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Abstract—The problem on the Cramer-Rao Lower Bounds
(CRLBs) for the joint time delay and Doppler stretch estimation
of an extended target is considered in this paper. The integral
representations of the CRLBs for both the time delay and
the Doppler stretch are derived. To facilitate computation
and analysis, series representations and approximations of the
CRLBs are introduced. According to these series representations,
the impact of several waveform parameters on the estimation
accuracy is investigated, which reveals that the CRLB of
the Doppler stretch is inversely proportional to the effective
time-bandwidth product of the waveform. This conclusion
generalizes a previous result in the narrowband case. The popular
wideband ambiguity function (WBAF) based delay-Doppler
estimator is evaluated and compared with the CRLBs through
numerical experiments. Our results indicate that the WBAF
estimator, originally derived from a single scatterer model, is
not suitable for the parameter estimation of an extended target.

Keywords—CRLB, time delay, Doppler stretch, wideband signal,
extended target, estimation accuracy.

I. I NTRODUCTION

T HE joint estimation of time delay and Doppler stretch of
a noise contaminated signal is a fundamental problem in

radar and sonar systems, and has been extensively addressed
for the case involving narrowband signals [1]–[12]. In many
modern sensing applications, however, wideband signals are
utilized and the narrowband model may not be applicable in
these situations. A narrowband model is appropriate when
BT ≪ c/2v [13], where B and T are the bandwidth
and the duration of the transmitted signal, respectively,v
is the relative velocity between the target and the sensor,
and c is the propagation speed of the signal. In imaging
radars, for instance, signals with a large bandwidthB are
usually employed since high range resolution (HRR) is needed.
For systems requiring low interception probability (LPI),as
another example, an effective approach is to emit a low-power
signal with a largeBT such that the energy is spread over a
wider region in the time and/or frequency domain. In either
case, the wideband model is more appropriate. Meanwhile, the
narrowband assumption may not be justifiable in some sonar
systems [13]. The propagation velocity of sound in water is
roughly c = 1500m/s. If the relative velocity between the
target and the sonar isv = 22.5m/s, it yields c/2v = 33.3.
Thus, even a signal withBT > 10 may not qualify as a
narrowband signal.

There are significant differences in modeling echoes
between wideband and narrowband signals. Firstly, a target
can be modeled as a point scatterer under the narrowband

assumption. In contrast, a wideband signal entails a higher
range resolution. Thus a target may span over several adjacent
range units and should be described with multiple scatterers
[14]–[18]. In this case, we refer to the target as an extended
target. Secondly, the Doppler effect on the echoes in the
narrowband model is approximated by the shift of the carrier
frequency while the complex envelope of the transmitted
waveform is assumed to be unaffected. For wideband signals,
however, the Doppler effect on the complex envelope must be
taken into account [13].

As a lower bound for the variance of any unbiased estimator,
the Cramer-Rao Lower Bound (CRLB) is an important tool
for performance evaluation of various estimation methods [1],
[19]–[24]. Due to the asymptotically efficient property of
the maximum likelihood estimator (MLE), the CRLB can be
used to predict the performance of the MLE. In addition, the
CRLB has been employed as a criterion for optimal waveform
selections [22]–[25].

The CRLB for the joint time delay and Doppler shift
estimation with narrowband signals has been investigated
in numerous studies (e.g. [1]–[5] and references therein),
while the counterpart for wideband signals has received less
attention. Specifically, [19], [22] concern the CRLB for a
general wideband signal along with a single scatterer model.
Exploiting an extended target model, [26] consider the CRLBs
of the velocity and HRR profiles estimation with a step
frequency signal. The study in [27] examines the CRLB
for a noncoherent multiple-input multiple-output (MIMO)
radar system in which the signals transmitted from different
transmitters are assumed to be narrowband. In this paper, we
consider more general wideband sensing systems and derive
the CRLB for an arbitrary wideband signal along with an
extended target model.

It is shown in [1], [20], [24] that under the wideband model
for a single scatterer, the CRLB of the time delay estimation
is inversely proportional to the effective bandwidth of the
transmitted signal. Under a similar condition, [22] provesthat
increasing the effective time-bandwidth product can improve
the joint estimation accuracy of the time delay and the Doppler
stretch. Nevertheless, how the waveform parameters affect
the CRLB of the time delay as well as the CRLB of the
Doppler stretch are not considered separately. [28] discusses
the effect of the bandwidth on the range estimation accuracy
in a multipath environment through simulation and shows that
ranging error diminishes with an increasing bandwidth. In this
paper, we take an analytical approach and study the effects
of waveform parameters on the CRLB of both the time delay
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and the Doppler stretch for the wideband model along with
an extended target. As shown in this paper, the CRLB of the
time delay is inversely proportional to the effective bandwidth,
and the CRLB of the Doppler stretch is inversely proportional
to the effective time-bandwidth product. These conclusions for
the wideband model are a generalization of the counterpart in
the narrowband case.

The rest of this paper is organized as follows. Section
II establishes the signal model and defines the waveform
parameters under investigation. In Section III, the CRLBs
of the time delay and the Doppler stretch are derived and
discussed. The integral representations of the CRLBs are
presented firstly and, for the convenience of analysis, series
representations and approximations are presented. Based on
the series representations, the influences of the effective
bandwidth and the effective duration on the CRLBs are
analyzed. Section IV provides some numerical examples, in
which the performance of the wideband ambiguity function
(WBAF) based delay-Doppler estimator is evaluated. Section
V contains the conclusions.

