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Abstract

This paper addresses two fundamental problems in the context of Hidden Markov Models (HMMs). The first
problem is concerned with the characterization and computation of a minimal order HMM that realizes the exact
joint densities of an output process based on only finite strings of such densities (known as HMM partial realization
problem). The second problem is concerned with learning a HMM from finite output observations of a stochastic
process. We review and connect two fields of studies: realization theory of HMMs, and the recent development
in spectral methods for learning latent variable models. Our main results in this paper focus on generic situations,
namely, statements that will be true for almost all HMMs, excluding a measure zero set in the parameter space. In
the main theorem, we show that both the minimal quasi-HMM realization and the minimal HMM realization can be
efficiently computed based on the joint probabilities of length N strings, for N in the order of O(logd(k)). In other
words, learning a quasi-HMM and an HMM have comparable complexity for almost all HMMs.

I. INTRODUCTION

A. Background

Hidden Markov Models (HMMs) are widely used for describing discrete random processes, especially in the
applications involving temporal pattern recognition such as speech and gesture recognition, part-of-speech tagging
and parsing, and bioinformatics. The Markovian property of the hidden state evolution potentially leads to a
low complexity representation of the output random process. In this work, we consider the long-standing HMM
realization problem: given some partial knowledge about the output process of an unknown HMM, can we generalize
it to a full description of the random process?

Consider a discrete random process {yt : t ∈ Z}, which assumes values in a finite alphabet [d] ≡ {1, · · · , d}.
Assume that yt is the output process of a stationary HMM of finite order. Let the random vector yN1 = (y1, . . . , yN )
denote an string of length N , which assumes values in the N -ary Cartesian product [d]N . The process yt is fully
characterized by the joint probabilities of strings of any length in the countably infinite table (denoted by P(∞)):{

P(y1 = l1, · · · , yN = lN ) : ∀lN1 ∈ [d]N ,∀N ∈ Z
}
.

There are three main concerns in the realization problem:
1) (Informational complexity) Suppose that the underlying HMM is of order k, and we are given the joint

probabilities of all the length N strings, namely:

P(N) ≡
{
P(y1 = l1, · · · , yN = lN ) : ∀lN1 ∈ [d]N

}
,

how large does N need to be so that we can compute P(∞) based on P(N)?
2) (Computational complexity) Can we solve the realization problem with runtime polynomial in the dimensions

(alphabet size d and order of the underlying HMM k)?
3) (Statistical complexity) When P(N) is estimated from sample sequences and has some estimation error, are the

realization algorithms robust to the input errors?
These are long standing questions, and there are several lines of work within different communities at tempting

to address these questions. It has long been known that, in the information theoretic sense, there exist hard cases of
HMMs that are not efficiently PAC learnable [13] [17]. However, a more practical question is, can we efficiently
solve the realization / learning problem for most HMMs? In this work, we focus on generic analysis and show that,
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for almost all HMMs, i.e., excluding those whose parameters are in a measure zero set 1, the realization problems
can be efficiently solved with poly time algorithms.

B. Organization

To study the HMM realization problems, we focus on algorithms based on the spectral method. The basic idea
is to exploit the recursive structural properties of the underlying finite state model, and write the joint probabilities
in P(N) into a specific form which admits rank decomposition, where the rank reveals the minimal order of the
realization and the model parameters can be extracted from the factors.

In the first part (Section III), we consider the problem of finding the minimal quasi-HMM realization. Quasi-
HMMs are associated with different names in different communities, for example finite state regular automata [4],
[5], regular quasi realization [17], [21], and operator models [10], [17]. We mostly follow the terminologies in [21].
Algorithm 1 is the well-known algorithm for finding the minimal order quasi-HMM realization (to be rigorously
defined later). However, in general the window size N can not be specified a priori and thus the complexity of
the algorithm cannot be explicitly determined. In Theorem 1, we show that, if the output process is generated by
an general position HMM with order k, we only need the window size N in the order of O(logd(k)) for pinning
down P(∞) based on P(N), where d is the output alphabet size. Moreover, we show that Algorithm 1 has runtime
and sample complexity both polynomial in the relevant parameters.

In the second part (Section IV), we consider the problem of finding the minimal HMM realization, using tensor
decomposition methods, which rely on the uniqueness of tensor decomposition to recover the minimal order HMM
that is unique up to hidden states permutation. Tensor decomposition based algorithms for learning HMMs are
studied in [1], [2], [6]. In these works, the transition matrix is always assumed to be of full rank. Similar to
that in the quasi-HMM realization problem, in general the required window size N and also the complexity of
the algorithm cannot be determined a priori. In [1], the authors examined the generic identifiability conditions of
HMM, and showed that generically it suffices to pick the window size N = 2n + 1 for some positive integer n,
such that

(
n+d−1
d−1

)
≥ k. In the case where d is much smaller than k, n needs to be in the order of O(k1/d). Another

bound on the window size N is given in [6], which is in the order of O(k/d). However, the size of the tensor in
the decomposition is exponential in n, thus all these bound lead to runtime exponential in k.

In Section IV, we propose a two-step realization approach, and analyze the identifiability issue of the two steps.
Then, we show that for the processes generated by almost all HMMs, the window size N only needs to be in the
order of O(logd(k)) for finding the minimal HMM realization. This means that for most HMMs, finding minimal
quasi-HMM and minimal HMM realizations are actually of equal difficulty.

II. MINIMAL REALIZATION PROBLEM FORMULATION

In this section. we first review the basics of HMMs, and then formally introduce the quasi-HMM and HMM
realization problems.

A. Preliminaries on HMMs

An HMM determines the joint probability distribution over sequences of hidden states {xt : t ∈ Z} and
observations {yt : t ∈ Z}. For simplicity, we call each output yt as a “letter” taking value from some discrete
alphabet [d], and a sequence of n letters is referred to as a “string”, taking value from the Cartesian product [d]n.
We use [dN ] ≡ {1, . . . , dN} to denote the vectorized indices in [d]n.

The joint distribution of {xt, yt : t ∈ Z} from a stationary HMM is parameterized by a pair of matrices: the
state transition matrix Q ∈ Rk×k+ , and the observation matrix O ∈ Rd×k+ , which satisfy e>O = e> and e>Q = e>,
where e is the all ones vector. The hidden state xt evolves following a Markov process:

P(xt+1 = j|xt = i) = Qj,i.

Let π denote the stationary state distribution, i.e., πi = P[xt = i] and Qπ = π. Without loss of generality, we
assume that πi > 0 for all i ∈ [k]. We also define the backward transition matrix Q̃ ∈ Rk×k:

P(xt−1 = j|xt = i) = Q̃j,i.

