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Subspace Classification
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Abstract—Subspace models play an important role in a wide
range of signal processing tasks, and this paper explores how
the pairwise geometry of subspaces influences the probability of
misclassification. When the mismatch between the signal and the
model is vanishingly small, the probability of misclassification is
determined by the product of the sines of the principal angles
between subspaces. When the mismatch is more significant, the
probability of misclassification is determined by the sum of
the squares of the sines of the principal angles. Reliability of
classification is derived in terms of the distribution of signal
energy across principal vectors. Larger principal angles lead
to smaller classification error, motivating a linear transform
that optimizes principal angles. The transform presented here
(TRAIT) preserves some specific characteristic of each individual
class, and this approach is shown to be complementary to a
previously developed transform (LRT) that enlarges inter-class
distance while suppressing intra-class dispersion. Theoretical
results are supported by demonstration of superior classification
accuracy on synthetic and measured data even in the presence
of significant model mismatch.

Index Terms—subspace, classification, SNR

I. INTRODUCTION

S IGNALS that are nominally high dimensional often ex-
hibit a low dimensional geometric structure. For example,

fixed-pose images of human faces are recorded using more
than 1000 pixels, but can be represented by a 9-dimensional
harmonic subspace [1]. Motion trajectories of a rigid body
might be recorded by hundreds of sensors, but must intrinsi-
cally be represented by a 4-dimensional subspace [2]. There
are many more examples where a low-dimensional subspace
model captures intrinsic geometric structure, ranging from user
ratings in a recommendation system [3] to signals emitted
by multiple sources impinging at an antenna array [4]. The
subspace geometry has assisted tasks of interest to both signal
processing [5], [6] and machine learning communities [7], [8].

A Gaussian Mixture Model (GMM) measures proximity to
a union of linear or affine subspaces, by imposing a low-rank
structure on the covariance of each mixture component. It
can be used to approximate a nonlinear manifold by fitting
mixture components to local patches of the manifold [5],
[9], hence providing a high fidelity representation of a wide
variety of signal geometries. The simplicity of the model
facilitates signal reconstruction [10]–[13], making GMMs a
very attractive signal source model in compressed sensing.
The value of low-rank GMMs extends to classification, where
each class is modeled as a low-rank mixture component, and
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classes are identified by their projections onto linear features.
Optimal feature design is addressed in [8], [14].

The GMM is usually only an approximation to the truth.
For example, the full spectrum associated with a face image
follows a power law distribution, and when we truncate to
the first 9 harmonic dimensions, the residual energy will be a
source of error in classification. Even if the true model were a
GMM, we can only learn an approximation to the true model
from training data. The more data we see, the better is the
fit of our empirical model, but some degree of mismatch is
unavoidable. If we treat this mismatch as a form of noise, then
we can use information theory to derive fundamental limits on
the number of classes that can be discerned (see [15] for more
details).

This paper explores how the pairwise geometry of subspaces
influences the probability of misclassification. There are par-
allels with non-coherent wireless communication [16], where
information is encoded as a subspace drawn from a fixed
alphabet, and the function of the receiver is to distinguish
the transmitted subspace. When each component is perfectly
modeled as a Gaussian, the performance of the MAP classifier
can be analyzed using the Chernoff Bound [17]. When fidelity
is perfect, there is no mismatch, and fundamental limits on
performance are determined by the rank of the intersection of
the classes [15], [18].

In this paper, we further consider how best to discriminate
classes, when the alignment between the GMM model and the
data is only approximate. We make three main contributions
in this paper:

1) We express the probability of pairwise misclassification
in terms of the principal angles between the corre-
sponding subspaces. This expression depends on the
mismatch between the signal and the model. Interpreting
this mismatch as noise, we provided analysis of the low,
moderate, and high SNR regimes. This improves upon
[18], in the sense that we have a more explicit expression
of the “measurement gain” as proposed in [18].

2) We characterize the probability of misclassification for
more general distributions near subspaces. This is mo-
tivated by the case where training samples per class
are insufficient for a reliable estimate of covariance. In
these cases, we have very little knowledge about the
signal’s distribution and a MAP classifier is not good
fit. The Nearest Subspace Classifier (NSC) provides an
alternative and we use the NSC classifier rather than the
MAP to bound the probability of misclassification.

3) We develop a feature extraction method, TRAIT, that ef-
fectively enlarges principal angles between different sub-
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spaces and preserves intra-class structure. We demon-
strate superior classification accuracy on synthetic and
measured data, particularly in the presence of significant
model mismatch.

This paper is organized as follows. Section II presents
the subspace geometry framework. Section III analyzes the
Maximum a Posteriori (MAP) classifier under the GMM
assumption. Section IV analyzes the performance of Nearest
Subspace Classifer (NSC), which relaxes the GMM assump-
tion. Section V proposes a feature extraction method, TRAIT,
that exploits subspace geometry, and presents experimental
results for both synthetic and measured datasets. Section VI
provides a final summary.

A note on notations: we use bold upper case letters for
matrices, e.g., X, and bold lower case letters for vectors, e.g.,
x. The transpose of a matrix X is denoted by X>. Scalars are
written as plain letters, e.g., λ, K.

II. GEOMETRIC FRAMEWORK

Consider two subspaces X and Y of Rn with dimensions `
and s respectively, where ` ≤ s. The principal angles between
X and Y , denoted as θ1, . . . , θ`, are defined recursively as
follows

θ1 = minx1∈X ,y1∈Y arccos
(

x>1 y1

‖x1‖‖y1‖

)
,

...

θj = min xj∈X ,yj∈Y
xj⊥x1,...,xj−1

yj⊥y1,...,yj−1

arccos

(
x>j yj

‖xj‖‖yj‖

)
, j = 2, . . . , `.

The vectors x1, . . . ,x` and y1, . . . ,y`, are called principal
vectors. The dimension of X ∩Y is the multiplicity of zero as
a principal angle. It is straightforward to compute the principal
angles by calculating the singular values of X>Y, where X
and Y are orthonormal bases for X and Y respectively. The
singular values of X>Y are then cos θ1, . . . , cos θ`.

Let ` = s. The principal angles induce several distance
metrics on the Grassmann manifold, of which the most widely
used is the (squared) chordal distance D2

c (X ,Y) [19], given
by

D2
c (X ,Y) =

s∑
i=1

sin2 θi.

The chordal distance is an aggregate, and in the following
sections we will see how probability of misclassification
depends, not so much on this aggregate, but on the individual
principal angles.

III. THE MAP CLASSIFIER FOR A GMM
We begin by considering the MAP classifier, which is

optimal when the signal distribution is known. We focus on
binary classification, where the two classes are equiprobable,
since the generalization from two to many classes is well
understood [18], [20].

We model each class as zero mean Gaussian distributed,
where the covariance is near low-rank. Classification can be
formulated as the following binary hypothesis testing problem

H1 : x ∼ N (0,Σ1)
H2 : x ∼ N (0,Σ2).

(1)

We justify the zero-mean assumption by observing that in
applications such as face recognition [21], or motion trajectory
segmentation [2], the actual mean is considered as a nuisance
parameter, and is removed prior to processing. Given the near-
subspace assumption, we model the two covariances as

Σ1 = U1Λ1U
>
1 + σ2I

Σ2 = U2Λ2U
>
2 + σ2I.

