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Abstract—The problem on the Cramer-Rao Lower Bounds
(CRLBsS) for the joint time delay and Doppler stretch estimation
of an extended target is considered in this paper. The integil
representations of the CRLBs for both the time delay and
the Doppler stretch are derived. To facilitate computation
and analysis, series representations and approximationsf dhe
CRLBs are introduced. According to these series representans,
the impact of several waveform parameters on the estimation
accuracy is investigated, which reveals that the CRLB of
the Doppler stretch is inversely proportional to the effecive
time-bandwidth product of the waveform. This conclusion
generalizes a previous result in the narrowband case. The paolar
wideband ambiguity function (WBAF) based delay-Doppler
estimator is evaluated and compared with the CRLBs through
numerical experiments. Our results indicate that the WBAF
estimator, originally derived from a single scatterer mode, is
not suitable for the parameter estimation of an extended taget.

Keywords—CRLB, time delay, Doppler stretch, wideband signal,
extended target, estimation accuracy.

I. INTRODUCTION

assumption. In contrast, a wideband signal entails a higher
range resolution. Thus a target may span over several adjace

range units and should be described with multiple scaterer

[14]-[18]. In this case, we refer to the target as an extended
target. Secondly, the Doppler effect on the echoes in the
narrowband model is approximated by the shift of the carrier

frequency while the complex envelope of the transmitted

waveform is assumed to be unaffected. For wideband signals,
however, the Doppler effect on the complex envelope must be
taken into account [13].

As a lower bound for the variance of any unbiased estimator,
the Cramer-Rao Lower Bound (CRLB) is an important tool
for performance evaluation of various estimation methdds [
[19]-[24]. Due to the asymptotically efficient property of
the maximum likelihood estimator (MLE), the CRLB can be
used to predict the performance of the MLE. In addition, the
CRLB has been employed as a criterion for optimal waveform
selections[[22]-£H[25].

The CRLB for the joint time delay and Doppler shift
estimation with narrowband signals has been investigated

HE joint estimation of time delay and Doppler stretch of in numerous studies (e.glI[1]+{5] and references therein),
a noise contaminated Signa' is a fundamental prob'em |NVh||e the Counterpart for wideband Slgna|S has received les

radar and sonar systems, and has been extensively addresdéigntion. Specifically,[[19],[[22] concern the CRLB for a
for the case involving narrowband signals$ [L]2[12]. In manydeneral wideband signal along with a single scatterer model
modern sensing applications, however, wideband signals aEXploiting an extended target model, [26] consider the CRLB
utilized and the narrowband model may not be applicable iPf the velocity and HRR profiles estimation with a step
these situations. A narrowband model is appropriate wheffequency signal. The study iri_[27] examines the CRLB
BT < ¢/2v [13], where B and T are the bandwidth for a noncoherent multiple-input multiple-output (MIMO)
and the duration of the transmitted signal, respectively, radar system in which the signals transmitted from differen
is the relative velocity between the target and the sensoffansmitters are assumed to be narrowband. In this paper, we
and ¢ is the propagation speed of the signal. In imagingcon5|der more genera_l W|deb§md sensing systems an_d derive
radars, for instance, signals with a large bandwidthare the CRLB for an arbitrary wideband signal along with an
usually employed since high range resolution (HRR) is néede €xtended target model.
For systems requiring low interception probability (LP&s It is shown in [1], [20], [24] that under the wideband model
another example, an effective approach is to emit a low-powefor a single scatterer, the CRLB of the time delay estimation
signal with a largeBT such that the energy is spread over ais inversely proportional to the effective bandwidth of the
wider region in the time and/or frequency domain. In eithertransmitted signal. Under a similar condition, [22] proteat
case, the wideband model is more appropriate. Meanwhie, thincreasing the effective time-bandwidth product can impro
narrowband assumption may not be justifiable in some sonahe joint estimation accuracy of the time delay and the Deppl
systems|[[13]. The propagation velocity of sound in water isstretch. Nevertheless, how the waveform parameters affect
roughly ¢ = 1500m/s. If the relative velocity between the the CRLB of the time delay as well as the CRLB of the
target and the sonar is = 22.5m/s, it yields ¢/2v = 33.3. Doppler stretch are not considered separately. [28] déssus
Thus, even a signal witl/BT > 10 may not qualify as a the effect of the bandwidth on the range estimation accuracy
narrowband signal. in a multipath environment through simulation and shows tha
There are significant differences in modeling echoeganging error diminishes with an increasing bandwidth hiis t
between wideband and narrowband signals. Firstly, a targgtaper, we take an analytical approach and study the effects
can be modeled as a point scatterer under the narrowbarmd waveform parameters on the CRLB of both the time delay
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and the Doppler stretch for the wideband model along withprofile of the target. The noise vecter = [wy, ...,wN,l]T €
an extended target. As shown in this paper, the CRLB of th&eV>! is distributed asCN(0,02I). The parameters under
time delay is inversely proportional to the effective bamtv,  estimation are§ = Tvy,aT,bT]T, wherea = Re{x} and

and the CRLB of the Doppler stretch is inversely proportlonap, — 1m{x}. In addition, following assumptions are made:

to the effective time-bandwidth product. These conclusiiam Assumption 1Forp = 1, ..., P, we havey((N—1)A—7,) >
the wideband model are a generalization of the counterpart iT |t indicates that the echo are completely sampled.
the narrowband case. Assumption 2Both 2 and -L. are considered as integers.