II. M ODELING AND PROBLEM STATEMENT

Consider an extended target which containsP ideal
scatterers and is moving along the line of sight (LOS) with
a constant radial velocityv relative to the sensor. The velocity
is positive if the target is moving away from the sensor. We
assume thatτp = τ + (p − 1)∆ is the time delay of thepth
scatterer, where∆ is the sampling interval. Thus, the scatterers
are equally spaced along the LOS.γ = (c − v)/(c + v) is
the Doppler stretch , wherec is the propagation speed of the
transmitted waves.L = 1

2c(τP − τ1) is the size of the target.
Let s(t) be the complex envelope of the transmitted signal
which is time-limited to[0, T ], that is,s(t) = 0 if t /∈ [0, T ].
Thus, the complex envelope of the echo can be modeled as

y(t) =

P∑

p=1

xps(γ(t− τp)) + w(t), (1)

where xp accounts for the propagation attenuation and the
influence of the Doppler stretch on the signal energy. The
noisew(t) is considered as a bandlimited complex Gaussian
random process, whereRe {w(t)} andIm {w(t)} are mutually
independent with a bandwidth1/(2∆) and power spectral
densityN0/2. Sample the echo at the rate of1/∆, and (1)
turns into

yn =

P∑

p=1

xps(γ(n∆− τp)) + wn, n = 0, 1, ..., N − 1, (2)

whereyn = y(n∆), the noisewn = w(n∆) is distributed as
CN(0, σ2) andσ2∆ = N0 [1]. Rewrite (2) as

y = Φx+w, (3)

where y = [y0, ..., yN−1]
T ∈ CN×1 is the observation

vector, Φ ∈ CN×P is the complex measurement matrix
with Φij = s(γ((i − 1)∆ − τj)). Scattering coefficients
x = [x1, ..., xP ]

T ∈ C
P×1 represent the high-range-resolution

profile of the target. The noise vectorw = [w0, ..., wN−1]
T ∈

CN×1 is distributed asCN(0, σ2I). The parameters under
estimation areθ =

[
τ, γ, aT ,bT

]T
, wherea = Re{x} and

b = Im{x}. In addition, following assumptions are made:
Assumption 1: Forp = 1, ..., P , we haveγ((N−1)∆−τp) ≥

T . It indicates that the echo are completely sampled.
Assumption 2: Both τp

∆ and T
γ∆ are considered as integers.

It suggests that the sampling interval∆ is small enough.
Assumption 3: s(t) has derivatives of all orders throughout

(−∞,+∞) and there exist constantsC1, C2 > 0 such that
∣∣∣M (k)

i

∣∣∣ < C1e
kC2 ,

∣∣∣M̃ (k)
i

∣∣∣ < C1e
kC2 , i = 0, 1, 2, k ∈ N, (4)

where

M
(k)
i =

∫ +∞

−∞
ti
∣∣∣s(k)(t)

∣∣∣
2

dt, (5)

M̃
(k)
i = Im

{∫ +∞

−∞
tis∗(k)(t)s(k+1)(t)dt

}
. (6)

The notation s(m)(t) is the abbreviation ofd
ms

dtm
(t). The

regularity condition (4) ensures the interchangeability between
integrals and limits in Subsection III-B.

The parameterM (0)
0 is the energy of the transmitted

waveform, while M
(1)
0 and M

(1)
2 can be considered as a

measure of the bandwidth and the duration, respectively. The
effective bandwidthof s(t) is defined by [29]

B̄ =

(
M

(1)
0

M
(0)
0

) 1
2

=




+∞∫
−∞

∣∣s(1)(t)
∣∣2 dt

+∞∫
−∞

|s(t)|2 dt




1
2

. (7)

According to the properties of the Fourier transformation,B̄
measures the spread of the signals(t) in the frequency domain
in a root mean square (RMS) sense and thus we also refer to
it as the RMS bandwidth. We define theeffective durationT̄
as

T̄ =

(
M

(1)
2

M
(1)
0

) 1
2

=




+∞∫
−∞

∣∣s(1)(t)
∣∣2 t2dt

+∞∫
−∞

∣∣s(1)(t)
∣∣2 dt




1
2

. (8)

and refer toB̄T̄ as theeffective time-bandwidth product. Note
that the definition of the effective duration in this paper is
different from that in [29], where the effective duration is
defined by

T2 =

(
M

(0)
2

M
(0)
0

) 1
2

=




+∞∫
−∞

|s(t)|2 t2dt

+∞∫
−∞

|s(t)|2 dt




1
2

. (9)

For a narrowband signal

s(t) = exp {j2πfct} (u(t)− u(t− T )), (10)
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whereu(t) is the unit step function, we havēB = fc and
T̄ = T2 =

√
3
3 T . Thus, these two definitions on the effective

duration are in accord for narrowband signals. As shown in the
Subsection III-C and III-D, the CRLBs of the time delay and
the Doppler stretch for a wideband signal are largely influenced
by T̄ , notT2. Therefore, we will henceforth use the definition
of the effective duration (8) in the following sections.

Finally, some matrices and notations are introduced. We
defineΓ(k) =

[
Γ
(k)
ij

]
∈ RP×P , 1 ≤ i, j ≤ P, k = 0, 1, 2, ... ,

where
Γ
(k)
ij = (τi − τj)

k = ∆k
ij . (11)

Particularly,Γ(0) = 1P×P = 11T , that is, all elements inΓ(0)

are equal to1. In addition, the notationf(x) = O(g(x)), as
x → x0 means that there exist constantsC3, C4 > 0, such that

lim sup
x→x0

∣∣∣∣
f(x)

g(x)

∣∣∣∣ = lim
δ→0

sup
x∈(x0−δ,x0+δ)

∣∣∣∣
f(x)

g(x)

∣∣∣∣ < C3, (12)

.

lim inf
x→x0

∣∣∣∣
f(x)

g(x)

∣∣∣∣ = lim
δ→0

inf
x∈(x0−δ,x0+δ)

∣∣∣∣
f(x)

g(x)

∣∣∣∣ > C4, (13)

.

III. D ERIVATIONS OF THECRLBS

A. Integral representations of CRLBs

The CRLB is a lower bound for the variance of any unbiased
estimator and is usually used as a benchmark to evaluate the
performance of estimators. The parameters under estimation
are θ =

[
τ, γ, aT ,bT

]T
. According to [1], the covariance

matrix of any unbiased estimator̂θ satisfies

C
θ̂
, E

{
(θ̂ − θ) · (θ̂ − θ)T

}
≥ FIM−1, (14)

where FIM ∈ R(2P+2)×(2P+2) is the Fisher information
matrix defined by

FIM = E
{
▽▽▽θ(lnp(y; θ)) · ▽▽▽T

θ
(lnp(y; θ))

}
(15)

with

▽▽▽θ ,

[
∂

∂τ
,
∂

∂γ
,

∂

∂x1
, ...,

∂

∂xP

]T
. (16)

The matrix inequalityA ≥ B meansA − B is positive
semidefinite. The observation vectory in (3) is distributed
as CN(µ(θ), σ2I) with µ(θ) = Φx, and thus the Fisher
information matrix can be calculated by [1]

