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Multiple Extended Target Tracking with Labelled
Random Finite Sets

Michael Beard, Stephan Reuter, Karl Granström, Ba-Tuong Vo, Ba-Ngu Vo, Alexander Scheel

Abstract—Targets that generate multiple measurements at a
given instant in time are commonly known as extended targets.
These present a challenge for many tracking algorithms, as they
violate one of the key assumptions of the standard measurement
model. In this paper, a new algorithm is proposed for tracking
multiple extended targets in clutter, that is capable of estimating
the number of targets, as well the trajectories of their states,
comprising the kinematics, measurement rates and extents. The
proposed technique is based on modelling the multi-target state
as a generalised labelled multi-Bernoulli (GLMB) random finite
set (RFS), within which the extended targets are modelled
using gamma Gaussian inverse Wishart (GGIW) distributions. A
cheaper variant of the algorithm is also proposed, based on the
labelled multi-Bernoulli (LMB) filter. The proposed GLMB/LMB-
based algorithms are compared with an extended target version
of the cardinalised probability hypothesis density (CPHD) filter,
and simulation results show that the (G)LMB has improved
estimation and tracking performance.

Index Terms—Random finite sets, finite set statistics, GLMB
filter, extended targets, multi-target tracking, inverse Wishart,
CPHD filter

I. INTRODUCTION

Multi-target tracking is the process of estimating the num-
ber of targets and their states, based upon imperfect sensor
measurements that are typically corrupted by noise, missed
detections, and false alarms. The main challenge is to filter out
these three effects in order to gain accurate estimates of the
true target states. A Bayesian approach to this type of problem
requires models to describe how the measurements are related
to the underlying target states. Most traditional trackers use the
so-called standard measurement model. This is also known as
a point target model, since it is based on the assumption that
each target produces at most one measurement at a given time,
and that each measurement originates from at most one target.
This model simplifies the development of multi-target trackers,
but in practice it is often an unrealistic representation of the
true measurement process.

More realistic measurement processes can be handled using
more sophisticated non-standard measurement models, which
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may relax the aforementioned assumptions, usually at the ex-
pense of increased computation. One example of this is when
a group of targets produces a single measurement, known as
an unresolved target (or merged measurement) model [1]. This
model is useful when dealing with low-resolution sensors that
cannot generate seperate detections for closely spaced targets.
On the other hand, higher resolution sensors may produce
multiple measurements per target on any given scan. Such
cases require the use of an extended target model [2], which
is the subject of this paper.

Extended target measurement models typically require two
components; a model for the number of measurements gener-
ated by each target, and a model for their spatial distribution.
These depend strongly on both the sensor characteristics and
the type of targets being tracked. For example, in radar
tracking, some targets may generate many separate detections,
by virtue of the fact that they possess many scatter points.
However, other targets may reflect most of the energy away
from the receiver, leading to very few detections, or none at
all. In general, when a target is far enough away from the
sensor, its detections can often be characterised as a cluster of
points exhibiting no discernable geometric structure. In such
cases, the number of measurements is usually modelled using
a Poisson distribution, see for example [2] and [3].

Even in the absence of a specific target structure, it is still
possible to estimate the size and shape of a target, known as the
target extent. This can be achieved by assuming some general
parameteric shape for the extent, for which the parameters are
estimated based on the spatial arrangement of the observations.
An approach that assumes an elliptical extent was proposed in
[4], which used a multivariate Gaussian, parameterised by a
random covariance matrix with an inverse Wishart distribution.
This was termed a Gaussian inverse Wishart (GIW), and this
method enables the target extent to be estimated on-line, in-
stead of requiring prior specification. Further applications and
improvements have appeared in [5]–[7]. Alternative methods
for estimating target extent have also been proposed, see for
example [8]–[10].

The GIW method has been applied using multi-target filters
based on the random finite set (RFS) framework. A proba-
bility hypothesis density (PHD) filter, which was originally
developed by Mahler in [11] for the point target model,
was proposed for extended multi-target filtering in [12]. An
implementation of this filter based on the GIW model (GIW-
PHD filter) was developed in [13]. The cardinalised PHD
(CPHD) filter [27] is a generalisation of the PHD filter, which
models the multi-target state as an i.i.d cluster RFS instead of
a Poisson RFS. This was applied to extended targets in [14],
which also incorporated a modification to the GIW approach
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[15], enabling the estimation of target measurement rates. This
method treats the rate parameter of the Poisson pdf (which
characterises the number of measurements generated by a
target) as a random variable, whose distribution is modelled as
a gamma pdf. This algorithm was called the gamma Gaussian
inverse Wishart CPHD (GGIW-CPHD) filter. Extended target
PHD and CPHD filters have also been presented in [32], [33].

The advantage of the (C)PHD filters is that they reduce the
computational cost of the Bayes multi-target filter, but to do
so, some significant approximations are made. While these
approximations avoid explicit data association, it means that
the filters do not produce target tracks, and the PHD filter
can produce highly uncertain estimates of the target number
due to the Poisson cardinality assumption [11], [18]. Another
limitation affecting the CPHD filter is the so-called ‘spooky’
effect [19], which means a target misdetection may cause a
false estimate to spontaneously appear in a different part of
the state space. A Bernoulli filter for extended targets was
proposed in [20], which does not suffer from these issues,
however, it is limited to at most a single target in clutter.

A recently proposed algorithm that addresses these lim-
itations is called the generalised labelled multi-Bernoulli
(GLMB) filter [21], [22]. This algorithm has been shown to
outperform both the PHD and CPHD filters, with the added
advantage of producing labelled track estimates, albeit with
a higher computational cost. An approximate but computa-
tionally cheaper version of this filter was proposed in [23],
called the labelled multi-Bernoulli filter (LMB). Also, the
first GLMB filter for a non-standard measurement model was
developed in [1], which used a model that includes merged
measurements, a problem which can be viewed as the dual of
the extended target tracking problem.

In this paper, we develop a GLMB filter for extended multi-
target tracking based on the GGIW model. The resulting algo-
rithm (GGIW-GLMB) is capable of estimating the kinematics
and extents of multiple extended targets in clutter, with the
advantage of producing full target tracks. Preliminary results
on this work have been presented in [24], which we build
upon in the following ways. Firstly, we provide a complete
derivation of the extended target likelihood function used
by the filter. Second, we have implemented and tested a
computationally cheaper version of the algorithm, called the
GGIW labelled multi-Bernoulli (GGIW-LMB) filter. Third, we
have improved the utility of the filter by incorporating an
adaptive target birth model, allowing new targets to appear
from anywhere in the state space. Finally, we have applied
the algorithms to a real-world data set obtained from a lidar
sensor used in autonomous vehicle applications.

The paper is organised as follows. Section II contains a
brief background on the GLMB, and in Section III we adapt
it to extended multi-target tracking, by proposing an extended
target likelihood and deriving the associated GGIW-GLMB
and GGIW-LMB filters. Section IV presents details relating
to the implementation of these algorithms. Section V contains
simulation results comparing the performance of the GGIW-
(G)LMB with the GGIW-CPHD filter, and in Section VI we
demonstrate an application to real-world measurement data.
Finally, we make some concluding remarks in Section VII.

II. BACKGROUND: TRACKING WITH LABELLED RANDOM
FINITE SETS

The essence of the RFS approach to multi-target tracking is
the modelling of the multi-target states and measurements as
finite set-valued random variables, or RFSs. Until recently,
estimation algorithms derived using this framework have
been based on the use of unlabelled random finite sets, as
demonstrated by the PHD [11], CPHD [27] and multi-target
multi-Bernoulli (MeMBer) [28] filters. A key reason for the
popularity of these approaches is that they do not require
explicit data association. However, their main disadvantage is
that they only provide sets of unlabelled point estimates at each
time step, so in applications that require target trajectories,
tracks must be formed via additional post-processing. To
address this problem, the concept of labelled random finite
sets was proposed [21], which involves assigning a distinct
label to each target, such that each target’s trajectory can be
identified without the need for post-processing.

In [21], a class of labelled RFS called generalised labelled
multi-Bernoulli (GLMB) was proposed, and based on this
formulation, an algorithm for solving the multi-target tracking
problem under the standard point-target likelihood model was
developed. In the remainder of this section we briefly review
some of the key points of this technique, and in Section III
we adapt this method to tracking multiple extended targets.

We begin by introducing some notation and definitions relat-
ing to labelled random finite sets. The multi-object exponential
of a real valued function h raised to a set X is defined as
[h (·)]X =

∏
x∈X h (x), where h∅ = 1, and the elements

of X may be of any type such as scalars, vectors, or sets,
provided that the function h(·) takes an argument of that type.
The generalised Kronecker delta function, and the set inclusion
function are respectively defined as

δY (X) =

{
1, if X = Y

0, otherwise
, 1Y (X) =

{
1, if X ⊆ Y
0, otherwise

,

where again, X and Y may be of any type, such as scalars,
vectors, or sets. In general, we adopt the notational convention
that labelled sets are expressed in bold upper case (X),
unlabelled sets in regular upper case (X), labelled vectors
in bold lower case (x), and unlabelled vectors or scalars in
regular lower case (x).