1 In our setting, algebraic genericity coincides with the measure theoretic notion of generic. Throughout the discussion, for fixed alphabet
size d and order k, we call an HMM in general position if its transition and observation matrix are in general position, which is equivalent to
“almost everywhere in the parameter space of {Q ∈ Rk×k

+ , O ∈ Rd×k
+ : e>Q = e>, e>O = e>}”.
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Observe that the matrix Q̃ is related to Q as: Q̃ = Diag(π)Q>Diag(π)−1. Conditioned on the hidden state taking
value i, the probability of observing letter j is:

P(yt = j|xt = i) = Oj,i.

We call two HMMs equivalent if the output processes are statistically indistinguishable.
The order of the HMM is defined to be the number of hidden states, denoted by k. We will denote the class of

all HMMs with output alphabet size d and order k by Θh
(d,k).

B. Problem formulations

The realization problem takes as inputs the probabilities of finite length strings for a fixed window size N
(P(N)), and finds a finite state model of the minimal order to describe the entire output process (P(∞)). We aim
to find the most succinct description of the process, namely the minimal order realization, where the “order” refers
to the number of states of the underlying finite state model. Without loss of generality, we assume that the process
has a minimal realization of order k and examine under what conditions the algorithms can recover an equivalent
minimal order realization.

Next, we introduce two classes of finite state models, both of which can realize an HMM output process.

Definition 1 (Quasi-HMM realization [21]). Let θo be a tuple: θo = (k, u, v ∈ Rk, A(j) ∈ Rk×k : ∀j ∈ [d]). We
call θo a quasi-HMM realization of order k for a stationary process {yt : t ∈ Z} if the three conditions hold:
(∀lN1 ∈ [d]N ,∀N ∈ Z)

P(yN1 = lN1 ) = u>A(l1)A(l2) · · ·A(lN )v, (1)

u>(

d∑
j=1

A(j)) = u>, (2)

(

d∑
j=1

A(j))v = v. (3)

Definition 2 (Equivalent quasi-HMM realizations). Two quasi-HMM realizations θo = (k, u, v, A(j) : j ∈ [d]) and
θ̃o = (k, ũ, ṽ, Ã(j) : j ∈ [d]) are called equivalent, if there is a full rank matrix T ∈ Rk×k such that:

ũ = T>u, ṽ = T−1v, Ã(j) = T−1A(j)T, ∀j ∈ [d].

Definition 3 (HMM realization). Let θh be a tuple: θh = (k,O ∈ Rd×k+ , Q ∈ Rk×k+ ). We call θh an HMM
realization of order k for a stationary random process {yt : t ∈ Z}, if the matrices Q and O are column stochastic,
and the output process of the HMM defined by the transition matrix Q and observation matrix O has the same
distribution as yt.

HMM realizations are in a subset of the model class of quasi-HMM realizations. Given an HMM realization
θh = (k,O,Q), one can construct the following quasi-HMM realization θo = (k, u, v, A(j) : j ∈ [d]):

u = e, (4)
v = π, (5)

A(j) = QDiag(O[j,:]), ∀j ∈ [d]. (6)

The minimal (quasi-)HMM realization problem is formally stated below: Assume that the random process is the
output of an HMM of order k. How large does the window size N need to be, so that given the joint probabilities
P(N) we can efficiently construct a minimal (quasi-)HMM realization for the process?

III. MINIMAL QUASI-HMM REALIZATION

In this section, we address the minimal quasi-HMM realization problem. We first review the widely used algorithm
[3], [5]; then we show for HMMs in general position, the window size N only needs to be in the order of O(logd(k))
to guarantee the correctness of the algorithm; we also give an example of hard case (degenerate) which needs N
to be as large as k; finally we examine the stability of the algorithm.
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A. Algorithm

For notational convenience, we define the bijective mapping L : [d]n → [dn] which maps the multi-index
lN1 = (l1, · · · , ln) ∈ [d]n to the index L(ln1 ) = (l1 − 1)dn−1 + (l2 − 1)dn−2 + · · ·+ ln ∈ [dn].

Given the length N joint probabilities P(N), where N = 2n + 1 for some positive number n, we form two
matrices H(0), H(j) ∈ Rdn×dn for all j ∈ [d] as below:

[H(0)]L(ln1 ),L(l
−n
−1 )

= P
(
y−n−1 = l−n−1 , yn−10 = ln1

)
, (7)

[H(j)]L(ln1 ),L(l
−n
−1 )

= P
(
y−n−1 = l−n−1 , y0 = j,yn1 = ln1

)
, (8)

where ln1 = (l1, . . . , ln) and l−n−1 = (l−1, l−2, . . . , l−n) ∈ [d]n denotes the length n string corresponding to the
future and the past n time slots, respectively. Note that the “future” observations and the “past” observations are
independent conditioned on the “current” state, which is the Markovian property that Algorithm 1 relies on.

Algorithm 1 Minimal quasi-HMM realization

Input: H(0), H(j) ∈ Rdn×dn for all j ∈ [d]
Output: θ̃o = (k, ũ, ṽ, Ã(j) : j ∈ [d])

1) Compute the SVD of H(0):

H(0) = UHDHV
′
H . (9)

Set U = UHD
1/2
H , V = VHD

1/2
H .

2) Let k̃ be the rank of H(0), and let

ũ = U ′e, ṽ = V ′e. (10)

3) Let U† and V † be the pseudo inverse of U and V .

Ã(j) = U†H(j)(V †)′, ∀j ∈ [d]. (11)

The core idea of Algorithm 1 was discussed in [11], and it has been rediscovered numerous times in the literature
in slightly different forms [3], [5]. We summarize the main idea below.

Remark 1 (Minimal order). Let θo = (k, u, v, A(j) : j ∈ [d]) be a minimal quasi-HMM realization of order k
for the process considered. Since the joint probabilities can be factorized in terms of the A(j)’s as in (1), one can
factorize H(0) and H(j)’s as below:

H(0) = EF>, H(j) = EA(j)F>,

where the matrices E,F ∈ Rdn×k are functions of θo. In particular, the L(ln1 )-th row of E and F are given by:

E[L(ln1 ),:]
= u>(A(ln) · · ·A(l1)), (12)

F[L(ln1 ),:]
= v>(A(ln) · · ·A(l1))>. (13)

Note that if both E and F have full column rank k, then H(0) has rank k, according to Sylvester’s inequality. Any
rank factorization leads to an equivalent minimal quasi-HMM realization of order k. The minimal order condition,
though not explicitly enforced, is reflected in the rank factorization, as any quasi-HMM realization of lower order
results in a matrix H(0) of lower rank, which leads to a contradiction.

The correctness of the algorithm crucially relies on matrix H(0) achieving its maximal rank k, which equals the
order of the minimal realization. A necessary condition for the correctness of the algorithm is stated below.

Lemma 1 (Correctness of Algorithm 1). Assume the process has a minimal quasi-realization θo of order k.
Algorithm 1 returns a minimal quasi-HMM realization θ̃o that is equivalent to θo, if the matrices E, F defined in
(12) and (13) have full column rank k.