[FIM]ij =
2

σ2
Re

{
∂µH(θ)

∂θi

∂µ(θ)

∂θj

}
. (17)

The CRLB ofθ is given by the diagonal elements ofFIM−1.
PartitionFIM as

FIM =




F11 F12 FT
31 FT

41

F12 F22 FT
32 FT

42
F31 F32 F33 −F43

F41 F42 F43 F33


 , (18)

whereFij ∈ RPi×Pj with P1 = P2 = 1 andP3 = P4 = P .
The elements ofFIM are calculated by

F11 =
2

σ2
Re

{
xH ∂ΦH

∂τ

∂Φ

∂τ
x

}
,F31 =

2

σ2
Re

{
ΦH ∂Φ

∂τ
x

}
,

F12 =
2

σ2
Re

{
xH ∂ΦH

∂τ

∂Φ

∂γ
x

}
,F32 =

2

σ2
Re

{
ΦH ∂Φ

∂γ
x

}
,

F22 =
2

σ2
Re

{
xH ∂ΦH

∂γ

∂Φ

∂γ
x

}
,F33 =

2

σ2
Re
{
ΦHΦ

}
,

F41 =
2

σ2
Im

{
ΦH ∂Φ

∂τ
x

}
,F42 =

2

σ2
Im

{
ΦH ∂Φ

∂γ
x

}
,

F43 =
2

σ2
Im
{
ΦHΦ

}
. (19)

The CRLB of the time delay and Doppler stretch are given by

var(τ) ≥ CRLBτ = a22/
(
a11a22 − a212

)
, (20)

var(γ) ≥ CRLBγ = a11/
(
a11a22 − a212

)
, (21)

where

aij = Fij −
[
FT

3i FT
4i

] [ F33 −F43

F43 F33

]−1 [
F3j

F4j

]
.

(22)
Define

F31 = F31 + jF41 =
2

σ2
ΦH ∂Φ

∂τ
x, (23)

F32 = F32 + jF42 =
2

σ2
ΦH ∂Φ

∂γ
x, (24)

F33 = F33 + jF43 =
2

σ2
ΦHΦ. (25)

Then, we have

aij = Fij − Re
{
F

H

3iF
−1

33 F3j

}
, (26)

Note thatF
−1

33 exists due to the positive definite property of
FIM. The elements ofFIM are calculated as following

F11 =
2

σ2
Re

{
xH ∂ΦH

∂τ

∂Φ

∂τ
x

}
=

2

σ2

P∑

i=1

P∑

j=1

N−1∑

n=0

Re

{
x∗
i xj

∂s∗(γ(n∆− τi))

∂τ

∂s(γ(n∆− τj))

∂τ

}

≈ 2γ

N0

P∑

i=1

P∑

j=1

x∗
i xj

∫ +∞

−∞
s∗(1)(t)s(1)(t+ γ∆ij)dt, (27)

In the last line, the summation is approximated with an integral
by letting∆ → 0, which is based on the assumption that the
sampling interval∆ is small enough. Similarly, we have

F12 =
2

σ2
Re

{
xH ∂ΦH

∂τ

∂Φ

∂γ
x

}
≈ − 2

γN0

P∑

i=1

P∑

j=1

Re

{
x∗
i xj

∫ +∞

−∞
ts∗(1)(t+ γ∆ji)s

(1)(t)dt

}
, (28)
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F22 =
2

σ2
Re

{
xH ∂ΦH

∂γ

∂Φ

∂γ
x

}
≈ 2

γ3N0

P∑

i=1

P∑

j=1

x∗
i xj

∫ +∞

−∞
t(t+ γ∆ij)s

∗(1)(t)s(1)(t+ γ∆ij)dt, (29)

[
F31

]
i1
≈ − 2

N0

P∑

j=1

xj

∫ +∞

−∞
s∗(t)s(1)(t+ γ∆ij)dt, (30)

[
F32

]
i1

≈ 2

γ2N0

P∑

j=1

xj

∫ +∞

−∞
ts∗(t+ γ∆ji)s

(1)(t)dt, (31)

[
F33

]
ij
≈ 2

γN0

∫ +∞

−∞
s∗(t)s(t+ γ∆ij)dt. (32)

Substituting (27)-(32) into (20)-(21) gives the CRLBs.

B. Series representations of CRLBs

The previous representations have a limitation that they
are not helpful to analyze the properties of the CRLBs. One
reason is that (27)-(32) invlove many complicated integrals
of which the integrands depend on both the waveform and the
target. To address this issue, we replace functionss (t+ γ∆ij)
and s(1) (t+ γ∆ij) in (27)-(32) with their Taylor series,
respectively, and then rewrite the CRLBs in the form of
series. As shown in (80)-(91), these series representations only
consist of integralsM (k)

i , M̃
(k)
i , i = 1, 2, 3, k ∈ N, which

are relatively uncomplicated and only depend on waveform.
Notice that some important waveform parameters, such as the
effective bandwidth and the effective duration, are directly
determined by these integrals. Therefore, it is easier to analyze
the CRLBs by employing the series representations. In this
subsection, the series representations of CRLBs are derived
and then some approximations on CRLBs are presented.

Based on the Taylor series [30], we have

s (t+ γ∆ij) =
+∞∑

m=0

γm∆m
ij

m!
s(m)(t), ∀t ∈ R, (33)

s(1) (t+ γ∆ij) =
+∞∑

m=1

γm−1∆m−1
ij

(m− 1)!
s(m)(t), ∀t ∈ R, (34)

where0! , 1. Substituting (33)-(34) into (27)-(32), applying
Theorem 3 (Appendix A) and the Lebesgue’s Dominated
Convergence Theorem, which is one of the rules on the
interchangeability between integral and limit [31], we obtain
the CRLBs in the form of series, which are presented in the
Appendix B due to their complicate expressions.

By (78)-(91), the CRLBs can be approximated as

CRLB(K)
τ = a

(K)
22 /

(
a
(K)
11 a

(K)
22 −

(
a
(K)
12

)2)
, (35)

CRLB(K)
γ = a

(K)
11 /

(
a
(K)
11 a

(K)
22 −

(
a
(K)
12

)2)
, (36)

where

a
(K)
ij = F

(K)
ij − Re

{(
F

(K)

3i

)H (
F

(K)

33

)−1

F
(K)

3j

}
. (37)

It is recommended to substituteF(K)
33 with its original value to

avoid the possible singularity ofF(K)
33 . The next result provides

an bound on the approximation error due to the truncation.
Proposition 1:

CRLB(K)
τ − CRLBτ = O

(
(2Lγ exp{C2}/c)K+1

(K + 1)!

