work.

II. THE BAYESIAN APPROACH

The Bayesian approach was preferred because it permits to

include easily prior information in the estimators [20], [21].

If is the vector of parameters to be estimated and is the

measurements vector, the posterior distribution provides

all the information about given the measurements . Bayes’

theorem gives an expression of the posterior distribution

in terms of the prior distribution, , and the likelihood func-

tion, ,

(1)

From this posterior distribution, several estimators can be

proposed depending on the desired optimality criteria [18].

Starting from the Bayes’ theorem (1), a formula for the

sequential computation of the posterior distribution can be ob-

tained. Let be the measurement vector corresponding to time

and be the set of all available measurements until , i.e.,

. It is useful to have an expression
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to update the posterior distribution each time a new measure-

ment is available. Assuming that ,

applying some conditional distribution’s properties and with

some algebraic work (see e.g. [20] chapter 2) it can be shown

that

(2)

where is calculated as

(3)

In this way, an explicit expression for the sequential calculation

of the posterior distribution is obtained. We start with ;

once we have the following measurement , we can calculate

; with , ; and so on.

III. PROPOSED TECHNIQUE

A. Measurements Model

We assume that the parameters to be estimated,

(reals) and (integers), are related to the measurements at

time , , through the following model

(4)

where matrices and are known full

column rank, and is a zero mean white Gaussian noise vector

with covariance matrix . The integer parameter belongs

to a finite set with elements, i.e., the true value of is some

where . A technique for the generation of

this set is given in Appendix. In addition, it is assumed that

and remain constant during the observation time. In order

to apply the Bayesian approach to this problem, the posterior

distribution of and given the measurements until time

must be obtained. Then, similarly to (2), we find that

(5)

The concept is to start with a weakly informative prior distribu-

tion of and , , and then adjust it as new measurements

, are incorporated, leading to .

B. Sequential Computation of the Posterior Distribution

The method aims to obtain an explicit formula to sequentially

compute . For this purpose, the prior distribution of

the continuous variables , as well as of the discrete ones , must

be known. Given the different nature of the random variables,

the result is a mixed continuous/discrete distribution. Assuming

that the prior distributions of and are independent, then

(6)

We also consider a Gaussian prior distribution of with mean

and covariance , denoted

(7)

and given by

(8)

The prior distribution of is assumed to have the following

structure

(9)

where is the probability that equals .

Therefore, from (6), (7) and (9) the joint prior distribution of

and can be expressed as

(10)

Hence, fixing the values of , and with

, completely defines . These values

depend on the prior information about the parameters to be

estimated. If there is no or little prior information, a weakly

informative distribution should be used. For , a non-in-

formative distribution is the uniform . Since

is Gaussian, it should have a mean as close as possible to the

value to be estimated, and a large enough to account for

all possible errors. A convenient choice for the covariance is

, where is a constant selected according to

the preceding remark, and is the identity matrix. From

(5) it can be seen that, both the likelihood function

and the prior distribution are needed to obtain the first

posterior distribution. From (4) it follows that

(11)

and the numerator of (5) for results

(12)

After a tedious algebraic manipulation of (12), similar to the

development in [22], and using (5), we get

(13)
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where

(14)

(15)

(16)

(17)

(18)

In the above expressions we assumed that , for

other choices of minor changes are needed (see the general

expression that follows). After has been obtained,

and the second measurement is available, is

found in the same way.

In general, if the distribution is

(19)

the posterior distribution becomes

(20)

where

(21)

(22)

(23)

(24)

(25)

It can be seen that distributions such as (19) are conjugate priors

of distributions such as (20) hence, the posterior (20) repeats the

structure of the a-priori [18]. Notice that (20) can be factored

as , with

and .

C. Derivation of the Estimators

According to the previous considerations, the posterior dis-

tribution conveys all the information about the pa-

rameters to be estimated, and , in the measurements . In

order to select the best Bayesian estimators some optimality cri-

teria must be adopted. For the case of , it seems natural to use a

MAP estimator, since it guarantees integer estimates as desired.

