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On the Convergence of the Iterative
Shrinkage/Thresholding Algorithm With a Weakly

Convex Penalty
İlker Bayram

Abstract—We consider the iterative shrinkage/thresholding
algorithm (ISTA) applied to a cost function composed of a data
fidelity term and a penalty term. The penalty is non-convex but
the concavity of the penalty is accounted for by the data fidelity
term so that the overall cost function is convex. We provide
a generalization of the convergence result for ISTA viewed as
a forward-backward splitting algorithm. We also demonstrate
experimentally that for the current setup, using large stepsizes
in ISTA can accelerate convergence more than existing schemes
proposed for the convex case, like TwIST or FISTA.

I. INTRODUCTION

The iterative shrinkage/thresholding algorithm (ISTA) is
widely used for solving minimization problems of the form

min
x

{
C(x) =

1

2
‖y −H x‖22 + P (x)

}
(1)

where y is an observed signal, H is a linear operator, and
P (x) is a penalty term reflecting our prior knowledge about
the object to be recovered [18], [21], [29]. For minimizing
C(x), ISTA employs iterations of the form

xk+1 = Tα

(
xk + αHT (y −H xk)

)
, (2)

where Tα is the shrinkage/thresholding operator associated
with P , defined as,

Tα(z) = argmin
x

1

2α
‖x− z‖22 + P (x). (3)

When P (x) is convex, T is also referred to as the proximity
operator of P [16]. We remark that if the minimization
problem in (3) is strictly convex, then it has a unique solution.
In that case, Tα will be well-defined. In the following, we
denote the least and greatest eigenvalue of HT H with σm
and σM respectively. We also assume throughout the paper
that the functions of interest are proper, lower semi-continuous
and C(x) has a non-empty set of minimizers.

For convex P , ISTA can be derived through different
approaches. The majorization-minimization (MM) framework
[20], [24], [27], enforces the constraint α < 1/σM , and
implies that the iterates achieve monotone descent in the
cost. The descent property achieved by MM does not directly
imply that the algorithm converges. However, the following
proposition can be shown by making use of this descent
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property [11] and interpreting the algorithm as an instance of
a sequential unconstrained minimization algorithm (SUMMA)
[12].

Proposition 1. Suppose P (x) is convex, proper, lower semi-
continuous and the set of minimizers of C(x) is non-empty. If
0 < α ≤ 1/σM , then the sequence xk in (2) monotonically re-
duces the cost, i.e., satisfies C(xk+1) ≤ C(xk), and converges
to a minimizer of C(x).

The forward-backward splitting algorithm [17] gives exactly
the same iterations as (2), but allows α < 2/σM . In practice,
larger step-sizes accelerate convergence to a minimizer. Al-
though the MM interpretation is not valid when α > 1/σM ,
it can be shown also for 1/σM < α < 2/σM that the cost
decreases monotonically with each iteration [37]. However,
the convergence proofs in [3], [17] do not make use of this
monotone descent property. Rather, the main object of interest
in [3], [17] is the distance to the set of minimizers, which
shows a monotone behavior.

Proposition 2. [3], [17] Suppose P (x) is convex, proper,
lower semi-continuous and the set of minimizers of C(x)
is non-empty. If 0 < α < 2/σM , then the iterates xk in (2)
converge to a minimizer of C(x).

When P (x) is non-convex, ISTA is still applicable but
convergence to a global minimizer is not guaranteed in gen-
eral. Further, the convergence proof for the forward-backward
scheme in [3], [17] is not directly valid. In this paper, instead
of an arbitrary non-convex penalty, we consider weakly-
convex penalties [38]1.

Definition 1. A function f : Rn → R is said to be ρ-weakly
convex if

h(x) =
s

2
‖x‖22 + f(x)

is convex when s ≥ ρ ≥ 0.

If P (x) is ρ-weakly convex and 0 < ρ ≤ σm, then C(x)
can be shown to be convex, even though P (x) is not. The
minimization problem that arises in this case is not merely
of academic interest – see for instance [36] for an iterative
scheme where each iteration requires solving such a problem,
[30] for a binary denoising formulation which employs weakly

1See specifically Defn.1 and Prop. 4.3 in [38]. We use a slightly different
definition than [38], in order to simplify notation. Our ρ-weakly convex
functions correspond to (−ρ/2)-convex functions of [38].
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penalties. More generally, weakly convex penalties are of
interest in sparse signal recovery, because they allow to reduce
the bias in the estimates, which arise when convex penalties
such as the `1 norm are utilized [5], [9], [14], [36]. Also,
weakly convex penalties are general enough to produce any
separable monotone threshold function [1], [4], [14].

Through the MM scheme, for α < 1/σM , we obtain in
Sec. III the iterations in (2) for a weakly convex penalty and
show that the algorithm converges to a minimizer by adapting
the proof in [11]. Specifically, we show the following.

Proposition 3. Suppose P is proper, lower semi-continuous,
ρ-weakly convex with 0 ≤ ρ ≤ σm, and the set of minimizers
of C(x) is non-empty. If 0 < α < 1/σM , then the sequence
xk in (2) monotonically reduces the cost C(x) and converges
to a minimizer of C(x).

When the penalty is convex, we noted that the step-size
allowed by MM can be doubled. Therefore, one is tempted
to ask if larger stepsizes could be used to accelerate the
algorithm for when P is weakly convex. The answer is not
trivial because, when ρ > 0, the operator Tα loses some of its
properties. In particular, it is not firmly non-expansive [3], a
property which is instrumental in proving Prop. 2. Loss of non-
expansivity can be visibly seen by noting that the derivatives
of the threshold functions exceed unity when ρ > 0 (see
Figs. 2, 6 in this paper or Fig. 2 in [36]). On the other hand,
weak convexity is a mild departure from convexity and one
expects some generalization of Prop. 2 to hold. We have the
following result in this direction.

Proposition 4. Suppose P is lower semi-continuous, ρ-weakly
convex with 0 ≤ ρ ≤ σm and the set of minimizers of C(x)
is non-empty. If 0 < α < 2/(σM + ρ), then the sequence xk

in (2) converges to a minimizer of C(x).

If we regard ρ as a measure of the deviation of P from
being convex, then we see that this deviation from convexity
shows itself in the maximum step-size allowed. Note that since
ρ ≤ σm ≤ σM , the maximum step-size α allowed by Prop. 4
is in general greater than that allowed by Prop 3. We also
note that as in the convex case, it can be shown that the cost
monotonically decreases with each iteration but this property
is not used in the proof of the proposition.

Generalization to an Arbitrary Data Term

Application of ISTA is not restricted to cost functions
that employ quadratic data terms. More generally, consider
a generic cost function of the form

D(x) = f(x) + P (x), (4)

where f : Rn → R is a differentiable function. To minimize
D, ISTA constructs a sequence as

xk+1 = Tα

(
xk − α∇f(xk)

)
. (5)

In this setup, the following proposition applies for when f and
P are convex [3], [17].