(2)

where U1,U2 ∈ Rn×d are the orthonormal bases for the two
signal subspaces, denoted by X1 and X2. Typically n � d.
Λ1,Λ2 ∈ Rd×d are diagonal matrices of eigenvalues. We
assume that the two subspaces have the same dimension d,
and that the diagonal elements of Λ1, Λ2 are arranged in
descending order. In the application to motion trajectories we
take d = 4, and in the application to face recognition we might
take d = 9. Denote the i-th largest eigenvalue of Λj by λj,i.
Finally let σ2 be the variance of the noise, which quantifies
the degree of mismatch between the subspace model and the
data.

Denote the probability of mistaking hypothesis 2 for hypoth-
esis 1 by Pr(H2|H1), and define Pr(H1|H2) similarly. Under
the assumption that the two hypotheses are equiprobable, the
error probability Pe of a MAP (optimal) classifier is

Pe =
1

2
[Pr(H2|H1) + Pr(H1|H2)]

=
1

2

∫
min(Pr(x|H1),Pr(x|H2))dx

(3)

Since this integral does not admit a closed form solution, we
study the Bhattacharyya upper bound [22] to Pe instead. This
bound is a special case of the Chernoff bound [17] derived
using the observation min(a, b) ≤

√
ab. The Bhattacharyya

bound gives

Pe ≤
1

2
e−K , where K =

1

2
ln

det
(

Σ1+Σ2

2

)
√

det Σ1 · det Σ2

. (4)

The numerator inside the logarithm measures the volume
of space occupied by both subspaces together, and the de-
nominator measures the volumes occupied separately. These
quantities depend on the principal angles, and we now study
the performance of the Bhattacharyya bound in the high, low
and moderate SNR regimes.

A. The High SNR Regime

We first consider the case when σ2 → 0, which means
that the mismatch between the signal and the model becomes
vanishingly small. Since the intersection X1 ∩ X2 between
the two subspaces plays a special role, we write the two
covariances as

Σ1 = U1,∩Λ1,∩U
>
1,∩ + U1,\Λ1,\U

>
1,\ + σ2I,

Σ2 = U2,∩Λ2,∩U
>
2,∩ + U2,\Λ2,\U

>
2,\ + σ2I

(5)

Here both U1,∩ ∈ Rn×r and U2,∩ ∈ Rn×r span X1 ∩ X2

with singular values Λ1,∩ and Λ2,∩ respectively. U1,\ ∈
Rn×(d−r) spans X1\X2 with singular values Λ1,\. And U2,\ ∈
Rn×(d−r) spans X2\X1 with singular values Λ2,\.

The following theorem bounds the classification error in the
high SNR regime.
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Theorem 1. Assume n ≥ 2(d − r). As σ2 → 0, the
classification error is upper bounded as

Pe ≤ c1(σ2)
d−r
2

(
d∏

i=r+1

sin2 θi

)− 1
2

+ o
(

(σ2)
d−r
2

)
where “g(σ2) = o(f(σ2))” stands for limσ2→0

g(σ2)
f(σ2) = 0.

The constant c1 is given by,

c1 = 2
2d−r

2 −1

[
pdet(U1,∩Λ1,∩U

>
1,∩ + U2,∩Λ2,∩U

>
2,∩)√∏r

i=1 λ1,∩,i ·
∏r
i=1 λ2,∩,i

·
d−r∏
i=1

√
λ1,\,i · λ2,\,i

]− 1
2

where pdet denotes the pseudo-determinant.

Proof. The method is to expand the Bhattacharyya bound
in terms of principal angles, and the details are provided in
Appendix A.

Remark 1. 1) Typically n� d for measured data, so the
condition n ≥ 2(d− r) is usually satisfied.

2) The classification error is upper bounded by (σ2)
d−r
2 ;

the smaller the overlap between subspaces, the easier it
is to discriminate between classes. When two subspaces
overlap completely, there is an error floor.

There is a duality between the GMM classification problem
and multiple antenna communication [23]. In multiple antenna
communications, a codeword is a d×n array, where the rows
are indexed by transmit antennas, the columns are indexed by
time slots in a data frame, and the entries are the symbols to
be transmitted. The probability of mistaking codeword Ci for
codeword Cj , Pr(i→ j), satisfies

Pr(i→ j) ≤ (σ2/2)k(1/λ21 . . . λ
2
k),

where k is the rank of Ci − Cj , whose singular values are
λ1, . . . , λk. The primary objective in code design for multiple
antenna wireless communication is to maximize the minimum
rank of the difference between distinct codewords. If the
minimum rank is k, the code is said to achieve a diversity
gain of k.

An important secondary objective in code design for multi-
ple antenna wireless communication is to maximize the mini-
mum product of the singular values of the difference between
distinct codewords. This minimum product determines the
coding gain.

The counterpart of coding gain in classification is the prod-
uct of sines of the principal angles. This quantity determines
the intercept of the error exponent with the vertical axis. The
smaller the energy in the intersection of the subspaces, the
smaller is the classification error. The larger the principal
angles, the smaller is the classification error.

B. The Low SNR Regime

This is the case where the noise variance σ2 and the
singular values are commensurable; in other words, the mis-
match between the signal and the empirical model cannot be

neglected. The MAP classifier in this case is characterized by
the following theorem.

Theorem 2. When σ2 is sufficiently large, the Bhattacharyya
upper bound is sandwiched between

Pe
UB =

1

2
exp

{
− 1

σ4

(
c2 −

1

16
λ1,1λ2,1

d∑
i=1

cos2 θi

)}

and

Pe
UB

=
1

2
exp

{
− 1

σ4

(
c3 −

1

8
λ1,1λ2,1

d∑
i=1

cos2 θi

)}
,

where Pe
UB

> Pe
UB . And the constants c2 and c3 are given

by

c2 =
σ4

4

[
d∑
i=1

λ1,i
σ2
− 1

2

d∑
i=1

(
λ1,i
2σ2

)2

−
d∑
i=1

ln

(
1 +

λ1,i
σ2

)]

+
σ4

4

[
d∑
i=1

λ2,i
σ2
− 1

2

d∑
i=1

(
λ2,i
2σ2

)2

−
d∑
i=1

ln

(
1 +

λ2,i
σ2

)]

c3 =
σ4

4

[
d∑
i=1

λ1,i
σ2
−

d∑
i=1

(
λ1,i
2σ2

)2

−
d∑
i=1

ln

(
1 +

λ1,i
σ2

)]

+
σ4

4

[
d∑
i=1

λ2,i
σ2
−

d∑
i=1

(
λ2,i
2σ2

)2

−
d∑
i=1

ln

(
1 +

λ2,i
σ2

)]
.

Proof. The details are given in appendix B.

Remark 2. The dimension of the overlap between the two
subspaces plays a less important role in the low SNR regime,
and classification error is a function of chordal distance. This
gives rise to an interesting duality between GMM model based
classification and the space-time decoding [24], where error
probability is influenced by product or sum diversity in high
or low SNR regime respectively.

C. The Moderate SNR Regime

We now consider a moderate noise/mismatch regime, where
p
c(p) ≤

λ1,j

σ2 ,
λ2,j

σ2 ≤ p for j = 1, . . . , d and p > 1, c(p) > 1.
Moderate SNR also implies that p is not very large.