For the real variables estimator, once the integer is chosen,

both the MAP and MMSE criteria give the same estimator, the

conditional mean (or equivalently the mean of the posterior dis-

tribution). Therefore, the selected estimators of and are

(26)

(27)

With these expressions estimates for and are obtained for

any , however, their reliability could be low at an early stage.

In order to address this aspect, we propose the addition of a

threshold to the integer parameters estimator. That is, estimates

are considered valid only if it holds that , with a

constant threshold to be defined.With this strategy, we will have

valid estimates only when the reliability condition is met.

The value of can be appropriately selected by analyzing

the meaning of . From (20) it follows that

. Hence, if a high degree of certainty is required,

should be chosen close to 1. Of course, the closer is to 1 the

larger is the number of measurements required to obtain a valid

estimate. Then, the balance between reliability and speed is con-

trolled by the choice of . In Section VII, it will be seen through

numerical simulations that determines a lower bound for the

Success Rate SR (i.e., the number of correct integer estimates

over the number of trials) of the estimation method.

D. Operation of the Method

In order to show the behavior of the developed method in

a qualitative way, let’s consider the simplified problem of 1D

positioning using dual frequency, sinusoidal beacons similar to

that of Sec. VII-A in [2]. This very simplified example is the

basis of most electromagnetic distance measurement (EDM)

equipment used by surveyors and geodesists [23]. The objec-

tive is to estimate the unknown receiver position using

two sinusoidal signals of different frequencies sent by a beacon

(transmitter) located at a known position . Assume a receiver

(synchronized with the transmitter) that measures the phase of

the two signals emitted by the beacon. Due to the periodic nature

of the transmitted signal, the receiver is only able to measure

these phases modulo some integer multiple of the wavelengths.

Let and be the measured phases. It is straightforward to

get that (see Fig. 1)

(28)

where and are the wavelengths of the transmitted signals.

Equivalently, (28) in matrix form results in

(29)

where an additional unavoidable noise term (i.e., and ) was

added. It is easily seen from (29) that to solve this problem,

the estimation of one real parameter and two integer pa-

rameters and are needed. In the rest of this section, we

use our method to illustrate how it works. A test scenario with

measurements from different instants was generated. The real

position was set as , the signal wavelengths were

chosen as and , 20 seconds of
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Fig. 1. 1D positioning using a dual frequency beacon: is the beacon posi-

tion, is the receiver position, and are the wavelengths of the trans-

mitted signals, and are the integer number of wavelengths, whereas

and are the measured phase of each signal at the receiver.

data were generated with a sampling period of 1 sec. For sim-

plicity, the transmitter position was set to . The set

of possible integers were generated to ensure that the true value

belongs to the generated set with a high probability. Thus the

range of values for was

with and for

, 2. Zero mean Gaussian noise with standard deviation

was added to account for the measurement er-

rors.

As starting prior distribution we chose: i) with

for , where is the number of integer

candidate pairs (in this example ), according

to the search space generation as illustrated in the Appendix ii)

with and , being a randomly

generated Gaussian perturbation with mean

and standard deviation .

Once the data was generated, we started the sequential calcu-

lation of the posterior distribution. In Fig. 2, the evolution for

different values of of the weights of the distribution

is shown on the left side whereas the posterior is

shown on the right side. On both sides of the Figure, the true

value is highlighted. It can be clearly seen how the probability

of the true ambiguity value grows as more measurements are

used. Moreover, notice how the weights corresponding to other

candidate pairs decrease. However, notice that the weight of the

true value does not grow monotonically and the weights of the

incorrect values do not decrease monotonically. Hence, in order

to improve the reliability of the method, it becomes very impor-

tant resorting to the decision threshold . Regarding the con-

tinuous part of the distribution, it can be seen how the shape of

the distribution changes after new measurements are added. For

the first measurements, the distribution is clearly multi-modal

due to its Gaussian sum nature, where each component has a

relatively high variance. As more measurements are included,

the number of noticeable Gaussian components as well as their

variance decrease.