Proposition 5. [3], [17] Suppose f(x) and P (x) are proper,
lower semi-continuous, convex and for σ > 0,

‖∇f(x)−∇f(y)‖2 ≤ σ‖x− y‖2 for all x, y.

Suppose also that the set of minimizers of D(x) in (4) is non-
empty. If 0 < α < 2/σ, then the iterates xk in (5) converge
to a minimizer of D(x).

We note that this is a generalization of Prop. 2 since for
f(x) = 1

2‖y − Hx‖22, we have ∇f(x) = HT (Hx − y),
and thus ‖∇f(x) − ∇f(y)‖ ≤ σM‖x − y‖2. Also, when
1/σ < α < 2/σ, even though the MM interpretation is not
valid, it is possible to show that the cost decreases monoton-
ically [37].

For weakly convex P , we show in this paper that Prop. 5
generalizes as follows.

Proposition 6. Suppose f(x), P (x) are proper, lower semi-
continuos, P (x) is ρ-weakly convex, f(x)− ρ

2‖x‖
2
2 is convex

and for σ > 0,

‖∇f(x)−∇f(y)‖2 ≤ σ‖x− y‖2 for all x, y.

Suppose also that the set of minimizers of D(x) in (4) is non-
empty. If 0 < α < 2/(σ + ρ), then the iterates xk in (5)
converges to a minimizer of D(x).

As in the case with a quadratic data fidelity term, it can
also be shown [26], [37] that the cost decreases monotonically
with each iteration. Although the proof of Prop. 6 does not
depend on this descent property, we will provide a proof of
the following proposition for the sake of completeness. We
note, however, that the proof we present follows [26], [37].

Proposition 7. Suppose the hypotheses of Prop. 6 hold. Then,
D(xk+1) ≤ D(xk).

Although Prop. 4 is a corollary of Prop. 6, we provide an
independent proof for Prop. 4 because showing convergence in
this special case allows a more elementary proof. Especially,
if ρ < σm, rather than just ρ ≤ σm, yet a simpler proof is
valid. We will present this simple proof before considering the
more general case ρ ≤ σm. We also note that the analysis in
this paper can be put in a more compact form by resorting
to results from non-smooth (non-necessarily convex) analysis
[15], [34]. However, the additional technical requirements in
non-smooth non-convex analysis can be avoided because we
are not interested in an arbitrary non-convex problem. Rather,
we work under a weak-convexity assumption and this in turn
allows us to derive the results using convex analysis methods,
simplifying the discussions.

Related Work and Contribution

Convergence of ISTA with shrinkage/threshold functions
other than the soft-threshold has been studied previously in
[26], [37], [39]. The results of [26], [37] imply that descent
in the cost is achieved for the sequence xk, in the sense
C(xk+1) ≤ C(xk), when the step-size satisfies α < 2/(σ+ρ)
as in Prop. 6. This property, along with the global convergence
theorem (see Thm. 7.2.3 in [6]) implies that accumulation
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TABLE I
FREQUENTLY USED TERMS/SYMBOLS

P : penalty function
C : cost function from (1)
Tα : threshold function defined in (3)
α : step-size for ISTA
σm, σM : least and greatest eigenvalues of HT H

ρ : weak-convexity parameter of P (see Defn.1)

points of xk minimize the cost function. ISTA with firm-
thresholding instead of soft-thresholding is studied in [39] and
it is shown by an MM argument that the cost is reduced at
each iteration for α < 1/σ. The authors then conclude that the
algorithm is convergent by an argument based on the properties
of the penalty function.

In this paper, we present two independent proofs of con-
vergence for ISTA with weakly-convex penalties. The first
proof (Prop. 3) uses the MM and SUMMA interpretations
of the algorithm and relies on the monotonic descent of the
cost with each iteration. This proof is obtained by adapting
the proof of convergence presented in [11], [12] (where it is
assumed that the penalty is convex, unlike the case considered
here). Unfortunately, in the context of ISTA, this approach
does not extend to the case where the algorithm falls out of
the MM framework. Our second proof of convergence (for
Prop. 4 and Prop. 6), which covers cases that fall out of the
MM framework, does not rely on such a descent property. We
instead study the mapping that ISTA employs, following the
schema of [17]. For weakly convex penalties, such a study has
not appeared in the literature as far as we are aware.

Outline

In Section II, we recall some definitions and results from
convex analysis. We provide an MM derivation of ISTA and
prove Prop. 3 in Section III. To address the cases that fall out
of the MM framework, we study in Section IV the operator
that maps xk to xk+1 in (2). Specifically, we show the relation
between the fixed points of this operator and the minimizers
of the cost in Section IV-A, study the threshold operator for
a weakly convex penalty in Section IV-B, provide a short and
simple convergence proof for the case where the cost is strictly
convex in Section IV-C and finally provide the proof of Prop. 4
in Section IV-D. The proofs of Prop. 6 and Prop. 7 are given
in Section V. In order to demonstrate that larger stepsizes
may be more favorable, we also present two experiments in
Section VI. We conclude with a brief outlook in Section VII.

Some of the frequently used terms/symbols are listed in
Table I. We also note that our discussion is restricted to
functions defined on Rn for simplicity.

II. DEFINITIONS AND RESULTS FROM CONVEX ANALYSIS

For later reference, we briefly recall some definitions and
results from convex analysis in this section. We refer to [23],
[33], [38] for further discussion.

Definition 2. Suppose f : Rn → R is convex. The subdiffer-
ential of f at x ∈ Rn is denoted by ∂f(x) and is defined to

be the set of z ∈ Rn that satisfy

f(x) + 〈y − x, z〉 ≤ f(y), for all y.

Any element of ∂f(x) is said to be a subgradient of f at
x.

Using the notion of a subdifferential, the minimizer of a
convex function can be easily characterized.

Proposition 8. Suppose f : Rn → R is convex. x minimizes
f if and only if 0 ∈ ∂f(x).

In order to counter the concavity introduced by a weakly
convex penalty function, we will need the data fidelity term
to be strongly convex [38]2.

Definition 3. For ρ ≥ 0, a function f : Rn → R is said to be
ρ-strongly convex if

h(x) = f(x)− s

2
‖x‖22

is convex when s ≤ ρ.

The following lemma, which is of interest in the proximal
algorithm, will be used in the sequel. The lemma follows by
the optimality conditions.

Lemma 1. If h : Rn → R is convex and there exists some x
and some β > 0 such that

h(x) ≤ β‖z − x‖22 + h(z) for all z,

then h achieves its minimum at x.