The rest of this paper is organized as follows. Section; gyggests that the sampling intenlis small enough.
[ establishes the signal model and defines the waveform assumption 3s(t) has derivatives of all orders throughout
parameters under investigation. In Sectlod Ill, the CRLBs/_ . +00) and there exist constan€, C» > 0 such that
of the time delay and the Doppler stretch are derived an ’ ’

discussed. The integral representations of the CRLBs are‘M_(’@‘ < CyekC2
presented firstly and, for the convenience of analysisgseri ‘
representations and approximations are presented. Based @where

J\Z(k)‘ < C1efC2 i =0,1,2, kN, (4)

the series representations, the influences of the effective u® + i [s® ) th (5)
bandwidth and the effective duration on the CRLBs are i e '

analyzed. Sectiob IV provides some numerical examples, in

which the performance of the wideband ambiguity function ~(k) oo ik kil

(WBAF) based delay-Doppler estimator is evaluated. Sectio M;™ =1Im /_OO t's* W () s (t)dt o . (6)

[V] contains the conclusions.

The notations(™)(¢) is the abbreviation of2::(t). The

I[I. M ODELING AND PROBLEM STATEMENT regularity condition[(4) ensures the interchangeabilég®een
Consider an extended target which contaifs ideal integrals and limits '?O)SL.ijECt'MB' .

scatterers and is moving along the line of sight (LOS) with The param(_aterM(q) 1S the(l)energy of the _ transmitted
a constant radial velocity relative to the sensor. The velocity Waveform, while M; * and M, can be considered as a
is positive if the target is moving away from the sensor. Wemeasure of the bandwidth and the duration, respectivelg. Th
assume that, = 7+ (p — 1)A is the time delay of theth  effective bandwidtlof s(¢) is defined by([28]
scatterer, wheré\ is the sampling interval. Thus, the scatterers
are equally spaced along the LO$.= (¢ — v)/(c + v) is )
the Doppler stretch , whereis the propagation speed of the _ <Mél)> 2

My

+o0 2
IRERIGIN

transmitted waveslL = %C(Tp —71) is the size of the target. = (7)
Let s(¢t) be the complex envelope of the transmitted signal
which is time-limited to[0, T'], that is,s(t) = 0 if ¢ ¢ [0,T].

Thus, the complex envelope of the echo can be modeled asAccording to the properties of the Fourier transformatién,

P measures the spread of the sigs@l in the frequency domain
y(t) = prs(v(t — 7)) +w(t), (1) in aroot mean square (RMS) sense and thus we also refer to
=1 it as the RMS bandwidth. We define tledfective duratioril’

. . as

where z,, accounts for the propagation attenuation and the

influence of the Doppler stretch on the signal energy. The D\ 3
noisew(t) is considered as a bandlimited complex Gaussian = <M2 ) _

+0o0 9
J Is) i

+o0 2
[ [sO)|" t2at

MY

(8)

random process, whele {w(t)} andIm {w(t)} are mutually -
independent with a bandwidth/(2A) and power spectral
density Ny/2. Sample the echo at the rate bfA, and [1)

turns into and refer toBT as theeffective time-bandwidth produdtiote
P that the definition of the effective duration in this paper is
Yn = Z:Cps(v(nA — 7)) +wy,n=0,1,..,N—1, (2) different from that in [[28], where the effective duration is
=1 defined by

—+00 2
IRESIGIN

wherey,, = y(nA), the noisew,, = w(nA) is distributed as +o0 3
CN(0,02) ando?A = N, [d]. Rewrite [2) as [ON: _L |s(t)|? t2dt
where y = [yoﬁ--ﬁyNA]T € CNxl is the observation —L [s(®)[" dt

X 1 .
Leor o e camplex messuerent M oy a narousand sgna

x = [z1,..,xp]" € CP*1 represent the high-range-resolution s(t) = exp {j2n fot} (u(t) —u(t — T)), (10)



whereu(t) is the unit step function, we havB = f. and whereF;; € RF\*Fi with P, = P, =1 andP; = P, = P.
T =T, = ¥3T. Thus, these two definitions on the effective The elements oFIM are calculated by
duration are in accord for narrowband signals. As shownén th 9 0DH 9P 9 8(1)
Subsectiof [II-C an@1I=D, the CRLBs of the time delay and F;; = —2Re{ H } JF3p = —2Re{ } ,
the Doppler stretch for a wideband signal are largely infheeh g o or o