Increasing the window size N can potentially boost the rank of H(0), in the hope that the H(0) reaches its
maximal rank and Algorithm 1 can correctly finds the minimal realization. However, for a given random process,
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the study of [19] showed that it is undecidable to verify whether it has a finite order quasi-HMM realization. Even
under our assumption that the process indeed has an order k minimal quasi-HMM realization, it is still not clear
how large the size of matrix H(0) (dn× dn) needs to be so that it achieves the maximal rank k. In previous works,
it was usually implicitly assumed that N is large enough so that H(0) achieves its maximal rank [5]. Yet without
a bound on n or N the computational complexity of the algorithm is ambiguous.

B. Generic analysis of information complexity

We desire a small window size N while guaranteeing the full column rank of the matrices E and F defined in
(12) and (13). The following theorem shows that if the random process is generated by an order k HMM in general
position, then we only need window size N > 4dlogd(k)e+ 1 to guarantee the correctness of Algorithm 1.

Theorem 1 (Window size N for quasi-HMM).
(1) Consider Θh

(d,k), the class of all HMMs with output alphabet size d and order k. There exists a measure zero
set E ∈ Θh

(d,k), such that for all the output process generated by HMMs in Θh
(d,k)\E , Algorithm 1 returns a

minimal quasi-HMM realization, if window size N = 2n+ 1 for some n such that:

n > 8dlogd(k)e. (14)

(2) For any pair of (d, k), randomly pick an instance from the class Θh
(d,k). If for a given window size N = 2n+1,

the matrix H(0) achieves its maximal rank k, then for all HMMs in Θh
(d,k), excluding a measure zero set, N

is sufficiently large for the correctness of Algorithm 1.

Since the elements of matrices E and F are polynomials of the parameters Q and O, in order to show E has
full column rank for Q and O in general position, it suffices to construct an instance of HMM for which the matrix
E has full column rank. In particular, we fix the transition matrix Q and randomize the observation matrix O and
bound the singular values of E in probability. The detailed proof is provided in Appendix B.

For all (d, k) pairs in the set {2 ≤ d ≤ k < 3000}, we implemented the test in Theorem 1 (2), and found that
for all these cases n = dlogd(k)e is sufficient. We conjecture that in general, n ≥ logd(k) is enough.

In the worst case [21], the “Hankel rank” of the matrix H(0) with infinite window size can be larger than the
rank of any finite size block of the infinite matrix. Instead of the worst case analysis, our generic analysis examines
the average cases, and it has the following implications: if the process is generated by some average case HMM of
order k, then the Hankel rank equals k; moreover, the window size n only needs to be in the order of O(logd(k))
so that the rank of finite matrix H(0) achieves the Hankel rank.

C. Existence of hard cases

We showed that for generic HMM output processes, Algorithm 1 is has polynomial runtime. There exists a long
line of hardness results for learning HMMs [13], [17], [20], showing that in the worst case (lie in the measure zero
set in the parameter space) learning the distribution of an HMM can be computationally hard under cryptographic
assumptions.

In Fig. 1, we adapt the hardness results to our setting and give an example. The state diagram describes the
transition and observation probabilities. Solving the realization problem is equivalent to learning the joint distribution
of the process. One can verify that the window size N needs to be at least as large as T , which is proportional
to the order of the underlying HMM, and therefore the computation complexity is exponential in the order of the
HMM.

We point out that not all HMMs in the measure zero set are information theoretically hard to learn. For instance,
consider the degenerate HMM in [1] with the transition matrix Q = Ik×k and with general position observation
matrix O. Suppose that d� k, it was shown that the window size N needs to be in the order of k

1
d so that matrices

E and F attain full column rank. However the distribution of this i.i.d. process is not fundamentally difficult to
learn. It remains an open problem to find realization algorithm that can handle more cases.

D. Stability analysis

In practice, the joint probabilities in P(N) are estimated based on finite sample sequences of the process. In the
next theorem, we show that in order to achieve ε-accuracy in the parameters of the minimal quasi-HMM realization,
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Fig. 1. Reduction of HMM to noisy parity to lower bound the worst case computational complexity. In the state transition diagram, for stage
t = 1, · · · , T − 1, the emission state Et is uniformly distributed over {0, 1} and is observed. For stage t = 2, · · · , T − 1, the parity state
St computes Et−1 ⊕ St−1, except for at one unknown stage s, St = St−1. At stage T , with probability η, the correct parity state ST−1 is
revealed, and with probability 1− η, the complement is observed. (T + 1) is a reset stage, with probability ρ it stays in the reset stage.

the number of sample sequences we need to estimate P(N) is polynomial in all relevant parameters, including the
order k.

Theorem 2. Given T independent sample sequences of the output process of an HMM of order k and with
alphabet size d. Construct Ĥ(0) and Ĥ(j)’s as in (7) and (8) with the empirical probabilities. Let N = 2n+ 1, and
n = 2dlogd(k)e. Let θ̂o = (k, ũ, ṽ, Ã(j) : j ∈ [d]) and θ̃o = (k, ũ, ṽ, Ã(j) : j ∈ [d]) be the output of Algorithm 1
with the empirical probabilities and the exact probabilities for the input, respectively. Then, in order to achieve
ε-accuracy in the output with probability at least 1− η, namely:

‖û− ũ‖ ≤ ε, ‖v̂ − ṽ‖ ≤ ε, ‖Â(j) − Ã(j)‖ ≤ ε,∀j,

the number of independent sample sequences we need is given by:

T =
Ck6d4

ε4σ8
k

log

(
2k4d2

η

)
,

where σk is the k-th singular value of H(0) and C is some absolute constant.

Since the core of the algorithm is singular value decomposition of the matrix H(0), the stability analysis mostly
uses the standard matrix perturbation results, which we review in Appendix C. The detailed proof is provided in
Appendix B.

Remark 2. Note that Theorem 1 shows that for window size N large enough (O(logd(k))), the exact realization
problem (no estimation noise) can be solved with poly time algorithm. When empirical probabilities are used,
Theorem 2 shows that the required number of independent samples is polynomial in k, d, and 1/σk. σk depends
on the HMM that generates the process. In the proof of Theorem 1, it is showed that there exist cases for which
σk is lower bounded by constant, for which case the sample complexity is indeed polynomial; however there also
exists hard cases for which σk is arbitrarily small. We defer the analysis of sample complexity, which relies on
understanding the relation between window size, HMM parameter, and σk, to future work.

IV. MINIMAL HMM REALIZATION PROBLEM

Recall that an HMM can be easily converted to a quasi-HMM of the same order as shown in (4)–(6), yet given
a quasi-HMM realization it is difficult to construct an HMM [3]. In this section, we apply tensor decomposition
techniques to study the minimal HMM realization problem and discuss its connection to the previous section. In
particular, we show that for processes generated by general position HMMs, the two realization problems have
similar computational complexity.