IV. EXTENSION FOR TIME VARYING REAL PARAMETERS

We now consider the case where the real parameters vary

with time. Assume that the parameters follow the linear dynam-

ical model

(30)

where is the state transition matrix of and is the

process noise that is assumed to be zero mean Gaussian with

covariance matrix .

Following the same derivation steps as in Section III, for a

given prior distribution

(31)

the posterior distribution results

(32)

where

(33)

(34)

(35)

(36)

(37)

(38)

Remark 1: Observe that (33)–(37) correspond to the single

step update of a Kalman filter with dynamic model (30)

and measurements (4). The posible values of shift the

1-step predictors, first term of the RHS of (36). Remark 2:

Note that a new matrix, that can be seen as a Kalman

gain, appears in order to simplify and expres-

sions. As in (20), it can also be seen that (32) is factored as

, with

and . Once

the posterior distribution is found, the estimators are obtained

as in the static case through (26) and (27).

V. ANALYSIS OF THE TECHNIQUE

A. Comparison to Other Bayesian Estimation Techniques

Considering (33), (34), (35), (36) and (37) in detail and drop-

ping for a while the superindex , it can be noted that they
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Fig. 2. Evolution for of (left) and (right). The correct value is highlighted.

are very similar to the Kalman filter equations for the estima-

tion of the real parameters . The same happens with (21),

(22), (23) and (24) for the time invariant real-parameter model,

. Since these equations are indexed by , the de-

veloped technique can be interpreted as (the total number

of possible integer vectors) Kalman filters for the real param-

eters running in parallel, each one corresponding to a different

vector of integer values. However, the computational burden and

the memory storage required by our method are far less than it

would be needed for the implementation of this number of KFs.

This is possible because the covariance matrices and Kalman

gains computation are the same for all filters (see Fig. 3). Thus,

only filtered and predicted values of each KF must be sepa-

rately computed and stored. Moreover, the proposed technique

can be thought of as an implementation of the Interacting Mul-

tiple Models filter [24] but instead of a weighted output, in this

case the estimated value is directly one of the multiple filter out-

puts if the weight value of one of them is greater than a given

threshold. Finally, the estimation method proposed in this paper

could be considered among theGrid BasedMethods in Bayesian

Filtering [25]. Our technique for the real part of the state vector

also resembles the “sum of Gaussians” approach used to approx-

imate the prediction and measurement distributions in nonlinear

filtering [26].

In the introduction we already mentioned that [13]–[17] also

applied a Bayesian approach resembling ours, but notably dif-

ferent in optimality criterion, assumptions on the integer param-

eters, sequential implementation (save for [17]) and the pos-

sibility to adopt a dynamical model for the real parameters.

It is worth noting that there exists a connection between our

Bayesian and other non-Bayesian techniques. This holds true

for Teunissen’s theory of integer equivariant estimation and in-

teger aperture estimation. In [9] it is shown for instance how the

Fig. 3. Graphical interpretation of our method. It can be seen as Kalman

filters that share the same cov. matrix and Kalman gain

plus a decision stage that is function of with .

weights in his non-Bayesian BIE-estimator of the ambiguities

can be directly linked to the Bayesian a posteriori probabili-

ties. The link between the Bayesian approach and the optimal

integer aperture estimation [11] is pointed out in [27]. There,

the Bayesian a posteriori probability shows itself in the optimal

aperture region. Also in [27] another interpretation is given con-

necting the Bayesian approach and the non-Bayesian penalized

ambiguity estimator introduced in [28].