by T, notT». Therefore, we will henceforth use the definition [ 2 R w09 8<I> F 2 Re L oH 0P
of the effective duratior{8) in the following sections. 127530 o7 9y 32 = o he oy
Finally, some matrices and notations are introduced. We 9 9DH 5P 9
dehfiner<k> - [rg“)} ERPXP,1<i,j<Pk=0,1,2., In»=SRe {XH—(% 3_7)(} Fgs = Re {070},
where
2 0P 2 0P
(k) _ E_ Ak - = HZZ - = HZ™
Ty = (i — )" = Aj. (11) Fy = > Im {‘I) BTX} yFuo = aQIm {‘1) 6’}/X} )
Particularly,T'® = 15, p =117, that is, all elements ifr(®) Fu— %Im (070} . (19)

are equal tol. In addition, the notatiory(z) = O(g(z)), as
x — xo means that there exist constadts Cs > 0, such that  The CRLB of the time delay and Doppler stretch are given by

lim sup ) = lim sup /) <Cs,  (12) var(r) > CRLB; = azz/ (a11a22 — ai,) (20)
T—To g(I) 6_>OCE€(I[)75,:E()+5) g('r) 2
var(y) > CRLB, = a1/ (allagg — au) , (21)
where
liminf || = lim inf @ > Cy, (13) .
T—T0 g(x) §—0z€(zo—0,20+0) | g CL‘) - - Fs3 —Fu3 Fs;
aij = Fij — [ F§; FY ] Fu3 Fas Fy |
(22)
IIl. DERIVATIONS OF THECRLBS Define 6(1)
A. Integral representations of CRLBs F3; = F3 + jFy = ;‘PH 50 X (23)
The CRLB is a lower bound for the variance of any unbiased . 9 o
estimator and is usually used as a benchmark to evaluate the F3o = F30 + jF4 = —2<I>H— , (24)
performance of estimators. The parameters under estimatio g 9

_ T 1,717 ; i _ 2
are 0 = [r,7.a ,.b 1. A.ccoroAllng to [1], the covariance Fus = Fag + jFas = 5070, (25)
matrix of any unbiased estimatérsatisfies o

. A Then, we have
C,2E {(0 —9)-(6- e)T} >FIM™',  (14)

— H——1—
aij = Fij — Re {FSiF33 FSj} ) (26)
where FIM € R(EPH2)x(2P+2) s the Fisher information
matrix defined by Note thatfgg1 exists due to the positive definite property of
FIM = E {Vg(Inp(y; 0)) - v (Inp(y; 0))} (15) FIM. The elements oF'IM are calculated as following
P P N-1
with 2 H@@ 3@
F = — =
. {a o 9 ) ]T 16) 1 02Re{x or or 022;2%
0= |3 5. 3. . ’ "
o7 Oy Om v ro [ o 95" (A = 1)) Ds(r(nA — 7))
The matrix inequalityA > B meansA — B is positive N or or
semidefinite. The observation vectgrin (3) is distributed 2 0o
as CN(u(0),0°I) with u(@) = ®x, and thus the Fisher il ZZI Ij/ *(1)(t)s(1>(t+vAij)dt, (27)
information matrix can be calculated by [1] =1 =1
FIM] — 2p ou'(6) 0u(8) (17) In the last line, the summation is approximated with an irgeg
i 52 ¢ 00, ‘99. ) by letting A — 0, which is based on the assumption that the

The CRLE ofé is given by the diagonal elements BIM-" sampling intervalA is small enough. Similarly, we have
iS giv y i .

PartitionFIM as 2 OBH oo
F12——2R6{XH } ~ ZZ
Fy, F» FL  FL o or oy WNO i=1 j=1
FIM = | L2 F» Fg T (18)

F31 Fzp Fzz —Fy3 |’

+
Re{x;xj/ t5* D (¢ 4+ yA1)s0 ()dt} 28)
Fy1 Fio Fy3  Fa3 o



2 oH 5P 2 K& where
F22=—Re{xH8—8 }” ZZ

—X
o 9y Oy VP No = = K K FENT (FEO) T HE)
" o =m0 e { (7)) (7)) T EP ) @
x;ﬂxj/ t(t +vA:5)s* D ()sV(t +~vA)dt,  (29) _ o
—o0 It is recommended to substituk®;; ’ with its original value to

avoid the possible singularity (ngl;). The next result provides
an bound on the approximation error due to the truncation.
Proposition 1:

K+1
CRLBY) — CRLB, = O <(2L7 ez{[‘;{fi}){ 9" ) , (38)

P

_ 2 too

[FSI]“ ~ _FO .I'j/ s*(t)s(l)(t + ’)/Aij)dt, (30)
— oo

P

_ 2 teo

Faaly ~ oy ooy [ 57t 498,050 (0, (31)
i=1 e

K+1

— oo K +1)!
Fal,~ [ 5 Ostt7a00 (32 E+D
b0 e as K — +oo, where(, is the constant in{4).
Substituting [(2I7)E(32) intd (20]-(21) gives the CRLBs. Proof: See the AppendixIC. [ |
Proposition[1l indicates that the error of the approximate
B. Series representations of CRLBs CRLBs is bounded, and thus the factors impacting on the error

