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Cost-Aware Activity Scheduling for Compressive
Sleeping Wireless Sensor Networks

Wei Chen, Member, IEEE and Ian J. Wassell

Abstract—In this paper, we consider a compressive sleeping
wireless sensor network (WSN) for monitoring parameters in
the sensor field, where only a fraction of sensor nodes (SNs) are
activated to perform the sensing task and their data are gathered
at a fusion centre (FC) to estimate all the other SNs’ data
using the compressive sensing (CS) principle. Typically research
published concerning CS implicitly assume the sampling costs
for all samples are equal, and suggest random sampling as an
appropriate approach to achieve good reconstruction accuracy.
However, this assumption does not hold for compressive sleeping
WSNs which have significant variability in sampling cost owing
to the different physical conditions at particular SNs. To exploit
this sampling cost non-uniformity, we propose a cost-aware
activity scheduling approach that minimizes the sampling cost
with constraints on the regularized mutual coherence of the
equivalent sensing matrix. In addition, for the case with prior
information about the signal support, we extend the proposed
approach to incorporate the prior information by considering
an additional constraint on the mean square error (MSE)
of the oracle estimator for sparse recovery. Our numerical
experiments demonstrate that in comparison with other designs
in the literature the proposed activity scheduling approaches
lead to improved trade-offs between reconstruction accuracy and
sampling cost for compressive sleeping WSNs.

Index Terms—Compressive sensing (CS), wireless sensor net-
work (WSN), activity scheduling.

I. INTRODUCTION

W IRELESS sensor networks (WSNs) typically consist
of a large number of spatially distributed sensor nodes

(SNs) that measure, collect and process information of interest
for some target area. With appropriate temporal and spatial
scales, they have been used in many applications such as
climate, habitat, and infrastructure monitoring. The successful
deployment of WSNs has two main challenges. Firstly, as
the number of SNs increases, a large amount of data needs
to be processed, transported, and stored at the fusion centre
(FC). Secondly, SNs are limited in terms of energy availability,
computational capability and wireless bandwidth.

Compressive sensing (CS) is a sampling paradigm that
takes advantage of the sparse characteristic of the natural
physical signals of interest, and makes it possible to recover
signals with a reduced number of random samples [1], [2].
In view of the temporal correlation and/or spatial correlation
among the densely deployed SNs, CS can be used as a
data acquisition technique to reduce the operating cost of
WSNs, and various CS-based schemes have been proposed
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Fig. 1. Illustration of a compressive sleeping wireless sensor network where
only a fraction of SNs are active in each time slot.

to implement this idea [3]–[9]. For example, Bajwa et al.
propose compressive wireless sensing (CWS) where SNs co-
herently transmit weighted sample values in an analog fashion
over the network-to-FC communication channel [3]. Wang
et al. propose distributed sparse random projections which
allows the collector to recover a sparse data approximation
by querying a sufficient number of sensors from anywhere
in the network [4]. Luo et al. propose an approach, namely
compressive data gathering (CDG), to reduce the total number
of message transmissions in a multi-hop routing scheme [5].
Quer et al. propose a combined CS and principal component
analysis (PCA) technique to recover WSNs’ signals using only
a small number samples [6]. In [8], [9], Yang et al. and Chen et
al. propose different CS schemes to achieve energy neutrality
for energy harvesting (EH) WSNs where the sampling is
constrained to suit the EH conditions.

The conventional CS framework considers the sparse char-
acteristics of signals and employs a random sampling scheme.
Built upon this foundation, various extensions of CS have
been proposed to enhance the performance in terms of the
reconstruction accuracy or the number of required samples for
successful reconstruction. One type of extension is to consider
a more restricted signal structure which goes beyond sparsity,
e.g., the block sparsity and the wavelet tree model [10], or
some prior knowledge about the signal [11], [12]. Another type
of extension is to use some optimized sensing matrices instead
of random ones. Recent works [13]–[17] have demonstrated
that well-designed sensing matrices provide improved recon-
struction performance in comparison to the random sensing
matrix. In addition, prior knowledge about the signal can also
be exploited in sensing matrix designs with further improved
performance [18], [19].