The most important element in the analysis of classification
error is to lower bound the term ln det

(
Σ1+Σ2

2

)
in Eq. (4),

ln det

(
Σ1 + Σ2

2

)
= ln det

(
I +

U1Λ1U
>
1 + U2Λ2U

>
2

2σ2

)
+ n lnσ2.

Denote the non-zero singular values of D , 1
2σ2 (U1Λ1U

>
1 +

U2Λ2U
>
2 ) by λ1, . . . , λ2d−r. Then

ln det

(
Σ1 + Σ2

2

)
=

2d−r∑
i=1

ln(1 + λi) + n ln(σ2). (6)

The following lemma provides a lower bound on ln(1 + λi).
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Lemma 1. There exists 0 ≤ L < p−1
2 such that for any

λi ∈ [L, p],

ln(1 + λi) ≥ ln(1 + p) +
1

1 + p
(λi− p)−

1

(1 + p)2
(λi− p)2.

(7)

Proof. See Appendix C.

Let L(p) be the smallest possible value of L, define c(p) =
p

2L(p) if L(p) > 0 and c(p) = +∞ if L(p) = 0. Note that
c(p) > 1 since L(p) < p−1

2 .

Theorem 3. If p
c(p) ≤

λ1,i

σ2 ,
λ2,i

σ2 ≤ p, then the classification
error is upper bounded as

Pe ≤
1

2
exp

{
−c4(2d− r) +

λ1,1λ2,1
4σ4(1 + p)2

∑
i

cos2 θi + c5

}
,

where c4 = 1
2

[
ln(1 + p)− p

1+p −
p2

(1+p)2

]
and c5 depends on

p and λ1,i

σ2 , λ2,i

σ2 .

Proof. See Appendix C.

Remark 3. It is straightforward to show numerically that
c(p) = 3.44, 2.79 for p = 4, 5 respectively, that c(p) ≥ 2.02
for p ≤ 10, and that c(p) ≥ 1.61 for p ≤ 100. The form of the
upper bound suggests that in the moderate SNR regime, the
role of chordal distance is more important than the product of
the sines of the principal angles.

D. Numerical Analysis of Synthetic Data

We explore the difference between classification in the low
and high SNR regimes through a simple numerical example.
Consider the following pairs of subspaces:
case 1:

U1 =

[
1 0 0 0
0 1 0 0

]>
U2 =

[
1 0 0 0
0 0 1 0

]>
.

case 2:

U1 =

[
1 0 0 0
0 1 0 0

]>
U2 =

1√
2

[
1 0 0 −1
0 1 1 0

]>
.

We set Λ1 = Λ2 = I for both cases. In case 1, the two
principal angles are θ1 = 0, θ2 = π/2 and in case 2, the
two principal angles are θ1 = π/4, θ2 = π/4. The chordal
distances in these two cases are the same, but in case 1 the
product of sines of non-zero principal angles is 1, whereas
in case 2 it is 1/2. However, there is a nontrivial intersection
dimension in case 1. The product of nonzero sine principal
angles is 1 for case 1, and 1

2 for case 2.
We vary the degree of mismatch σ2, and evaluate the bounds

developed in the above three theorems. In the high SNR
regime, we plot the empirical misclassification probability

Pe with the value c1(σ2)
d−r
2

(∏d
i=r+1 sin2 θi

)− 1
2

given in
Theorem 1. In the low SNR regime, we plot the upper bound
Pe

UB
in Theorem 2. In the moderate SNR regime, we take

p = 6, and we vary σ2 between 1
p and c(p)

p , so that p
c(p) ≤

λ1,i

σ2 ,
λ2,i

σ2 ≤ p. We then plot the upper bound in Theorem 3,

against the empirical classification error. In the high SNR
regime (Fig. 1a), the classification error decays faster in Case
2 than in Case 1, consistent with Theorem 1. In the low SNR
regime (Fig. 1b), there is little difference in classification error
between the two cases, consistent with Theorem 2. In the
moderate SNR regime (Fig. 1b), classification performance in
case 1 is inferior to that in case2, because there is a shared
1-dimensional subspace, and this is predicted by Theorem 3.
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Fig. 1. Error probability as a function of the degree of mismatch. Dashed
lines represent empirical estimates, and solid lines represent upper bounds. In
the low SNR regime the two upper bounds coincide.

Concluding this section, we have characterized the pair-wise
classification error using the principal angles between a pair of
subspaces. The union bound then makes it possible to derive
an upper bound on classification error for multiple classes.

IV. NEAREST SUBSPACE CLASSIFIER: EXTENDING GMM

If the class distribution is known (for example through its
covariance) then the MAP classifier is optimal. If however we
only know that each class is near a known low-dimensional
subspace (possibly inferred from less training data) then we
can substitute a Nearest Subspace Classifier (NSC) for the
MAP. This Section connects performance of the NSC with
principal angles, and for simplicity we focus on discriminating
pairs of classes, given that the extension to multiple classes is
straightforward.

Consider two classes, labeled C1 and C2, distributed near
two subspaces with orthonormal bases U1,U2 ∈ Rn×d. The
NSC determines the class label of a test sample x, Ĉ, by
comparing the norms of the projections onto U1 and U2.

Ĉ =

{
C1 ‖U>1 x‖2 ≥ ‖U>2 x‖2
C2 otherwise . (8)

The preferred class label has a basis that is better aligned to
the signal.

A. Derivation of the Upper Bound

Starting from the projection onto each subspace, we model
the distribution of these two classes as

p(x|C1) =

∫
p(x|α, C1)p(α)dα =

∫
N (x; U1α, σ

2I)p(α)dα

p(x|C2) =

∫
p(x|α, C2)q(α)dα =

∫
N (x; U2α, σ

2I)q(α)dα.

(9)
The NSC knows U1 and U2, but is blind to p(α) and q(α),
where α is the expansion of the projection U>i x in the basis
Ui. Note that since we are not assuming a GMM, the vector
α need not be multivariate normal.

Let V diag{cos θ1, . . . , cos θd}W> be the singular value
decomposition of U>1 U2, where V, W are unitary, and the
principal angles {θ1, . . . , θd} are taken in ascending order. We
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may, absorb V, W into U1, U2 at the cost of redefining
p(α), q(α). Thus we may without loss of generality assume
V = W = I, i.e.,

U>1 U2 = diag{cos θ1, . . . , cos θd} , C. (10)

Define Pr(C2|C1) as the probability of mistaking C2 for C1
and define Pr(C1|C2) similarly. Then the classification error is

Pe =
1

2
Pr(C2|C1) +

1

2
Pr(C1|C2). (11)

We bound Pr(C2|C1) using principal angles, and Pr(C1|C2) can
be analyzed in the same manner. We expand Pr(C2|C1) using
Bayes rule as

Pr(C2|C1) =

∫
Pr(C2|C1,α)p(α)dα. (12)

We bound Pr(C2|C1,α) by writing x = U1α + n, where the
noise n ∼ N (0, σ2I).

Pr(C2|C1,α) =Pr(‖U>1 (U1α + n)‖2 ≤ ‖U>2 (U1α + n)‖2)

=Pr(‖α + U>1 n‖2 ≤ ‖Cα + U>2 n‖2),
(13)

where the probability is taken w.r.t. n. Denote the i-th column
in U1(U2) as u1,i(u2,i), and the i-th element of α as αi. It
follows from Eq. (13) that

Pr(‖α + U>1 n‖2 ≤ ‖Cα + U>2 n‖2)

= Pr

(∑
i

(αi + u>1,in)2 ≤
∑
i

(cos θiαi + u>2,in)2

)
.