)
, (38)

CRLB(K)
γ − CRLBγ = O

(
(2Lγ exp{C2}/c)K+1

(K + 1)!

)
, (39)

asK → +∞, whereC2 is the constant in (4).
Proof: See the Appendix C.

Proposition 1 indicates that the error of the approximate
CRLBs is bounded, and thus the factors impacting on the error
can be analyzed. According to (38)-(39), a largerK is required
as the size of the targetL increases.

Finally, we consider a special case where the scattering
coefficientsx are real numbers. The CRLBs are given by
(20)-(21), where

aij = Fij − FT
3iF

−1
33 F3j , i, j = 1, 2. (40)

Comparing (23)-(25) with (79), we have

F3i = lim
K→+∞

F
(K)
13i , i = 1, 2, 3. (41)

Note that F (K)
2ij = 0, i, j = 1, 2, and thus the CRLBs

do not rely on M̃
(k)
i . In Subsection III-C and III-D

when we discuss the influences of waveform parameters
on the CRLBs, it is reasonable to believe thatM

(k)
i and

M̃
(k)
i /M

(k)
i are independent becausẽM (k)

i is a measurement
of the correlation betweens(k) and s(k+1). Furthermore, the
interesting waveform parameters are defined byM

(k)
i and the

representations of the CRLBs are briefer in this case. Thus,
we henceforth only consider the case of real-valued scattering
coefficients without loss of generality and our developmentof
Subsection III-C and III-D can be easily generalized to the
complex case.

C. Discussions on waveform parameters withP = 1

In previous subsections, the CRLBs for an extended target
are derived. WhenP = 1, the extended target becomes a single
scatterer andx reduces to a scalarx. Let P = 1 in (20)-(21),
and the CRLBs of a single scatterer target are

varP=1(τ) ≥ CRLBτ,P=1 =
ã22

ã11ã22 − ã212
, (42)

varP=1(γ) ≥ CRLBγ,P=1 =
ã11

ã11ã22 − ã212
, (43)
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where

ã11 =
2γx2M

(1)
0

N0
, ã12 = −2x2M

(1)
1

γN0
, (44)

ã22 =
2x2

γ3N0

(
M

(1)
2 − M

(0)
0

4

)
. (45)

We next investigate the influences of the effective bandwidth
B̄ and the effective duration̄T of the transmitted signal on the
CRLBs. We assume that̄B and T̄ are independent ofM (0)

0 ,
which holds if an alteration ofM (0)

0 results from changing the
amplitude of the transmitted signal.

Theorem 1:Let M0 ≤ +∞, B0 ≤ +∞ and T0 < +∞.
Assume that 1)B̄ and T̄ are independent ofM (0)

0 , 2) there
exists a constantǫ > 0 such that

lim
(

M
(0)
0 ,B̄,T̄

)

→(M0,B0,T0)

m
({

t
∣∣∣
∣∣∣s(1)(t)

∣∣∣ > ǫ
})

> 0, (46)

wherem(A) is the Lebesgue measure of a setA ⊂ R. Then,
we have

CRLBτ,P=1 = O

((
M

(0)
0

)−1

B̄−2

)
, (47)

CRLBγ,P=1 = O

((
M

(0)
0

)−1

B̄−2T̄−2

)
, (48)

as
(
M

(0)
0 , B̄, T̄

)
→ (M0, B0, T0).

Proof: See the Appendix D.
Notice that (46) can be easily met in practice. Therefore, we
conclude that 1) there exists a positive correlation between
the effective bandwidthB̄ and the estimation accuracy of
the time delay, 2) there exists a positive correlation between
the effective time-bandwidth product̄BT̄ and the estimation
accuracy of the Doppler stretch.

D. Discussions on waveform parameters in the general case

In this subsection, discussions about the influences of
waveform parameters on CRLBs in the case of a single
scatterer are generalized to the extended target situation. It is
worth mentioning that an alteration of the effective bandwidth
or the effective duration results in changes ofM

(k)
i , i =

0, 1, 2, k ≥ 2, which also affect the CRLBs. Therefore,̄B
and T̄ influence the CRLBs partly through these waveform
parameters. Notice that the leading terms in (80)-(91) only
contain M

(0)
0 , M

(1)
i , i = 1, 2, 3 and have no immediate

relations withM (k)
i , k ≥ 2. Thus, it is believed that for an

extended target, the energy, effective bandwidth and effective
duration influence the CRLBs mainly throughM (k)

i , k ≤ 1

rather thanM (k)
i or M

(k)
i /M

(1)
i , k ≥ 2. To simplify the

discussion, we assume thatM (0)
0 , B̄ and T̄ influence the

CRLBs throughM (k)
i , k ≤ 1.

Theorem 2:Suppose that 1)M (k)
i /M

(0)
0 are independent of

M
(0)
0 , i = 0, 1, 2, k ∈ N+, 2) M (0)

0 , B̄ and T̄ influence the
CRLBs throughM (k)

i , k ≤ 1, and 3) T̄ and B̄ are mutually

independent. Then, forM0 < +∞, B0 < +∞ andT0 < +∞,
we have

CRLBτ ≈ O

((
M

(0)
0

)−1

B̄−2

)
, (49)

CRLBγ ≈ O

((
M

(0)
0

)−1

B̄−2T̄−2

)
, (50)

as
(
M

(0)
0 , B̄, T̄

)
→ (M0, B0, T0).

Proof: See the Appendix D.
Therefore, we concluded that 1) there exists a positive
correlation between the estimation accuracy of the time delay
and the effective bandwidth, 2) the estimation accuracy of
the Doppler stretch is positive correlated to the effective
time-bandwidth product.