Definition 1. A labelled RFS X with state space X and
discrete label space L, is an RFS on X × L, such that the
labels within each realisation are always distinct. That is, if
L (X) is the set of unique labels in X , and we define the
distinct label indicator function as

∆ (X) =

{
1, if |L (X)| = |X|
0, if |L (X)| 6= |X|

(1)

then a labelled RFS X always satisfies ∆ (X) = 1.

Definition 2. A labelled multi-Bernoulli (LMB) RFS is a
labelled RFS with state space X and discrete label space L,
which is distributed according to

π (X) = ∆ (X)w (L (X)) [p (·)]X , (2)
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where

w (L) =
∏
i∈L

(
1− r(i)

)∏
l∈L

1L (l) r(l)

1− r(l)
, (3)

p (x, l) = p(l) (x) , (4)

in which r(l) and p(l) (·) are the existence probability and
probability density corresponding to label l ∈ L. An LMB
distribution is abbreviated using the notation π (X) ={(
r(l), p(l)

)}
l∈L.

Definition 3. A generalised labelled multi-Bernoulli (GLMB)
RFS is a labelled RFS with state space X and discrete label
space L, which is distributed according to

π (X) = ∆ (X)
∑
c∈C

w(c) (L (X))
[
p(c) (·)

]X
, (5)

where C is a discrete index set, and w(c) (L) and p(c) (x, l)
satisfy ∑

L⊆L

∑
c∈C

w(c) (L) = 1,

∫
x∈X

p(c) (x, l) dx = 1. (6)

In Bayesian multi-target tracking, the goal at time k is to
estimate a finite set of labelled states Xk ⊂ X × L, called
the multi-target state, based on finite sets of incoming multi-
target observations Zk ⊂ Z. We model Xk as a labelled
random finite set, and Zk as an unlabelled random finite set.
A principled mathematical framework for working with RFSs
is called finite set statistics (FISST) [25], the cornerstone of
which is a notion of multi-target density/integration that is
consistent with point process theory [26].

The multi-target state at each time k is distributed according
to a multi-target density πk (·|Z1:k), where Z1:k is an array
of finite sets of measurements received up to time k. The
multi-target density is recursively propagated in time via a
multi-target prediction and update as follows.

The multi-target prediction to time k is given by the
Chapman-Kolmogorov equation

πk|k−1 (Xk|Z1:k−1) (7)

=

∫
fk|k−1 (Xk|X)πk−1 (X|Z1:k−1) δX,

where fk|k−1 (Xk|X) is the multi-target transition kernel
from time k− 1 to time k, and the integral is the set integral,
defined by 8 for any function f that takes F (X× L), the
collection of all finite subsets of X× L, to the real line.∫

f (X) δX =

∞∑
i=0

1

i!

∫
f ({x1, . . . ,xi}) d (x1, . . . ,xi)

(8)
At time k, a set of observations Zk is received, which is
modelled by a multi-target likelihood function gk (Zk|Xk).
The multi-target posterior at time k is given by Bayes rule

πk (Xk|Z1:k) =
gk (Zk|Xk)πk|k−1 (Xk|Z1:k−1)∫
gk (Zk|X)πk|k−1 (X|Z1:k−1) δX

. (9)

Collectively, (7) and (9) are referred to as the multi-target
Bayes filter. It was shown in [21] that a GLMB density

of the form (5) is closed under the Chapman-Kolmogorov
equation (7) with the standard multi-target transition kernel,
and closed under Bayes rule (9) with the standard multi-
target measurement likelihood function. The GLMB is thus a
conjugate prior for the standard multi-target tracking problem,
facilitating the development of a closed form GLMB recursion.

The drawback of the standard GLMB filter of [21], [22]
is that it does not accommodate non-standard measurement
models, such as merged measurements, or extended targets.
In [1], a GLMB filter for multi-target tracking in the presence
of merged measurements was presented. Herein, we turn our
attention to adapting the GLMB approach to tracking multiple
extended targets. In the following section, we develop an RFS-
based likelihood model for this problem, and then proceed to
develop a GLMB filter for extended targets using this model.

III. LABELLED RFS-BASED EXTENDED TARGET
TRACKING

In this section we propose two algorithms for tracking
multiple extended targets, based on labelled random finite sets.
The following subsections describe the prerequisites for the
development of the algorithms, i.e. an observation model for
multiple extended targets, and a state space model for a single
extended target. Based on these models, we then propose a
GLMB filter for tracking multiple extended targets in clutter,
as well as a cheaper approximation based on the LMB filter.

A. Observation Model for Multiple Extended Targets

Let us denote the labelled RFS of extended targets that exist
at the observation time as X =

{
(ξ1, l1) , . . . ,

(
ξ|X|, l|X|

)}
.

We formulate a measurement model based on the following
three assumptions:

A1. A particular extended target with state (ξ, l) may
be detected with probability pD (ξ, l), or misdetected with
probability qD (ξ, l) = 1− pD (ξ, l).

A2. If detected, an extended target with state (ξ, l) generates
a set of detections W with likelihood g̃ (W |ξ, l), which is
independent of all other targets.

A3. The sensor generates a Poisson RFS K of false observa-
tions with intensity function κ (·), which is independent of the
target generated observations (i.e. K is distributed according
to gC (K) = e−〈κ,1〉κK).

Denote by Pi (Z) the set of all partitions that divide a finite
measurement set Z into exactly i groups, and by U (Z) ∈
Pi (Z) a particular partition of Z. For a given multi-target state
X , denote by Θ (U (Z)) the space of association mappings
θ : L (X) → {0, 1, . . . , |U (Z)|} such that θ(l) = θ(l′) > 0
implies l = l′. Finally, denote by Uθ(l) (Z) the element of the
partition U (Z) corresponding to label l under the mapping θ.

Proposition 4. Under assumptions A1, A2 and A3, the mea-
surement likelihood function is given by

g (Z|X) = gC (Z)

|X|+1∑
i=1

∑
U(Z)∈Pi(Z)
θ∈Θ(U(Z))

[
ψU(Z) (·; θ)

]X
(10)
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where

ψU(Z) (ξ, l; θ) =


pD(ξ,l)g̃(Uθ(l)(Z)|ξ,l)

[κ]
Uθ(l)(Z) , θ (l) > 0

qD(ξ, l), θ (l) = 0
. (11)

Proof: Let us first consider the case of no false detections
(i.e. all measurements are target generated). By assumptions
A1 and A2, the likelihood of observing a set of detections Y ,
given a set X of extended targets is given by [27]

gD (Y |X) =
∑

(W1,...,W|X|):⊎|X|
i=1Wi=Y

g′ (W1|ξ1, ll) . . . g′
(
W|X||ξ|X|, l|X|

)
,

(12)
where

g′ (W |ξ, l) ∝

{
qD (ξ, l) , W = ∅
pD (ξ, l) g̃ (W |ξ, l) , W 6= ∅

. (13)

A partition of an arbitrary set S is defined to be a disjoint
collection of non-empty subsets of S, such that their union
is equal to S. Note that in (12), the sets W1, . . . ,W|X| may
be either empty or non-empty, thus, they do not satisfy the
definition of a partition of Y . However, the non-empty sets
in W1, . . . ,W|X| do constitute a partition of Y , hence by
separating (12) into products over the empty and non-empty
Wi’s, we can then write

gD (Y |X) = [qD]
X
|X|∑
i=1

∑
U(Y )∈Pi(Y )

∑
1≤j1 6=···6=ji≤|X|

(14)

i∏
k=1

pD (ξjk , ljk) g̃ (Uk (Y ) |ξjk , ljk)

qD (ξjk , ljk)

where Uk (Y ) denotes the k-th group in partition U (Y ).
Following a similar reasoning to [25, pp. 420], this can be
expressed as

gD (Y |X) = [qD]
X
|X|∑
i=1

∑
U(Y )∈Pi(Y )

∑
θ∈Θ(U(Y ))

(15)

∏
j:θ(j)>0

pD (ξj , lj) g̃
(
Uθ(j) (D) |ξj , lj

)
qD (ξj , lj)

.