B. Computational Requirements

In order to assess the implementation feasibility, a quick com-

putational requirement analysis is presented. As it was analyzed

in the previous subsection, our technique is equivalent to

KFs, but its computational requirements are far lower than those

required for the same number of filters. For each time update,

our method needs only one Kalman gain and only one covari-

ance matrix computation. These are the most computationally
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expensive tasks of a KF because they require some matrix inver-

sions. In addition, it requires (i) mean updates involving one

matrix times vector multiplication and (ii) weight updates

involving a scalar product, an exponential function evaluation

of a quadratic form and an component vector normalization.

Thus, the computational requirements of our method are similar

to a state, measurement Kalman filter plus simple ma-

trix multiplications and exponential function evaluations. This

coarse analysis shows that the computational requirements of

our method do not exceed by much those of a single KF and are

easily achievable; especially so for embedded systems. Then, it

seems suited for real-time systems.

VI. APPLICATION TO GNSS HIGH PRECISION DIFFERENTIAL

POSITIONING

The general model of (4) can be directly applied to the

problem of GNSS high precision differential positioning. It

consists in the sub-centimetric estimation of the difference of

coordinates between two GNSS antennas with their respective

receivers. Carrier phase differential measurements are typically

used due to their high accuracy (in the order of the millimeters).

However, these measurements are ambiguous in an integer

number of carrier cycles and then, an ambiguity resolution

technique should be used. Depending on the specific applica-

tion and the quality of the receivers employed, unambiguous

but noisier code measurements can also be used. Carrier-phase

only or code and carrier-phase measurements can be used for

more than one frequency in order to get better results. In order

to cancel out errors common to both receivers the so-called

double differences are frequently used [29], [30].

The code or carrier-phase double differences between satel-

lites and at time are defined as

(39)

where refers to either the carrier-phase or the code

measurement corresponding to satellite in the receiver

at time . If the distance between receivers is short (less than 10

km), carrier-phase and code double differences can be modeled

as [29],

(40)

(41)

where is the wavelength of the utilized GNSS signal (today’s

most frequent is the GPS signal with ); is

the integer wavelength ambiguity; is the difference between

the line-of-sight (LOS) vector to satellite , , and the corre-

sponding to satellite , ; . The latter

is the baseline vector (i.e., the vector of the difference of coor-

dinates between receivers); and and are the carrier-phase

and the code measurement noise respectively, mainly involving

thermal noise and multipath. If multipath is negligible, as it oc-

curs in a good sky visibility condition and/or when appropriate

antennas are used in a suitable environment, and can be

modeled as Gaussian noise. Note that typically, the noise stan-

dard deviation in code measurements is about 100 to 1000 times

larger than in carrier-phase measurements.

If at time there are satellites in sight, and taking

satellite as the reference satellite; independent double

differences can be formed for each type of measurement and for

each frequency. Their aggregation in vector form results in the

measurement sample

(42)

(43)

is the line-of-sight difference matrix. Due to the satellite

constellation configuration, is generally full column

rank (equal to 3).

is the carrier-phase double difference vector,

is the code double difference

vector and is the integer wavelength ambiguity vector.

The resulting measurement noise vectors and are zero

mean Gaussian with covariance matrix and given by

(44)

(45)

where , with being the variance of

the -th carrier-phase measurement, ,

with being the variance of the -th code measurement, is

the identity matrix and is -dimensional vector with

all ones, . Equations (44) and (45) assume that each

carrier-phase measurement noise and each code measurement

noise are independent among measurements. The structure of

the matrix reflects the correlation arising from the double dif-

ferences [31].

As it was previously mentioned, in the context of high

precision GNSS differential positioning there arise different

models that correspond to different types of measurements.

These, in turn depend on the quality of the receiver employed.