Consider the narrowband signal (10), we have

CRLBτ = O

((
M

(0)
0

)−1

f−2
c

)
, (51)

CRLBγ = O

((
M

(0)
0

)−1

f−2
c T−2

)
. (52)

The Doppler shift is defined byfd = γfc − fc. According to
[1], the CRLB of the Doppler shift is given by

CRLBfd = f2
cCRLBγ = O

((
M

(0)
0

)−1

T−2

)
. (53)

It indicates that for narrowband signals, there exists a positive
correlation between the estimation accuracy of the Doppler
shift and the duration.

IV. N UMERICAL RESULTS

In this section, we compare the performances of several
estimators with the derived CRLBs and provide numerical
examples to illustrate the properties of CRLBs.

In the case where a narrowband signal is transmitted, a
standard method to estimate the time delay and the Doppler
stretch is to use the ambiguity function (AF) [1], [29], which
is asymptotically efficient, that is, the estimator is unbiased
and reaches the CRLB when the number of independent
observations approaches to infinity [32]. For a wideband
model, when the target has only a point scatterer, the wideband
ambiguity function (WBAF), which is the counterpart of the
AF, is employed [13], [22], [33]. It is shown in [22] that under
high SNRs, the WBAF estimator is asymptotically unbiased
and the variances are close to the CRLBs for a large variety
of signals. In this section, we examine the performance of the
WBAF-based estimator for an extended target.

The WBAF, suggested by [22], is

Wsrsd(τ, γ) =
√
γ

+∞∫

−∞

sr(t)s
∗
d(γ(t− τ))dt, (54)

where sr and sd are the received and the reference signal,
respectively. The received signalsr is modeled as (1), and
the reference signalsd is different for various estimators:
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1) Oracle matched filter[τ̂∗, γ̂∗] = argmax
τ,γ

Wsrsd with

sd =
P∑

p=1
xps(γ(t − τp)), 2) WBAF estimator [τ̂ , γ̂] =

argmax
τ,γ

Wsrsd with sd = s(γ(t− τp)). The estimates[τ̂∗, γ̂∗]

are ideal but impractical, because the number of scatterers
P and the scattering coefficientsx are unknown. The oracle
matched filter is employed as a reference to illustrate the
properties of CRLBs. In practice, the WBAF estimator[τ̂ , γ̂]
is often applied.

The CRLBs and the mean square errors (MSEs) of these
two estimators versus various SNRs are shown in Fig.1-4. The
number of scatterers areP = 4 and16. All the xp are assumed
to equal1. The time delay isτ = 2× 10−4s and the Doppler
stretch isγ = 1/1.06. The source signals(t) is a monopulse
Chirp signal, time-limited to[0, 5× 10−5s] and approximately
band-limited to1.28× 105Hz, that is,

s(t) = cos(2πat2)[u(t)− u(t− T )], (55)

wherea = 2.56 × 109Hz/s, T = 5 × 10−5s and u(t) is the
unit step function. The SNR is defined as

SNR =
1

N0

+∞∫

−∞

∣∣∣∣∣

P∑

p=1

xps(γ(t− τp))

∣∣∣∣∣

2

dt =
1

γN0
xTΛx (56)

and is changed by alteringN0. The sampling interval∆ =
6.25 × 10−8s. The CRLBs are calculated by (27)-(32). The
MSEs are computed with100 independent Monte Carlo trials.
As presented in Fig.1-4, the MSEs of the Oracle matched
filter estimator are smaller than the corresponding CRLBs
when the SNR is relatively large (e.g. larger than26dB when
P = 4) and the reason is that the Oracle matched filter
assumes that allxp are known and thus the number of unknown
parameters is actually smaller than the number of unknowns
in the CRLB derivation. Meanwhile, the MSEs of WBAF
estimator gradually deviate from the corresponding CRLBs,
indicating that the WBAF estimator is not appropriate under
high SNRs. In addition, we find that under high SNRs, the
performance of the WBAF is significantly affected by the
number of scatterers.

The approximate CRLBs (35)-(37) are next compared with
the theoretical CRLBs (20)-(21). The results are presented
in Fig.5 with P = 4 and 16, respectively. The approximate
CRLBs are calculated using (35)-(37) withK = 1. Other
parameters are the same as those for Fig.1. It is seen that the
approximate CRLBs are accurate in the case of a small target
(P = 4) and become less accurate when the target is relatively
large (P = 16). The approximate CRLBs with1 ≤ K ≤ 4
for P = 16 are presented in Fig.6. Fig.5-6 indicate that 1)
the approximate error diminishes if a largerK is chosen, 2)
a largerK is required as the size of target increases. These
statements are coincident with (38)-(39).

The influences of the size of the target on the CRLBs are
shown in Fig.7 and Fig.8, whereP = 1, 4, 16 and 100. The
other parameters are the same as those for Fig.1. The CRLBs
are calculated with (27)-(32). It indicates that the CRLBs are
higher when the size of target increases.
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Fig. 1. The CRLBs and MSEs of time delay withP = 4
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Fig. 2. The CRLBs and MSEs of Doppler stretch withP = 4
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Fig. 3. The CRLBs and MSEs of time delay withP = 16

The influences of the effective bandwidth on the CRLBs
of the time delay are shown in Fig.9, wherea changes from
0.256 × 109Hz/s to 2.560 × 109Hz/s and other parameters
are the same as those for Fig.1. The effective bandwidth
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Fig. 4. The CRLBs and MSEs of Doppler stretch withP = 16
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Fig. 5. The comparison between the theoretical and approximate CRLBs
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Fig. 6. The approximate CRLBs for different K withP = 16

B̄ increases from0.7604 × 105Hz to 9.0884 × 105Hz. The
effective durationT̄ increases from3.549× 10−5s to 3.893×
10−5s and can be considered as almost unchanged. The
CRLBs are calculated with (27)-(32). These numerical results
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Fig. 7. The effects ofP on the CRLBs of time delay
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Fig. 8. The effects ofP on the CRLBs of Doppler stretch
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Fig. 9. The influences of effective bandwidth on the CRLBs of time delay

demonstrate that the CRLB of the time delay is inversely
proportional to the effective bandwidth of the transmitted
signal.