III. CONVERGENCE OF ISTA VIA MAJORIZATION
MINIMIZATION AND SUMMA (PROOF OF PROP. 3)

In this section, we briefly recall the MM scheme [20],
[24] to show that ISTA achieves monotone descent for a
weakly-convex penalty provided that the step size is small
enough. We remark however that achieving descent does not
automatically imply that the algorithm converges [25], [28].
In order to show convergence to a minimizer, we follow the
approach presented in [11], based on sequential unconstrained
minimization algorithms (SUMMA) [12].

A. Descent Property via MM

Suppose that at the kth iteration, we have the estimate xk.
Let us define,

g(x, xk) =
1

2

〈
x− xk,

(
α−1I −HT H

)
(x− xk)

〉
, (6)

M(x, xk) = C(x) + g(x, xk). (7)

Observe that if σM < 1/α, then the matrix α−1I −HT H is
positive definite. Therefore g(x, xk) ≥ 0. It also follows from
the definition in (6) that g(xk, xk) = 0. These observations
imply that

(i) M(x, xk) ≥ C(x),
(ii) M(xk, xk) = C(xk).

2Our ρ-strongly convex functions correspond to ρ/2-convex functions of
[38].
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Thus, starting from xk, we can achieve descent in C(x) by
minimizing M(x, xk) with respect to x. After rearranging,
M(x, xk) can be written as,

M(x, xk) =
1

2α

∥∥x− zk∥∥2
2
+ P (x) + const. (8)

where zk = xk−αHT (Hxk− y) and ‘const.’ is independent
of x. Now since

ρ ≤ σm ≤ σM < 1/α,

the function in (8) is strictly convex with respect to x (for
fixed xk) and its unique minimizer is Tα(zk).

From the foregoing discussion, we conclude that if
σM < 1/α and

xk+1 = Tα

(
xk + αHT

(
y −H xk

))
, (9)

then C(xk) is a non-increasing sequence. However, this ob-
servation alone does not directly imply that xk converges to
a minimizer. We need a more elaborate argument for proving
Prop. 3.

B. Convergence to a Minimizer via SUMMA

We start with a key observation.

Lemma 2. For g, M , xk defined as in (6), (7), (9), if
σM < 1/α, then for any x,

M(x, xk)−M(xk+1, xk) ≥
(

1

2α
− ρ

2

)
‖x− xk+1‖22

(10a)

≥ g(x, xk+1). (10b)

For the proof of this lemma, we use the following auxiliary
result, which we will also refer to later.

Lemma 3. For a given z, let x̂ = Tα(z), where P is ρ-weakly
convex. Then, for any x,

P (x)− P (x̂) ≥ −
{
ρ

2
‖x− x̂‖22 +

1

α
〈x̂− z, x− x̂〉

}
.

(11)

Proof: Let Pρ(x) = P (x) + ρ
2‖x‖

2
2. Note that Pρ is

convex. From the definition of Tα in (3) we have,

x̂ = argmin
x

1

2α
‖x− z‖22 + P (x)

= argmin
x

(
1

2α
− ρ

2

)
‖x− z‖22 − ρ〈x, z〉+ Pρ(x)

By the optimality conditions, we obtain(
1

α
− ρ
)
(z − x̂) + ρz ∈ ∂Pρ(x̂).

But by the definition of subdifferential, this implies that

Pρ(x) ≥ Pρ(x̂) +
〈(
α−1 − ρ

)
(z − x̂) + ρz, x− x̂

〉
.

Plugging in the definition of Pρ and rearranging, we obtain
(11).

Using this lemma, we obtain the proof of Lemma 2 as
follows.

Proof of Lemma 2: Let f(x) = 1
2‖y − Hx‖

2
2. Observe

that ∇f(x) = HT (Hx − y). Using (8), and Lemma 3 with
xk+1 = Tα

(
xk − α∇f(xk)

)
, we obtain,

M(x, xk)−M(xk+1, xk)

=

{
1

2α

(
‖x− xk‖22 − ‖xk+1 − xk‖22

)}
+
〈
x− xk+1,∇f(xk)

〉
+
{
P (x)− P (xk+1)

}
≥
{

1

2α
‖x− xk+1‖22 +

1

α
〈x− xk+1, xk+1 − xk〉

}
+ 〈x− xk+1,∇f(xk)〉

−
{ρ
2
‖x− xk+1‖22

+
1

α
〈xk+1 − xk + α∇f(xk), x− xk+1〉

}
=

(
1

2α
− ρ

2

)
‖x− xk+1‖22.

To see (10b), note that HT H − ρI ≥ 0 and observe

1

α
I −HT H =

(
1

α
− ρ
)
I −

(
HT H − ρI

)
≤
(
1

α
− ρ
)
I.

We are now ready to present the proof of convergence.
Although there are some variations, the main idea follows the
proof of Theorem 4.1 in [11].

Proof of convergence for Prop. 3: By assumption, C is
proper and its set of minimizers is non-empty. These imply
that infx C(x) = c > −∞. Combining this the discussion in
Sec. III-A, we deduce that C(xk) is a non-increasing sequence
which is bounded from below and therefore it converges to
some b ≥ c.

Since the set of minimizers of C(x) is non-empty by
assumption, we can find x̂ such that C(x̂) ≤ b. Consider
dk(x̂) =M(x̂, xk)−M(xk+1, xk). We know by the defini-
tion of xk+1 that dk(x̂) is non-negative. We now show that
it is also non-increasing with k. Note that by Lemma 2, we
have g(x̂, xk) ≤ dk−1(x̂). Using this, we obtain

dk(x̂) =M(x̂, xk)−M(xk+1, xk)

= g(x̂, xk) + C(x̂)− g(xk+1, xk)− C(xk+1)

≤ dk−1(x̂) +
{
C(x̂)− g(xk+1, xk)− C(xk+1)

}
≤ dk−1(x̂).

where the last line follows because C(x̂) ≤ C(xk) for all k
and g(xk+1, xk) is non-negative.

Again by Lemma 2, we can now conclude that

‖x̂− xk‖22 ≤
(

1

2α
− ρ

2

)−1 (
M(x̂, x0)−M(x1, x0)

)
,

for all k. Thus xk is a bounded sequence and it has a
convergent subsequence by the Bolzano-Weierstrass theorem



5

[35]. Let x∗ be the limit of a convergent subsequence xkn .
Observe that since C(xk) is non-increasing and C(·) is lower
semi-continuous, we have C(x∗) ≤ b. Also, for a given ε > 0,
we can find some N such that if n ≥ N , then(

1

2α
− ρ

2

)
‖x∗ − xkn‖22 ≤ ε.

It thus follows by (10b), along with C(x∗) ≤ C(xkn+1) and
the non-negativity of g that

M(x∗, xkn)−M(xkn+1, xkn)

= C(x∗) + g(x∗, xkn)− C(xkn+1)− g(xkn+1, xkn)

≤ g(x∗, xkn)
≤ ε.

But since
[
M(x∗, xk) − M(xk+1, xk)

]
is a non-increasing,

non-negative sequence of real numbers, this implies that the
whole sequence converges to zero. In view of (10a), we thus
conclude that

lim
k→∞

‖x∗ − xk+1‖22 = 0.