The simplest model uses only Single-Frequency Carrier-Phase

measurements and is denoted SFCP. This model is useful for

very short baselines, typically used for attitude estimation,

where code measurements provide useless information due to

its high noise level. In this case, it is easily seen from (42) and

comparing it with (4) that our technique fits to this problem

taking , , , ,

and . The number of real parameters

to be estimated is , whereas the integer parameters are

. Usually, this model is also used for short baselines (up

to a few kilometers). However, for this kind of baselines, the

Single-Frequency Carrier-Phase and Code (SFCPC) model can

also be used in order to take advantage of code information.

In this case , , ,

, and
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with a matrix of zeros. The number of real parameters

to be estimated is the same as in the previous case, i.e.,

and .

Finally, for long baseline estimation, spanning from a

few to thousands of kilometers and requiring mitigation of

iono-/tropo-spheric effects, high-end dual- (or multi-) fre-

quency receivers are required. In this context, a simplified

Dual-Frequency Carrier-Phase and Code (DFCPC) model re-

sults in ,

, , ,

In this simplified model, the number of real parameters to be

estimated is since only the baseline Cartesian compo-

nents are to be estimated. For long baselines of more than 10

km, more real parameters are typically required, such as iono-

sphere and troposphere delays, receiver and satellite clocks and

instrumental delays. In these cases, should be modified ac-

cordingly. The number of the integer parameters is .

Note that depending on the kind of problem with regards to

the baseline (i.e., static or kinematic) one of the approaches of

Section III or Section IV must be used.

In the sequel, when ourmethod is used in the context of GNSS

Ambiguity Resolution we will refer to it as BART for Bayesian

Ambiguity Resolution Technique.

VII. SIMULATION RESULTS

In this section, we present some simulations for the GNSS

high precision positioning problem described in the previous

section in three different cases: i) single-frequency (GPS L1)

carrier-phase measurements only (SFCP), ii) single-frequency

(GPS L1) carrier-phase and code measurements (SFCPC) and

iii) dual-frequency (GPS L1 and L2) carrier-phase and code

(DFCPC).

For the simulations, measurements were synthetically gener-

ated by means of our own simulation routines using real broad-

cast ephemeris data of the GPS constellation. A 5 km static

baseline was considered. The simulated data assumed ideal con-

ditions (i.e., no atmospheric or other perturbation effects were

considered). The correlation in the double differences was taken

into account for the noise generation. The same noise variance

was used for all satellites but different for each kind of mea-

surements (i.e., carrier-phase and code), so the noise elevation

dependency was neglected. The simulation parameters are sum-

marized in Table I, where ECEF stands for the Earth Centered

Earth Fixed coordinate frame used as reference in the GPS.

In addition to BART results, outcomes obtained via the

LAMBDA method using the same synthetic data are also

shown for comparison purposes. The LAMBDA method is

one of the most famous and successful ambiguity resolution

TABLE I

GNSS DIFFERENTIAL POSITIONING SIMULATION PARAMETERS

methods in the GNSS literature [32], [33]. A detailed descrip-

tion of the algorithm is given in [34]. The results presented in

this paper were obtained using the LAMBDA software package

ver. 3.0 [35].

In order to analyze performance, several Monte-Carlo (MC)

runs with different simulation scenarios were done for each

of the three cases considered. Each scenario is defined by the

number of measurements used and the chosen threshold level.

We varied the number of measurements from 4 (5 satellites

in sight) to 7 (8 satellites in sight) and we considered three

different values for the threshold , 0.75, 0.9 and 0.99. Each

scenario consists of samples (or measurement

epochs) taken at a sample rate of 1 Hz, and it is repeated 10000

times.

Three performance measures are considered: (i) the success

rate (SR), which accounts for the number of correct ambiguity

estimations; (ii) the error rate (ER), for the number of incorrect

ambiguity estimations; and (iii) the mean time to make a de-

cision (MTMD), which indicates the number of measurement

epochs (that is the efficiency of the method) required until a

valid estimate is given.