The previous representations have a limitation that theyzgnﬂ?: ggglgiﬂéﬁgﬁgg'm%gsggg)’ a larges required

are not helpful to analyze the properties of the CRLBs. One Finally, we consider a special case where the scattering

reason is that[{(27]-(82) invilove many complicated integral e 1
of which the integrands depend on both the waveform and th pefficientsx are real numbers. The CRLBs are given by

target. To address this issue, we replace functidisr vA;;) )-222). where

and sV (t +~A;;) in @7)-(32) with their Taylor series, a;; = Fij —F3FyFaj,i,j=1,2. (40)
respectively, and then rewrite the CRLBs in the form of

series. As shown in{80)-(91), these series represengatioly ~ Comparing [(2B)E(25) with[(79), we have

consist of integraIsMi(k),Mi(k),z' = 1,2,3,k € N, which

: . ¥ (K) . _
are relatively uncomplicated and only depend on waveform. Fy = Mm Fjyi=1,2,3. (41)
Notice that some important waveform parameters, such as the
effective bandwidth and the effective duration, are dlgect Note that Fg(ff) = 0,i,7 = 1,2, and thus the CRLBs

determined by these integrals. Therefore, it is easier alyan do not rely on ]’\Zi(k). In Subsection[T=C andCTIED

the CRLBs by employing the series representations. In this : :
subsection, the series representations of CRLBs are dlerivé’vhen we discuss the influences of waveform parameters

. . (k)
and then some approximations on CRLBs are presented. grl(kt)he %SLBS'_ it is reasonable tgv(%ellleve thiat;™ and
Based on the Taylor series |30], we have M;™ /M. are independent becaudé, ™ is a measurement

too mam of the correlation betweer®) and s(*+1), Furthgz;r)more, the
N TR (m) interesting waveform parameters are defined\by”’ and the
s(t+74¢) = Z m)! st (), vt €R, (33) representations of the CRLBs are briefer in this case. Thus,
we henceforth only consider the case of real-valued saadter
(m) coefficients without loss of generality and our developnwgnt
NS (t),vt €R, (34)  subsectio TM-C andII-D can be easily generalized to the
complex case.

m=0

+o0 m—lAmfl

m=1

where0! £ 1. Substituting [[3B)E(34) intd (27)=(82), applying

Theorem[B (AppendiX_A) and the Lebesgue’s Dominateds pjscyssions on waveform parameters wiith= 1
Convergence Theorem, which is one of the rules on the

interchangeability between integral and liniit [31], we aiht In previous subsections, the CRLBs for an extended target
the CRLBs in the form of series, which are presented in théire derived. Whe” = 1, the extended target becomes a single
Appendix(B due to their complicate expressions. scatterer anck reduces to a scalar. Let P = 1 in (20)-(21),
By (78)-(91), the CRLBs can be approximated as and the CRLBs of a single scatterer target are
2 ag2
eruB = o/ (0 - (o)), @ vrpa(r) 2 ORLBres = 28—y @

2 a
CRLBSYK) = agi()/ (ag?)ag;) - (ag{)) > , (36) varp=1(y) > CRLB, p=1 = m, (43)
12



where independent. Then, fa¥/y < +o00, By < 400 andTy < +o0,

I 20V 222 M we have
a11 = ———— 012 = —————, (44) O\ ! 52
No 7No CRLB, ~ O (MO ) B?), (49)
i 22 a MY
- _ 2o ), 45 L
2 73No< 2 4 (45) CRLBWO((M(@) B—ZT—2>, (50)

~ We next investigate the influences of the effective bandwidt o
B and the effective duratiof’ of the transmitted signal on the as M(§0)7 B, T) — (Mo, By, Tp).

CRLBs. We assume thas and 7" are independent af/\”, Proof: See the AppendixD. [ ]
which holds if an alteration o/’ results from changing the Therefore, we concluded that 1) there exists a positive
amplitude of the transmitted signal. correlation between the estimation accuracy of the timaydel

Theorem 1:Let My < 400, By < +o0o and Ty < +oo. and the effective bandwidth, 2) the estimation accuracy of
Assume that 1)3 and 7' are independent OMO(O)’ 2) there the Doppler stretch is positive correlated to the effective
exists a constant > 0 such that time-bandwidth product. .

Consider the narrowband signal {10), we have
lim m({t||sV0)] > e}) >0, @)

0) 5 -1
(M B, T)~(Mo,Bo,To) CRLB, = O ((JVIO(O)) fc—2) 7 (51)
wherem(A) is the Lebesgue measure of a getc R. Then,
—1
we have CRLB, = O ((Mé”) fCQTQ) . (52)

-1
CRLB, p_, = O ((M§0>) BQ> , (47)
The Doppler shift is defined by, = ~f. — f.. According to
[1], the CRLB of the Doppler shift is given by

-1
CRLB, p—; = O [ (M BQTQ), 48 1
T <( ) (48) CRLB;, = ffCRLBV:O<(MéO)) T—Z). (53)

0 = =
as Mé : T) — (Mo, Bo, To). It indicates that for narrowband signals, there exists atipes

Proof: See the AppendikD. B correlation between the estimation accuracy of the Doppler
Notice that[(4B) can be easily met in practice. Therefore, wehift and the duration.
conclude that 1) there exists a positive correlation betwee
the effective bandwidthB and the estimation accuracy of
the time delay, 2) there exists a positive correlation betwe
the effective time-bandwidth produ@T and the estimation  In this section, we compare the performances of several
accuracy of the Doppler stretch. estimators with the derived CRLBs and provide numerical

examples to illustrate the properties of CRLBs.