In this paper, we consider a compressive sleeping WSN as
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shown in Fig. 1, where only a fraction of SNs are active in
each time slot to measure and transmit the information about
the physical phenomena of interest [20], [21]. Owing to the
spatial correlation of the monitored phenomena which leads
to spatial sparsity under some appropriate basis, information
of SNs in the sleep mode can be recovered following the CS
principle. This CS-based data acquisition approach requires
less wireless bandwidth resource and consumes less of the
SNs’ battery energy in comparison to the traditional approach
that collects and sends all SNs’ data. These active SNs can be
randomly selected according to the CS principle. However, this
random activity scheduling scheme has two drawbacks. Firstly,
the random scheme is cost-blind, as it follows the conventional
framework that implicitly assumes the same resource cost
for every SN. However, this assumption is not necessarily
realistic. For example, less energy and/or bandwidth resource
are required to communicate messages from a SN which is
close to the FC than for an SN that is far away from the FC. It
is also desired to activate SNs having adequate energy reserves
rather than these that are running out of energy. Secondly, the
random activity scheduling scheme fails to exploit any prior
knowledge about the signal beyond sparsity. For example, the
support of the spatial signal of interest could change slowly
in time owing to the temporal correlation of the physical
phenomena.

The sensing matrix design approaches proposed in [13]–
[16] cannot be directly applied to derive an appropriate activity
scheduling scheme for compressive sleeping WSNs, which not
only involves binary integer variables but also accounts for
resource cost non-uniformity. In [22], Xu et al. propose a cost-
aware compressive sensing approach that can be used for ac-
tivity scheduling compressive sleeping WSNs. However, their
approach is restricted to the Fourier basis and the assumption
of a uniform distribution of the sparse signal representation
among all sparse vectors. In [21], [23], Chen and Wassell
consider the scenario of a slowly time-varying signal support
and provide an activity scheduling design which is optimized
according to the signal support of the previous time slot. The
effectiveness of this approach is degraded when a fraction of
the support is changed in two adjacent time slots.

In this paper, we propose a method for cost-aware ac-
tivity scheduling in compressive sleeping WSNs, which is
not restricted to a particular signal sparsifying basis and
can incorporate prior information of the signal support. The
proposed approach improves the trade-offs between recon-
struction accuracy and sampling cost of the activated SNs.
The contributions can be summarized as follows:

• We propose the regularized mutual coherence, i.e., an
alternative measure that is used to characterize the upper
bound of the CS reconstruction error. The use of the
regularized mutual coherence facilitates our design of an
appropriate scheme, in view of the fact that the signal
reconstruction accuracy of CS systems is not tractable.

• We formulate the activity scheduling as an optimization
problem that minimizes the sampling cost with con-
straints on the reconstruction accuracy indicators, and ap-
proximate the problem by a constrained convex relaxation
plus a rounding scheme.

• We extend the proposed approach to the case where
knowledge of the signal support probability is available.
We characterize the quality of the activity scheduling
matrix by using the mean square error (MSE) of the
oracle estimator that performs ideal least squares (LS)
estimation based on prior knowledge of the signal sup-
port. The MSE of this oracle LS estimator coincides with
the unbiased Cramèr-Rao bound for sparse deterministic
vectors [24], so that it represents the best achievable
performance for any unbiased estimator.

• The superiority of the proposed approach is demonstrated
by numerical experiments.

The rest of this paper is organized as follows. We begin
by describing wireless sleeping WSNs and related works in
Section II. Section III provides the rationale for the activity
scheduling matrix designs, by highlighting the regularized
mutual coherence as the performance indicator, and describes a
convex relaxation approach to approximately solve the design
problem. In Section IV, the proposed framework is extended
to the case where knowledge of signal support probability
is available and we use the oracle estimator MSE as a
performance indicator. Section V presents numerical results
that highlight the merits of our proposed designs in comparison
to other designs in the literature. The main contributions of the
article are summarized in Section VI.