Let us now consider the case where false observations
may also be present. By assumption A3, the set K of false
observations has distribution gC (K), and the sets Y and K
are independent. The overall measurement set is Z = Y ∪K,
thus Z is distributed according to the convolution

g (Z|X) =
∑
W⊆Z

gC (Z −W ) gD (W |X)

=
∑
W⊆Z

e−〈κ,1〉κZ−W [qD]
X
|X|∑
i=1

∑
U(W )∈Pi(W )
θ∈Θ(U(W ))∏

j:θ(j)>0

pD (ξj , lj) g̃
(
Uθ(j) (W ) |ξj , lj

)
qD (ξj , lj)

= e−〈κ,1〉κZ [qD]
X
∑
W⊆Z

|X|∑
i=1

∑
U(W )∈Pi(W )
θ∈Θ(U(W ))∏

j:θ(j)>0

pD (ξj , lj) g̃
(
Uθ(j) (W ) |ξj , lj

)
qD (ξj , lj) [κ]

Uθ(j)(W )
(16)

where the last line follows from the fact that κW =∏
j:θ(j)>0 [κ]

Uθ(j)(W ), since U (W ) is a partition of W . Fi-
nally, this can be simplified by treating the set Z − W as
an additional element that we append to each U (W ), thereby
transforming it into a partition of Z. In doing so, the double
summation over W ⊆ Z and partitions U (W ) ∈ Pi (W ) up
to size |X|, can be expressed as a summation over partitions
of Z up to size |X|+ 1 as follows

g (Z|X) = gC (Z) [qD]
X
|X|+1∑
i=1

∑
U(Z)∈Pi(Z)
θ∈Θ(U(Z))∏

j:θ(j)>0

pD (ξj , lj) g̃
(
Uθ(j) (Z) |ξj , lj

)
qD (ξj , lj) [κ]

Uθ(j)(Z)
. (17)

Observe that the qD (ξj , lj) in the denominator cancels out
the corresponding term in the product [qD]

X when θ (j) > 0,
leaving one qD (ξj , lj) term for each j : θ (j) = 0. Hence,
(17) can be equivalently expressed in the form (10)-(11).

In general, an exact calculation of the likelihood (10) will
be numerically intractable, because the sets of measurement
partitions and group-to-target mappings can become extremely
large. However, it has been shown that in many practical
situations, it is only necessary to consider a small subset
of these partitions to achieve good performance [13], [16].
Additionally, the set of group-to-target mappings can be
substantially reduced using a ranked assignment algorithm,
thereby cutting down the number of insignificant terms in the
likelihood even further.

B. Extended Target State-space Model

In this section we describe the extended target state space,
and the class of probability distributions used to model a single
extended target. We begin by introducing some notation:
• R+ is the space of positive real numbers
• Rn is the space of real n-dimensional vectors
• Sn++ is the space of n× n positive definite matrices
• Sn+ is the space of n× n positive semi-definite matrices
• GAM (γ;α, β) is the gamma probability density function

(pdf) defined on γ > 0, with shape α > 0, and inverse
scale β > 0:

GAM (γ;α, β) =
βα

Γ (α)
γα−1e−βγ

• N (x;m,P ) is the multivariate Gaussian pdf defined on
x ∈ Rn, with mean m ∈ Rn and covariance P ∈ Sn+

N (x;m,P ) =
1√

(2π)
n |P |

e−
1
2 (x−m)TP−1(x−m)
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• IWd(χ; v, V ) is the inverse Wishart distribution defined
on χ ∈ Sd++, with degrees of freedom v > 2d, and scale
matrix V ∈ Sd++ [34]

IWd (χ; v, V ) =
2−

v−d−1
2 |V |

v−d−1
2

Γd
(
v−d−1

2

)
|χ|

v
2
e−

1
2 tr(V χ−1)

where Γd (·) is the multivariate gamma function, and tr (·)
takes the trace of a matrix.

• Id is the idenity matrix of dimension d.
• A⊗B is the Kronecker product of matrices A and B

The goal is to estimate three pieces of information about each
target; the average number of measurements it generates, the
kinematic state, and the extent. We thus model the extended
target state as the triple

ξ = (γ, x, χ) ∈ R+ × Rnx × Sd++, (18)

where γ ∈ R+ is the rate parameter of a Poisson distribution
that models the number of measurements generated by the
target, x ∈ Rnx is a vector that describes the state of the
target centroid, and χ ∈ Sd++ is a covariance matrix that
describes the target extent around the centroid. The density
of the rate parameter is modelled as a Gamma distribution,
the kinematics as a Gaussian distribution, and the covariance
of the extent as an inverse-Wishart distribution. The density
of the extended target state is thus the product of these three
distributions, denoted as a gamma Gaussian inverse Wishart
(GGIW) distribution on the space R+×Rnx ×Sd++, given by

p (ξ) = p (γ) p (x|χ) p (χ)

= GAM (γ;α, β)×N (x;m,P ⊗ χ)× IWd (χ; v, V )

, GGIW (ξ; ζ) (19)

where ζ = (α, β,m, P, v, V ) is an array that encapsulates the
GGIW density parameters. We now describe the prediction and
Bayes update procedures for a GGIW distribution representing
a single extended target.

1) Prediction : The predicted density p+ (·) of an extended
target is given by the following Champan-Kolmogorov equa-
tion

p+ (ξ) =

∫
f (ξ|ξ′) p (ξ′) dξ′, (20)

where p (·) = GGIW (·; ζ ′) is the posterior density at the
current time with parameters ζ ′ = (α′, β′,m′, P ′, v′, V ′), and
f (·|·) is the transition density from the current time to the
next time. This has no closed form solution, hence we resort
to making a GGIW approximation for p+ (ξ). We start by
assuming that the transition density can be written as the
product [14]

f (ξ|ξ′) = fγ (γ|γ′) fx (x|χ, x′) fχ (χ|χ′) , (21)

which yields the following predicted density

p+ (ξ) =

∫
GAM (γ′;α′, β′) fγ (γ|γ′) dγ′

×
∫
N (x′;m′, P ′ ⊗ χ) fx (x|χ, x′) dx′

×
∫
IWd (χ′; v′, V ′) fX (χ|χ′) dχ′. (22)

If the dynamic model is linear Gaussian with the form
fx (x|χ, x′) = N (x; (F ⊗ Id)x′, Q⊗ χ), the kinematic com-
ponent (i.e. the second line in (22)) can be solved in closed
form as follows∫
N (x′;m′, P ′ ⊗ χ)fx (x|χ, x′) dx′ = N (x;m,P ⊗ χ) ,

m = (F ⊗ Id)m′, P = FP ′FT +Q. (23)

However, closed forms still cannot be obtained for the mea-
surement rate and target extension components, which can
be addressed by the use of some additional approximations.
For the measurement rate component we use the following
approximation proposed in [15],∫

GAM (γ′;α′, β′) fγ (γ|γ′) dγk−1 ≈ GAM (γ;α, β) ,

α =
α′

µ
, β =

β′

µ
. (24)

In the above, µ = 1
1−1/w is an exponential forgetting factor

with window length w > 1. This approximation is based on
the heuristic assumption that E [γ] = E [γ′], and Var (γ) =
Var (γ′)× µ, i.e. the prediction operation retains the expected
value of the density, and increases its variance by a factor of
µ.

For the extension component we use the following approx-
imation, as proposed in [4],∫

IWd (χ′; v′, V ′) fχ (χ|χ′) dχ′ ≈ IWd (χ; v, V ) ,

v = e−T/τv′, V =
v − d− 1

v′ − d− 1
V ′. (25)

Similary to the measurement rate, this approximation assumes
that the prediction retains the expected value and reduces the
precision of the density. For an inverse-Wishart distribution,
the degrees of freedom parameter is related to the precision,
with lower values yielding less precise densities. A temporal
decay constant τ is thus used in (25) to govern the reduction
in the degrees of freedom. Based on the calculated value for v,
the expression for V retains the expected value of the inverse-
Wishart distribution through the prediction.

The above yields an approximate representation of the
predicted GGIW density p+ (ξ) ≈ GGIW (ξ; ζ), where ζ =
(α, β,m, P, v, V ) is the array of predicted parameters defined
by equations (23), (24), and (25).

2) Update: In the proposed GGIW-(G)LMB filter, each
extended target will need to undergo measurement updates
using various subsets of the measurement received on each
scan. In what follows, we describe the update procedure for a
single target with predicted density p (·) = GGIW (·; ζ), for
a given extended target generated measurement set W . The
first step is to calculate the mean and scale matrix of W ,
the innovation, innovation factor, innovation matrix and gain
vector:

w̄ =
1

|W |
∑
w∈W

w, (26)

Ψ =
∑
w∈W

(w − w̄) (w − w̄)
T
, (27)
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ε = w̄ − (H ⊗ Id)m, (28)

S = HPHT +
1

|W |
, (29)

N = S−1εεT , (30)

K = PHTS−1. (31)

The posterior GGIW parameters are then given by ζW =
(αW , βW ,mW , PW , vW , VW ), where

αW = α+ |W | , (32)
βW = β + 1, (33)
mW = m+ (K ⊗ Id) ε, (34)

PW = P −KSKT , (35)
vW = v + |W | , (36)
VW = V +N + Ψ. (37)

The GGIW-(G)LMB filter also requires calculation of the
Bayes evidence for each single-target update, as they are
needed when computing the weights of the posterior GLMB
components. This is given by the product of the following two
terms,

ηγ (W ; ζ, ζW ) =
1

|W |!
Γ (αW )βα

Γ (α)βαWW
, (38)

ηx,χ (W ; ζ, ζW ) =

(
π|W | |W |

)− d2 |V | v2 Γd
(
vW
2

)
S
d
2 |VW |

vW
2 Γd

(
v
2

) . (39)

Note that the measurement rate component (38) corresponds
to a negative-binomial pdf, and the kinematics-extension com-
ponent (39) is proportional to a matrix variate generalized beta
type II pdf [13].