Therefore, the whole sequence converges to x∗.
What remains is to show that x∗ is actually a global

minimizer of C. For that, it suffices to show b = c. Let z
be a minimizer of C, i.e., C(z) = c. From Lemma 2, we
obtain

C(z) + g(z, xk)−C(xk+1)− g(xk+1, xk)

=M(z, xk)−M(xk+1, xk)

≥ g(z, xk+1).

Rearranging, we have,

g(z, xk)− g(z, xk+1) ≥ C(xk+1)− C(z) + g(xk+1, xk)

≥ b− c.

Now if b > c, this implies that the sequence g(z, xk) decreases
without bound, but this cannot happen since g(z, xk) ≥ 0 for
all k. Therefore we must have b ≤ c. But we already know
that c ≤ b, so it must be b = c.

IV. ISTA AS FIXED-POINT ITERATIONS OF AN OPERATOR

When P (x) is convex, the forward-backward splitting al-
gorithm [3], [17] leads to iterations that are of the same form
as (9). However, the results of [17] imply that the maximum
step size allowed by MM can in fact be doubled while still
ensuring convergence. This in turn accelerates convergence
significantly. We now investigate this issue for a weakly-
convex penalty P (x).

In order to simplify our analysis, we decompose the operator
in (9). We define

Uα(x) = αHT y +
(
I − αHT H)x, (12)

and rewrite the iterations in (9) as,

xk+1 = Tα

(
Uα
(
xk
))
.

In the following, we will first study the fixed points of the
composite operator Tα Uα and show an equivalence with the

minimizers of the cost C(x). Then, we study the properties
of the two operators Tα and Uα. Under a strict convexity
assumption, we will see that the composition is actually a
contraction mapping. If we lift the strictness restriction from
the convexity assumption, the composite operator turns out to
be averaged (see Sec. IV-D).

A. Fixed Points of the Algorithm

We now establish a relation between the fixed points of
Tα Uα and the minima of C(x). Specifically, our goal in this
subsection is to show the following result.

Proposition 9. Suppose P (x) is ρ-weakly convex, Tα is as
defined in (3) and αρ < 1. Then, x = Tα

(
Uα(x)

)
if and

only if x minimizes C(x) in (1).

Instead of proving Prop. 9 directly, we will prove a more
general form using convex analysis methods. This general
form will also be referred to in the proof of Prop. 6 in Sec. V.

Proposition 10. Suppose P : Rn → R is a ρ-weakly convex
function, and f : Rn → R is a differentiable, ρ-strongly
convex function. Suppose also that αρ < 1. Under these
conditions,

x = Tα

(
x− α∇f(x)

)
, (13)

if and only if x minimizes f + P .
Proof: (⇒) Suppose (13) holds. We will show that x

minimizes f + P . Let u = x− α∇f(x). By the definition of
Tα, x = Tα(u) means that

1

2
‖x− u‖22 + αP (x) ≤ 1

2
‖z − u‖22 + αP (z), for all z.

Noting that x−u = α∇f(x) and z−u = (z−x)+α∇f(x),
we can rewrite this as

1

2
‖α∇f(x)‖22 + αP (x)

≤ 1

2
‖z − x‖22 +

1

2
‖α∇f(x)‖22

+ 〈z − x, α∇f(x)〉+ αP (z), for all z.

Cancelling 1
2 ‖α∇f(x)‖

2
2 from both sides and noting that

〈z − x, α∇f(x)〉 ≤ α f(z) − α f(x) (because f is convex),
we obtain

αP (x) ≤ 1

2
‖z−x‖22+α f(z)−α f(x)+αP (z), for all z.

Rearranging,

f(x) + P (x) ≤ 1

2α
‖z − x‖22 + f(z) + P (z), for all z.

Since f + P is convex, by Lemma 1, we conclude that x
minimizes f + P .

(⇐) Assume that x minimizes h = f + P . Let Pρ(t) =
P (t) + (ρ/2) ‖t‖22 and fρ(t) = f(t) − (ρ/2) ‖t‖22. Note that
by assumption fρ and Pρ are both convex and h = fρ + Pρ.
Since x minimizes h, we have,

0 ∈ {∇f(x)− ρ x}︸ ︷︷ ︸
∂fρ(x)

+∂Pρ(x)
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or,

ρ x−∇f(x) ∈ ∂Pρ(x)

Adding any multiple of x to both sides, we find that for s ≥ ρ,
and Ps(t) = P (t) + (s/2) ‖t‖22, we have

s x−∇f(x) ∈ ∂Ps(x)

By the convexity of Ps we then obtain,

Ps(x) + 〈z − x, s x−∇f(x)〉 ≤ Ps(z), for all z.

Rearranging, we have

s

2
‖x‖22 − 〈x, s x−∇f(x)〉+ P (x)

≤ s

2
‖z‖22 − 〈z, s x−∇f(x)〉+ P (z), for all z.

Equivalently, for s ≥ ρ,

1

2

∥∥∥x− (x− s−1∇f(x))∥∥∥2
2
+

1

s
P (x)

≤ 1

2

∥∥∥z − (x− s−1∇f(x))∥∥∥2
2
+

1

s
P (z), for all z.

Now let α = 1/s. The inequality above may be written as,

1

2

∥∥∥x− (x− α∇f(x))∥∥∥2
2
+ αP (x)

≤ 1

2

∥∥∥z − (x− α∇f(x))∥∥∥2
2
+ αP (z), for all z, (14)

for αρ ≤ 1. Note that equality in (14) may be achieved by
setting z = x. But we know that for αρ < 1, the right hand
side is uniquely minimized by z = Tα

(
x − α∇f(x)

)
. Thus,

x = Tα
(
x− α∇f(x)

)
for αρ < 1.

Prop. 9 is a corollary of this proposition. This can be seen
by taking f(x) = 1

2 ‖y−Hx‖
2
2 and noting that it is ρ-strongly

convex since ρ ≤ σm.

B. Threshold Operators Associated with Weakly Convex
Penalties

We now study the operator Tα. We only assume that Tα is
associated with a ρ-weakly convex penalty P via (3).

Definition 4. An operator S : Rn → Rn is said to be non-
expansive if,

‖S(x)− S(z)‖2 ≤ ‖x− z‖2.

We will make use of the following result (see [3], [16] for
instance).

Lemma 4. Suppose q : Rn → R is convex and the operator
S(x) is defined as

S(x) = argmin
t

1

2
‖x− t‖22 + q(t).

Then,

‖S(x)− S(z)‖2 ≤ ‖x− z‖2.

This can be shown by making use of the optimality condi-
tions and monotonicity of the subgradient.