A. Preliminaries on tensor algebra

a) Definitions: Tensor algebra has many similarities to but also many striking differences from matrix algebra,
one of which is that, under very mild conditions, tensor minimal rank decomposition is unique up to column scaling
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and permutation, which is the key property exploited to uniquely identify the minimal HMM realization. This is in
parallel with the fact that we use matrix rank decomposition to find a minimal quasi-HMM realization.

We review some properties of 3rd order tensors below. A more detailed introduction to tensor algebra can be
found in [14] and the references therein. One way to view a 3rd order tensor X ∈ RnA×nB×nC is that it defines a
three-way array, multi-indexed by (j1, j2, j3), ∀j1 ∈ [nA], j2 ∈ [nB ], j3 ∈ [nC ]. A rank-1 tensor X = a⊗ b⊗ c is
defined to be the outer-product of the three vectors a, b, c and Xj1,j2,j3 = aj1bj2cj3 . Tensor rank decomposition is
a natural extension of matrix singular value decomposition (SVD) to higher order tensors.

Definition 4 (Tensor rank decomposition). The rank decomposition of a 3rd order tensor X ∈ RnA×nB×nC is a
sum of rank-1 tensors for the smallest number of summands k:

X = A⊗B ⊗ C =

k∑
i=1

A[:,i] ⊗B[:,i] ⊗ C[:,i],

where matrices A ∈ RnA×k, B ∈ RnB×k, C ∈ RnC×k. The minimal number of summands k is defined to be the
rank of the tensor.

A tensor can also be viewed as a multi-linear operator. Consider a 3rd order tensor X . For given mA,mB ,mC ,
it defines a multi-linear mapping X(V1, V2, V3) : RmA×nA × RmB×nB × RmC×nC → RmA×mB×mC as below:
(∀j1 ∈ [mA], j2 ∈ [mB ], j3 ∈ [mC ])

[X(V1, V2, V3)]j1,j2,j3 (15)

=
∑

i1∈[nA],i2∈[nB ],i3∈[nC ]

Xi1,i2,i3 [V1]j1,i1 [V2]j2,i2 [V3]j3,i3 .

Assuming that the tensor admits a decomposition X = A⊗B ⊗ C ∈ RnA×nB×nC , we can equivalently write:

X(V1, V2, V3) = (V1A)⊗ (V2B)⊗ (V3C), (16)

Note that X can have different forms of decompositions, yet the mappings defined in (16) are all equivalent.

Definition 5 (Khatri-Rao product). For matrices A ∈ RnA×k, B ∈ RnB×k, the (column) Khatri-Rao product
X = A�B ∈ RnAnB×k is defined as follows:

X(j1−1)nB+j2,i = Aj1,iBj2,i,

and each column of X is a rank-1 Khatri-Rao product.

An equivalent representation of a 3rd order tensor X ∈ RnA×nB×nC is given by its matricization, obtained by
rearranging the elements of the tensor into a matrix. For example, the matricization along the third mode gives a
matrix X

(3)
is specified as below: [

X
(3)
]
j3, ((j1−1)nB+j2)

= Xj1,j2,j3 .

Moreover, if the tensor admits a decomposition X = A ⊗ B ⊗ C, we can write the matricization as Khatri-Rao
product of the factors: X

(3)
= C(A�B)>.

b) Uniqueness condition: Unlike the rank decomposition of matrices, under rather mild conditions of the
factors we can uniquely (up to common column permutation and scaling) identify the factors from the 3rd order
tensor X In the following, we state a set of sufficient conditions on the factors A,B,C that guarantee the uniqueness
of tensor decomposition,

Definition 6 (Kruskal rank). The Kruskal rank of a matrix A ∈ Rn×m equals r if any set of r columns of A are
linearly independent, and there exists a set of (r + 1) columns that are linearly dependent (if r < m).

Lemma 2 (Uniqueness of tensor decomposition ( [15], [18])). The tensor factorization X = A⊗B ⊗C is unique
up to column permutation and scaling, if

krank(A) + krank(B) + krank(C) ≥ 2k + 2. (17)
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c) Decomposition algorithms: Unlike matrix SVD, in general tensor decomposition is a hard problem [14].
Nevertheless, for cases where the factors A,B,C satisfy certain rank conditions, there exist efficient and provable
algorithms. We include the detailed steps of the algorithm in the appendix for completeness.

If the matrix A and B both have full column rank, Algorithms 3 in the appendix ( [16]) can uniquely recover
the factors up to common column permutation, with running time polynomial in the dimension of the tensor. Other
algorithms such as tensor power method and recursive projection, which are possibly more stable in practice, also
apply here.

Algorithm 4 is another efficient tensor decomposition algorithm ( [8] [12]) to a subset of the degenerate instances
whose transition matrix is rank deficient. Instead of requiring both A and B to be of full rank k, this algorithm
requires that the factor C and the Khatri-Rao product A � B have full column rank k. The basic idea of the
algorithm is as follows: there is a unique rank decomposition of the 3rd dimension matricization of the tensor:
X

(3)
= FE> = C(A � B)>, under the algebraic constraints that each column of the matrix E is a rank one

Katri-Rao product.

B. Minimal HMM realization

d) Formulation: For a fixed window size N = 2n+ 1, given the exact joint probabilities in P(N), similar to
the construction of H(0) in (7), one can construct a 3rd order tensor M ∈ Rdn×dn×d as below:

M L(ln1 ),L(l
−n
−1 ), l0

= P
(
yn−n = ln−n

)
, ∀ln−n ∈ [d]N . (18)

Suppose that the process has a minimal HMM realization θh = (k,Q,O) of order k. We can write M as a tensor
product:

M = A⊗B ⊗ C, (19)

where the matrices A,B ∈ Rdn×k and C ∈ Rd×k correspond to the conditional probabilities:

AL(ln1 ),m = P
(
yn1 = ln1

∣∣∣x0 = m
)
, (20)

BL(l−n−1 ),m
= P

(
y−n−1 = l−n−1

∣∣∣x0 = m
)
, (21)

Cl,m = P
(
y0 = l, x0 = m

)
. (22)

Moreover, observe that A anh B are recursive linear functions of the model parameters Q and O as below:

A(n) = P
(
yn1

∣∣∣x0 = m
)

= (O �A(n−1))Q, (23)

B(n) = P
(
y−n−1

∣∣∣x0 = m
)

= (O �B(n−1))Q̃, (24)

and A(1) = OQ and B(1) = OQ̃. In particular, for the given window size N = 2n+ 1, we have:

A = A(n), B = B(n), C = ODiag(π). (25)

The basic idea of recovering the minimal HMM realization θh (up to hidden state relabeling) is to first recover the
factors A,B and C via tensor decomposition, and then extract the transition and observation probabilities from the
factors. The minimal order condition is again reflected in the tensor rank factorization, as any HMM realization
of lower order results in a tensor M of lower tensor rank, which is a contradiction.

e) Identifiability: The identifiability of the minimal HMM relies on the fact that the tensor rank decomposition
indeed recovers the factor A,B,C defined in (20)–(22). Note that by definition, the column stochastic observation
matrix O must have Kruskal rank greater than 2, otherwise there exist two identical columns in O, and the
corresponding two hidden states can be merged to give an equivalent HMM realization of smaller order.