Two experiments are performed to demonstrate the relation
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Fig. 10. The effects of effective time-bandwidth product onthe CRLBs of
Doppler stretch.T̄ = (3.7± 0.2)× 10−5s and is almost unchanged.

between the time-bandwidth product and the CRLB of the
Doppler stretch. In the first one,̄BT̄ changes and̄T is fixed.
In the second one,̄BT̄ is fixed and T̄ varies. The results
are depicted in Fig.10 and Fig.11, respectively. Note that the
effective time-bandwidth product̄BT̄ is proportional toaT 2

for a Chirp signal. In Fig.10,a changes from0.256×109Hz/s
to 2.560×109Hz/s and other parameters are the same as those
for Fig.1. The effective time-bandwidth productB̄T̄ increases
from 2.6988 to 35.3786. The effective durationT̄ increases
from 3.549×10−5s to 3.893×10−5s and can be considered as
almost unchanged. These parameters are designed similarlyto
those for Fig.9. In Fig.11,aT 2 ≡ 6.4, T increases from1.5×
10−5s to 5×10−5s and other parameters are the same as those
for Fig.1, implying thatT̄ increases from1.1678× 10−5s to
3.8927×10−5s andB̄T̄ ≡ 35.3786. The CRLBs in both figures
are calculated with (27)-(32). Combining Fig.10 with Fig.11,
we find 1) there exists a positive correlation between the
effective time-bandwidth product and the estimation accuracy
of the Doppler stretch, 2) the relation between the effective
duration and the CRLB of the Doppler stretch is not apparent.

V. CONCLUSION

In this paper, both integral and series representations of
the CRLBs for the joint delay-Doppler estimation of an
extended target are derived. Based on series expansion,
approximations of CRLBs are obtained. Our theoretical
analyses and numerical examples indicate that the CRLBs
of the time delay and the Doppler stretch are inversely
proportional to the effective bandwidth and the effective
time-bandwidth product, respectively. In addition, compared
with the case involving a single scatterer, an extended target
consisting of multiple scatterers leads to higher CRLBs under
the same SNR level.
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Fig. 11. The effects of effective time-bandwidth product onthe CRLBs of
Doppler stretch.B̄T̄ ≡ 35.3786.

APPENDIX A
THEOREM 3 AND ITS PROOF

Theorem 3:For p, q ∈ N+, we have

Re

{∫ +∞

−∞
s∗(p)(t)s(q)(t)dt

}

=

{
(−1)p+kM

(k)
0 , p+ q = 2k,

0, p+ q = 2k + 1,

(57)

Re

{∫ +∞

−∞
ts∗(p)(t)s(q)(t)dt

}

=

{
(−1)p+kM

(k)
1 , p+ q = 2k,

(−1)p+k(p− k − 1
2 )M

(k)
0 , p+ q = 2k + 1,

(58)

Re

{∫ +∞

−∞
t2s∗(t)s(q)(t)dt

}
(59)

=

{
(−1)kM

(k)
2 + (−1)k+1k2M

(k−1)
0 , q = 2k,

(−1)k+1(2k + 1)M
(k)
1 , q = 2k + 1,

Im

{∫ +∞

−∞
s∗(p)(t)s(q)(t)dt

}

=

{
0, p+ q = 2k,

(−1)p+kM̃
(k)
0 , p+ q = 2k + 1,

(60)

Im

{∫ +∞

−∞
ts∗(p)(t)s(q)(t)dt

}

=

{
(−1)p+k(k − p)M̃

(k−1)
0 , p+ q = 2k,

(−1)p+kM̃
(k)
1 , p+ q = 2k + 1,

(61)

Im

{∫ +∞

−∞
t2s∗(t)s(q)(t)dt

}
(62)

=

{
(−1)k2kM̃

(k−1)
1 , q = 2k,

(−1)kM̃
(k)
2 − (−1)k(k2 + k)M̃

(k−1)
0 , q = 2k + 1.
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where∗ denotes the complex conjugate.
Proof of (58).

Proof: Write s(t) in the form ofu(t) + jv(t). Then, for
m = 2k, k ∈ N+, we have

Re

{∫ +∞

−∞
s∗(0)(t)s(m)(t)dt

}

=

∫ +∞

−∞
u(t)u(2k)(t) + v(t)v(2k)(t)dt

= (−1)

(∫ +∞

−∞
u(1)(t)u(2k−1)(t) + v(1)(t)v(2k−1)(t)dt

)

= (−1)k
(∫ +∞

−∞
u(k)(t)u(k)(t) + v(k)(t)v(k)(t)dt

)

= (−1)kM
(k)
0 . (63)

Similarly, for m = 2k + 1, k ∈ N,

Re

{∫ +∞

−∞
s∗(0)(t)s(m)(t)dt

}
=

− Re

{∫ +∞

−∞
s∗(0)(t)s(m)dt

}
, (64)

which implies

Re

{∫ +∞

−∞
s∗(0)(t)s(2k+1)(t)dt

}
= 0. (65)

Finally, for p, q ∈ N, (57) is derived as follows

Re

{∫ +∞

−∞
s∗(p)(t)s(q)(t)dt

}

= (−1)pRe

{∫ +∞

−∞
s∗(0)(t)s(p+q)(t)dt

}

=

{
(−1)p+kM

(k)
0 , p+ q = 2k.

0, p+ q = 2k + 1.
(66)

Proof of (58).
Proof: For m,n ∈ N+ andn ≤ m, we have

Re

{∫ +∞

−∞
ts∗(0)(t)s(m)(t)dt

}

= (−1)Re

{∫ +∞

−∞
ts∗(1)(t)s(m−1)(t)dt

}

+ (−1)Re

{∫ +∞

−∞
s∗(0)(t)s(m−1)(t)dt

}

= (−1)nRe

{∫ +∞

−∞
ts∗(n)(t)s(m−n)(t)dt

}

+
n−1∑

l=0

(−1)l+1Re

{∫ +∞

−∞
s∗(l)(t)s(m−1−l)(t)dt

}
. (67)

By making use of (66), the second term in the last line of (67)
becomes

n−1∑

l=0

(−1)l+1Re

{∫ +∞

−∞
s∗(l)(t)s(m−1−l)(t)dt

}

=

{
(−1)k+1nM

(k)
0 , m− 1 = 2k.