Proposition 11. Suppose P (x) is ρ-weakly convex and
αρ < 1. Then,

‖Tα(x)− Tα(z)‖2 ≤
1

1− αρ
‖x− z‖2. (15)

Proof: Note that the function
ρ

2
‖x‖22 + P (x)

is convex. Therefore,

S(x) = argmin
t

1

2
‖x− t‖22 + c

(ρ
2
‖t‖22 + P (t)

)
is non-expansive by Lemma 4 for any c > 0. But we have

S(x) = argmin
t

1

2
‖x− t‖22 + c

(ρ
2
‖t‖22 + P (t)

)
= argmin

t

1 + cρ

2
‖t‖22 − 〈x, t〉+ c P (t)

= argmin
t

1

2

∥∥∥∥t− 1

1 + cρ
x

∥∥∥∥2
2

+
c

1 + cρ
P (t)

= Tc (1+cρ)−1

(
1

1 + cρ
x

)
Therefore we deduce that∥∥∥∥Tc (1+cρ)−1

(
1

1 + cρ
x

)
− Tc (1+cρ)−1

(
1

1 + cρ
z

)∥∥∥∥
2

= ‖S(x)− S(z)‖2 ≤ ‖x− z‖2. (16)

Now set α = c (1 + cρ)−1. Observe that αρ < 1 for any
c > 0. Solving for c, we have c = α (1 − αρ)−1. Plugging
this in (16), we obtain∥∥∥Tα((1− αρ)x)− Tα((1− αρ)x)∥∥∥

2
≤ ‖x− z‖2.

Making a change of variables, we finally obtain (15).

C. ISTA as Iterations of a Contraction Mapping

In this section, we derive a convergence result that is rela-
tively easy to obtain, under the additional restriction ρ < σm.
We desire not to exclude the case ρ = σm, because for ρ = 0
(a convex penalty function), we would like to allow σm = 0,
which corresponds to an operator H with a non-trivial null-
space. In Sec. IV-D, we will also allow the case ρ = σm,
leading to a generalization of Prop. 2.

Proposition 12. Suppose that the eigenvalues of HT H are
contained in the interval [σm, σM ], P (x) is ρ-weakly convex
and Tα(·) is as given in (3). If

ρ < σm, (17a)

α <
2

σM + ρ
, (17b)

then, the iterations in (9) converge to the unique minimizer of
C(x).

Proof: For Uα in (12), we have that

‖Uα(x)−Uα(z)‖2 ≤ max
(
|1−ασM |, |1−ασm|

)
‖x−z‖2.
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Now observe that (17a) implies ρ < (σM + ρ)/2. This along
with (17b), gives αρ < 1. Therefore, by Prop. 11, we can
write∥∥∥Tα (Uα(x))− Tα (Uα(z))∥∥∥

2

≤
max

(
|1− ασM |, |1− ασm|

)
1− αρ

‖x− z‖2,

When ρ < σm, C(x) is strictly convex and the minimizer,
which exists by assumption, is unique. By Prop. 9, this unique
minimizer is in fact the unique fixed point of Tα Uα. Let us
denote this minimizer as z. Notice that

‖Tα
(
Uα (x)

)
− z‖2

≤
max

(
|1− ασM |, |1− ασm|

)
1− αρ

‖x− z‖2.

Thus the iterations converge (geometrically) to z if the two
conditions below hold
|1− ασM |
1− αρ

< 1, (18a)

|1− ασm|
1− αρ

< 1. (18b)

(18a) is equivalent to

ρ < σM , (19a)

α <
2

σM + ρ
. (19b)

(18b) is equivalent to

ρ < σm, (20a)

α <
2

σm + ρ
. (20b)

Noting that σM ≥ σm, and 2/(σM + ρ) ≤ 2/(σm + ρ) we
deduce that (17) implies (19), and (20), completing the proof.

Remark 1. Observe that since ρ < σm ≤ σM , we have
2

σM + ρ
>

1

σM
.

Thus the generalized forward backward algorithm converges
for stepsizes greater than that allowed by majorization-
minimization. We also note that the convergence proof given
for Prop. 3 does not straightforwardly extend to the case
considered in this subsection.

D. ISTA as Iterations of an Averaged Operator

Definition 5. [3] An operator S : Rn → Rn is said to be
β-averaged with β ∈ (0, 1) if S can be written as

S = (1− β) I + β U,

for a non-expansive U .

As a corollary of the definition, we have,

Lemma 5. S : Rn → Rn is β-averaged if and only if
1

β

(
S − (1− β) I

)

z

x

U(x)

S(x)

Fig. 1. A non-expansive operator U might not always take a point x closer
to its fixed point z. However, an averaged operator S = (1 − β)I + β U
derived from U will have such a property.

is non-expansive.

Averaged operators are of interest because they behave
more desirably concerning convergence. Further, as we will
note, averaged-ness is preserved under composition, which
is instrumental in proving the convergence of the forward
backward splitting algorithm [3], [17]. To demonstrate the
difference between the behavior of an averaged operator and a
non-expansive operator, let us consider a scenario as follows.
Let U be non-expansive with a unique fixed point z, and x
an arbitrary point. Then, ‖U(x)− z‖2 ≤ ‖x− z‖2, but U(x)
is not guaranteed to be closer to z than x. In the worst case,
both x and U(x) might be equidistant to z. This is illustrated
in Fig. 1. Now let S = (1 − β)I + β U for β ∈ (0, 1). z
is also the unique fixed point of S. But now, since S(x) lies
somewhere on the open segment between x and U(x), we will
have ‖S(x)− z‖2 < ‖x− z‖2 (see Fig. 1). This discussion is
of course not a proof of convergence for iterated applications
of S but it provides some intuition. The following proposition,
which is also known as the Krasnosels’kiı̆-Mann theorem (see
Thm. 5.14 in [3]) provides a convergence result for averaged
operators.

Proposition 13. Suppose S : Rn → Rn is β-averaged and its
set of fixed points is non-empty. Given x0, let xn+1 = S(xn).
Then the sequence {xn}n∈Z converges and the limit is a fixed
point of S.

To prove the convergence of ISTA, we will show that
Tα
(
Uα(·)

)
is an averaged operator. In order to show that this

operator is averaged, we will show that Tα and Uα can be
regarded as averaged operators by proper scaling (see Sα and
Vα below) and invoke the following result.

Proposition 14. If S1 and S2 are averaged, then S1

(
S2(·)

)
is

also averaged.

The proof of this proposition follows from the definition
of an averaged operator and is omitted (for an alternative
statement and proof of this proposition, see Prop. 4.32 in [3]).

We will also need the following result (see Cor.23.8 in [3]).

Lemma 6. Suppose q : Rn → R is convex and S(x) is defined
as

S(x) = argmin
t

1

2
‖x− t‖22 + q(t).
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Then, S is 1/2-averaged.

Note that this is a stronger result than Lemma 4. In fact,
Lemma 4 follows as a corollary of Lemma 6.