C. GLMB Filter for Extended Targets

We now present a GLMB filter for extended targets, based
on the measurement likelihood and state space models de-
scribed in the previous sections. The GLMB filter consists
of two steps, prediction and update. Since we are using the
standard birth/death model for the multi-target dynamics, the
prediction step is identical to that of the standard GLMB
filter derived in [21]. For completeness, we shall revisit the
final prediction equations, and the reader is referred to [21]
for more details. Denote by pS (ξ, l) the probability that a
target with state (ξ, l) survives to the next time step, and by
qS (ξ, l) = 1 − pS (ξ, l) the probability that a target does not
survive. The birth density is an LMB with label space B,
weight wB (·) and single target densities pB (·, l). If the multi-
target posterior is a GLMB of the form (5) with label space
L, then the predicted multi-target density at the next time step
is the GLMB with label space L+ = L ∪ B given by

π+ (X) = ∆ (X)
∑
c∈C

w
(c)
+ (L (X))

[
p

(c)
+ (·)

]X
(40)

where

w
(c)
+ (L) = wB (L− L)w

(c)
S (L ∩ L) , (41)

p
(c)
+ (ξ, l) = 1L (l) p

(c)
S (ξ, l) + (1− 1L (l)) pB (ξ, l) , (42)

p
(c)
S (ξ, l) =

∫
pS (ξ, l) f (ξ|ξ′, l) p(c) (ξ′, l) dξ′

η
(c)
S (l)

, (43)

η
(c)
S (l) =

∫ ∫
pS (ξ, l) f (ξ|ξ′, l) p(c) (ξ′, l) dξ′dξ, (44)

w
(c)
S (J) =

[
η

(c)
S

]J∑
I⊆L

1I (J) [qS ]
I−J

w(c) (I) , (45)

q
(c)
S (l) =

∫
qS (ξ, l) p(c) (ξ, l) dξ. (46)

The function f (·|·, l) is the single-target transition kernel,
which in this case is the GGIW transition defined in Section
III-B1.

Clearly, the difference between the standard GLMB and
extended target GLMB filters will lie in the measurement
update procedure, since the measurement likelihood function
has a different form. The update for the extended target GLMB
is given by the following proposition.

Proposition 5. If the prior is a GLMB of the form (5), then
under the extended multi-target likelihood function (10), the
posterior is a GLMB with label space L+ = L ∪ B, given by

π (X|Z) = ∆ (X)
∑
c∈C

|X|+1∑
i=1

∑
U(Z)∈Pi(Z)
θ∈Θ(U(Z))

w
(c,θ)
U(Z) (L (X))

×
[
p(c,θ) (·|U (Z))

]X
(47)

where

w
(c,θ)
U(Z) (L) =

w(c) (L)
[
η

(c,θ)
U(Z)

]L
∑
c∈C

∑
J⊆L

|J|+1∑
i=1

∑
U(Z)∈Pi(Z)
θ∈Θ(U(Z))

w(c) (J)
[
η

(c,θ)
U(Z)

]J ,
(48)

p(c,θ) (ξ, l|U (Z)) =
p(c) (ξ, l)ψU(Z) (ξ, l; θ)

η
(c,θ)
U(Z) (l)

, (49)

η
(c,θ)
U(Z) (l) =

∫
p(c) (ξ, l)ψU(Z) (ξ, l; θ) dξ (50)

in which ψU(Z) (ξ, l; θ) is given by (11).

Proof: The product of the prior distribution and the
likelihood is

π (X)g (Z|X)

= ∆ (X) gC (Z)
∑
c∈C

|X|+1∑
i=1

∑
U(Z)∈Pi(Z)
θ∈Θ(U(Z))

w(c) (L (X))

×
[
p(c) (·)ψU(Z) (·; θ)

]X
= ∆ (X) gC (Z)

∑
c∈C

|X|+1∑
i=1

∑
U(Z)∈Pi(Z)
θ∈Θ(U(Z))

w(c) (L (X))

×
[
p(c,θ) (·|U (Z)) η

(c,θ)
U(Z) (·)

]X
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= ∆ (X) gC (Z)
∑
c∈C

|L(X)|+1∑
i=1

∑
U(Z)∈Pi(Z)
θ∈Θ(U(Z))

w(c) (L (X))

×
[
η

(c,θ)
U(Z) (·)

]L(X) [
p(c,θ) (·|U (Z))

]X
. (51)

In what follows, we use the simplifying notation (x, l)1:j ≡
((x1, l1) , . . . , (xj , lj)), l1:j ≡ (l1, . . . , lj) and x1:j ≡
(x1, . . . , xj) to denote vectors, with

{
(x, l)1:j

}
and {l1:j}

denoting the corresponding sets. The set integral of (51) with
respect to X is given by∫

π (X) g (Z|X) δX

= gC (Z)
∑
c∈C

∫ |L(X)|+1∑
i=1

∑
U(Z)∈Pi(Z)
θ∈Θ(U(Z))

∆ (X)w(c) (L (X))

×
[
η

(c,θ)
U(Z)

]L(X) [
p(c,θ) (·|U (Z))

]X
δX

= gC (Z)
∑
c∈C

∞∑
j=0

1

j!

∑
l1:j∈Lj

j+1∑
i=1

∑
U(Z)∈Pi(Z)
θ∈Θ(U(Z))

∆
({

(x, l)1:j

})

× w(c) ({l1:j})
[
η

(c,θ)
U(Z)

]{l1:j}∫ [
p(c,θ) (·|U (Z))

]{(x,l)1:j}
d (x1:j)

= gC (Z)
∑
c∈C

∑
L⊆L

|L|+1∑
i=1

∑
U(Z)∈Pi(Z)
θ∈Θ(U(Z))

w(c) (L)
[
η

(c,θ)
U(Z)

]L
. (52)

In the above, the second line is obtained by applying
proposition 2 from [21], and taking the parts that are only
label-dependent outside the resulting integral. The last line is
obtained by observing the fact that the distinct label indicator
function limits the summation over j : 0 → ∞ and l1:j ∈ Lj
to a summation over the subsets of L. Substituting (51) and
(52) into (9), yields the posterior density (47).

Note that this result establishes that the GLMB is a conju-
gate prior with respect to the extended multi-target measure-
ment likelihood function.

D. LMB Filter for Extended Targets

The key principle of the labelled multi-Bernoulli (LMB) fil-
ter is to simplify the representation of the multi-target density
after each update cycle, in order to reduce the algorithm’s com-
putational complexity. Instead of maintaining the full GLMB
representation from one iteration to the next, we approximate
it as an LMB representation after each measurement update
step. In the subsequent iteration, we carry out the prediction
step using this LMB representation, before converting the
predicted LMB back to a GLMB in preparation for the
next measurement update. Thus there are three modifications
needed to turn the GLMB filter into an LMB filter; 1) replace
the GLMB prediction with an LMB prediction, 2) convert the
LMB into a GLMB representation in preparation of the update,
and 3) approximate the updated GLMB density in LMB form.

1) LMB Prediction: If the multi-target density at the
current time is an LMB of the form (2) with parameters{(
r(l), p(l)

)}
l∈L, and the multi-target birth model is an LMB

with parameters
{(
r

(l)
B , p

(l)
B

)}
l∈B

, then the predicted multi-
target density at the next time step is an LMB with parameters{(
r

(l)
+ , p

(l)
+

)}
l∈L+

, with L+ = L∪B comprising both surviv-

ing and birth components

π+ =
{(
r

(l)
+,S , p

(l)
+,S

)}
l∈L
∪
{(
r

(l)
B , p

(l)
B

)}
l∈B

(53)

where

r
(l)
+,S = ηS (l) r(l), (54)

p
(l)
+,S =

∫
pS (ξ′, l) f (ξ|ξ′, l) p(l) (ξ′) dξ′

ηS (l)
, (55)

ηS (l) =

∫ ∫
pS (ξ′, l) f (ξ|ξ′, l) p(l) (ξ′, l) dξ′dξ. (56)

That is, to obtain the predicted LMB, we simply take the
union of the predicted surviving tracks and the birth tracks.
This is much cheaper to compute than the GLMB prediction,
since it does not involve the sum over subsets of L which
appears in (45). The reader is referred to [23] for more details.