0, m− 1 = 2k + 1.
(68)

Thus, if m = 2k, let n = k, and (67) becomes

Re

{∫ +∞

−∞
ts∗(0)(t)s(2k)dt

}
= (−1)kM

(k)
1 , (69)

if m = 2k + 1, let n = m, and (67) becomes

Re

{∫ +∞

−∞
ts∗(0)(t)s(2k+1)dt

}
= (−1)k+1(2k + 1)M

(k)
0 +

(−1)(2k+1)Re

{∫ +∞

−∞
ts∗(2k+1)(t)s(0)dt

}
, (70)

which implies

Re

{∫ +∞

−∞
ts∗(0)(t)s(2k+1)dt

}
= (−1)k+1(k +

1

2
)M

(k)
0 .

(71)

With (66) (69) and (71), (58) is derived as follows

Re

{∫ +∞

−∞
ts∗(p)(t)s(q)(t)dt

}
(72)

= (−1)Re

{∫ +∞

−∞
ts∗(p−1)(t)s(q+1)(t)dt

}

+ (−1)pRe

{∫ +∞

−∞
s∗(0)(t)s(p+q−1)(t)dt

}

= (−1)pRe

{∫ +∞

−∞
ts∗(0)(t)s(p+q)dt

}

+ (−1)ppRe

{∫ +∞

−∞
s∗(0)(t)s(p+q−1)dt

}

=

{
(−1)p+kM

(k)
1 , p+ q = 2k.

(−1)p+k(p− k − 1
2 )M

(k)
0 , p+ q = 2k + 1.

Proof of (59).
Proof: For m,n ∈ N+ andn ≤ m, we have

Re

{∫ +∞

−∞
t2s∗(0)(t)s(m)(t)dt

}
(73)

= (−1)Re

{∫ +∞

−∞
t2s∗(1)(t)s(m−1)(t)dt

}

+ (−2)Re

{∫ +∞

−∞
ts∗(0)(t)s(m−1)(t)dt

}

= (−1)nRe

{∫ +∞

−∞
t2s∗(n)(t)s(m−n)(t)dt

}

+
n−1∑

l=0

(−1)l+12Re

{∫ +∞

−∞
ts∗(l)(t)s(m−1−l)(t)dt

}
.
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By making use of (72), the second term in the last line of (73)
becomes

n−1∑

l=0

(−1)l+12Re

{∫ +∞

−∞
ts∗(l)(t)s(m−1−l)(t)dt

}
(74)

=

{
(−1)k+12nM

(k)
1 , m− 1 = 2k.

(−1)k+1(n2 − 2(k + 1)n)M
(k)
0 , m− 1 = 2k + 1.

Thus, if m = 2k, let n = k, and (73) becomes

Re

{∫ +∞

−∞
t2s∗(0)(t)s(m)(t)dt

}

= (−1)kM
(k)
2 + (−1)k+1k2Mk−1

0 , (75)

if m = 2k + 1, let n = m, and (73) becomes

Re

{∫ +∞

−∞
t2s∗(0)(t)s(m)(t)dt

}
= (−1)k+12(2k + 1)M

(k)
1 +

(−1)2k+1Re

{∫ +∞

−∞
t2s∗(m)(t)s(0)(t)dt

}
, (76)

which implies

Re

{∫ +∞

−∞
t2s∗(0)(t)s(m)(t)dt

}
= (−1)k+1(2k + 1)M

(k)
1 .

(77)

Combining (75) and (77) gives (59).
The proofs of (60)-(62) are similar and thus are omitted.

APPENDIX B
THE SERIES REPRESENTATIONS OF THECRLBS

The CRLBs in the form of series are given by (20) (21) and
(26), where

Fij = lim
K→∞

F
(K)
ij = lim

K→∞
F

(K)
1ij +

√
−1F

(K)
2ij , (78)

F3i = lim
K→+∞

F
(K)

3i = lim
K→+∞

F
(K)
13i +

√
−1F

(K)
23i , (79)

and

F
(K)
111 =

∑

0≤2k≤K

(−1)k2γ2k+1

(2k)!N0
M

(k+1)
0 xHΓ(2k)x, (80)

F
(K)
211 =

∑

0≤2k+1≤K

(−1)k2γ2k+2

(2k + 1)!N0
M̃

(k+1)
0 xHΓ(2k+1)x, (81)

F
(K)
112 =

∑

0≤2k≤K

(−1)k+12γ2k−1

(2k)!N0
M

(k+1)
1 xHΓ(2k)x, (82)

F
(K)
212 =

∑

0≤2k+1≤K

(−1)k+12γ2k

(2k + 1)!N0
M̃

(k+1)
1 xHΓ(2k+1)x, (83)

F
(K)
122 =

∑

1≤2k≤K

(−1)k(k − 1)γ2k−3

(2k − 1)!N0
M

(k)
0 xHΓ(2k)x+

∑

0≤2k≤K

(−1)k2γ2k−3

(2k)!N0
M

(k+1)
2 xHΓ(2k)x, (84)

F
(K)
222 =

∑

0≤2k+1≤K

(−1)k2k2γ2k−2

(2k + 1)!N0
M̃

(k)
0 xTΓ(2k+1)x+

∑

0≤2k+1≤K

(−1)k2γ2k−2

(2k + 1)!N0
M̃

(k+1)
2 xHΓ(2k+1)x, (85)

F
(K)
131 =

∑

0≤2k−1≤K

(−1)k+12γ2k−1

(2k − 1)!N0
M

(k)
0 Γ(2k−1)x, (86)

F
(K)
231 =

∑

0≤2k≤K

(−1)k+12γ2k

(2k)!N0
M̃

(k)
0 Γ(2k)x, (87)

F
(K)
132 =

∑

0≤2k≤K

(−1)k(2k − 1)γ2k−2

(2k)!N0
M

(k)
0 Γ(2k)x+

∑

0≤2k+1≤K

(−1)k+12γ2k−1

(2k + 1)!N0
M

(k+1)
1 Γ(2k+1)x, (88)

F
(K)
232 =

∑

0≤2k+1≤K

(−1)k2kγ2k−1

(2k + 1)!N0
M̃

(k)
0 Γ(2k+1)x+

∑

0≤2k≤K

(−1)k2γ2k−2

(2k)!N0
M̃

(k)
1 Γ(2k)x, (89)

F
(K)
133 =

∑

0≤2k≤K

(−1)k2γ2k−1

(2k)!N0
M

(k)
0 Γ(2k), (90)

F
(K)
233 =

∑

0≤2k+1≤K

(−1)k2γ2k

(2k + 1)!N0
M̃

(k)
0 Γ(2k+1). (91)

APPENDIX C
PROOF OFPROPOSITION1

Note thatΓ(k)
ij = O((2L/c)k), M (k)

i = O
(
ekC2

)
, M̃ (k)

i =

O
(
ekC2

)
. Thus, from (78)-(91), we obtain

Fij − F
(K)
ij = O

(
(2Lγ exp{C2}/c)K+1

(K + 1)!