Lemma 3 (Uniqueness of tensor decomposition). Given window size N , if the matrices A,B ∈ Rdn×k defined in
(23)–(25) have full column rank k, then M can be uniquely decomposed into column stochastic matrices A,B,C
as in (19) (up to common column permutation).

In parallel with Theorem 1, the next theorem shows that the condition above is satisfied for a general position
HMM process with sufficiently large window size N .
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Theorem 3 (Choice of N for HMM realization). Consider Θh
(d,k), the class of all HMMs with output alphabet size

d and order k. There exists a measure zero set E ∈ Θh
(d,k) such that for all output processes generated by HMMs

in the set Θh
(d,k)\E , the minimal quasi-HMM realization can be computed based on the joint probabilities in P(N),

if window size N = 2n+ 1 for some n such that:

n > 8dlogd(k)e. (26)

f) Algorithms: The matrices A,B and C, defined in (23)–(25), are polynomial functions of the parameters Q
and O of the minimal HMM realization. The following theorem exploits the recursive structure of these polynomials
to recover the parameters Q and O if the factors A,B,C are given.

Theorem 4 (Recovering Q and O from A,B,C). Given the matrix C, one can obtain the observation matrix by:

O[:,i] = C[:,i]/(e
>C[:,i]), ∀i ∈ [k]. (27)

Given the matrix A ∈ Rdn×k, we first scale each of the column similar to (27) so that each column is stochastic, and
corresponds to the conditional probabilities P(yn1 |x0) as shown in (20). We marginalize the conditional distribution
to get A(1) = P (y1|x0) ∈ Rd×k and A(n−1) = P

(
yn−11

∣∣x0) ∈ Rdn−1×k.
(1) If A has full column rank k ( [1]):

Q =
(
O �A(n−1)

)†
A. (28)

(2) If C has full column rank k:

Q = O†A(1). (29)

where (X)† = (X>X)−1X> denotes the pseudo-inverse of a matrix X .

In the proof of Theorem 3, we show that for general position HMMs with sufficiently large window size,
the matrices A and B achieve full column rank k. When this holds, Algorithm 3 computes the unique tensor
decomposition to recover the factors A,B,C. Theorem 4 (1) applies to recover Q and O from the factors.

However, if the transition matrix Q of the minimal HMM realization does not have full rank, and no matter
how large the window size is, the matrix A never achieves full rank. Note that these HMMs are degenerate cases
belonging to the measure zero set in Theorem 3, and Algorithm 3 is not applicable for decomposing the tensor M .
However, it is still possible to apply Algorithm 4. Note that a necessary condition for it to work is that d ≥ k and
the observation matrix is of full column rank.

Let Θh
(d,k,r) denote the model class of HMMs with output alphabet d and order k, for d ≥ k and the transition

matrix Q has rank r < k. Note that Θh
(d,k,r) is a subset of the measure zero set E in Theorem 3. The following

theorem shows that if Algorithm 4 runs correctly for a random instance in this subset, then the algorithm works
for almost all HMMs in this subset.

Theorem 5 (Correctness of Algorithm 4). Given d, k and r and consider the set Θh
(d,k,r). Let A,B,C be defined

as in (23)– (25) for n = 1, and let M = A ⊗ B ⊗ C. If Algorithm 2 returns “yes”, then there exists a measure
zero set E ∈ Θh

(d,k,r), such that Algorithm 4 returns the tensor decomposition M = A⊗ B ⊗ C for all HMMs in
the set Θh

(d,k,r)\E . Moreover, if the latter is true, Algorithm 2 returns “yes” with probability 1.

For this class of degenerate HMMs, Theorem 4 (2) applies to recover Q and O.
Note that for both the general position case and this degenerate case, the computation complexity to recover the

parameters of the minimal HMM realization are polynomial in both d and k, and this is an immediate result of the
log upper bound of the window size.

V. CONCLUSION

In this paper, we discussed two realization problems. We show that for output processes generated by HMMs in
general position, both learning the minimal quasi-HMM realization and learning the real minimal HMM realization
are easy– in the sense that there exist efficient algorithms to compute the minimal realizations with running time
and sample complexity both polynomial in the relevant parameters of the problem.
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Algorithm 2 Check Condition
1) Randomly choose an HMM from θh ∈ Θh

(d,k,r).
2) Construct matrices A,B,C with (Q,O) as defined in (23)–(25) for n = 1, namely A = OQ, B = OQ̃, and

C = ODiag(π).
3) Let M = A⊗B ⊗ C. Run Algorithm 4 with the input M .
4) Return “yes” if the algorithm returns A,B,C uniquely up to a common column permutation, and “no”

otherwise.
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[17] Elchanan Mossel and Sébastien Roch. Learning nonsingular phylogenies and hidden markov models. In Proceedings of the thirty-seventh

annual ACM symposium on Theory of computing, pages 366–375. ACM, 2005.
[18] Nicholas D Sidiropoulos and Rasmus Bro. On the uniqueness of multilinear decomposition of n-way arrays. Journal of chemometrics,

14(3):229–239, 2000.
[19] Eduardo D Sontag. On some questions of rationality and decidability. Journal of Computer and System Sciences, 11(3):375–381, 1975.
[20] Sebastiaan A Terwijn. On the learnability of hidden markov models. In Grammatical Inference: Algorithms and Applications, pages

261–268. Springer, 2002.
[21] Mathukumalli Vidyasagar. The complete realization problem for hidden markov models: a survey and some new results. Mathematics of

Control, Signals, and Systems, 23(1-3):1–65, 2011.

APPENDIX A
TENSOR DECOMPOSITION ALGORITHMS

For completeness, we list two standard tensor decomposition algorithms in this section.

APPENDIX B
PROOFS

(Proof of Lemma 1)
If both E and F have full column rank k, by Sylvester inequality the rank of the matrix H(0) is also equal to

k, the order of minimal quasi-HMM realization. Therefore, for the two matrices U and V obtained in Step 2 in
Algorithm 3, there exists some full rank matrix W ∈ Rk×k such that:

U = EW, V > = W−1F>.
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Algorithm 3 Simultaneous diagonalization for 3rd order tensor decomposition [16]

Input: A 3rd order tensor M ∈ Rdn×dn×d
Output: k,A,B ∈ Rdn×k, C ∈ Rd×k

1) Randomly pick two unit norm vectors v1,v2 ∈ Rd. Project M along the 3rd dimension to obtain two matrices:

M̃1 = M(I, I,v1), M̃2 = M(I, I,v2).