2) LMB to GLMB Conversion: The update step requires
converting the LMB representation of the predicted multi-
target density to a GLMB representation. The predicted
LMB π+ =

{(
r

(l)
+ , p

(l)
+

)}
l∈L+

can be converted to a single

component GLMB, given by (2). In principle, this involves
calculating the GLMB weight for all subsets of L+, however,
in practice, approximations can be used to reduce the number
of components and improve the efficiency of the conversion.
These include methods such as target grouping, truncation
with k-shortest paths, or sampling procedures. For more details
see [23], which expresses the converted density in δ-GLMB
form, essentially enumerating all possible subsets of the tracks
appearing in the predicted LMB.

3) Approximating GLMB as LMB: After the measure-
ment update step, the posterior GLMB (which is given by
Proposition 5) can approximated by an LMB with matching
probability hypothesis density, with parameters

r(l) =
∑
c∈C
L⊆L+

|L|+1∑
i=1

∑
U(Z)∈Pi(Z)
θ∈Θ(U(Z))

w
(c,θ)
U(Z) (L) 1I (l) , (57)

p(l) (ξ) =
1

r(l)

∑
c∈C
L⊆L+

|L|+1∑
i=1

∑
U(Z)∈Pi(Z)
θ∈Θ(U(Z))

w
(c,θ)
U(Z) (L) 1I (l) p(θ) (ξ, l) .

(58)

The existence probability corresponding to each label is the
sum of the weights of the GLMB components that include
that label, and its pdf becomes the weighted sum of the
corresponding pdfs from the GLMB. Thus, the pdf of each
track in the LMB becomes a mixture of GGIW densities,
where each mixture component corresponds to a different
measurement association history. To avoid the number of
components growing too large, it is necessary to reduce this
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mixture by a process of pruning and merging. This can
be carried out using the techniques proposed in [15], [17],
which have been previously applied in the context of mixture
reduction for the GGIW-CPHD filter [14].

IV. IMPLEMENTATION

This section provides more details (including pseudo-code)
on the implementation of both the GLMB and LMB extended
target filters. We begin in Section IV-A by describing the
prediction and update steps of the GGIW-GLMB filter, then
in Section IV-B we describe the modifications necessary to
implement the GGIW-LMB filter. To simplify the presenta-
tion of the pseudo-code, the following functions are used to
encapsulate some of the lower-level procedures:
• Poisson (y, λ): Poisson pdf with mean λ computed at

each element of the array y.
• Allocate (n,w): Randomised proportional allocation of

a scalar number of objects n, into a fixed number of bins
with weights given by the array w.

• Normalise (w): From a set of unnormalised posterior
component weights w, compute the posterior cardinality
distribution and normalised components weights.

• PredictGGIW (X): Predict the GGIW X up to the cur-
rent time, using the method in Section III-B1.

• UpdateGGIW (Y,W ): Update the prior GGIW Y with
measurement set W , using (26)-(37).

Note that throughout the pseudo-code, Φ and Ω are used to
denote GLMB densities, and Φ̃ and Ω̃ denote LMB densities.
A GLMB is represented as a data structure containing four
arrays; Φ.X contains the single target pdfs, Φ.L contains the
target labels, Φ.w contains the component weights, and Φ.ρ
is the cardinality distribution. Up to three indices are used
to identify elements within these arrays; the first indicates
cardinality, second is the component index, and third is the
target index. For example, Φ.X(n,m,i) and Φ.L(n,m,i) are the
pdf and label of the i-th target in the m-th component of
cardinality n, Φ.w(n,m) is the weight of the m-th component
of cardinality n, and Φ.ρ(n) is the value of the cardinality
distribution corresponding to n targets.

An LMB is represented as a structure containing the arrays
Φ̃.X (single target pdfs), Φ̃.L (target labels), and Φ̃.r (target
existence probabilities). Since the LMB does not have multiple
components, a single index is sufficient to identify the pdf,
label and existence probability of any particular target.

A. GGIW-GLMB Filter

1) Prediction: To compute the predicted GLMB density,
we predict the individual target pdfs forward using (22)-(25).
For each component c in the previous density, the values from
(44) and (46) are used to construct the following cost matrix

C(c) = − log


η

(c)
S (l1) q

(c)
S (l1)

...
...

η
(c)
S (ln) q

(c)
S (ln)

 (59)

which is denoted in the pseudo-code by
CostMatrixSurvive (X, pS). The cost matrix is used

to calculate components for the predicted GLMB of surviving
targets. This is done by constructing a directed graph, where
every element of the cost matrix becomes a node. Each
node has two outgoing edges, one ending at each node
in the following row. We then generate the K shortest
paths from the top row to the bottom row, denoted by the
function ShortestPaths (C,K). Each path corresponds to
a predicted component, that comprises the targets associated
with the rows in which the first column was visited.

After generating the surviving target density, it is multipled
by the GLMB of spontaneous births, yielding the overall
prediction. Pseudo-code for the GLMB prediction is given in
Figure 1.

Ω = PredictGLMB (Φ,ΦB , N, pS)
1 λ = Mean (Φ.ρ);
2 J1:|Φ.X| = Allocate (N, Poisson (1 : |Φ.X| ;λ));

3 k = Ones (1, |Φ.X|);
4 for n = 1 : |Φ.X| do
5 Kn,1:|Φ.X(n)| = Allocate

(
Jn,Φ.w(n)

)
;

6 for i = 1 :
∣∣Φ.X(n)

∣∣ do
7 C= CostMatrixSurvive

(
Φ.X(n,i), ps

)
;

8 P = ShortestPaths (C,Kn,i);
9 for (p, c) ∈ P do

10 s = {j; 1 ≤ j ≤ n, p (j) = 1};
11 m = |s|;
12 ΦS .X

(m,k(m),1:m) = PredictGGIW
(
Φ.X(n,i,s)

)
;

13 ΦS .L
(m,k(m),1:m) = Φ.L(n,i,s);

14 w(m,k(m)) = Φ.ρ(n)Φ.w(n,i)e−c;
15 k (m) = k (m) + 1;

16 (ΦS .w,ΦS .ρ) = Normalise (w);
17 Ω = ΦS × ΦB ;

Figure 1. Pseudo-code for GGIW-GLMB prediction. Inputs: Φ is the
posterior GLMB at the previous time step, ΦB is the GLMB density of
spontaneous birth targets, N is the number of prediction components to
generate, and pS is the target survival probability. Output: Ω is the predicted
GLMB density at the current time.

2) Update: Similarly to the extended target (C)PHD filter,
the main barrier to implementing the extended target GLMB
filter is the fact that the posterior density in (47) involves a
sum over all partitions of the measurement set. Even for small
measurement sets, exhaustively enumerating the partitions is
usually intractable, because the number of possibilities (given
by the Bell number) grows combinatorially with the number
of elements. Therefore, to make the filter computationally
tractable, the first step in the update procedure is to reduce the
number of partitions to a more managable level, by removing
those that are infeasible.

Ideally, the retained partitions should be those that give
rise to GLMB components with the highest posterior weights,
such that the effect of truncation error is minimised. Although
it is difficult to establish a method that can guarantee this,
the use of clustering techniques to generate the most likely
partitions has been shown to produce favourable results [13],
[16]. In our implementation of the GGIW-GLMB filter, we use
a combination of distance-based clustering and the expecation-
maximisation algorithm to generate a set of feasible partitions
of the measurements, in a similar manner to [13] and [16].
For the pseudo-code in Figure 2, this is encapsulated by the
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function FeasiblePartitions (Z).
After generating the feasible partitions, each unique group-

ing of measurements is used to update the single-target GGIW
pdfs in the GLMB density, using (26)-(37). The implementa-
tion is simplified by assuming that the detection probability
is dependent on the target label only (i.e. pD (ξ, l) = pD (l)),
yielding the following closed form expression for (50),

η
(c,θ)
U(Z) (l) =

pD (l) ηγ
(
Uθ(l) (Z) ; p(c)

)
ηx,χ

(
Uθ(l) (Z) ; p(c)

)
[κ]
Uθ(l)(Z)

(60)
where ηγ (·) and ηx,χ (·) are given by (38) and (39).

For each predicted component c, a cost matrix is calculated
for the assignment of measurement groups to targets. This
matrix is of the form C(c) =

[
D(c);M (c)

]
, where D(c) is a

|X| × |U (Z)| matrix and M (c) is a |X| × |X| matrix, the
elements of which are

D
(c)
i,j = − log

(
η

(c)
Uj(Z) (li)

)
(61)

M
(c)
i,j =

{
− log (qD (li)) , i = j

∞, i 6= j
(62)

where η(c)
Uj(Z) (li) denotes the Bayes evidence (60), from the

update of the target labelled li within component c, using
the measurement group Uj (Z). Note that each row in C(c)

corresponds to a target, and each column corresponds to
either a group of measurements in Z or a misdetection. In
the pseudo-code, the calculation (61)-(62) is denoted by the
function CostMatrixAssign (U (Z) , X, pD).