: ; : In the case where a narrowband signal is transmitted, a

D. DISCIUSSIOI’]S on_ waveform pgrameters in the general Casestandard method to estimate the time delay and the Doppler
In this subsection, discussions .about the mfluence_s Odtretch is to use the ambiguity function (AF) [1]. [29], whic

waveform parameters on CRLBs in the case of a singlgs asymptotically efficient, that is, the estimator is ursei
scatterer are generalized to the extended target situdti®  snd reaches the CRLB when the number of independent
worth mentioning that an alteration of the effectivek baritvi  gpservations approaches to infinity [32]. For a wideband
or the effective duration results in changes f*), i =  model, when the target has only a point scatterer, the wittéba
0,1,2,k > 2, which also affect the CRLBs. Therefor&s  ambiguity function (WBAF), which is the counterpart of the
and 7' influence the CRLBs partly through these waveformAF, is employed([183],[122],[[33]. It is shown in [22] that unde
parameters. Notice that the leading terms/[in| (80)-(91) onlthigh SNRs, the WBAF estimator is asymptotically unbiased
contain Méo), MY = 1,2,3 and have no immediate and the variances are close to the CRLBs for a large variety
relations WithMi(k), k > 2. Thus, it is believed that for an Of signals. In this section, we examine the performance ef th

extended target, the energy, effective bandwidth and tefeec WBAF-based estimator for an extended target.

IV. NUMERICAL RESULTS

duration influence the CRLBs mainly through® %k < 1 The WBAF, suggested by [22], is

rather thanMi(k) or Mi(k)/Mi(l), k > 2. To simplify the +oo

discussion, we assume that\”’, B and T influence the Wi, s, (1,7) = V7 / s (t)sh(y(t — 7))dt, (54)
CRLBs throughMi(k), k<1. N

. k 0 :

'(I'(Jr;ec?rem 2:Suppose that 1%((0))/”{5 ) are_|Qdependent of \wheres, and s, are the received and the reference signal,
My, i=0,1,2,k € N*, 2) My~, B andT influence the respectively. The received signal is modeled as[{1), and
CRLBs throughMi(k),k < 1, and 3)T and B are mutually the reference signat; is different for various estimators:



1) Oracle matched filter[7,,4.] = argmaxW, 5, with 1 ‘ ‘
T,y —~ —>— CRLBs of Time Delay
P i R -140+ Oracle Matched Filter |
sa = Y, xps(y(t — 7)), 2) WBAF estimator[7,4] = —&— WBAF Estimator
p=1 -145¢
arg max W, s, With sq = s(y(t — 7,)). The estimate$r,, .| -150}
T

are idveal but impractical, because the number of scatterers
P and the scattering coefficienis are unknown. The oracle
matched filter is employed as a reference to illustrate the
properties of CRLBs. In practice, the WBAF estimafér4|

is often applied.

The CRLBs and the mean square errors (MSESs) of these sy
two estimators versus various SNRs are shown il Jfify.1-4. The -180
number of scatterers areé = 4 and16. All the =, are assumed 185 ‘ ‘ ‘ ‘ ‘
to equall. The time delay is = 2 x 10~%s and the Doppler ® 10 R PR % %
stretch isy = 1/1.06. The source signad(¢) is a monopulse

Chirp signal, time-limited td0, 5 x 10~°s] and approximately Fig. 1. The CRLBs and MSEs of time delay wifh = 4
band-limited to1.28 x 10°Hz, that is,

s(t) = cos(2mat?)[u(t) — u(t — T)], (55)

wherea = 2.56 x 10°Hz/s, T = 5 x 10~°s and u(t) is the
unit step function. The SNR is defined as

CRLBs or MSEs (dB)
LA A
(o2} (o2} (41}
a1 o 5

-170+ ~

T T T
—— CRLBs of Doppler stretch
Oracle Matched Filter
—o&— WBAF Estimator

1 too p 2 1 @ -%0f

SNR = — / r,s(y(t — T, dt = —xTAx (56 g
oA g ps(y(t = 7)| dt = (56)

and is changed by alteringy/y. The sampling interval\ = %

ol ]
6.25 x 10~8s. The CRLBs are calculated by (27)-{32). The \

MSEs are computed with00 independent Monte Carlo trials. eok

As presented in Figldl4, the MSEs of the Oracle matched

filter estimator are smaller than the corresponding CRLBs 0 ‘ ‘ ‘ ‘ ‘

when the SNR is relatively large (e.g. larger thzhlB when ° 1 L oorem % %

P = 4) and the reason is that the Oracle matched filter

assumes that atl, are known and thus the number of Unknown iy 5 The CRLBs and MSEs of Doppler stretch with= 4
parameters is actually smaller than the number of unknowns

in the CRLB derivation. Meanwhile, the MSEs of WBAF

estimator gradually deviate from the corresponding CRLBs, -130 e
indicating that the WBAF estimator is not appropriate under 1356 _ Oracle Matched Fiter |
high SNRs. In addition, we find that under high SNRs, the I = WBAF Estimator

performance of the WBAF is significantly affected by the
number of scatterers.