2) Compute the eigen-decomposition of matrix (M̃1M̃
−1
2 ) and (M̃2M̃

−1
1 ), and let the columns of matrix A and

B be the eigenvectors of (M̃1M̃
−1
2 ) and (M̃2M̃

−1
1 ), respectively.

Scale the columns of A and B to be stochastic, and pair the eigenvectors in A and B corresponding to the
reciprocal eigenvalues, namely:

M̃1M̃
−1
2 = AΛA−1, M̃2M̃

−1
1 = BΛ−1B−1.

3) Let k be the number of non-zero eigenvalues.
4) Let M

(3) ∈ Rd2n×d be the 3rd dimension matricization of M . Set C to be:

C = M
(3)

((A�B)†)>

Algorithm 4 FOOBI for 3rd order tensor decomposition
Input: M ∈ Rd×d×d
Output: k,A,B,C.

1) Let M
(3)

be the 3rd dimension matricization of M . Compute its SVD M
(3)

= VHDHU
>
H .

2) Set k to be the number of non-zero singular values. Let F = VHD
1/2
H , and E = UHD

1/2
H .

3) Construct matrices {E(r) ∈ Rd×d : r ∈ [k]}:

[E(r)]i,j = E(i−1)d+j,r,∀i, j ∈ [d], ∀r ∈ [k].

Construct the 4-th order tensors {P (r,s) ∈ Rd×d×d×d : r, s ∈ [k]}:

[P (r,s)]i1,i2,j1,j2

= [E(r)]i1,j1 [E(s)]i2,j2 + [E(s)]i1,j1 [E(r)]i2,j2

− [E(r)]i1,j2 [E(s)]i2,j1 − [E(s)]i1,j2 [E(r)]i2,j1 .

4) Compute a basis {H(i) : i ∈ [k]} of the k-dimensional kernel of {P (r,s) : r, s ∈ [k]}:
k∑

r,s=1

H(i)
r,sP

(r,s) = 0, s.t. H(i)
r,s = H(i)

s,r,∀r, s ∈ [k].

5) Find the unique W ∈ Rk×k that simultaneously diagonalizes the basis:

H(i) = WΛ(i)W>, ∀i ∈ [k].

6) Let C = F (W−1)> and A � B = EW . Compute the rank one decomposition of each column of A � B,
with proper normalization such that A and B are column stochastic.

Therefore, Step 3 returns

Ã(j) = W−1E†EA(j)F>(F>)†W = W−1A(j)W.

By the normalization constraint in Definition 1, we have

u>W = u>
d∑
j=1

A(j)W = u>W

d∑
j=1

Ã(j).
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Moreover, since

U =


u>(A(1) · · ·A(1))
u>(A(1) · · ·A(2))

...
u>(A(d) · · ·A(d))

W = u>W


Ã(1) · · · Ã(1)

Ã(1) · · · Ã(2)

...
Ã(d) · · · Ã(d)

 ,
in Step 2 we obtain ũ> = u>W, and similarly, we can argue that ṽ = W−1v. Thus we conclude that the output
θ̃o = (k, ũ, ṽ, Ã(j) : j ∈ [d]) is a valid minimal quasi-HMM realization of order k, and is equivalent to θo up to a
linear transformation.

(Proof of Theorem 1)
Assume that the observed process has a minimal HMM realization θh of order k, i.e., θh ∈ Θh

(d,k), and let θo

denote the equivalent order k quasi-HMM as shown in (4)-(6). For window size N = 2n+ 1, define the matrices
E and F for θo as in (12) and (13) and note that:

EL(ln1 ),i

= [u>(A(ln) · · ·A(l1))]i

= e>P(xn, yn−1 = ln|xn−1) · · ·P(x1, y0 = l1|x0 = i)

= P
(
yn−10 = ln1

∣∣∣x0 = i
)
,

and similarly,

FL(ln1 ),i = [A(ln) · · ·A(l1)π]i = P
(
y−n−1 = ln1 , x0 = i

)
.

Lemma 1 shows that a sufficient condition for the correctness of Algorithm 1 is that both E and F have full
column rank k. In this proof, we show that when Q and O of the HMM θh ∈ Θh

(d,k) are in general position, this
rank condition is satisfied if the window size N = 2n+ 1 satisfies (14).

Note that the minors of E and F are polynomials in the elements of Q and O, thus it defines a algebraic set in the
parameter space by setting all the minors to zero to make E and F to be rank deficient. By basic algebraic geometry
[9], the algebraic set either occupies the entire Zariski closure or is a low-dimensional manifold of Lebesgue measure
zero. In particular, the Zariski closure of Θh

(d,k), defined to be the smallest algebraic set containing Θh
(d,k), is given

by Θ
h

(d,k) := {O ∈ Rd×k, Q ∈ Rk×k : e>O = e>, e>Q = e>} (note that the element-wise non-negativity
constraints can be omitted when considering the Zariski closure). Therefore, it is enough to show that for some
specific choice of Q and O in Θ

h

(d,k), the matrices E and F achieve full column rank k. Moreover to construct
an instance, we can further ignore the stochastic constraints, as scaling does not the independence property of the
columns in E and F .

We fix the transition matrix Q to be the state shifting matrix as below:

Qi−1,i = 1, for 2 ≤ i ≤ k, and Qk,1 = 1, (30)

Note that with this choice of Q, π = 1
ke, and Q̃ = Q>. Due to the symmetry of the forward and backward

transitions, we can focus on showing that E has full column rank and the same argument applies to F .
We randomize the observation matrix O and let the columns be independent random variables uniformly dis-

tributed on the d-dimensional sphere. In order to show that there exists a construction of (Q,O) such that E has
full column rank, it suffices to show that E achieves full column rank with positive probability over the randomness
of O. We apply Gershgorin’s theorem to prove that the columns of E are incoherent.

Note that for the shifting matrix Q, we have:

E[:,i] = O[:,i] � · · ·O[:,i+n−1].

Since we have d ≥ 2 and n < k, for notational convenience, we slightly abuse notation to write the j-th column
of O as O[:,j], while for k < j ≤ 2k, it actually refer to the (j − k)-th column of O.

Define matrix X ∈ Rk×k to be:

Xi,j = E>[:,i]E[:,j] =

n−1∏
m=0

(O>[:,i+m]O[:,j+m]), ∀i, j ∈ [k].



13

By the assumption that the columns of O are uniformly distributed on the d-dimensional sphere, we have Xi,i = 1,
for all i ∈ [k].

Fix some β, γ = β2 ∈ (0, 1). Suppose that, for any i 6= j,

P
(
|Xi,j | <

β

k

)
> 1− γ

k2
. (31)

Then apply union bound on j, we have for any i:

P

 k∑
j 6=i

|Xi,j | < β

 ≥ P
(
∀j ∈ [k], j 6= i, |Xi,j | <

β

k

)
> 1− γ

k
.