Using Lemma 6, we can show that the composition of the
threshold operator Tα with a proper scaling is averaged.

Proposition 15. For αρ < 1, let Sα be defined as

Sα(x) = Tα

(
(1− αρ)x

)
. (21)

Then, Sα is 1/2-averaged.
Proof: In the proof of Prop. 11, for αρ < 1, we show

that Sα can actually be expressed as

Sα(x) = argmin
t

1

2
‖x− t‖22 +

α

1− αρ

(
ρ‖t‖22 + P (t)

)
.

Since ρ‖t‖22 + P (t) is convex, this means that Sα is 1/2-
averaged by Lemma 6.

For affine operators that employ a symmetric matrix, such as
those used in ISTA with a quadratic data term, averaged-ness
is associated with the eigenvalues of the matrix.

Proposition 16. Suppose S : Rn → Rn is an affine mapping
of the form

S(x) =M x+ u,

where M is a symmetric matrix, i.e. M = MT , and u is a
constant vector. Then, S is β-averaged for some β ∈ (0, 1) if
and only if the eigenvalues of M lie in the interval (−1, 1].

Proof: Suppose the eigenvalues of M lie in the interval
[σ0, σ1]. Consider

V =
1

β

(
S − (1− β) I

)
.

Then,

V (x)− V (z) =
1

β

(
M − (1− β)I

)
︸ ︷︷ ︸

Q

(x− z).

The eigenvalues of Q lie in the interval,[
σ0 − 1 + β

β
,
σ1 − 1 + β

β

]
.

Therefore, by Lemma 5, S is β-averaged for some β ∈ (0, 1)
iff Q is non-expansive. But Q is non-expansive for some
β ∈ (0, 1) iff

− 1 ≤ σ0 − 1 + β

β
≤ σ1 − 1 + β

β
≤ 1,

for some β ∈ (0, 1). (22)

Note that since β is restricted to be positive, (22) can be written
equivalently as,

1− 2β ≤ σ0 ≤ σ1 ≤ 1, for some β ∈ (0, 1). (23)

But (23) holds iff −1 < σ0 ≤ σ1 ≤ 1.

In the convergence proof, to counter the scale factor that
appears in (21), we use the following result.

Proposition 17. For αρ < 1, let Vα be defined as

Vα =
1

1− αρ
Uα.

Then, Vα is averaged if the two conditions below are satisfied

ρ ≤ σm, (24a)

α <
2

σM + ρ
. (24b)

Proof: Observe that Vα is of the form

Vα(x) =
1

1− αρ
(
I − αHT H)︸ ︷︷ ︸
M

x+ u,

for a constant vector u. The eigenvalues of M are contained
in the interval[

1− ασM
1− αρ

,
1− ασm
1− αρ

]
.

By (24a), we have

1− ασm
1− αρ

≤ 1.

By (24b), we have

1− ασM
1− αρ

> −1.

Thus, it follows by Prop. 16 that Vα is averaged.

We are now ready for the proof of Prop. 4.
Proof of Prop. 4: Note that Tα Uα = Sα Vα, where Sα

and Vα are as defined in Prop. 15 and Prop. 17. By Prop. 15
and Prop. 17, Sα and Vα are averaged. Then, by Prop. 14
we conclude that Tα Uα is also averaged. We also have by
Prop. 9 that the fixed points of Tα Uα coincide with the set of
minimizers of C(x), which is non-empty by assumption. The
claim now follows by Prop. 13.

V. GENERAL DATA FIDELITY TERM

In this section, we provide proofs of Prop. 6 and Prop. 7.
Let us recall the setup. We consider a cost function of the
form

D(x) = f(x) + P (x),

where P is ρ-weakly convex and f is ρ-strongly convex,
differentiable with

‖∇f(x)−∇f(y)‖ ≤ τ‖x− y‖, for all x, y. (25)

Definition 6. A function f : Rn → R is said to have a τ -
Lipschitz continuous gradient, if (25) holds.

Let us now recall the Baillon-Haddad theorem [2], [3], [13].

Lemma 7. Suppose f is convex, differentiable and it has a
τ -Lipschitz continuous gradient. Then,

〈∇f(x)−∇f(z), x− z〉 ≥ 1

τ
‖∇f(x)−∇f(z)‖22.

In the setting above, we have,
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Lemma 8. Suppose f is ρ-strongly convex, differentiable and
its gradient is σ-Lipschitz continuous with σ > ρ. Also, let
g(x) = f(x) − ρ ‖x‖22/2. Then, ∇g is (σ − ρ)-Lipschitz
continuous.

Proof: Let F = ∇f and G = ∇g. Note that G = F −ρI .
First observe that, by the Baillon-Haddad theorem applied to
F , we have,

〈F (x)− F (y), x− y〉 ≥ 1

σ
‖F (x)− F (y)‖22.

Now,

‖G(x)−G(y)‖22 = ‖F (x)− F (y)‖22 + ρ2‖x− y‖22
− 2ρ〈F (x)− F (y), x− y〉

≤
(
1− 2

ρ

σ

)
‖F (x)− F (y)‖22 + ρ2‖x− y‖22

≤
(
1− 2

ρ

σ

)
σ2 ‖x− y‖22 + ρ2‖x− y‖22

= (σ − ρ)2 ‖x− y‖22.

Taking square roots, we obtain

‖G(x)−G(y)‖2 ≤ (σ − ρ)‖x− y‖2,

which is the claim.

Proposition 18. Suppose f is ρ-strongly convex, differentiable
and its gradient is σ-Lipschitz continuous with σ > ρ. Also,
for αρ < 1, let Vα be defined as

Vα =
1

1− αρ

(
I − α∇f

)
.

Then, Vα is averaged if

α <
2

σ + ρ
. (26)

Proof: Let g(x) = f(x) − ρ ‖x‖22/2. Then, g is convex,
∇g = ∇f − ρI and ∇g is (σ − ρ)-Lipschitz. By the Baillon-
Haddad theorem, we have

〈∇g(x)−∇g(y), x−y〉 ≥ 1

σ − ρ
‖∇g(x)−∇g(y)‖22. (27)

Also,

Vα =
1

1− αρ

(
I − α

(
ρI +∇g

))
= I − α

1− αρ
∇g.

Assuming (26) holds, set β = α(σ + ρ)/2 and observe that
0 < β < 1. Observe also that

Q =
1

β

(
Vα − (1− β)I

)
= I − c∇g,

where c =
2

(1− αρ)(σ + ρ)
. We now have, by (27),

‖Q(x)−Q(y)‖22 ≤ ‖x− y‖22

+

(
c2 − 2c

σ − ρ

)
‖∇g(x)−∇g(y)‖22.

It can be checked that (26) implies(
c2 − 2c

σ − ρ

)
< 0.

Therefore Q is non-expansive and by Lemma 5, Vα is β-
averaged.