Murty’s algorithm is then used to generate highly weighted
assignments of measurement groups to targets, denoted by
the function Murty (C, n), which generates the n-best ranked
assignments based on the cost matrix C. Each assignment
returned by Murty’s algorithm forms a component in the pos-
terior GLMB density. Pseudo-code for the update procedure
is given in Figure 2.

3) Track Extraction and Pruning: After the update, labelled
target estimates are extracted from the posterior GLMB, which
are used to update a table of reported tracks. This is done by
finding the maximum a-posteriori estimate of the cardinality,
then selecting the highest weighted GLMB component with
that cardinality. For those labels in the selected GLMB com-
ponent that are already present in the reported track table, the
current estimates are appended to the corresponding reported
tracks. For labels that are not present, new tracks with those
labels are inserted into the reported track table. The posterior
GLMB is then pruned by retaining the top M components
with highest weights. More details and pseudo-code for these
procedures can be found in [1].

B. GGIW-LMB Filter

1) Adaptive Birth: In previous work [24] we used a static
model for target birth, which meant that new targets could
only be initiated around pre-determined locations. To alleviate
this restriction, we now use an adaptive target birth model that
allows for new targets to appear anywhere in the state space.
The adaptive birth density for the GGIW-LMB filter closely

Ω = UpdateGLMB (Φ, Z,N, pD)
1 λ = Mean (Φ.ρ);
2 I1:|Φ.X| = Allocate (N, Poisson (1 : |Φ.X| ;λ));

3 P = FeasiblePartitions(Z);
4 for n = 1 : |Ω.X| do
5 k = 1;

6 J1:|Φ.X(n)| = Allocate
(
In,Φ.w(n)

)
;

7 for i = 1 :
∣∣Φ.X(n)

∣∣ do
8 K1:|P| = Allocate (Ji, Unif(1 : |P|));
9 for j = 1 : |P| do

10 C = CostMatrixAssign
(
P(j) (Z) ,Φ.X(n,i), pD

)
;

11 A = Murty (C,Kj);
12 for (a, c) ∈ A do

13 w(n,k) = Φ.ρ(n)Φ.w(n,i)e−c;
14 for l = 1 : n do
15 if a(l) > 0 then

16 Ω.X(n,k,l)

17 = UpdateGGIW

(
Φ.X(n,i,l),P(j)

a(l)
(Z)

)
;

18 else

19 Ω.X(n,k,l) = Φ.X(n,i,l);

20 Ω.L(n,k,l) = Φ.L(n,i,l);
21 k = k + 1;

22 (Ω.w,Ω.ρ) = Normalise (w);

Figure 2. Pseudo-code for GGIW-GLMB update. Inputs: Φ is the predicted
GLMB density at the observation time, Z is the current measurement set, and
N is the maximum number of posterior components to generate, pD is the
detection probability. Output: Ω is the posterior GLMB density.

resembles the adaptive birth density of the standard LMB filter
[23], i.e. measurement clusters that are far away from any
existing tracks are likely to correspond to new born targets,
while clusters in the proximity of existing tracks are likely to
have originated from these tracks. Hence, the adaptive birth
density is dominated by the clusters corresponding to possible
new born targets. The reader is referred to [23] for additional
details about the adaptive LMB birth density.

2) Prediction: The LMB prediction involves computing the
predicted GGIW for each target in the density, and multiplying
the existence probability of each target by its probability
of survival. This is significantly cheaper than the GLMB
prediction, since it does not require generation of components
using k-shortest paths. The predicted LMB density is then
given by the union between the surviving and birth densities,
where the birth density may be static or adaptive depending
on the scenario requirements. The pseudo-code for the LMB
prediction is given in Figure 3.

Ω̃ = PredictLMB
(

Φ̃, Φ̃B , pS

)
1 for i = 1 :

∣∣Φ̃.L
∣∣ do

2 Φ̃S .L
(i) = Φ̃.L(i);

3 Φ̃S .X
(i) = PredictGGIW

(
Φ̃.X(i)

)
;

4 Φ̃S .r
(i) = ps

(
Φ̃.L(i)

)
× Φ̃.r(i);

5 Ω̃ = Φ̃S ∪ Φ̃B ;

Figure 3. Pseudo-code of GGIW-LMB prediction. Inputs: Φ̃ is the posterior
LMB at the previous time step, Φ̃B is the LMB of spontaneous births, and
pS is the target survival probability. Output: Ω̃ is the predicted LMB at the
current time.
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3) Update: The LMB update consists of splitting up the
predicted LMB into groups of well separated targets. This is
done based on the current measurement set, and the obser-
vation that a pair of tracks can be considered as members
of different independent clusters if no single measurement
falls inside the gating region of both tracks simultaneously.
The clustering procedure is denoted in the pseudo-code as
ClusterTracks (Φ, Z), and more details on how this is
performed can be found in [23].

Following clustering, the predicted LMB for each group is
converted to a GLMB using (2)-(4). For an LMB density Φ̃
and a given group of labels L, this conversion is denoted by the
function LMBtoGLMB

(
Φ̃, L

)
. Each of these is updated using

the UpdateGLMB procedure in Figure 2. The posterior GLMB
for each group of targets is then approximated in the form of an
LMB using (57)-(58) followed by a mixture reduction step for
each track (denoted by the function ApproximateLMB (Φ)).
Finally, the union of the posterior LMBs is taken across all
target groups to obtain the overall posterior LMB density. The
pseudo-code for the LMB update is given in Figure 4.

Ω̃ = UpdateLMB
(

Φ̃, Z,N, pD

)
1 C = ClusterTracks

(
Φ̃, Z

)
;

2 Ω̃ = ∅;
3 for W ∈ C do

4 ΦW = LMBtoGLMB
(
Φ̃,W

)
;

5 ΩW = UpdateGLMB (ΦW , Z,N, pD);

6 Ω̃W = ApproximateLMB (ΩW );

7 Ω̃ = Ω̃ ∪ Ω̃W

Figure 4. Pseudo-code for GGIW-LMB update. Inputs: Φ̃ is the predicted
LMB density at the current time, Z is the current measurement set, and N is
the maximum number of posterior components to generate in the GLMB
update, pD is the detection probability. Output: Ω̃ is the posterior LMB
density.

Note that the computational saving of the LMB filter
depends on the assumption that the number of targets (and
hence the number of GLMB components) in each group will
be relatively small. In this case, the total number of GLMB
components that need to be processed across all target groups
will be significantly lower compared to the full GLMB filter.

V. SIMULATION RESULTS

In this section, the performance of the GGIW-GLMB,
GGIW-LMB, and GGIW-LMB with adaptive birth process
(GGIW-LMB-ab) is compared to an extended target CPHD
filter [14] using the cardinality estimation error and the opti-
mal sub-pattern assignment (OSPA) distance [30]. Since the
standard OSPA only penalizes cardinality and state errors,
a modified version of the OSPA metric [14, Section VI]
incorporating measurement rates and target extent is used in
the evaluation.

The targets follow the dynamic model

xk+1 =
(
Fk+1|k ⊗ Id

)
xk + vk+1 (63)

where vk+1 ∼ N
(
0, Qk+1|k

)
is a d × 1 independent and

identically distributed (i.i.d.) process noise vector, Id is the

identity matrix of dimension d, and Fk+1|k and Qk+1|k are

Fk+1|k =

 1 T 1
2T

2

0 0 T
0 0 e−T/θ

 ,
Qk+1|k =

[
Σ2
(

1− e−2T/θ
)

diag
([

0 0 1
])]
⊗ χk+1.

In the above, T is the sampling period, Σ is the scalar accel-
eration standard deviation, and θ is the manoeuvre correlation
time. In these simulations, we use parameter values of T = 1 s,
θ = 1 s and Σ = 0.1m/s2.

The forgetting factor used by the filters in (24) for the
prediction of target measurement rates is set to µ = 1.25, and
the temporal decay constant in (25) for the prediction of the
target extension is τ = 5 s. The probability of target survival
is set to pS = 0.99. For the GLMB and LMB with static
birth, the parameters of the gamma components are α0 = 10
and β0 = 1, the inverse-Wishart component parameters are
ν0 = 10 and V0 = 100 × I2, and the kinematic components
have means m0 which are located close to the true target
starting positions with zero initial velocity and covariance
P0 = diag

([
10 2.5

])2
. The same values for α0, β0, ν0

and P0 are used in the LMB filter with adaptive birth, however,
the values of m0 and V0 are computed on-line.

The measurement model for a single detection is

zk = (H ⊗ Id)xk + wk (64)

where H =
[

1 0 0
]
, and wk ∼ N (0, χk) is i.i.d.