(14)
We now define ai , αi + u>1,in and bi , cos θiαi + u>2,in.
Then Eq. (14) simplifies to

Pr

(∑
i

(αi + u>1,in)2 ≤
∑
i

(cos θiαi + u>2,in)2

)

= Pr

(∑
i

(ai + bi)(ai − bi) ≤ 0

)
.

(15)

Lemma 2. Let ai, bi as defined as above. For any pair of i, j
where i 6= j:

1) ai is independent from aj
2) bi is independent from bj
3) ai is independent from bj
4) ai + bi is independent from ai − bi

Proof. The proof is given in appendix D.

It follows from Lemma 2 that
∑
i(ai + bi)(ai − bi) is the

sum of products of independently distributed normal random
variables. However the product of independently distributed
normal random variables need not be normal, and so we need
to show that (ai + bi)(ai − bi) is normally distributed.

Lemma 3 (product of normal random variable [25]). Let x ∼
N (µx, σ

2
x) and y ∼ N (µy, σ

2
y) be two independent normal

variables. If µx/σx → ∞ and µy/σy → ∞ in any manner,
then the distribution of xy approaches normality with mean
µxµy and variance µ2

xσ
2
y + µ2

yσ
2
x + σ2

xσ
2
y .

Applying Lemma 3 and combining the independence stated
in Lemma 2, we have

Lemma 4. As σ → 0,
∑
i(ai + bi)(ai − bi) ∼

N
(∑

i sin2 θiα
2
i , 4σ

2
∑
i sin2 θi(α

2
i + σ2)

)
Proof. The proof is given in appendix D.

It follows that Pr (
∑
i(ai + bi)(ai − bi) ≤ 0) is the tail

probability of a normal distribution. Applying the standard
tail bound, we arrive at the following theorem.

Theorem 4. As σ2 → 0, the classification error is upper
bounded as

Pe ≤
∫
E(θ,α, σ2)

p(α) + q(α)

2
dα

where E(θ,α, σ2) = 1
2 exp

[
− (

∑d
i=1 sin2 θiα

2
i )

2

8σ2
∑d

i=1 sin2 θi(α2
i+σ

2)

]
.

Proof. The proof is given in appendix D.
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Fig. 2. Lines on which E is constant for the two case studies introduced in
section III-D.

We return to the two case studies introduced in Section III-D
to provide some intuition about the kernel E . The principal
angles are [0, π/2] in Case 1, and [π/4, π/4] in Case 2. In
Case 1, the kernel is constant on horizontal lines, and in Case
2, it is constant on lines of slope -1. These two cases are shown
in Fig. 2, and we now make a number of general observations.

Remark 4. 1. E(θ,α, σ2) is monotonically decreasing w.r.t.∑
i sin2 θiα

2
i , and monotonically increasing w.r.t. σ2. There-

fore, bigger principal angles or signal energy results in smaller
classification error. Bigger noise results in bigger classification
error. 2. Ignoring the higher order term of σ2 in the denomi-
nator inside the exp(·), we have

E(θ,α, σ2) ≈ 1

2
exp

(
−
∑
i sin2 θiα

2
i

8σ2

)
which clearly indicates that classification performance is a
function of discernibility (the sine principal angles) weighted
by signal energy (the α2

i ’s). 3. For fixed energy, classification
error is decreased by allocating larger α2

i to larger θi.

B. Numerical Analysis of Synthetic Data

We now examine the agreement between empirical error
and the upper bound given in Theorem 3. Set n = 6, d = 2,

U1 =
[
I2,04

]>
, U2 =

[
cos θ 0 0 0 sin θ 0

0 cos θ 0 0 0 sin θ

]>
,

so that the two principal angles between U1 and U2 are θ1 =
θ2 = θ. Set p(α) = q(α) = N (α; 0, I2), and vary σ2 in
[0.01, 0.5]. Fig. 3a considers three values of θ (π/6, π/4, and
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Fig. 3. Comparison of empirical NSC classification error with the upper
bound obtained by numerical integration. (a) Larger principal angles reduce
classification error; (b) Disproportionate assignment of signal energy to larger
principal angles reduces classification error.

π/3), and shows that empirical NSC classification error tracks
the upper bound obtained by numerical integration.

Next we examine the dependence of classification error on
distribution of signal energy across the two modes. Set n = 6,
d = 2, U1 =

[
I2,04

]>
and

U2 =

[
cos(π/6) 0 0 0 sin(π/6) 0

0 sin(π/6) 0 0 0 cos(π/6)

]>
,

so that the two principal angles are θ1 = π/6 and θ2 = π/3.
Fix ‖α‖2 = 1, and compare the case when α is distributed
such that |α1| < |α2| (Case 3 in Fig. 3b), with the case when
α is distributed such that |α1| > |α2| (Case 4 in Fig. 3b).
Empirical error is calculated for a range of noise variances,
by randomly drawing 10,000 sample per class. Empirical NSC
classification error tracks the upper bound given by numerical
integration, with performance of Case 3 superior to that of
Case 4.

V. TRAIT: TUNABLE RECOGNITION ADAPTED TO
INTRA-CLASS TARGET

In the previous theorems, it is the principal angles that
determine the performance of the classifiers in different SNR
regimes. This suggests that we might improve classification
by applying a linear transformation that optimizes principal
angles, even at the cost of reducing dimensionality.

We denote the collection of all labeled training samples as
X = [X1, . . . ,XK ] ∈ Rn×N , where columns in the submatrix
Xk ∈ Rn×Nk are samples from the k-th class. The signal sub-
space of Xk is spanned by the orthonormal basis Uk defined
above. The linear transform A ∈ Rm×n (m ≤ n) is designed
to maximize separation of the subspaces AU1, . . . ,AUK . The
maximal separation is achieved when (AUj)

>(AUk) = 0
for all j 6= k. In this case, all the principal angles are
π/2. One approach is to use the SVD to compute the Uk

and then to learn the linear transformation A. However we
may avoid pre-computing the Uk by simply encouraging
(AXj)

>(AXk) = 0 for all j 6= k.
We shall require that the transform A preserve some specific

characteristic or trait of each individual class. For example,
we may target (AXk)>(AXk) = X>k Xk for all k, so that
the original intra-class data structure (with noise) is preserved.
Given access to a denoised signal, X̂k, we might instead target
(AXk)>(AXk) = X̂>k X̂k again for all k. In this case, the

intra-class dispersion due to noise is suppressed. Thus, the
Gram matrix T of the transformed signal can be designed
to target preservation of particular intra-class structure. We
formulate the optimization problem as

min
A∈Rm×n

1

N2
‖(AX)>(AX)−T‖2F . (16)

The block diagonal structure of the target Gram matrix T
promotes larger principal angles between subspaces. At the
same time the diagonal blocks can be tuned to different
characteristics of individual classes. For example, when side
information is available, we may consider incorporating it in
diagonal blocks. Here we only consider

T = diag{X>1 X1, . . . ,X
>
KXK}, (17)

as a proof-of-concept. We refer to this approach as the TRAIT
algorithm, where the acronym denotes Tunable Recognition
Adapted to Intra-class Targets.