)
, (92)

F3i − F
(K)

3i = O

(
(2Lγ exp{C2}/c)K+1

(K + 1)!

)
. (93)

BecauseE(K) = F33 − F
(K)

33 → 0 asK → +∞, the inverse
of F33 can be written as [34]

F
−1

33 =
(
F

(K)

33

)−1

+O
(
E(K)

)
,K → +∞, (94)
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where

O
(
E(K)

)
=

+∞∑

n=1

(
−
(
F

(K)

33

)−1

E(K)

)n (
F

(K)

33

)−1

. (95)

Thus, we have

∥∥∥∥
(
F

(K)

33

)−1

− F
−1

33

∥∥∥∥ ≤

∥∥∥∥
(
F

(K)

33

)−1
∥∥∥∥
2 ∥∥E(K)

∥∥

1−
∥∥∥∥
(
F

(K)

33

)−1

E(K)

∥∥∥∥

= O

(
(2Lγ exp{C2}/c)K+1

(K + 1)!

)
, (96)

and (38)-(39) follow.

APPENDIX D
PROOF OFTHEOREM 1 AND 2

Lemma 1:Let M0 ≤ +∞, B0 ≤ +∞ and T0 < +∞.
Assume that there exists a constantǫ > 0 such that

lim
(

M
(0)
0 ,B̄,T̄

)

→(M0,B0,T0)

m
({

t
∣∣∣
∣∣∣s(1)(t)

∣∣∣ > ǫ
})

> 0. (97)

Then, there exists a constantC5 ∈ (0, 1) such that

T̄ 2/T 2 <
(
M

(1)
1

)2
/M

(1)
0 M

(1)
2 ≤ C5, (98)

as
(
M

(0)
0 , B̄, T̄

)
→ (M0, B0, T0).

Proof: According to the Cauchy-Schwartz inequality [31]
ands(t) = 0, t /∈ [0, T ], we have

(
M

(1)
2 /T

)2
<
(
M

(1)
1

)2
≤ M

(1)
0 M

(1)
2 , (99)

which implies

T̄ 2/T 2 <
(
M

(1)
1

)2
/M

(1)
0 M

(1)
2 ≤ 1. (100)

Suppose (98) does not. Then we have

lim sup
(

M
(0)
0 ,B̄,T̄

)

→(M0,B0,T0)

(
M

(1)
1

)2
−M

(1)
0 M

(1)
2 = 0. (101)

Define < f(t), g(t) >=
∫ +∞
−∞ f∗(t)g(t)dt and ||f || =<

f, f >
1
2 . Thus, let

(
M

(0)
0 , B̄, T̄

)
→ (M0, B0, T0), and we

have
∥∥∥s(1)(t)t− T0s

(1)(t)
∥∥∥
2

−
(∥∥∥s(1)(t)t

∥∥∥− T0

∥∥∥s(1)(t)
∥∥∥
)2

= −2T0

〈
s(1)(t)t, s(1)(t)

〉
+ 2T0

∥∥∥s(1)(t)t
∥∥∥
∥∥∥s(1)(t)

∥∥∥
→ 0. (102)

Therefore, we obtain
∥∥s(1)(t)t− T0s

(1)(t)
∥∥2 → 0, which

implies
∣∣s(1)(t)t− T0s

(1)(t)
∣∣→ 0 a.e., and thus

∣∣s(1)(t)
∣∣→ 0

a.e., as
(
M

(0)
0 , B̄, T̄

)
→ (M0, B0, T0). The lemma follows by

contradiction.

Proof of Theorem 1
Proof: Substituting (44)-(45) into (42)-(43), we have

CRLBτ,P=1 =

N0

2γx2

(
M

(0)
0

)−1

B̄−2
(
1− 1

4 B̄
−2T̄−2

)

1− 1
4 B̄

−2T̄−2 −
(
M

(1)
1

)2 (
M

(0)
0

)−2

B̄−4T̄−2

= O

((
M

(0)
0

)−1

B̄−2

)
, (103)

CRLBγ,P=1 =

γx3N0

2x2

(
M

(0)
0

)−1

B̄−2T̄−2

1− 1
4 B̄

−2T̄−2 −
(
M

(1)
1

)2 (
M

(0)
0

)−2

B̄−4T̄−2

= O

((
M

(0)
0

)−1

B̄−2T̄−2

)
, (104)

as
(
M

(0)
0 , B̄, T̄

)
→ (M0, B0, T0). Notice that the

denominators of (103) and (104) do not converge to zero due
to (98) and the positive definite property ofFIM.

Proof of Theorem 2
Proof: Referring to (78)-(91) and (100), we have

F11 = O
(
M

(0)
0 B̄2

)
, F12 = O

(
M

(0)
0 B̄2T̄

)
,

F22 = O
(
M

(0)
0 B̄2T̄ 2

)
,F31 = O

(
M

(0)
0 B̄2Γ(1)x

)
,

F32 = O
(
M

(0)
0 B̄2T̄Γ(1)x

)
,F33 = O

(
M

(0)
0 B̄2Λ

)
. (105)

Substitute (105) into (40), and we have

a11 = O
(
M

(0)
0 B̄2

)
−O

(
M

(0)
0 B̄2xT

(
Γ(1)

)T)
×

O

(
1

M
(0)
0 B̄2

Λ−1

)
O
(
M

(0)
0 B̄2Γ(1)x

)

= O
(
M

(0)
0 B̄2

)
+O

(
M

(0)
0 B̄2xT

(
Γ(1)

)T
Λ−1Γ(1)x

)

= O
(
M

(0)
0 B̄2

)
, (106)

and

a12 = O
(
M

(0)
0 B̄2T̄

)
, a22 ≈ O

(
M

(0)
0 B̄2T̄ 2

)
. (107)

Then, (49)-(50) follow by substituting (106)-(107) into
(20)-(21). Notice that the denominators of (20) and (21) do
not converge to zero due to the positive definite property of
FIM.
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