A. BART Simulation Results

As starting prior distribution for the BART method we chose:

(i) with for , where is the

number of elements of the ambiguity candidate set that is con-

structed as explained in Appendix A with , the covari-

ance matrix for is the same as that used with the LAMBDA

method in the following section; (ii) with and

with , being a randomly generated

perturbation whose mean is the true value of plus a realization

of a zero mean Gaussian random variable with standard devia-

tion in each component.

Once the data were generated and the ambiguity candidates

set or search space (SS) was constructed, we proceeded with

the sequential calculation of the posterior distribution. For each

measurement epoch, the updated value of is evaluated,

if one of the candidates achieves a weight larger than the

threshold the estimation process is finished and the estimated

integer and real values are returned.

The results of these simulations are summarized in Table II,

each row corresponds to a different scenario. The first column

indicates the case; the second, the number of double differ-

ence (DD) measurements used; the third, the threshold level;

the fourth, the mean number of candidates (i.e., ) of the gen-

erated search space for each MC run and its standard deviation

(between brackets); success and error rates (in percent units), as

well as the MTMD (in seconds) are displayed in the 5th, 6th and

7h columns respectively. Results from the DFCPC case were
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TABLE II

BART PERFORMANCE

omitted because in all scenarios an instantaneous correct solu-

tion was achieved so that its SR is always 100% and its MTMD

is always 1 sec. (In the GPS/GNSS literature, instantaneous am-

biguity resolution customarily means that the ambiguities were

estimated using only one measurement sample).

The results displayed in Table II clearly show the virtues

of our method, as well as the impact of the selection of the

threshold level . Anyway, recall that it is here applied to a

simplified observation model that does not incorporate atmo-

spheric and other effects. As expected from the discussion in

Section III-C, in all of the presented scenarios the value of

resulted to be an empirical lower bound for the SR (i.e., for

, ). This makes the BART method not

only an interesting estimation method but also a robust one be-

cause it intrinsically includes a validation stage that provides a

given minimum SR through the selection of a proper . As it

was previously mentioned, this is a nice property to have in any

integer estimation algorithm. In addition, it can be noticed how

theMTMD and the SS size vary depending on the value of and

on the scenario. As it is easily anticipated, the higher the value

of the longer the MTMD. On the other hand, it can be ob-

served how the SS becomes larger when the underlying model

is weak as in the case when there are few satellites in view and

few types of measurements.

We remark that even in a very demanding condition as is the

case with only 4 measurements of only GPS L1 carrier-phase,

the method has an acceptable behavior regarding their MTMD

and when there are 7 measurements (or 8 satellites present), a

commonly met condition in practice these days, the SR and the

MTMD are excellent allowing an almost always instantaneous

solution. Moreover, when additional types of measurements are

included, this behavior improves noticeably.

B. LAMBDA Simulation Results

The same synthetic data set was used to evaluate the per-

formance of the LAMBDA method. Since it is a non-Bayesian

method, BART simulation uses a-priori information that cannot

be incorporated to LAMBDA. In addition, LAMBDA by itself

doesn’t provide a validation method that allows the user to de-

termine if the solution obtained is good enough to be used or

it should be discarded. There exist several validation methods

discussed in the literature such as the Ratio Test, the Projec-

tion Test, the Difference Test, etc. We used the Ratio Test (RT)

of [12] because it provides a fixed failure probability ap-

proach and its implementation for and

is included in the LAMBDA software package used. For these

simulations, we used both values of .

The simulation process used is as follows: for a given start

measurement epoch (i) a float solution of the ambiguities (i.e.,

a solution that doesn’t take into account the integer nature)

and its covariance matrix is found through a Weighted Least

Squares (WLS) method with the available measurements; (ii)

the LAMBDA method is run with the estimates of (i); (iii)

the Ratio Test is applied to the LAMBDA solution. If the

RT passes, the process finishes. The number of measurement

samples required is stored and the result is compared to the

true one. If the RT does not pass, a new measurement sample

is incorporated and the process starts again repeating steps

(i), (ii) and (iii). It has to be noted that for the case SFCP,

at least two measurement epochs are required in order to get

the float solution due to a dimensionality problem (i.e., with

only one measurement epoch we have more unknowns than

measurements).