Throughout this paper, lower-case letters denote scalars,
boldface upper-case letters denote matrices, bold face lower-
case letters denote column vectors, and calligraphic upper-
case letters denote support sets. 0m×n and 1m×n denote
an m × n matrix with all zeros and all ones, respectively.
The superscripts (·)T and (·)−1 denote matrix transpose and
matrix inverse, respectively. The ℓ0 norm, the ℓ1 norm, and
the ℓ2 norm of vectors, are denoted by ∥ · ∥0, ∥ · ∥1, and
∥ · ∥2, respectively. The trace of a matrix is denoted by
Tr(·). diagm(A) denotes a diagonal matrix corresponding
to matrix A, and diag(A) denotes a vector composed of
the diagonal elements of A. nondiagm(A) denotes a matrix
such that nondiagm(A) = A − diagm(A). The element
corresponding to the ith row and jth column of the matrix A
is denoted by ai,j , and ai denotes the ith column of the matrix
A. In denotes the n × n identity matrix. For a vector x, the
notation xJ refer to a sub-vector that contains the elements
with indexes in J . J c denotes the complementary set of J .
EJ denotes the matrix that results from the identity matrix
by deleting the set of columns out of the support J . E(·)
denotes the expectation, Ex(·) and EJ (·) denote expectation
with respect to the distribution of the random vector x, and
the random support J , respectively.

(
n
m

)
denotes the number

of m combinations from a given set of n elements. Finally,
Pr(·) denotes the probability.

II. SYSTEM DESCRIPTION AND BACKGROUND

In this section, we provide a system description of compres-
sive sleepling WSNs and related work in CS sensing matrix
design.



3

A. CS Reconstruction

For a data vector f ∈ Rn that can be represented by a sparse
vector x ∈ Rn̂ (n ≤ n̂) by f = Ψx, the CS measurement
vector is given by

y = Φf + z = Ax+ z, (1)

where z ∼ N (0, σ2Im) represents the sensing noise, Φ ∈
Rm×n and A = ΦΨ ∈ Rm×n̂ denotes the sensing matrix and
the equivalent sensing matrix, respectively, and m < n. One
typical strategy for recovering the sparse signal representation
x is to cast the problem as an optimization problem, and the
sparsity level ∥x∥0, i.e., a nonconvex term, is relaxed by the
ℓ1 norm of x. Thus, we consider the following optimization
problem:

min
x

∥x∥1

s.t. ∥Ax− y∥22 ≤ ϵ,
(2)

where ϵ is an estimate of the noise level. This optimization
problem is also known as basis pursuit de-noise (BPDN).
Define s = ∥x∥0 as the sparsity level of the true signal. It
has been demonstrated that only O(s log n̂

s ) measurements are
required for robust CS reconstruction with randomly generated
sensing matrices [25].

The conventional CS framework only exploits the sparse
characteristics of the signal in the reconstruction. A recent
growing trend relates to the use of additional signal structures
that go beyond the simple sparsity model to further enhance
the performance of CS. For example, Vaswani and Lu consider
a time sequence of signals, and exploit the support of the
signal in a previous time slot as side information to enhance
the reconstruction of the current signal [11] via solving the
following optimization problem

min
x

∥xJ c∥1

s.t. ∥Ax− y∥22 ≤ ϵ.
(3)

In [12], prior information of the signal support is exploited
to assist the reconstruction. To be specific, defining pi as the
probability that the entry xi is non-zero, Scarlett et al. propose
to solve the following optimization problem

min
x

n̂∑
i=1

(− log pi)|xi|

s.t. ∥Ax− y∥22 ≤ ϵ,

(4)

and demonstrate that significantly fewer samples are required
for successful reconstruction if the prior distribution is suffi-
ciently non-uniform [12].

B. Compressive Data Gathering

We consider a typical WSN architecture with n SNs and
a FC. Assume the coherence time of the monitored physi-
cal phenomena is tcoh so that the ith SN’s readings satisfy
fi(t1) ≈ fi(t2) for two distinct time instances t1 and t2
with |t1 − t2| ≤ tcoh. We focus on an observation window
of tobs which satisfies tobs < tcoh, and drop the time index.
Owing to the spatial correlation, the data vector f ∈ Rn can

be represented by a sparse vector x ∈ Rn̂ (n ≤ n̂) and
f = Ψx, where the linear transform matrix Ψ ∈ Rn×n̂ can be
determined a-priori or learned from some training data [26].
For example, in a dense sensor network, a smooth temperature
signal or a humidity signal, i.e., f , can be represented by only
a few frequency components in the Fourier basis Ψ, and the
frequency components comprise the nonzero elements of x.
According to the theory of CS, only m (m < n) SNs are
required to perform the sensing task and transmit their readings
to the FC to reconstruct f , while SNs that are not scheduled to
perform the sensing task can go into the sleep mode to reduce
resource use.