Gaussian measurement noise with covariance given by the
target extent matrix χk. If detected, a target generates a
number of measurements from the model (64), where the
number follows a Poisson distribution, the mean of which
may be set differently for each target. In addition, clutter
measurements are simulated as being uniformly distributed
across the surveillance region, where the number of clutter
points is Poisson distributed with a fixed mean.

Three scenarios were simulated, the first two of which were
used in [14] to compare the performance of the GGIW-PHD
filter and the GGIW-CPHD filter (note that all scenarios are
2-dimensional, i.e. d = 2). Scenario 1 runs for 200 time steps,
and consists of four targets that appear/disappear at different
times. The targets generate measurements with a detection
probability of pD = 0.8 and the clutter measurements follow
a Poisson distribution with a mean number of 30 per time
step. Due to lower detection probability, higher clutter rate,
and target birth/death, the estimation of the cardinality is
challenging in this scenario. Scenario 2 runs for 100 time
steps and consists of two targets that are present for the
entire scenario. The two targets are spatially well separated
at the beginning, then move in parallel at close distance,
before separating again towards the end. In this scenario, the
detection probability is pD = 0.98 and a mean value of 10
Poisson distributed clutter measurements occur at each time
step. This scenario is used to illustrate the filter performance
for the difficult problem of tracking closely spaced targets
[13], [16]. Since the target-generated measurements are close
together, they often appear as a single cluster in the sensor
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data, rather than multiple separate clusters. Figure 5 depicts
the true trajectories of the targets for both scenarios.
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Figure 5. Simulated true target tracks. In scenario 1 (left) all tracks start in
the origin. In scenario 2 (right) the tracks start on the left.

Scenario 3 is used to test the so-called ‘spooky’ effect [19].
The scenario has two targets that are spatially separated by at
least 1km for all 50 time steps. The probability of detection
was set to pD = 0.9 and clutter Poisson rate was 10. The
measurements were generated such that one target is always
detected, and the other target is detected on all time steps,
except for steps 20, 40 and 41.

For the first two scenarios, 1000 Monte Carlo runs were
carried out in order to compare the performance of the four
different GGIW filters: GLMB, LMB, LMB with adaptive
birth process (LMB-ab), and CPHD. The GGIW-PHD filter
is omitted from the comparison because previous work has
shown that both the CPHD and GLMB filter outperform the
PHD filter [14]. Figure 6 shows the mean OSPA distances,
and the mean cardinality errors for scenario 1. The GLMB
and LMB filters have approximately equal performance. The
LMB-ab filter has slower convergence due to the unknown
birth density, however the filter eventually reaches the same
error as the GLMB and LMB with known birth density. This
is expected since the other three filters have the advantage
of knowing the region where new targets will appear. The
CPHD filter can match the GLMB and LMB in terms of the
cardinality error, however the mean OSPA is larger.

The execution times for our Matlab implementation of the
algorithms (mean ± one standard deviation) for Scenario 1 are
3.95 ± 3.41s for the GLMB filter, 0.19 ± 0.29s for the LMB
filter, and 2.20 ± 0.47s for the CPHD filter. Since the LMB-ab
filter only uses clusters with more than four measurements as
birth candidates, it is even faster than the LMB filter. Since
the LMB filter partitions the tracks and measurements into
approximately statistically independent groups [23], [31], its
computation times are less than those of the CPHD filter.

Figure 7 shows the mean OSPA distances and mean cardi-
nality errors for scenario 2. Similar to scenario 1, the GLMB
filter slightly outperforms the LMB and CPHD filter. Again,
the cardinality estimate of the LMB-ab filter takes longer to
converge to the correct value, however, the LMB-ab filter has
lower OSPA distance and smaller cardinality error than the
LMB filter after time 78. This is due to the fact that, in some
of the runs, the LMB filter lost one of the tracks because
the measurement clusters were very close together. Even after
the targets move apart, the filter with static birth density is
unable to start a new track on the lost target. However, the
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Figure 6. Cardinality error and OSPA metric for scenario 1 (mean values of
the 1000 Monte Carlo runs)

filter with adaptive birth density has the capability to start
a new track at the lost target’s current location, leading to
improved performance.
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Figure 7. Cardinality error and OSPA metric for scenario 2 (mean values of
the 1000 Monte Carlo runs)

In scenario 3 we compare the PHD, CPHD and LMB
filters. The estimated weights (for the PHD and CPHD) and
existence probabilities (for the LMB) for a single run are
shown in Figure 8. The PHD filter suffers from a positive
bias (weight around 1.1), and the weight drops quickly when
there are missed detections. The CPHD clearly suffers from
the ‘spooky’ effect [19], as the weight of the detected target
increases when the other target is misdetected. In comparison,
the LMB filter performs better, as the probability of existence
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of the detected target is unaffected when the other target is
not detected. Also, the decrease in the existence probability
following the missed detections is more conservative compared
to the decrease in the weights for the PHD and CPHD filters.
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Figure 8. Result from spooky effect scenario. The lines show the estimated
weights for two spatially separated targets. The distance between the two
targets is 1km, at time steps 20, 40 and 41 there are missed detections for
target 1.

VI. EXPERIMENTAL RESULTS

To demonstrate the proposed method on a real world sce-
nario, we applied the GGIW-LMB filter to pedestrian tracking
with laser rangefinders. In contrast to targets with distinct
shapes, such as vehicles or buildings, pedestrians do not
exhibit specific structure in laser scans, appearing instead as
a random cluster of points. Hence, the GGIW measurement
model is well suited to this application, since it assumes
that the measurements are distributed normally around the
target centroid. For this experiment, two pedestrians were
recorded while walking on a parking lot using three Ibeo
Lux laser sensors, which are mounted in the front bumper
of the vehicle. Before being passed to the tracking filter, the
laser returns from each sensor were thinned by removing
measurements that lie outside the region of interest, thus
excluding measurements from parked vehicles. The sensor was
stationary during the experiment, and both pedestrians were
wandering around the surveillance region, and are in close
proximity to each other mid-way through the scenario. Figure
10 shows camera footage from this instant.

Figure 10. Pedestrian tracking scenario: The two pedestrians are getting
close at around t = 6.5 seconds.

A constant velocity dynamic model is used to track the
pedestrians, i.e., the parameters of (63) are d = 2 and

Fk+1|k =

[
1 T
0 1

]
, Qk+1|k = σ2

[
T 4

4
T 3

2
T 3

2 T 2

]
⊗ χk+1,

where the sampling period is T = 0.08 s and the standard
deviation of the process noise is σ = 4m/s2. Due to the
decreased dimension of the motion model, the measurement
matrix in (64) is Hk =

[
1 0

]
, and since the birth locations

are unknown, the LMB filter with adaptive birth model is used
in this scenario. Other filter parameters are similar to those
used in Section (V).

The results from the GGIW-LMB-ab filter are depicted
in Figure 9. The dashed lines show approximate ground
truth trajectories, which were obtained by manually labelling
the pedestrians in the raw laser scans, and the solid lines
show the estimated trajectories. In addition, two-sigma ellipses
representing the target extents as well as the corresponding
measurements are also shown for selected time instants.

The filter is able to track both pedestrians continuously,
even when they are very close. Especially in this situation,
the multi-target representation as (G)LMB facilitates finding
consistent association hypotheses and maintaining tracks over
time. Note that the strongly fluctuating measurements on
different moving parts of the human body, such as legs,
arms and torso, make precise estimation of the target centroid
positions difficult, in both the manual labelling process, and for
the tracker itself. This explains most of the deviation between
labelled ground truth and estimated trajectories. The estimates
of the pedestrian extent vary over time, as demonstrated
by the changing ellipses in Figure 9. This is again due to
fluctuating measurements, which can be attributed mostly to
leg movement. When the targets are close to the sensors, and
the laser rangefinders provide detailed scans of the legs, a
periodic adaption of the target extent following the motion of
the legs with each stride could be observed.

VII. CONCLUSION

In this paper we have proposed two algorithms for tracking
multiple extended targets in clutter, namely the GGIW-GLMB
and GGIW-LMB filter. Both are based on modelling the prob-
lem using labelled random finite sets, and gamma Gaussian
inverse Wishart mixtures. The proposed algorithms estimate
the number of targets, and their kinematics, extensions and
measurement rates. The major advantage of these methods
over the previously developed GGIW-(C)PHD filters is the
inclusion of target labels, allowing for continuous target tracks,
which is not directly supported by the (C)PHD filters.

Of the two proposed algorithms, the GGIW-GLMB filter
is more accurate as it involves fewer approximations, but
it is also more computationally demanding than the GGIW-
LMB filter. Simulation results demonstrate that the algorithms
outperform the GGIW-(C)PHD filters, especially in cases
where the performance of the CPHD filter is degraded due
to the spooky effect. Finally, we have also demonstrated that
the filter performs well in a real-world application, in which
laser rangefinders are used to track pedestrians.
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Figure 9. Ground truth (dashed) and estimated (solid) pedestrian trajectories. Estimated two-sigma ellipses and corresponding laser measurements (black)
are plotted for selected time steps.