The approximate CRLB$ (85)-(B7) are next compared with
the theoretical CRLBS[{20)-(21). The results are presented
in Fig[d with P = 4 and 16, respectively. The approximate
CRLBs are calculated using (3%)-{37) withk = 1. Other
parameters are the same as those foiFig.1. It is seen that the
approximate CRLBs are accurate in the case of a small target
(P = 4) and become less accurate when the target is relatively sy
large (P = 16). The approximate CRLBs with < K < 4 -180, - = . P = -
for P = 16 are presented in FId.6. Higl.5-6 indicate that 1) SNR (dB)
the approximate error diminishes if a largkr is chosen, 2)

a larger K is required as the size of target increases. Theseig. 3. The CRLBs and MSEs of time delay wifh = 16
statements are coincident with {38)4(39).

The influences of the size of the target on the CRLBs are
shown in Fid.¥Y and Figl8, wher® = 1,4,16 and 100. The The influences of the effective bandwidth on the CRLBs
other parameters are the same as those forlFig.1. The CRLB$ the time delay are shown in Hig.9, whetechanges from
are calculated with(27J=(82). It indicates that the CRLBs a 0.256 x 10°Hz/s to 2.560 x 10°Hz/s and other parameters
higher when the size of target increases. are the same as those for Eig.1. The effective bandwidth

-145
=150
-155 >

-160

CRLBs or MSEs (dB)

-165

=170
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CRLBs are calculated with (27)=(B2). These numerical tssul Two experiments are performed to demonstrate the relation
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APPENDIXA
between the time-bandwidth product and the CRLB of the THEOREM[3AND ITS PROOF
Doppler stretch. In the first ond?T" changes and’ is fixed. Theorem 3:For p, ¢ € N*, we have
In the second oneBT is fixed andT varies. The results +OO’ '
are depicted in Fig.10 and Higl11, respectively. Note that t Re{/ () ()50 (t)dt}
effective time-bandwidth produdBT is proportional toa7™ oo
for a Chirp signal. In Fig.10; changes fron.256 x 10°Hz/s 1yp+k k) — 9k (57)
to 2.560 x 10°Hz/s and other parameters are the same as those = { (()_ ) 0o Pt B 2% + 1
for Fig[d. The effective time-bandwidth produBf increases ' ptgq=2k+1,
from 2.6988 to 35.3786. The effective duratiori’ increases Too @) (11 (@)
from 3.549 x 10~5s to 3.893 x 10~°s and can be considered as e {/ ts™ P (t)s' (t)dt}
almost unchanged. These parameters are designed sintdarly P
those for Fid.D. In Fig. 11472 = 6.4, T increases fron.5 x _ (—1)”+’“M1(k), p+q =2k,
107%s to 5 x 10~ 5s and other parameters are the same as those T (PR —k— l)M(’“), prqg=2k+1,
for Fig[, implying thatT" increases from.1678 x 10~°s to ? (58)
3.8927x10~%s and BT = 35.3786. The CRLBs in both figures
are calculated with[(27]-(32). Combining Figl10 with Ei.1 +o0
we find 1) there exists a positive correlation between the Re{ / t2 *(t)s(‘”(t)dt} (59)
effective time-bandwidth product and the estimation aacur —00
of the Doppler stretch, 2) the relation between the effectv =~ (—1)’“M2(’“) + (- )k“kQM (k=1) o = 2k,
duration and the CRLB of the Doppler stretch is not apparent. (—1)F (2% + 1) M 1( ’ g=2k+1,
—+oo
Im {/ s*(P) (1)@ (t)dt}
0, p+q =2k, (60)
V. CONCLUSION = { (_1)p+kM0(k)7 ptq=2k+1,
—+o0
In this paper, both integral and series representations oflm{/ tS*(p)(f)S(Q)(f)dt}
the CRLBs for the joint delay-Doppler estimation of an — . (61)
extended target are derived. Based on series expansion, | (—1)P*F(k — p)Mék’l), p+q =2k,
approximations of CRLBs are obtained. Our theoretical - (_1)p+k]\7[“(k) ptqg=2k+1
analyses and numerical examples indicate that the CRLBs Lo ’
of the time delay and the Doppler stretch are inversely +o0
proportional to the effective bandwidth and the effective Im {/ tgs*(t)s(Q) (t)dt} (62)
time-bandwidth product, respectively. In addition, comgua o0
with _th(_e case invqlving a single scatterer, an extendedetarg { (_l)kzk’]\/jl(k—l) q =2k,
consisting of multiple scatterers leads to higher CRLBseund = ) 9 (k DI
the same SNR level. (=1)FMy" — (=1)*(k* + k)M, q=2k+1



where* denotes the complex conjugate.
Proof of [58)