The activated SNs measure the signal of interest and encode
their measurements into a packet which is then modulated
and transmitted to the FC in a conflict-free manner, e.g., via
time division multiplexing access (TDMA) or frequency divi-
sion multiplexing access (FDMA). The received measurement
vector y ∈ Rm at the FC can be expressed as (1), where
Φ ∈ Rm×n denotes the activity matrix. The rows of the
activity matrix Φ can be regarded as m rows of an n × n
identity matrix, i.e., the entries are all zeros except for m
entries in m different columns and rows, where the columns
with 1s correspond to the active nodes.

C. Cost-Aware Activity Scheduling: Motivations

Conventional CS implicitly assumes that all measurements
have the same cost, which is suitable for many applications
such as magnetic resonance imaging (MRI) and compres-
sive radar. However, the cost for conducting measurements
and communication at different SNs in a WSN can vary
significantly. The sampling cost of a compressive sleeping
WSN consists of various factors including but not limited to
energy consumption, wireless spectrum resource and system
considerations. For example, owing to the different channel
conditions experienced at the SNs, the costs in terms of energy
consumption and bandwidth are not uniform for the SNs. In
addition, from a system point of view, to sustain the function
of the network with a lifetime as long as possible, a higher
priority of activity is desired for SNs with sufficient energy
reserves, or those with greater energy harvesting capability. In
this paper, we denote the sampling costs of different SNs by
a vector c ∈ Rn, where various cost factors can be integrated
into this vector. For example, if energy consumption is the
main concern, the sampling cost of each node can be estimated
by using an appropriate path loss model associated with the
distance from the FC to each SN, or by using a feedback
scheme where the frequency of feedback depends on the trade-
off between overhead and the degree that the channel condition
varies. However, if crowdsourced signal strength data for the
monitored area is available, the dynamic sampling cost can be
obtained at almost zero cost.

The sampling costs that are owing to the limitations of the
devices and the physical environment, will often in practice
have spatial and temporal correlations. It has been shown
in [22] that activating SNs having the lowest costs does not
necessarily improve the performance trade-off between recon-
struction accuracy and sampling cost. Thus, it is worthwhile
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to pursue cost-aware activity scheduling approaches in order
to provide a good performance trade-off for wireless sleeping
WSNs.

D. Previous Work on Sensing Matrix Design

A theoretical question in CS is what conditions should the
equivalent sensing matrix A satisfy in order to guarantee the
success of reconstruction. The most widely used conditions
in the literatures include the null space property (NSP), the
restricted isometry property (RIP) and mutual coherence.
Although it has been proved that the NSP and the RIP can
be satisfied for randomly generated matrices with a high
probability [25], these two conditions are not computationally
tractable and thus not suitable for evaluating the quality of a
given sensing matrix design. The mutual coherence is defined
as follows

µ(A) = max
1≤i,j≤n̂,i̸=j

|aTi aj |
∥aTi ∥2 ∥aj∥2

, (5)

which is straightforward to compute and thus is a convenient
way to evaluate the quality of a given sensing matrix. In [27],
Donoho et al. demonstrate that the s-sparse signal can be
exactly recovered from the measurements in the noiseless case
as long as

µ(A) <
1

2s− 1
. (6)