We now present the proof of Prop. 6. The argument is
similar to that in the proof of Prop. 4.

Proof of Prop. 6: Let us define the operator A through

Ax = Tα

(
x− α∇f(x)

)
,

Then, for αρ < 1, A can also be written as A = Sα Vα
where Sα and Vα are as defined in Prop. 15 and Prop. 18.
But if α < 2/(σ + ρ), Sα and Vα are averaged by Prop. 15
and Prop. 18. Then, by Prop. 14, we conclude that A is also
averaged. We also have by Prop. 10 that the fixed points of A
comprise the set of minimizers of the convex function D(x)
which is non-empty by assumption. The claim now follows
by Prop. 13.

We remark that the convergence proof for ISTA did not
use and does not directly imply that the cost decreases mono-
tonically with each iteration (as stated in Prop. 7). However,
such a descent property has been shown to hold in [26], [37]
previously. We include a proof of this descent property (i.e.,
Prop. 7) for the sake of completeness. The proof depends on
two lemmas.

Lemma 9. The sequence constructed in (5) satisfies,

P (xk+1)− P (xk) + 〈∇f(xk), xk+1 − xk〉

≤
(
ρ

2
− 1

α

)
‖xk − xk+1‖22.

Proof: This claim follows from Lemma 3 by plugging
xk for x, xk+1 for x̂ and xk − α∇f(xk) for z (since
xk+1 = Tα(x

k − α∇f(xk)) ).

Lemma 10. Suppose h : Rn → R is a continuous differen-
tiable function with a τ -Lipschitz continuous gradient. Then,

h(x) ≤ h(y) + 〈∇h(y), (x− y)〉+ τ

2
‖x− y‖22.

For a proof of this lemma, see 3.2.12 in [31].
We remark that for the data fidelity term f , the Lipschitz

constant is σ.
Proof of Prop. 7: By Lemma 10, we have,

f(xk+1) ≤ f(xk)+〈∇f(xk), xk+1−xk〉+σ
2
‖xk+1−xk‖22.

Adding P (xk+1) to both sides, we can rewrite this as,

D(xk+1) ≤D(xk) +
{
P (xk+1)− P (xk)

+〈∇f(xk), xk+1 − xk〉+ σ

2
‖xk+1 − xk‖22

}
Let us denote the term in curly brackets with c. If we can
show that c is non-positive, we are done. By Lemma 9, we
have,

c ≤
(
ρ

2
− 1

α
+
σ

2

)
‖xk+1 − xk‖22.

But since α < 2/(σ+ρ), the term in the parentheses is negative
and thus c < 0.
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(a) Penalty Function for Firm-Threshold

−τ/ρ 0 τ/ρ
0

τ2/2ρ

(b) Firm-Threshold Function

−τ/ρ −ατ 0 ατ τ/ρ

− τ/ρ

0

τ/ρ

Fig. 2. The penalty and threshold function used in Exp. 1. Observe that this
threshold function is not non-expansive. Specifically, the derivative exceeds
unity on the intervals (−τ/ρ,−αρ) and (αρ, τ/ρ)

VI. EXPERIMENTS

In this section, we present two different experiments to
evaluate the acceleration achieved by increasing the step size.
We also compare the speed of convergence with those achieved
by acceleration methods like TwIST [8] and FISTA [7]. We
note however, that TwIST and FISTA are proposed for when
convex penalties are used in the cost function. Therefore,
their convergence analyses are not valid in the current setup.
Nevertheless, we have observed that they lead to considerable
acceleration and included them to give an idea about what can
be gained by increasing the step size. We also note that our
purpose in these experiments is not to promote weakly convex
penalties but to demonstrate the effects of increasing the step
size in ISTA. Matlab code for the experiments is available at
“http://web.itu.edu.tr/ibayram/NCISTA/”.

Experiment 1. Our first experiment involves a sparse signal
recovery problem. We use a 60 × 50 convolution matrix H
associated with an invertible filter (so that HT H is invertible)
to construct the observed signal. Using a sparse x as shown
in Fig.3a, we produce the observed signal as

y = H x+ u,

where u denotes white Gaussian noise. We use a penalty
function P : R→ R defined as

Pτ,ρ(s) =

{
τ |s| − s2/(2ρ), if |s| < τ/ρ,

τ2/(2ρ), if |s| ≥ τ/ρ,

This function is shown in Fig. 2a. This penalty function is
ρ-weakly convex. The threshold function associated with P
(see (3)) is known as a firm-threshold [22] and is given by
(provided αρ < 1),

Tα(s) =


0, if |s| < ατ,

(1− αρ)−1 (s− α τ), if α τ ≤ |s| < τ/ρ,

s, if τ/ρ ≤ |s|.

This threshold function is depicted in Fig. 2b. Observe that
for α τ < |s| < τ/ρ, the derivative of the firm-threshold
function exceeds unity. Therefore the firm-threshold function
is not non-expansive.

In the setup described above, we set ρ as the least eigenvalue
of HT H , which is the maximum value allowed if a convex

(a) Underlying Clean Signal and its Estimate from Exp. 1

0 10 20 30 40 50
−3

−2

−1

0

1

2

 

 

Estimated
True

(b) Difference from the Limit After 50 Iterations

0 10 20 30 40 50
−0.1

−0.05

0

0.05

0.1

 

 

α
0

α
1

Fig. 3. (a) The true signal and its estimate obtained by solving (28). (b)
The difference from the minimizer after 50 iterations of ISTA with stepsizes
α0 < α1.

cost is desired. We also set τ = 3 ρ std(u), where std(u)
denotes the standard deviation of noise. We obtain the estimate
of the sparse signal as,

x∗ = argmin
t

1

2
‖y −H t‖22 +

∑
i

Pτ,ρ(ti). (28)

Note that P applies componentwise to an input vector t. The
threshold function Tα is also applied componentwise in the
realization of ISTA.

Denoting the greatest eigenvalue of HT H by σ, we set
α0 = 1/σ and α1 = 2/(σ + ρ). Note that α0 is the greatest
value of the stepsize allowed by MM (see Prop. 3), whereas
for α1, convergence is guaranteed by Prop. 4. For this specific
problem, the ratio α1/α0 was found to be 1.88.

We ran ISTA with α0 and α1, in both cases, starting from
zero. In order to better evaluate the convergence speed, we also
tried FISTA [7] and TwIST [8]. We note that both methods
require that the components of the cost function be convex and
thus they were not originally proposed for the current setup.
Nevertheless, both methods are formally applicable. We note
that at least in the convex case, FISTA requires the step-size
to be less than or equal to 1/σ. Therefore for FISTA, we
employed the stepsize α0 = 1/σ (we also tried it for α1,
but the sequence diverged). Given the step-size, we applied
the algorithm referred to as ‘FISTA with constant stepsize’ in
Sec.4 of [7]. For TwIST, there are two parameters to choose,
namely ‘α’ and ‘β’ – for these, we used the suggestions in
equations (26) and (27) of [8].