Proof: Write s(¢) in the form ofu(¢) + jv(t). Then, for
m = 2k, k € N*, we have

Re { /_ ;OO s* O (£)sm) (t)dt}

= / o u(t)u®M (t) + v(t)o@*) (t)dt
=(-1) (/+OO D (H)u* =D (1) + v(l)(t)v(%_l)(t)dt)
= (=1)* ( / o u® ()u® (t) + o® (t)p®) (t)dt)

— (—~1)F M. (63)

Similarly, form =2k + 1,k € N,

—+oo
Re {/ s*(0) (t)s(m) (t)dt} =
oo N
—Re {/ 5*(0) (t)s(m)dt} ,

(64)
which implies

—+oo
Re { / 5*(0) (t)s(%“)(t)dt} =0.

oo

(65)

Finally, for p,q € N, (51) is derived as follows

Re { L ;OO 5*(P) (1)@ (t)dt}

= (—1)"Re { / = s*O) (1) sPta) (t)dt}

_ { (—1)pteMP | p 4 g = 2k.

0, p+qg=2k+1. (66)

Proof of [58)
Proof: Form,n € N* andn < m, we have

Re { /_ :O £5%(0) (1) 5m) (t)dt}

= (—1)Re {/M ts*(l)(t)s(m_l)(t)dt}

— 00

+(~1)Re {/m 5*(©) (t)s(m”(t)dt}

oo

— (~1)"Re { / g g0 (t)dt}

—00
n—1

+3 (-1 Re {/+OO

=0 e

5*W (1) sm=1=0 (t)dt} . (67)

By making use of[{@6), the second term in the last lind_of (67)
becomes

n—1 oo o
;(_WHRG{/—OO s 0 () sm=1 l)(t)dt}

k
{ (=DM m—1 =2k (68)

10, m—1=2k+1.
Thus, if m = 2k, let n = k, and [67) becomes

+oo

— 00

if m =2k +1, letn =m, and [6F) becomes

—+o0
Re{/ ts*<0>(t)s<2k+1>dt} = (=D 2k + )M+

+oo
(_1)(2k+1)Re{/ ts*(2k+1)(t)s(0)dt}7
which implies

+oo 1
Re { / t5*(0) (t)s<2k+1>dt} = (=D)*k + 5)Mg’”.

(70)

h (71)
Wwith (©6) (69) and[(711),[(38) is derived as follows
Re { / o ts* ) (t)s(@ (t)dt} (72)

= (—1)Re {/;OO ts*<1’—1>(t)s<q+1>(t)dt}
(C1)PRe {/_:0 ) (t)s(p+q_1)(t)dt}
= (—1)"Re {/M ts*(® (t)s(p+‘1)dt}

<

+ (—1)’pRe {/ 5% (t)s(erql)dt}

ot p+q=2k

(VP — k= HMT, p+q=2k+1.
[ ]
Proof of [59)
Proof: For m,n € Nt andn < m, we have
—+oo

Re { / 25O (1) s(m) (t)dt} (73)

= (—1)Re {/M t23*<1>(t)s<m—1>(t)dt}

o0

seamed [ a0 Do)
= (—=1)"Re { [ :0 t25*(M) () g(m=m) (t)dt}

n—1

£ 3 (-1 2Re { / - ts*(l)(t)s(m_l_l)(t)dt} |

=0



By making use of[{72), the second term in the last line_of (73)

becomes

n—1 o)
> (-1)"'2Re { / " ts* O (t)sm=1-D (t)dt} (74)

=0 oo
_ ) oFrenm®), m—1=2k.
(=) (2 = 2(k + )M, m—1=2k+1.

Thus, if m = 2k, let n = k, and [Z8) becomes
—+oo
Re{/ 25O (1) (™) (t)dt}

= (—1)"MEP + (—1)MH Mg, (75)

if m =2k +1, letn =m, and [ZB) becomes

+oo
Re{/ 250 (4)5(m) (t)dt} = (=1)*1202k + 1)MP 4+

o0

oo

+oo
(—=1)%**+1Re { / 125 ()5 (t)dt} : (76)
which implies

+oo
Re {/ £25*(0) (£)5(m) (t)dt} = (=D 2k + )M,
- (77)
Combining [7b) and{47) give§ (b9). [ |

The proofs of [[6D)E(62) are similar and thus are omitted.

APPENDIXB
THE SERIES REPRESENTATIONS OF THERLBS

The CRLBs in the form of series are given y](20)(21) and

(29), where

Fy = lim F{ F +V=IRy,  (18)

K—oo Lij

Fo— lim FO = 1 (K) . —rK)
Fai = K1—1>r-Ii-loo Fi Kl—lgloo Figi +V—1Fy;,  (79)
and
—1 k2,}/2k+1 X
Y=Y ((Q)WM(S FUXHPCRHy  (80)
0<2k<K Y0
-1 k2,y2k+2 .
A= S G, e e
0<2k+1<K Y
—1 k+1272k71 )
s 2 (SWMf ATy, (82)
0<2k<K Y0
—1 k+12")/2k o~k
B = 3 WW HIXHDCRM Dy (83)