It is possible to minimize the objective in E.q. (16) by first
minimizing ‖X>PX−T‖2 for P � 0 (as Proposition 1), and
then factoring P as P = A>A where A ∈ Rm×n.

Proposition 1. The minimizer of ‖X>PX−T‖2F where P �
0, is P? = (XX>)−1XTX>(XX>)−1.

Proof. Proof is detailed in appendix E.

However when m < n, such a rank-m decomposition may
not exist since this P is not guaranteed to be rank deficient.
An alternative is to learn a rank deficient P by solving

min
P�0
‖X>PX−T‖2F + λ‖P‖∗,

where the nuclear norm ‖P‖∗ regularizes the rank of P.
However this approach requires careful tuning of λ, and it is
computationally more complex since we work with a matrix
P larger than A. Given these considerations, we choose to
solve (16) using gradient descent as described in Algorithm 1.

Algorithm 1 TRAIT for feature extraction
Input: labeled training samples X = [X1, . . . ,XK ], target

dimension m, (m ≤ n), target Gram matrix T.
Output: feature extraction matrix (transform) A ∈ Rm×n.

1: Initialize A = [e1, . . . , em]>, where ei is the i-th standard
basis.

2: while stopping criteria not met do
3: Compute gradient

G = A(XX>A>AXX> −XTX>).

4: Choose a positive step-size η and take a gradient step

A← A− ηG.

5: end while

A. Related Methods

Linear Discriminant Analysis (LDA) is a classical feature
extraction method which assumes each class to be Gaussian
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distributed. It achieves better performance on face recognition
tasks than does PCA [26]. LDA does not assume near low-
rank structure of the covariances, and therefore considers a
different data geometry than the one here studied.

Methods of feature extraction based on random projection
have recently been developed and successfully applied to face
recognition [27]. Random projection is designed to preserve
pairwise distances between all data points uniformly across
class labels [28].

More recently, the Low-Rank Transform (LRT) has been
proposed as a method of extracting features [8]. It enlarges
inter-class distance while suppressing intra-class dispersion.
LRT uses the nuclear norm, ‖AXi‖∗, to measure the disper-
sion of the (transformed) data. The transform A is

arg min
A∈Rm×n:‖A‖2≤c

K∑
i=1

‖AXi‖∗ − ‖AX‖∗.

What motivates the choice of the nuclear norm is that it is
the convex relaxation of rank [8]. In the high SNR regime,
Theorem 1 suggests that classification error decreases when
the union of subspaces has large rank. LRT encourages the
rank of the union to be large, and it works well in a regime
where model mismatch is small. Experiments presented in
Section V-C suggest that TRAIT may be more robust to model
mismatch (Fig. 8).

B. Two Properties of the TRAIT Transform

On synthetic and measured data, we show that TRAIT
effectively enlarges the angles between different subspaces
and preserves intra-class structure. We also compare the
classification accuracy of features extracted by TRAIT and
the methods in Section V-A. For synthetic data, the class
distribution is known exactly, and the MAP classifier is used to
measure classification accuracy. For measured data, the class
distribution is unknown a priori, and the NSC classifier is
employed instead.

1) Enlargement of the Principal angles: The synthetic
dataset has parameters n = 10, d = 1 and K = 3.

Σk = UkU
>
k + 10−2I(k = 1, 2, 3),

where Uk is a normalized n-vector with i.i.d. Gaussian
random entries. Samples of the k-th class are i.i.d drawn from
N (0,Σk). For each class, 100 samples are used for learning
the transform and 10000 are used for testing. On the training
data, we learn the transform respectively via LDA, LRT, and
TRAIT with target dimension m = 3, . . . , 10. Then on each
test datum, we apply the learned transforms as well as random
projection (each entry drawn from N (0, 1)) and classify using
a MAP classifier.

We visualize original and transformed data via projection
(PCA basis) into 3-dimensional Euclidean space. When the
target feature dimension m = 3, the results are shown in
Fig. 4. Each class is represented by a different color. After
transforming the data, we use the SVD to calculate the basis
vector (d = 1) that best describes each class, and we calculate
the pairwise angles between basis vectors. The pairwise angles

are significantly increased by both LRT and TRAIT. By con-
trast, neither LDA nor random projection increase separation
between one-dimensional subspaces.
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72.4◦, 2.5◦, 73.0◦

Fig. 4. Embeddings of original and transformed data.

We now vary the feature dimension m, and compare the er-
ror probability of the MAP classifier across the different meth-
ods of extracting features. Fig. 5 shows that the performance of
TRAIT and LRT are similar, and that both are superior to LDA
and random projection. Note that after dimension reduction.
TRAIT is still able to match error probabilities achieved with
the original data.

2) Preservation of Intra-class Structure: When a convex
body, e.g., human face, is illuminated, the resulting image is
represented by spherical harmonics. It has been shown that a
9-dimensional subspace is sufficient to capture the geometry of
an individual subject [1]. The extended Yale B face database
includes 38 subjects, each with 64 images taken under different
illumination conditions. We use a cropped version of this data
set1, where each image is of size 32× 32 = 1024.

For each subject, we randomly select half of the 64 images
for training, and retain the other half for testing. For all feature
extraction methods, we vary the target dimension m, and apply
the NSC to the transformed data. The NSC achieves much
higher accuracy on features extracted by TRAIT and LRT
(Fig. 6).
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Fig. 5. MAP classifier’s Pe on
transformed data. Note that TRAIT
(blue) and LRT (red) almost over-
lap.
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Fig. 6. NSC’s Pe on origi-
nal/transformed face images. Con-
catenation of TRAIT and LRT fea-
tures (TRAIT+LRT) provides su-
perior results

1http://www.cad.zju.edu.cn/home/dengcai/Data/FaceData.html
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We also observe in Fig. 7 that the features extracted by
TRAIT and LRT are quite different, suggesting that infor-
mation present in one view is somewhat independent of
information present in the other. This is confirmed by applying
NSC to the concatenation of the two views (TRAIT+LRT in
Fig. 6), and observing that classification accuracy is increased.

The intra-class structure preserving property of TRAIT is
evident in Fig. 7 where we view transformed classes as
faces in the original image domain. The original images
of subject 10 are displayed together with their TRAIT and
LRT transforms. TRAIT preserves a diversity of illumination
conditions, whereas LRT blurs the differences between images.
Classification performance is improved by using LRT and
TRAIT features in combination.

Fig. 7. Comparison of original images (top) with TRAIT transformed images
(middle) and LRT transformed images (bottom). Red circles indicate structure
that is present in both the original and the TRAIT transformed image.

C. Robustness to Model Mismatch

In the previous sections, we have demonstrated the ef-
fectiveness of TRAIT and LRT on both synthetic and real
data. In this section, we present experiments showing that
TRAIT is more robust with respect to model mismatch than
is LRT. In many real world problems, data may not be exactly
GMM distributed. Even if they are, there may not be sufficient
training data to learn the covariances. Therefore, we use NSC
throughout this section to assess the discriminability of the
extracted features. Moreover, having seen the effectiveness of
dimension reduction in previous sections, we turn to learning
dimension reduced features, thereby saving computational cost
on measured datasets.