The history of the cost function with iterations is shown in
Fig. 4 a,b. With α0, initial descent is greater compared to that
achieved by α1 but eventually the cost achieved by α1 drops
below that achieved by α0. FISTA and TwIST perform quite
well in the beginning, dropping the cost faster than ISTA with
α0 or α1. However, after about 30 iterations, FISTA, TwIST
and ISTA (with α1) achieve almost the same cost values. We
found these observations to be quite stable with respect to
different noise realizations.

http://web.itu.edu.tr/ibayram/NCISTA/
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(a) History of the Cost Function in Exp. 1
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(b) History of the Cost Function (Tail)
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(c) History of the Distance to the Minimizer
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Fig. 4. Effects of changing the step size α in ISTA for Exp. 1. (a,b)
show how the cost function evolves with iterations using the greatest possible
α0 that guarantees strict descent and the greatest possible α1 that merely
guarantees convergence. The cost with TwIST and FISTA are also included.
(c) shows the distance to the unique minimizer with respect to iterations for
the same four choices.

In order to assess the convergence speed, using α0 we ran
ISTA for 10K iterations to obtain an estimate of the minimizer
x∗. Then, we reran the algorithms mentioned above. The
logarithm of the Euclidean distance to x∗ with respect to
iterations is shown in Fig. 4c. We see that the the distance to
the minimizer decreases faster when larger steps are used in
ISTA. TwIST converges with a rate that lies in between those
of ISTA with stepsizes α0 and α1. The behavior of FISTA
is less stable. We see bursts that take the iterate close to the
limit followed by slight departures. Especially in the first few
iterations, the distance to the minimizer is greatly reduced by
FISTA but in the long run, convergence rate is slightly worse
than that of TwIST, on average. To conclude, although TwIST
and FISTA are very successful in reducing the cost rapidly,
this does not necessarily lead to the fastest rate of convergence
when we monitor the distance to the minimizer.

Experiment 2. In this experiment, we consider a clean signal
x(n) composed of piecewise constant blocks of three samples.
That is, the signal satisfies

x(3n) = x(3n+ 1) = x(3n+ 2), (29)

for every integer n. We further know that x(n) takes integer
values in the range [0, 4]. An example is shown in Fig. 5a
(stem plot). We observe a blurred and noisy version of this

signal, namely y. The least squares reconstruction of x given
the observed y is also shown in Fig. 5a (circles). In order
to take (29) into account, we propose to synthesize x as a
weighted linear combination of atoms {g(n−3 k)}k∈Z, where
g(n) = δ(n)+δ(n−1)+δ(n−2). That is, we let our estimate
x̂ be given as,

x̂ =
∑
k

ĉ(k) g(n− 3k),

where ĉ denotes the coefficients to be estimated. Let us denote
the operator that takes c to x̂ as G. Also, let F denote the
blurring operator. In this setting, we wish to estimate ĉ as

ĉ = argmin
c

1

2
‖y −H c‖22 + τ

∑
k

P
(
c(k)

)
, (30)

where H = F G and P : R → R is a penalty function that
applies to the components of c. We expect P to penalize devi-
ations from the integers in the range [0, 4]. Notice that this is
inherently a non-convex constraint. No useful convex penalty
function exists for enforcing such a constraint. However, viable
weakly-convex penalties can be found for this task (see also
[30] in this context). We propose to use a penalty function
given as

P (s) =


∞, if s < 0,

(s− bsc) (dse − s), if 0 ≤ s ≤ 4,

∞, if 4 < s,

where b·c and d·e denote the floor and ceiling functions
respectively. This penalty function is 2-weakly convex and is
shown in Fig. 6a. The associated threshold function Tα(s) for
α < 1/2 is given as

0, if s < 0,

bsc, if 0 ≤ s ≤ bsc+ α ≤ 4 + α,

bsc+ s−bsc−α
1−2α , if 0 ≤ bsc+ α ≤ s ≤ dse − α ≤ 4,

dse if 0 ≤ dse − α ≤ s ≤ 4,

4, if 4 < s.

The threshold function is shown in Fig. 6b. Observe that
the threshold function allows non-integer values but favors
integers (it has integer valued deadzones). Note also that this
threshold function applies componentwise.

In this setup, we ran ISTA with the four choices described in
Experiment 1, namely ISTA with α0 (largest step-size allowed
by the MM framework), ISTA with α1 (largest step-size for
which convergence is ensured), TwIST and FISTA. We chose
the parameters for TwIST and FISTA similarly as in Exp. 1.
The history of the cost function and the distance to the limit is
shown in Fig. 7a,b respectively. The figures are in agreement
with those in Exp. 1. Increased step sizes lead to acceleration
that is about the same order (in fact, better in this example) as
that achieved by TwIST and FISTA. We again note, however
that we do not have a theoretical explanation for this behavior
(whereas FISTA is theoretically optimal in terms of reducing
the cost for convex penalties).
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(a) Underlying Clean Signal and its Least Squares Estimate (Exp. 2)
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(b) Clean Signal and its Estimate using a Weakly Convex Penalty

10 20 30 40 50 60 70

0

1

2

3

4

 

 

Est.
True

Fig. 5. (a) The true signal and its least squares estimate for Exp. (2). (b)
The clean signal and its estimate obtained by solving (30).

(a) Penalty Function in Exp. 2
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(b) The Staircase Threshold Function
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Fig. 6. (a) The penalty function used in Exp. 2 to promote integer values
in the range [0, 4]. (b) The threshold function Tα per (3) associated with the
function in (a).

(a) History of the Cost Function in Exp. 2

5 10 15 20 25 30 35 40 45 50
0

1

2

3

Iterations

lo
g(

co
st

)

 

 
α

0

α
1

TwIST
FISTA

(b) History of the Distance to the Minimizer
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Fig. 7. (a) shows the history of the cost function for Exp. 2. The same
choices as in Exp. 1 are used for comparison. (b) shows the history of the
distance to the unique minimizer.

VII. CONCLUSION

In this paper, we studied the convergence of ISTA when
the penalty term is weakly convex and provided a generalized
convergence condition. We also demonstrated that larger step-
sizes lead to faster convergence, although we do not have
a precise theoretical justification at the moment. The gen-
eralization in this paper relies on a study of the proximity
operator for a weakly convex function. Specifically, we have
seen that the proximity operator for a weakly convex function
is no longer (firmly) non-expansive and/or averaged. However,
under proper scaling, the proximity operators regain these
properties. Given this observation, it is also natural to consider
extensions of this work to other algorithms that employ prox-
imity operators, specifically the Douglas-Rachford algorithm
[19], which can in turn be used to derive other algorithms such
as the alternative direction method of multipliers (ADMM)
[10], [19], or the parallel proximal algorithm (PPXA) [32].
We hope to investigate these extensions in future work.
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