Table III shows the same information that in BART’s Table II

with the exception of instead of . 10,000 MC runs were

also used per row. Similarly to BART’s simulations, the DFCPC

case was omitted because in all scenarios an instantaneous cor-

rect solution was achieved. It can be noted that in all the con-

sidered scenarios, the ER is greater than the expected one based

on the chosen . This may be due to the constant selection

method used in the RT as a function of the . As it is obtained

through numerical simulations using some values for the code

and carrier-phase noise levels and some satellite configuration,

it is likely that the empirical (i.e., ER) obtained in our sim-

ulations doesn’t match the selected one. Note that for scenarios

with more satellites, this mismatch decreases.

C. Comparison of BART and LAMBDA Simulation Results

Comparing the results of Table II and Table III it can be no-

ticed that when the amount and variety of available measure-

ments is large, both methods performs equally well (e.g., the

DFCPC case). However, in situations with fewer types of mea-

surements (e.g., SFCP and SFCFC) the BARTmethod performs

better than LAMBDA in terms of MTMD for the same expected

SR. See for example the scenario of 7 DD in the SFCP case with
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TABLE III

LAMBDA (WITH RATIO TEST) PERFORMANCE

, where the BART method achieves an excellent ambi-

guity resolution, SR is 99.7% and MTMD is 2.3 sec.; whereas

for LAMBDA with RT with , SR is 99% and MTMD

is 5.2 sec., and with , SR is 99.9% andMTMD is 6.1

sec.. In both cases requiring two to three times more measure-

ment samples for almost the same SR. The difference observed

in other scenarios, although it is noticeable, is not as significant

as in the aforementioned case but always favoring the BART

method. Besides this better behavior in the most demanding sce-

narios, a remarkable advantage of the BART method is that, if

the underlying model is appropriate, a given performance can

be achieved through the appropriate selection of the threshold

level .

VIII. CONCLUSIONS

A novel Bayesian technique to jointly estimate integer and

real parameters in a linear model of measurements has been

proposed. It is assumed that the integer parameters belong to

a finite set and that the real ones come from a realization of a

Gaussian random vector. The method sequentially determines

the posterior distribution of the parameters to be estimated as

new measurements are incorporated. This posterior distribution

is a mixed one, with a Gaussian continuous part and a discrete

part that accounts for the probability of each of the elements of

the finite set. AMAP estimator with the addition of a confidence

threshold is used for the integer parameters and a MMSE esti-

mator for the real parameters.

Our technique starts with an initial estimate of the real pa-

rameters, a covariance matrix that carries information about its

accuracy, and a set of potential integer vector candidates with

the same probability. Each time a new measurement is avail-

able, the posterior distribution is updated and the integer vector

with the maximum probability is tested. Measurements are in-

corporated in this way up to the moment when this probability

becomes greater than the threshold. Then, this last maximum

probability vector is declared as the integer estimate and the

corresponding normal mean is taken as the real estimate. It is

interesting to note that the developed technique is equivalent to

(the total number of possible integer vectors) Kalman filters

estimating only the real parameters running in parallel, each one

corresponding to a different vector of integer values. However,

the computational burden and the memory storage required by

our method are considerably lower because only the mean of

each KF and its corresponding weight must separately be com-

puted and stored.