1) Synthetic Data: The synthetic data is a three-class
dataset, where datum x ∈ R100 in the k-th (k = 1, 2, 3) class
is generated as

x = Ukα + n,

with Uk ∈ R100×5 and U>k Uk = I. α ∼ Uniform[−2, 2]
and n ∼ N (0, σ2I100). Note the data is not GMM distributed.
Each class has 100 training samples and 10000 testing sam-
ples. We vary σ2 and use NSC to classify TRAIT and LRT
extracted features. Here we fix the extracted feature dimension
to be 30.

Fig. 8 shows the NSC classification accuracy as a function
of σ. Both TRAIT and LRT significantly improves classifica-
tion performance compared with no transform. However, with
increasing noise, TRAIT features outperform LRT features,
showing greater robustness to model mismatch.
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Fig. 8. NSC performance on
TRAIT and LRT features under
different SNR

Fig. 9. From top to bottom
row: subjects in PIE, UMIST and
ORL database, taken under differ-
ent poses

2) Face Images with non-frontal Poses: It is known that
human frontal face images are well modeled by subspaces.
For example, the Yale-B face in section V-B2, where LRT
slightly outperforms TRAIT. Now we further compare the
performance of TRAIT and LRT in more mismatched cases by
introducing non-frontal face images. We validate performance
on three publicly available datasets, PIE [29], UMIST2 and
ORL3. All of them have a considerable number of non-frontal
face images. Fig. 9 shows one subject from each database with
different poses.

The PIE dataset includes 18562 64 × 48 images of 68
subjects. Each image is labeled with one of 13 different pose
tags. We randomly select 7 pose tags and the images of these
tags are used as training samples. The rest are used in testing.
UMIST comprises 575 112 × 92 images of 20 subjects, and
ORL comprises 400 112 × 92 images of 40 subjects. These
two datasets have no pose tags. We split the UMIST and ORL
datasets using the strategy followed for the Yale-B dataset in
Section V-B2. We derive 1000-dimensional features for each
of random projection, LDA, LRT and TRAIT. Table I lists
accuracies of NSC classification for the different algorithms.

TABLE I
NSC ACCURACY ON ORIGINAL AND 1000 DIMENSIONAL (COMPRESSED)

EXTRACTED FEATURES

PIE UMIST ORL
Original 74.57% 96.14% 95.50%
random 72.14% 95.44% 94.50%

LDA 40.10% 84.91% 92.00%
LRT 70.80% 96.84% 95.00%

TRAIT 76.11% 97.90% 97.00%

In all cases, TRAIT has the highest classification accuracy
and outperforms LRT. LRT optimizes the rank (its convex
relaxation), which is critical for reducing classification error
in the high SNR regime. However, in this low SNR regime,
TRAIT gains more discrimination via explicitly “orthogonal-
izing” between the classes. The criteria employed by TRAIT
do not depend on the specific SNR regime and therefore are
more robust.

VI. CONCLUSION

In a low-rank Gaussian Mixture Model, we have explored
how the probability of misclassification is governed by prin-

2http://www.sheffield.ac.uk/eee/research/iel/research/face
3http://www.cl.cam.ac.uk/research/dtg/attarchive/facedatabase.html
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cipal angles between subspaces. In the low-noise regime, the
Bhattacharyya upper bound on misclassification is determined
by the product of the sines of the principal angles. In the
high/moderate-noise regime it is determined by the sum of
the squares of the sines of the principal angles. Analysis
of the Nearest Subspace Classifier connected reliability of
classification to the distribution of signal energy across prin-
cipal vectors. Classification was shown to be more reliable
when more signal energy is associated with principal vectors
corresponding to large principal angles. This observation moti-
vated the design of a transform, TRAIT, that achieves superior
classification performance by enlarging principal angles and
preserving intra-class structure. Finally we showed that TRAIT
complements a prior approach that enlarge inter-class distance
while suppressing intra-class dispersion, and that it is more
robust to model mismatch.

APPENDIX A
PROOF OF HIGH SNR CASE

Proof of Theorem 1 We have

det Σ1 = (σ2)n−d
∏d
i=1

(
λ1,i + σ2

)
,

det Σ2 = (σ2)n−d
∏d
i=1

(
λ2,i + σ2

)
.

Let the SVD of U1,∩Λ1,∩U
>
1,∩ + U1,\Λ1,\U

>
1,\ +

U2,∩Λ2,∩U
>
2,∩ + U2,\Λ2,\U

>
2,\ be ZΛZ>, where

Λ = diag{λ1, . . . , λ2d−r}. Then,

det

(
Σ1 + Σ2

2

)
= (σ2)n−2d+r

2d−r∏
i=1

(
λi
2

+ σ2

)
.

Substituting the above into the Bhattacharyya bound, we have

Pe ≤
1

2
(σ2)

d−r
2 ·


√∏d

i=1 (λ1,i + σ2)
∏d
i=1 (λ2,i + σ2)∏2d−r

i=1

(
λi

2 + σ2
)


1
2

=(σ2)
d−r
2 · 2

2d−r
2 −1


√∏d

i=1 λ1,i
∏d
i=1 λ2,i∏2d−r

i=1 λi


1
2

+ o
(

(σ2)
d−r
2

)
.

(18)
Our objective is to expand

∏2d−r
i=1 λi in terms of principal

angles. Since the image of U1,∩ (or U2,∩) is orthogonal to
U1,\ and U2,\,

2d−r∏
i=1

λi = pdet(U1,∩Λ1,∩U
>
1,∩ + U2,∩Λ2,∩U

>
2,∩)

· pdet([U1,\Λ
1
2

1,\ U2,\Λ
1
2

2,\][U1,\Λ
1
2

1,\ U2,\Λ
1
2

2,\]
>)

= pdet
(
U1,∩Λ1,∩U

>
1,∩ + U2,∩Λ2,∩U

>
2,∩
)

· det([U1,\Λ
1
2

1,\ U2,\Λ
1
2

2,\]
>[U1,\Λ

1
2

1,\ U2,\Λ
1
2

2,\]),

where we assume n ≥ 2(d− r) in order to derive the second
equality, which simplifies as follows:

det([U1,\Λ
1
2

1,\ U2,\Λ
1
2

2,\]
>[U1,\Λ

1
2

1,\ U2,\Λ
1
2

2,\])

= det

 Λ1,\ Λ
1
2

1,\U
>
1,\U2,\Λ

1
2

2,\

Λ
1
2

2,\U
>
2,\U1,\Λ

1
2

1,\ Λ2,\


= det(Λ1,\) det

(
Λ2,\−

Λ
1
2

2,\U
>
2,\U1,\Λ

1
2

1,\Λ
−1
1,\Λ

1
2

1,\U
>
1,\U2,\Λ

1
2

2,\

)
= det(Λ1,\) det

(
Λ

1
2

2,\(I−U>2,\U1,\U
>
1,\U2,\)Λ

1
2

2,\

)
=

d−r∏
i=1

λ1,\,i ·
d−r∏
i=1

λ2,\,i ·
d∏

i=r+1

sin2 θi.

(19)
The last equality follows from the observation that the eigen-
values of U>2,\U1,\U

>
1,\U2,\ are cos2 θr+1, . . . , cos2 θd. The

theorem now follows by substituting Eq. (19) into Eq. (18).

APPENDIX B
PROOF OF LOW SNR CASE

We first state and prove (for completeness) two preliminary
lemmas that are needed to characterize classification error.