ACKNOWLEDGEMENT

This project is supported by the Australian Research Coun-
cil under projects DE120102388 and DP130104404. The au-
thors would also like to acknowledge the ATN-DAAD (Ger-
man Academic Exchange Service): Joint Research Coopera-
tion Scheme, for their support of this work, under the project
entitled “Random Finite Set Based Extended Object Tracking
with Application to Vehicle Environment Perception”.

REFERENCES

[1] M. Beard, B.-T. Vo, B.-N. Vo, “Bayesian multi-target tracking with
merged measurements using labelled random finite sets,” IEEE Trans.
Signal Process., vol. 63, no. 6, pp. 1433-1447, March 2015.

[2] K. Gilholm and D. Salmond, “Spatial distribution model for tracking
extended objects,” IEE Proc. Radar, Sonar and Navigation, vol. 152,
no. 5, pp. 364–371, Oct. 2005.

[3] K. Gilholm, S. Godsill, S. Maskell, and D. Salmond, “Poisson models for
extended target and group tracking,” Proc. Signal and Data Processing
of Small Targets, vol. 5913, pp. 230–241, San Diego, CA, Aug. 2005.

[4] J. W. Koch, “Bayesian approach to extended object and cluster tracking
using random matrices,” IEEE Trans. Aerosp. Electron. Syst., vol. 44,
no. 3, pp. 1042–1059, July 2008.

[5] W. Wieneke, J. W. Koch, “Probabilistic tracking of multiple extended
targets using random matrices,” SPIE Signal and Data Processing of
Small Targets, Orlando, FL, USA, Apr. 2010.

[6] M. Feldmann, D. Fränken, and J. W. Koch, “Tracking of extended
objects and group targets using random matrices,” IEEE Trans. Signal
Process., vol. 59, no. 4, pp. 1409–1420, Apr. 2011.

[7] J. W. Koch, M. Feldmann, “Cluster tracking under kinematical con-
straints using random matrices,” Robotics and Autonom. Syst., vol. 57,
no. 3, pp. 296–309, Mar. 2009.

[8] M. Baum, B. Noack, and U. D. Hanebeck, “Extended object and group
tracking with elliptic random hypersurface models,” 13th Int. Conf.
Inform. Fusion, Edinburgh, UK, July 2010.

[9] M. Baum and U. D. Hanebeck, “Shape tracking of extended objects and
group targets with star-convex RHMs,” Proc. 14th Int. Conf. on Inform.
Fusion, Chicago, IL, USA, July 2011.

[10] C. Lundquist, K. Granström, U. Orguner, “Estimating the shape of
targets with a PHD filter,” 14th Int. Conf. Inform. Fusion, Chicago, IL,
USA, July 2011.

[11] R. Mahler, “Multitarget Bayes filtering via first-order multitarget mo-
ments”, IEEE Trans. Aerosp. Elecron. Syst. vol. 39, no. 4, pp. 1152-
1178, Oct. 2003.

[12] R. Mahler, “PHD filters for nonstandard targets, I: Extended targets,”
12th Int. Conf. Inform. Fusion, Seattle, WA, USA, July 2009.

[13] K. Granström, U. Orguner, “A PHD filter for tracking multiple extended
targets using random matrices,” IEEE Trans. Signal Process., vol. 60,
no. 11, pp. 5657–5671, Nov. 2012.

[14] C. Lundquist, K. Granström, U. Orguner, “An extended target CPHD
filter and a gamma Gaussian inverse Wishart implementation,” IEEE J.
Sel. Topics Signal Process., vol. 7, no. 3, pp. 472-483, Feb. 2013.

[15] K. Granström, U. Orguner, “Estimation and maintenance of measure-
ment rates for multiple extended target tracking,” 15th Int. Conf. Inform.
Fusion, Singapore, July 2012.

[16] K. Granström, C. Lundquist, U. Orguner, “Extended Target Tracking
using a Gaussian-Mixture PHD Filter ”, IEEE Trans. Aerosp. Elecron.
Syst., vol. 48, no. 4, pp. 3268 - 3286, Oct. 2012.

[17] K. Granström and U. Orguner, “On the reduction of Gaussian inverse
Wishart mixtures,” 15th Int. Conf. Inform. Fusion, Singapore, July 2012.

[18] B.-T. Vo, B.-N. Vo, A. Cantoni, “Analytic implementations of the
cardinalized probability hypothesis density filter,” IEEE Trans. Signal
Process., vol. 55, no. 7, pp. 3553-3567, July 2007.

[19] B.-T. Vo, B.-N. Vo, “The para-normal Bayes multi-target filter and the
spooky effect,” 15th Int. Conf. Inform. Fusion, Singapore, July 2012.

[20] B. Ristic, J. Sherrah, “Bernoulli filter for joint detection and tracking of
an extended object in clutter,” IET Radar, Sonar and Navigation, vol. 7,
no. 1, pp. 26-35, Jan. 2013.

[21] B.-T. Vo and B.-N. Vo, “Labeled random finite sets and multi-object
conjugate priors,” IEEE Trans. Signal Process., vol. 61, no. 13, pp. 3460-
3475, July 2013.

[22] B.-N. Vo; B.-T. Vo, D. Phung, “Labeled random finite sets and the Bayes
multi-target tracking filter,” IEEE Trans. Signal Process., vol. 62, no. 24,
pp. 6554-6567, Dec. 2014.

[23] S. Reuter, B.-T. Vo, B.-N. Vo, K. Dietmayer, “The labeled multi-
Bernoulli filter,” IEEE Trans. Signal Process., vol.62, no.12, pp.
3246,3260, June 2014.

[24] M. Beard, S. Reuter, K. Granström, B.-T. Vo, B.-N. Vo, A. Scheel,
“A generalised labelled multi-Bernoulli filter for extended multi-target
tracking”, to appear 18th Int. Conf. Inform. Fusion, Washington DC,
USA, July 2015.

[25] R. P. S. Mahler, Statistical Multisource-Multitarget Information Fusion,
Artech House, 2007.

[26] B.-N. Vo, S. Singh, and A. Doucet, “Sequential Monte Carlo methods
for Bayesian multi-target filtering with random finite sets”, IEEE Trans.
Aerosp. Electron. Syst., vol. 41, no. 4, pp. 1224-1245, Oct. 2005.

[27] R. Mahler, “PHD filters of higher order in target number”, IEEE Trans.
Aerosp. Electron. Syst., vol. 43, no. 4, pp.1523-1543, Oct. 2007.

[28] B.-T. Vo, B.-N. Vo, A. Cantoni. “The cardinality balanced multi-target
multi-Bernoulli filter and its implementations”, IEEE Trans. Signal
Process., vol. 57, no. 2, pp. 409-423, Feb. 2009.

[29] K. G. Murty, “An algorithm for ranking all the assignments in increasing
order of cost,” Operations Research, vol. 16, no. 3, pp. 682-678, 1968.

[30] D. Schuhmacher, B.-T. Vo, B.-N. Vo, “A consistent metric for perfor-
mance evaluation of multi-object filters,” IEEE Trans. Signal Process.,
vol. 56, no. 8, pp. 3447-3457, Aug. 2008.

[31] A. Scheel, K. Granström, D. Meissner, S. Reuter, K. Dietmayer, “Track-
ing and data segmentation using a GGIW filter with mixture clustering,”
17th Int. Conf. Inform. Fusion, Salamanca, Spain, July 2014.

[32] A. Swain and D. Clark, “Extended object filtering using spatial indepen-
dent cluster processes,“ Proc. 13th Int. Conf. Inform. Fusion, Edinburgh,
UK, July 2010.

[33] A. Swain and D. Clark, “The PHD filter for extended target tracking
with estimable shape parameters of varying size,” 15th Int. Conf. Inform.
Fusion, Singapore, July 2012.

[34] A. Gupta and D. Nagar, Matrix Variate Distributions, Chapman & Hall,
2000.


	I Introduction
	II Background: Tracking with Labelled Random Finite Sets
	III Labelled RFS-based Extended Target Tracking
	III-A Observation Model for Multiple Extended Targets
	III-B Extended Target State-space Model
	III-B1 Prediction 
	III-B2 Update

	III-C GLMB Filter for Extended Targets
	III-D LMB Filter for Extended Targets
	III-D1 LMB Prediction
	III-D2 LMB to GLMB Conversion
	III-D3 Approximating GLMB as LMB


	IV Implementation
	IV-A GGIW-GLMB Filter
	IV-A1 Prediction
	IV-A2 Update
	IV-A3 Track Extraction and Pruning

	IV-B GGIW-LMB Filter
	IV-B1 Adaptive Birth
	IV-B2 Prediction
	IV-B3 Update


	V Simulation Results
	VI Experimental Results
	VII Conclusion
	References