0<2k+1<K

10

(=DF(E =13
) G N
1<2k<K Y0

(=1)k24%3 A EFD  Hp(2k)

2K)IN, 2 x (84

0<2k<K
(K) _
Fyy' = E
0<2k+1<K

1 k2 2k—2 __
3 (2k) 1FYlN N HD@H Dy (g5)
0<2k+1<K (2k +1)!No

_1)]@2]{2,}/216—2 ~
( (2k+ 1)IN, My T e
INo

) _

_q)ktlgy2k-1 -
5 = Z ( ) Mé )F(Zk l)X, (86)

—1)!
o< 1<k (2k — 1)INy

Fyl = D

0<2k<K

-1 k+12 2k

K
F§32) =

(=D*(2k — 1)y*2
2 (2k) N,

—1)k+19~2k—1
| (72;)“ v M X, (88)
Vo

MPTCR %1

0<2k<K

0<2k+1<K

- Y

0<2k+1<K

(=1)F29*2 — ) amy
AR V2 NCOP'S (89)
OS%;{ (2k)! Ny 1

Fisg = D

0<2k<K

Fysd =

0<2k+1<K

-1 k2k 2k—1 __
((213 Ty M T

_ 1\ko~2k—1
T
+4V0
(_1)k272k 17 () (2k+1)
(2k+1)!N0M0 r ' (01)

APPENDIXC
PROOF OFPROPOSITIONT]

Note thatl{") = O((2L/c)*), M{" = O (e+2), M{¥) =
O (e*©2). Thus, from [7B){(311), we obtain

K
By~ P9~ 0 <(2Lv e (Cs1/0 “) (@)

K+1
Fy —Fy =0 <(2L”Y Dl ) ()

BecauseE(X) = Fg; — Fgf’ — 0 as K — +oo, the inverse

of F33 can be written ag [34]

F,, = (Féﬁf))fl +0 (E<K>) K 400, (94)



where

0 (E®)) = Z( (Fs)) E““) (F5)) . (@)
Thus, we have
-t g ) [
H( 33 ) B = L ’(Féf))_lE(mH
o)
and [38){(3D) follow.
APPENDIXD

PROOF OFTHEOREM AND 2

Lemma 1:Let My < 400, By < +00 and Ty < +oo.
Assume that there exists a constant 0 such that

m ({tHs(l)(t)‘ > e}) > 0. (97)

Then, there exists a constafif € (0, 1) such that

lim
(M{”,B,T) (Mo, Bo,To)

_ 2
T2/T? < (Mf”) /M MY < s, (98)

as (Méo),B,T) — (Mo, Bo, To).

Proof: According to the Cauchy-Schwartz inequality [31]

ands(t) =0,t ¢ [0,T], we have

(ayr)" < () < mPard. (99)
which implies
T2/T? < (Mf”)2 /MM < 1. (100)
Suppose[(98) does not. Then we have
lim sup Mf”)2 MM = 0. (100)

(M(§°>,B,T)—>(M0,BO,T0)

Define < f(t),g(t) >= ['2° f*(t)g(t)dt and [|f]| =<
f.f >%. Thus, let (Méo),B,T) — (Mo, By, Tp), and we

have
2
- (e tH H)

= —2Tp <s(1)(t)t, 5(1)(t)> + 2Ty ||s H

sO (8t — Tos(l)(t)H

— 0. (102)
Therefore, we obtain|| s (¢)t — TosM (¢ || — 0, which
implies s (t)t — Tys™) (t)] — 0 a.e., and thugs™D ()| — 0

a.e., a{MéO), B, T) — (Mo, By, Ty). The lemma foIIows by
contradiction. [ |

11

Proof of Theoreni]l
Proof: Substituting [(4¥)E(45) intd (42]-(43), we have

CRLB, p_; =

(103)
CRLB, p_; =
y® Ny (MéO)) e
222 |- 1p-27-2 (]\41(1))2 (]\/[(50))72 B-4AT—2

as (M. B Tz:{loa (Mo, By, Ty). Notice that the

denominators o 3) an@_(104) do not converge to zero due

to (@8) and the positive definite property BIM. [ ]
Proof of Theoreni]2

Proof: Referring to [78){(911) and_(100), we have
Fip=0 (Mg‘”B?) Fip=0 (M“”B?T)
1 =0 (M BT Mx),

Fs = O (MéO)Bsz‘(l)X) Fy3 = 0 (M{”B*A). (105)

Fay = O (M§0>B2T2)

Substitute [(105) into[ {40), and we have

an =0 (M{"B*) -0 <M(§O)B2XT (r<1>)T> x

(g ot
-0 (M{"B*) +0 <M(O)B2 T (r<1>)T A1r<1>x>

) (Mg‘”B?) ,

O)B2I‘ 1) )

(106)
and

a1s = O (Mé")B?T) a9y ~ O ( °>BZT2) (107)

Then, [49){(BD) follow by substituting C(IDE)-(107) into
(20)-(Z1). Notice that the denominators 6f](20) ahdl (21) do
not converge to zero due to the positive definite property of
FIM. |
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