Lemma 5. Let D ∈ Rn×n be any positive semi-definite matrix
with all eigenvalues smaller than 1, then

tr(D)− 1

2
tr(D2) ≤ ln det(In + D) ≤ tr(D)− 1

4
tr(D2).

Proof. Denote the nonnegative eigenvalues of D � 0 as
d1, . . . , dn, where d1, . . . , dn ≤ 1. Then

ln det(In + D) = ln

n∏
i=1

(1 + di) =

n∑
i=1

ln(1 + di).

Since x − x2

2 ≤ ln(1 + x) ≤ x − x2

4 for all x ∈ [0, 1], we
obtain ∑

i

di −
d2i
2
≤ ln det(In + D) ≤

∑
i

di −
d2i
4
,

which reduces to

tr(D)− 1

2
tr(D2) ≤ ln det(In + D) ≤ tr(D)− 1

4
tr(D2).

This bound is very tight when all the di’s approach 0.

Lemma 6. Suppose U ∈ Rn×d,V ∈ Rn×d are two orthonor-
mal bases and that Φ ∈ Rd×d, Ψ ∈ Rd×d are diagonal
with nonnegative decreasing diagonal elements φ1, . . . , φd
and ψ1, . . . , ψd respectively. Denote the i-th principal angle
between U and V as θi where i = 1, . . . , d. Then

φdψd
∑
i

cos2 θi ≤ tr(UΦU>VΨV >) ≤ φ1ψ1

∑
i

cos2 θi.

Proof. Let the Singular Value Decomposition of U>V be
JCH>, then tr(U>VV>U) = tr(C2) =

∑
i cos2 θi. We

have

tr(UΦU>VΨV>) = tr(ΦU>VΨV>U)

= tr(ΦJCH>ΨHCJ>) = tr(J>ΦJCH>ΨHC).
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For any two positive semidefinite matrices A,B ∈ Rm×m,
let the maximum and minimum eigenvalues of A be
λ1(A), λm(A) respectively, then by [30]

λm(A) tr(B) ≤ tr(AB) ≤ λ1(A) tr(B).

Hence,

tr(UΦU>VΨV>) ≤ φ1 tr(CH>ΨHC) = φ1 tr(H>ΨHC2)

≤ φ1ψ1 tr(C2) = φ1ψ1

∑
i

cos2 θi.

The lower bound can be proved in the same way. This bound
becomes tight when the diagonal elements of Φ and Ψ are
uniform.

Proof of Theorem 2 We are now ready to prove theorem 2.
We expand K in Eq. (4) as

K =
1

2
ln det

(
Σ1 + Σ2

2

)
− 1

4
(ln det Σ1+ln det Σ2). (20)

The second term becomes:

− 1

4

[
d∑
i=1

ln

(
1 +

λ1,i
σ2

)
+

d∑
i=1

ln

(
1 +

λ2,i
σ2

)]
− n

2
ln(σ2),

(21)
and we use Lemma 5 to bound the first term. Note that

1

2
ln det

(
Σ1 + Σ2

2

)
=

1

2
ln det

[
σ2

(
I +

U1Λ1U
>
1 + U2Λ2U

>
2

2σ2

)]
=
n

2
ln(σ2) +

1

2
ln det

(
I +

U1Λ1U
>
1 + U2Λ2U

>
2

2σ2

)
.

(22)
Let D , U1Λ1U>1 +U2Λ2U>2

2σ2 . We apply Lemma 5 to bound
1
2 ln det

(
Σ1+Σ2

2

)
:

n

2
ln(σ2) +

1

2

[
tr(D)− 1

2
tr(D2)

]
≤ 1

2
ln det

(
Σ1 + Σ2

2

)
≤ n

2
ln(σ2) +

1

2

[
tr(D)− 1

4
tr(D2)

]
,

(23)
Expanding tr(D) gives

n

2
ln(σ2) +

1

4

[
d∑
i=1

λ1,i
σ2

+

d∑
i=1

λ2,i
σ2

]
− 1

4
tr(D2)

≤ 1

2
ln det

(
Σ1 + Σ2

2

)
≤ n

2
ln(σ2) +

1

4

[
d∑
i=1

λ1,i
σ2

+

d∑
i=1

λ2,i
σ2

]
− 1

8
tr(D2).

(24)

Note that

tr(D2) =
1

4σ4

( d∑
i=1

λ21,i+

d∑
i=1

λ22,i+2 tr(U1Λ1U
>
1 U2Λ2U

>
2 )

)
.

(25)
Envoking Lemma 6 to bound the last term of the above:

tr(U1Λ1U
>
1 U2Λ2U

>
2 ) ≥ λ1,dλ2,d

∑
i

cos2 θi

tr(U1Λ1U
>
1 U2Λ2U

>
2 ) ≤ λ1,1λ2,1

∑
i

cos2 θi
(26)

Combining Eq. (21) to (26), we obtain upper and lower
bounds on K,

1) Upper bound:

K ≤1

4

[
d∑
i=1

λ1,i
σ2

+

d∑
i=1

λ2,i
σ2

]

− 1

32σ4

( d∑
i=1

λ21,i +

d∑
i=1

λ22,i + 2λ1,dλ2,d

d∑
i=1

cos2 θi

)

− 1

4

[
d∑
i=1

ln

(
1 +

λ1,i
σ2

)
+

d∑
i=1

ln

(
1 +

λ2,i
σ2

)]

=
1

4

[
d∑
i=1

λ1,i
σ2
− 1

2

d∑
i=1

(
λ1,i
2σ2

)2

−
d∑
i=1

ln

(
1 +

λ1,i
σ2

)]

+
1

4

[
d∑
i=1

λ2,i
σ2
− 1

2

d∑
i=1

(
λ2,i
2σ2

)2

−
d∑
i=1

ln

(
1 +

λ2,i
σ2

)]

− 1

16σ4
λ1,dλ2,d

d∑
i=1

cos2 θi

,
1

σ4

(
c2 −

1

16
λ1,dλ2,d

d∑
i=1

cos2 θi

)
.

(27)
2) Lower bound:

K ≥1

4

[
d∑
i=1

λ1,i
σ2

+

d∑
i=1

λ2,i
σ2

]

− 1

16σ4

( d∑
i=1

λ21,i +

d∑
i=1

λ22,i + 2λ1,1λ2,1

d∑
i=1

cos2 θi

)

− 1

4

[
d∑
i=1

ln

(
1 +

λ1,i
σ2

)
+

d∑
i=1

ln

(
1 +

λ2,i
σ2

)]

=
1

4

[
d∑
i=1

λ1,i
σ2
−

d∑
i=1

(
λ1,i
2σ2

)2

−
d∑
i=1

ln

(
1 +

λ1,i
σ2

)]

+
1

4

[
d∑
i=1

λ2,i
σ2
−

d∑
i=1

(
λ2,i
2σ2

)2

−
d∑
i=1

ln

(
1 +

λ2,i
σ2

)]

− 1

8σ4
λ1,1λ2,1

d∑
i=1

cos2 θi

,
1

σ4

(
c3 −

1

8
λ1,dλ2,d

d∑
i=1

cos2 θi

)
.

(28)
Negating K and exponentiating gives theorem 2.