Again apply union bound on i, we have:

P

∀i ∈ [k], |Xi,i| −
∑
j 6=i

|Xi,j | ≥ 1− β

 >1− kγ
k

= 1− γ.

Apply Gershgorin’s theorem, we have that with probability at least γ, the matrix X = E>E is of full rank k, and
the smallest singular value is at least 1− β. There must exist some instance of O such that this statement holds.

Next, we verify the statement in (31). Equivalently, we want to show that for i 6= j:

1− γ

k2
< P

(
n−1∏
m=0

∣∣∣O>[:,i+m]O[:,j+m]

∣∣∣ < β

k

)

= P

(
n−1∑
m=0

log(
∣∣∣O>[:,i+m]O[:,j+m]

∣∣∣) < − log(
k

β
)

)

= P

n−1∑
m=0

log

 1∣∣∣O>[:,i+m]O[:,j+m]

∣∣∣
 > log(

k

β
)


= P

(
n∑

m=1

log

(
1

|vm|

)
> log(

k

β
)

)
where vm are i.i.d. random variables with the distribution as the projection of a uniform unit-norm vector in Rd
onto the first dimension. The last equality is due to the independence of the columns of O.

Define the indicator random variable sm for m ∈ [n]:

sm = 1

[
log(

1

|vm|
) <

1

c
log(d)

]
= 1

[
|vm| >

1

d
1
c

]
,

where we pick constant c = 4. Assume that d ≥ 2+(8e)2 (as we really only care about the scaling), apply Johnson
Lindenstrauss lemma (Lemma 9), setting u1 to be vm and t to be 1/d

1
c , we have:

µ = P(sm = 1) <
4√
d− 2

e
− d−2

2d2/c <
1

2e
e
− d−2

2d2/c

Note that by definition:
n∑

m=1

log

(
1

|vm|

)
>

n∑
m=1

1

c
log(d)(1− sm).

Therefore it suffices to show that

1− γ

k2
< P

(
n∑

m=1

1

c
log(d)(1− sm) > log(

k

β
)

)
,
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or equivalently,

γ

k2
> P

(
n∑

m=1

sm > n− c log(k/β)

log(d)

)

= P

(
n∑

m=1

sm > αc
log(k/β)

log(d)

)
where we set n = (1 + α)c logd(k/β) for some α > 1.

Apply the multiplicative Chernoff bound (Lemma 8), by setting Xm = sm for m = 1, · · ·n, and set δnµ =
αc log(k/β)log(d) , and e

δ = enµ

αc
log(k/β)
log(d)

= 1+α
α eµ < e−

√
d/2 < 1, then we have

P

(
n∑

m=1

sm > αc
log(k/β)

log(d)

)
<

(
1 + α

α
eµ

)αc log(k/β)
log(d)

.

We want to show that the RHS is less than γ/k2. Taking log, this is equivalent to:

αc
log(k/β)

log(d)
logd

(
α

(1 + α)eµ

)
>

log(k2/γ)

log(d)

Recall that we have γ = β2, 1+α
α eµ ≤ e−

d−2

2d2/c , c = 4 the above inequality holds if we pick α = 4/c = 1, as

αc logd(
α

(1 + α)eµ
) ≥ 4

log(e
√
d

2 )

log(d)
≥ 2

√
d

log(d)
≥ 2.

Now we can conclude that (31) holds.

(Proof of Theorem 2)
Recall that the output of Algorithm 1 is given by:

Â(j) = D̂−1/2Û>H Ĥ
(j)V̂HD̂

1/2,

û = D̂−1/2Û>He, v̂ = D̂−1/2V̂ >H e,

where ÛH and V̂H are the first k left and right singular vectors of Ĥ(0), and the diagonal matrix D̂ has the first
k singular values of Ĥ(0) on its main diagonal. In order to bound the distance between Â(j) and Ã(j), û and ũ, v̂
and ṽ, we analyze the perturbation bound for each of the factor separately and apply Lemma 6 to bound the overall
perturbation of the product form.

First, denote Ej = Ĥ(j) − H(j) for j = 0, 1, . . . , d. For any element in Ej we can be bound its norm using
Hoeffding’s inequality (Lemma 7 ): with probability at least 1− 2e−2Tδ

2

, the (i1, i2)-th element of Ej is bounded
by: ‖[Ej ]i1,i2‖ ≤ δ< 1. Moreover, apply union bound to j and all elements in each Ej , with probability at least
1− 2k4d3e−2Tδ

2

, for all j = 0, 1, . . . , d, we have

‖Ej‖F ≤
√
kdnδ < k1.5d0.5δ,

where the last inequality is due to dn < k2d.
Second, we apply the matrix perturbation bound (Lemma 5) to bound the distance of the singular vectors:

‖ÛH − UH‖ ≤
√

2‖E0‖F
σk(H(0))

, ‖V̂H − VH‖ ≤
√

2‖E0‖F
σk(H(0))

.

And we can apply Mirsky’s theorem (Lemma 4 ) to bound the distance of the singular values:

‖D̂ −D‖ ≤ ‖E0‖F .



15

Denote ∆i = σi(Ĥ
(0)) − σi(H

(0)) and let σi = σi(H
(0)). Note that if ‖E0‖ ≤ σk/2, we have that for any

i = 1, . . . k, |∆i| ≤ ‖E0‖ ≤ σi/2, then

(
1
√
σi
− 1√

σi + ∆i

)2 =
1

σi + ∆i
(
√

1 + ∆i/σi − 1)2

≤ 2

σi
(∆i/σi + 2− 2

√
1 + ∆i/σi)

≤ 2

σi
(3|∆i|/σi)

≤ 6

σ2
k

|∆i|,

where the first inequality is due to |∆i| ≤ δi/2, and the second inequality is due to
√

1 + ∆i/σi ≥ 1 − |∆i/σi|.
Therefore we have that

‖D̂−1/2 −D−1/2‖ ≤

√
6
∑k
i=1 |∆i|
σk

≤

√
6
√
k‖D̂ −D‖
σk

.

Finally, we apply Lemma 6 to bound the output perturbation. Note that ‖D−1/2‖ = 1/
√
σk, ‖UH‖ = 1, ‖VH‖ = 1.

Moreover note that the probabilities in each row of H(j) sum up to less than 1, therefore by Perron-Frobenius
theorem we have ‖H(j)‖ ≤ 1. Therefore we have

‖Â(j) − Ã(j)‖

≤24

(
2
√

6k1/2‖E0‖F
σ1.5
k

+
2
√

2‖E0‖F
σ2
k

+
‖Ej‖
σk

)

≤24

(
2
√

6k0.75d0.25δ0.5

σ1.5
k

+
2
√

2kd0.5δ

σ2
k

+
kd0.5δ

σk

)

≤144kd0.5

σ2
k

δ0.5,

where the first inequality is due to ‖Ej‖ ≤ ‖Ej‖F , and the second inequality is due to δ < 1 and σk ≤ σ1 ≤ 1.
Similarly we can bound ‖û− ũ‖ and ‖v̂ − ṽ‖ by:

‖û− ũ‖ ≤ ‖D̂−1/2Û>H −D−1/2U>H‖
√
dn ≤ 4k1.5d

σ1.5
k

δ0.5.