The method was applied to differential positioning using

GNSS signals and was named BART. At present, only simu-

lated observations were considered in the frame of a simplified

observation model, that do not consider atmospheric and

other effects impacting the real GNSS observations. Several

Monte-Carlo simulations were done for the GPS system con-

sidering different satellite visibility scenarios and different

combinations of measurements (i.e., code and carrier-phase) as

well as frequencies (L1 and L2). With the same simulated data,

the results obtained were compared to those obtained with the

widely used LAMBDA method with the addition of the Ratio

Test as a validation stage. The simulation comparisons favored

BART algorithm. This is particularly noticeable in demanding

scenarios (e.g., those with only carrier-phase measurements

of a single frequency), and when performance is measured by

success rate, error rate, and mean time to make a decision. Both

LAMBDA and BART perform similarly when there are several

types of measurements (i.e., carrier-phase and code of more

than one frequency) and the number of measurements is high.

In addition, the simulations showed the effect of the threshold

. As expected from the method derivation, it was found that

acts as a lower bound for the SR allowing to control the

reliability of the estimation process through the selection of

this value. This selection impacts in the MTMD, values near to

1 increase the SR but at the expense of a higher MTMD. On

the other hand, lower values of decrease the MTMD at the

expense of a higher ER. Thus, our method not only provides an

estimation stage but also a validation stage with a guaranteed

SR. This very interesting property arises from the probabilistic

model employed and was observed empirically from the sim-

ulation results. However, a more detailed theoretical analysis

-that exceeds the scope of this work- should be carried out to

confirm this result in a general sense.

Future work will involve an evaluation of BART with real

data in different scenarios, with static and kinematic baselines.

Also, a performance evaluation is to be done in other scenarios

such as the estimation of long baselines with dual (or triple) fre-

quency measurements. A current concern in this kind of appli-

cations is the emergence of biases that challenge the ambiguity

resolution. It is foreseen that through a good modeling of this ef-

fect, BART could be successfully used under such challenges.

APPENDIX

SEARCH SPACE GENERATION

A key point of our technique is to properly generate the set of

all the integer potential candidates or search space. To do that

we need an initial estimate of the integer parameters , that

could be real (i.e., in the GNSS/GPS literature known as the

ambiguity float solution) and their covariance matrix based

on the prior information available. The basis of the procedure is
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that the quadratic form of the residuals can be considered as

a distribution with degrees of freedom. Thus, an hyper-el-

lipsoid enclosing the true ambiguity candidate with probability

can be constructed as

(46)

where is the percentile of the chi-square with

degrees of freedom cumulative distribution function (cdf). In

order to find all the potential candidates in an efficient way, a

triangular decomposition of can be used. The pro-

cedure is somewhat similar to the DECODE algorithm of [1]

or the search section of the LAMBDA [34] method but without

any function evaluation so that it returns all integer candidates

inside the ellipsoid. When increases, the shape of the ellip-

soid in (46) becomes elongated and thus difficult to go over.

A convenient solution to this problem is to decorrelate using

a transformation to make as close to diagonal as possible

while preserving the integer nature of the transformed integer

parameters. In this way the shape of the search space is close

to spherical making it easy to go over. The transformation

should be an admissible transformation [32]: . where

is the decorrelated integer parameter vector.

To be an admissible transformation must satisfy that both

and its inverse have integer entries. After the transforma-

tion, becomes and the new covariance matrix

results . Using the previously mentioned trian-

gular decomposition , the transformed version of

(46) can be expressed as

(47)

where

(48)

being the -th element of the diagonal of and the -th

row, -th column entry of . From (48) intervals which are

used for the search space generation can be constructed as

...

...

where

(49)

Notice that was used instead of to improve the

legibility of the equations.

Once the search space is generated for the transformed in-

teger parameter vector , each component is transformed

back to the variable through the inverse transformation (i.e.,

). This is the search space needed. It is important to

note that the Search Space remains the same provided that there

is no cycle slips or satellite changes.

From the previous discussion it can be seen that accurate

values of and are needed to generate the search space.

Here we will discuss how to do it when we have some prior in-

formation about . Assume we have , an estimate of with

covariance matrix . From (4) we can get a real estimate

of from some measurement as

(50)

with covariance matrix

(51)

That is the information that we were looking for.
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