APPENDIX C
PROOF OF MODERATE SNR CASE

Proof of Lemma 1 consider the function

f(λi) = ln(1+λi)−ln(1+p)− 1

1 + p
(λi−p)+

1

(1 + p)2
(λi−p)2,

defined in [0, p]. Its derivative is

f ′(λi) =
1

1 + λi
− 1

1 + p
+

2(λi − p)
(1 + p)2

=
(p− λi)(p− 1− 2λi)

(1 + λi)(1 + p)2
,
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which is positive in
[
0, p−12

)
and negative in

(
p−1
2 , p

]
.

Therefore, f(λi) is monotonically increasing in
[
0, p−12

)
and

decreasing in
(
p−1
2 , p

]
. Further, f(p) = 0 and f(0) =

− ln(1 + p) + p
1+p + p2

(1+p)2 whose sign depends on the value
of p. The shape of f(λi) is now characterized. There exists
L < p−1

2 such that f(λi) ≥ 0 when λi ∈ [L, p].

Before proving theorem 3, we need to bound λi using
Weyl’s inequality [31].

Lemma 7 (Weyl’s inequality [31]). Let M and P be two
n × n Hermitian matrices, with eigenvalues µ1 ≥ · · · ≥ µn
and ν1 ≥ · · · ≥ νn respectively. Denote the eigenvalues of
M + P by γ1 ≥ · · · ≥ γn. Then

max(µi + νn, νi + µn) ≤ γi ≤ min(µi + ν1, νi + µ1).

Proof of Theorem 3 Since p
c(p) ≤

λ1,i

σ2 ,
λ2,i

σ2 ≤ p, by the

Weyl’s inequality, p
2c(p) = p/c(p)+0

2 ≤ λi ≤ p+p
2 = p. Further,

since 1 ≤ c(p) ≤ p
2L(p) , we have λ1, . . . , λ2d−r ∈ [L(p), p].

By definition of L(p), we can invoke Eq. (7) in Lemma 1 to
obtain

ln det

(
Σ1 + Σ2

2

)
=

2d−r∑
i=1

ln(1 + λi) + n ln(σ2)

≥ (2d− r) ln(1 + p) +
tr D− p(2d− r)

1 + p

− tr D2 − 2p tr D + p2(2d− r)
(1 + p)2

+ n ln(σ2).

(29)

Notice tr D = 1
2

∑
i

(
λ1,i

σ2 +
λ2,i

σ2

)
, and by Eq. (25) and

(26), tr D2 ≤ 1
4σ4

(∑
i λ

2
1,i + λ22,i + 2λ1,1λ2,1

∑
i cos2 θi

)
.

Substituting these into Eq. (29), we get

ln det

(
Σ1 + Σ2

2

)
≥n ln(σ2) + (2d− r)

[
ln(1 + p)− p

1 + p
− p2

(1 + p)2

]
+

1 + 3p

2σ2(1 + p)2

(∑
i

λ1,i + λ2,i

)

− 1

4σ4(1 + p)2

(∑
i

λ21,i + λ22,i + 2λ1,1λ2,1
∑
i

cos2 θi

)
Substituting the above into the Bhattacharyya bound (4) yields
an upper bound on Pe, of the form given in Theorem 3. In
particular,

c4 =
1

2

[
ln(1 + p)− p

1 + p
− p2

(1 + p)2

]
,

and

c5 =− 1 + 3p

4σ2(1 + p)2

∑
i

(λ1,i + λ2,i) +

∑
i λ

2
1,i + λ22,i

8σ4(1 + p)2

+
1

4

∑
i

[
ln

(
1 +

λ1,i
σ2

)
+ ln

(
1 +

λ2,i
σ2

)]
.

APPENDIX D
ANALYSIS OF NSC

Proof of Lemma 2 Since that the joint distribution of [ai aj ]
>,

[bi bj ]
>, [ai bj ]

> and [ai + bi ai − bi]> are all Gaussian, it
suffices to show that all covariance are diagonal. For any i 6= j,[
ai
aj

]
∼ N

([
αi
αj

]
, σ2I2

) [
bi
bj

]
∼ N

([
cos θiαi
cos θjαj

]
, σ2I2

)
[
ai
bj

]
∼ N

([
αi

cos θjαj

]
, σ2I2

)
.

For any i,[
ai
bi

]
∼ N

([
αi

cos θiαi

]
, σ2

[
1 cos θi

cos θi 1

])
[
ai + bi
ai − bi

]
∼ N

([
(1 + cos θi)αi
(1− cos θi)αi

]
,

2σ2

[
(1 + cos θi) 0

0 (1− cos θi)

])
,

(30)
which concludes the proof.
Proof of Lemma 4 As σ2 → 0, the mean-covariance ratios of
both ai + bi and ai − bi tend to infinity. Therefore, applying
Lemma 3 to Eq. (30) (see proof of Lemma 2), we have (ai +
bi)(ai − bi) ∼ N

(
sin2 θiα

2
i , 4σ

2 sin2 θi(α
2
i + σ2)

)
. Applying

the independence between (ai+bi)(ai−bi) and (aj+bj)(aj−
bj) (i 6= j), we obtain the desired result by summing the mean
and variance over all i.
Proof of Theorem 4 We prove the theorem by deriving upper
bounds on Pr(C2|C1,α) and Pr(C1|C2,α).

Pr(C2|C1,α) = Pr

(∑
i

(ai + bi)(ai − bi) ≤ 0

)

= Pr

∑i(ai + bi)(ai − bi)−
∑
i sin2 θiα

2
i

2σ
√∑

i sin2 θi(α2
i + σ2)

≤

−
∑
i sin2 θiα

2
i

2σ
√∑

i sin2 θi(α2
i + σ2)

 .

(31)

As σ → 0, the term to the left of “≤” in the last line of Eq. (31)
is standard normal distributed. Therefore we can invoke the
Gaussian tail bound to obtain

Pr(C2|C1,α)

= Pr

∑i(ai + bi)(ai − bi)−
∑
i sin2 θiα

2
i

2σ
√∑

i sin2 θi(α2
i + σ2)

≥

∑
i sin2 θiα

2
i

2σ
√∑

i sin2 θi(α2
i + σ2)


≤ 1

2
exp

[
−

(∑
i sin2 θiα

2
i

)2
8σ2

∑
i sin2 θi(α2

i + σ2)

]
.

(32)

Pr(C1|C2,α) can be upper bounded in the same manner:

Pr(C1|C2,α) ≤ 1

2
exp

[
−

(∑
i sin2 θiα

2
i

)2
8σ2

∑
i sin2 θi(α2

i + σ2)

]
. (33)
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Therefore,

Pe =
1

2

∫
Pr(C2|C1,α)p(α)dα +

1

2

∫
Pr(C1|C2,α)q(α)dα

≤
∫

1

2
exp

[
−

(∑
i sin2 θiα

2
i

)2
8σ2

∑
i sin2 θi(α2

i + σ2)

]
p(α) + q(α)

2
dα

,
∫
E(θ,α, σ)

p(α) + q(α)

2
dα,

(34)
which concludes the proof.

APPENDIX E

Proof of Proposition 1 Observe that

‖X>PX−T‖2F = ‖(X> ⊗X>) vec(P)− vec(T)‖22,

is a least squares problem with minimizer

vec(P?) = (X> ⊗X>)† vec(T) = X>,

which can be rearranged to give

P? = (X>)†T[(X>)†]> = (XX>)−1XTX>(XX>)−1 � 0.
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