In summary, if we want to achieve ε accuracy in the output. we need δ to be no larger than ε2σ4
k/(144k3d2). Set

the failure probability to be η = 2k4d3e−2Tδ
2

, then number of sample sequences needed to estimate the empirical
probabilities is given by:

T = 2
1442k6d4

ε4σ8
k

log

(
2k4d3

η

)
.

(Proof of Theorem 3)
With exactly the same argument and constructional proof as for Theorem 1, we can show that for the window

size N = 2n+ 1 satisfies (26), the matrices A and B have full column rank. By Lemma 3 we have that the tensor
decomposition of M is unique. Moreover, by the argument in Theorem 4 (1), we have that the model parameters
Q,O can be uniquely recovered from the factors A,B,C. Thus in conclusion P(N) is sufficient for finding the
minimal HMM realization.

(Proof of Theorem 4)
By the uniqueness of tensor decomposition (up to column permutation and scaling) the columns of C are

proportional to the columns of O (up to some hidden state permutation), and each column of O must satisfy the
normalization constraint: e>O[:,i] = 1,∀i ∈ [k]. The normalization in (27) recovers O from C.
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Recall that

A = A(n) =
(
O �A(n−1)

)
Q.

Since the matrix A has full column rank k, the matrices Q ∈ Rk×k and (O � A(n−1)) ∈ Rdn×k both have full
column rank k, as well as the pseudo-inverse of (O � Ã), therefore Q = (O �A(n−1))†A.

By definition we have A(1) = OQ, thus if O is of full column rank k, we can obtain Q = O†A(1).

(Proof of Theorem 5)
Denote the minimal order HMM realization by θh = (k,Q,O), and since n = 1, the matrices are given by:

A = OQ, B = OQ̃, C = ODiag(π).

Define two linear operators Id2×d2 : Rd2 → Rd2 and Pd2×d2 : Rd2 → Rd2 , such that for any matrix X ∈ Rd×d:
Id2×d2vec(X) = vec(X) and Pd2×d2vec(X) = vec(X>). Moreover, define matrix R ∈ Rd2×d2 and Q ∈ Rd4×d2

to be:

R = Id2×d2 − Pd2×d2 , G = R�R.

Note that the kernel of (Id2×d2 −Pd2×d2) is the space of symmetric matrices, thus R is of rank d2− d(d+ 1)/2 =

d(d − 1)/2, and G is of rank d2(d − 1)2/4. Define matrix G⊥ ∈ Rd4×(d4−
d2(d−1)2

4 ) such that its columns are
orthogonal to the columns of G.

According to [7], [8], [12], there are two deterministic conditions for Algorithm 4 to correctly recover the factors
A,B,C from the rank k tensor M :
1) Both A�B and C have full column rank k.
2) Define T ∈ Rd4×(m+(k−1)k/2) to be:

T =
[
G⊥[:,i] : 1 ≤ i ≤ d4 − d2(d− 1)2

4
,

A[:,k1] �A[:,k2] �B[:,k1] �B[:,k2] : 1 ≤ k1 < k2 ≤ k
]
.

The columns of T are linear independent.
Parameterize the rank r transition matrix by Q = UV > for some matrices U, V ∈ Rk×r. Define the parameter

space Q:

Q = {Q ∈ Rk×k : Q = UV >, U, V ∈ Rk×r, e>Q = e>}

Note that by construction, the minors of A�B and T are nonzero polynomials in the elements of the parameters
U, V and O, in order to show that the two deterministic rank conditions are satisfied for almost all instances in
the class Θh

(d,k,r), it is enough to construct an instance in the model class that satisfies the two conditions (by the
random check in Algorithm 2). Moreover, if it is true, then with probability one, the two conditions are satisfied
for a randomly chosen instance in the model class.

APPENDIX C
AUXILIARY LEMMAS

(Matrix perturbation bounds)
Since the algorithms we have examined are all based on different forms of matrix decomposition. Characterizing

the sample complexity boils down to analyzing the stability of the matrix decompositions. Here we review some
well-known matrix perturbation bounds and prove some corollaries.

Given a matrix Â = A + E where E is a small perturbation, the following results bound the deviation of the
singular vectors and singular values.

Lemma 4 (Mirsky’s theorem). Given matrices A,E ∈ Rm×n, with m ≥ n, then√√√√ n∑
i=1

(σi(A+ E)− σi(A))2 ≤ ‖E‖F .
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Lemma 5. Given matrices A,E ∈ Rm×n, with m ≥ n. Suppose that the matrix A has full column rank and
σk(A) > 0. Let A = USV > be the singular value decomposition of A, and let Û and V̂ denote the first k left and
right singular vectors of Â, let Ŝ be the diagonal matrix with the first k singular values of Â. We have:

‖Û − Ũ‖ ≤
√

2‖E‖F
σk(A)

, ‖V̂ − V ‖ ≤
√

2‖E‖F
σk(A)

.

This is an immediate corollary of Wedin’s theorem.

Lemma 6. Consider a product of matrices A1 · · ·Ak, and consider any sub-multiplicative norm on matrix ‖ · ‖.
Given Â1, . . . , Âk and assume that ‖Âi −Ai‖ ≤ ‖Ai‖, then we have:

‖Â1 · · · Âk −A1 · · ·Ak‖ ≤ 2k−1
k∏
i=1

‖Ai‖
k∑
i=1

‖Âi −Ai‖
‖Ai‖

.

(Concentration bounds)

Lemma 7 (Hoeffding’s inequality). Let X1, . . . , Xn be independent random variables. Assume that Xi’s are
bounded almost surely, namely Pr[Xi ∈ [ai, bi]] = 1. Define the empirical mean of these variables X = (X1 +
· · ·+Xn)/n. We have

Pr[|X − E[X]| ≥ t] ≤ exp(− 2n2t∑n
i=1(bi − ai)2

).

Lemma 8 (Multiplicative Chernoff bound). Suppose X1, · · · , Xn are independent random variables with Bernoulli
distribution, and P(Xi = 1) = µ. Then for any δ > 1:

P

(
n∑
i=1

Xi > δnµ

)
<
(e
δ

)δnµ
.

Lemma 9 (High dimensional sphere projection (Johnson Lindenstrauss lemma)). Let the random vector u ∈
Rd be uniformly distributed on the surface of the d-dimensional unit sphere,i.e. uniform distribution in the set:{∑d

i=1 u
2
i = 1

}
. Denote its projection onto the first dimension to be |u1|. We have:

P(|u1| > t) <
4√
d− 2

e−
d−2
2 t2 .
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