The earliest work in optimizing sensing matrix design is
Elad’s method given in [14]. In view of the fact that iteratively
reducing the mutual coherence by adjusting the related pair of
columns is not an efficient approach since it only improve the
worst pair of columns in each iteration, Elad considers a differ-
ent coherence indicator, called t-averaged mutual coherence,
which is defined as the average of all normalized absolute
inner products between different columns in the equivalent
sensing matrix that are not smaller than a positive number t.
Later in [15], [16], it is proposed to make the Gram matrix
of the equivalent sensing matrix, defined as ATA, as close
as possible to an identity matrix, and the superiority of the
designs is witnessed in their experimental results. In [13], [28],
[29], it is proposed to force the equivalent sensing matrix to be
a tight frame or close to an equiangular tight frame where the
coherence value between any two columns of A are equal.
These approaches implicitly assume a uniform distribution
of the sparse signal representation among all sparse vectors.
In [18], Zelnik-Manor et al. consider optimizing a sensing
matrix for block sparse signals, and propose to minimize a
weighted sum of the inter-block column coherence and the
intra-block column coherence of A. It is worth noting that
these approaches aim to optimize sensing matrices with the
assumption of equal sensing cost and no restrictions on the
entries, while in our activity scheduling problem, the entries
of the sensing matrix are binary values and the sampling costs
of the SNs are non-uniform.

Several methods have been proposed for the activity
scheduling [21]–[23], which are able to balance sampling cost
and reconstruction accuracy. In [22], Xu et al. observe that
the recovery accuracy with a partial Fourier matrix can be

approximated by the regularized column sum (RCS), which
is defined as maxj=2,...,n̂ log |

∑
i ai,j |2, and propose to min-

imize the total sampling cost with constraints on the RCS.
The connection between the recovery accuracy and the RCS
is only demonstrated for the Fourier basis and the case that all
sparse vectors are uniformly drawn from the space. In [21],
[23], Chen and Wassell propose an optimized node selection
(ONS) scheme to predict the reconstruction accuracy using
the MSE of the LS estimation of the signal with an estimated
signal support. Although improved performance is observed,
this approach requires a relatively accurate knowledge of the
signal support that is not always available.

III. PROPOSED ACTIVITY SCHEDULING APPROACH

In this section, we first provide a rationale for the proposed
activity scheduling design, and then describe a heuristic ap-
proach, based on convex relaxation, to approximately solve
the design problem.

A. Design Rationale

The sampling cost is straight-forward to compute for a
given activity pattern, while it is difficult to efficiently and
effectively quantify the reconstruction accuracy, since the
signal reconstruction accuracy of CS systems is not tractable.
In the literature [13]–[16], alternative measures such as those
based upon mutual coherence are used to indicate the re-
construction performance for sensing matrix design. These
mutual-coherence-based approaches assume that the columns
of the equivalent sensing matrix can be normalized to a unit ℓ2-
norm, and thus, instead of dealing with the mutual coherence,
these approaches actually only need to consider the column
correlation. However, the equivalent sensing matrix in a com-
pressive sleeping WSN does not have equal-norm columns, as
the activity scheduling imposes a restricted sampling operator
Φ which makes the equivalent sensing matrix comprise of a
selection of rows of the sparsifying basis.

To obtain an appropriate indicator which facilitates the
design of activity scheduling, we define the regularized mutual
coherence by

µ̂(Φ,Ψ) = max
1≤i,j≤n̂,i̸=j

|âTi âj |, (7)

where Â = ΦΨ̂, and Ψ̂ denotes a matrix that comprises
columns of Ψ normalized to unit ℓ2-norm. The following
theorem establishes the bound of the reconstruction accuracy
of (2) using the newly defined regularized mutual coherence.

Theorem 1: Let µ̂(Φ,Ψ) be the the regularized mutual
coherence corresponding to the activity scheduling matrix Φ
and the sparsifying basis Ψ, Ψ̂ be a matrix that comprises
columns of Ψ normalized to unit ℓ2-norm, dmin = mini ∥ψi∥2
and dmax = maxi ∥ψi∥2. If some s-sparse representation
x0 of the noiseless signal satisfies ΦΨx0 = Φf and the
regularized mutual coherence satisfies

µ̂(Φ,Ψ) ≤ d2minρ

4sd2max − d2min

, (8)
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where ρ = mini ∥âi∥22 and Â = ΦΨ̂, then the reconstruction
error of (2) is bounded by

∥x̂− x0∥22 ≤ 2ϵ

d2minρ+ d2minµ̂(Φ,Ψ)− 4sd2maxµ̂(Φ,Ψ)
, (9)

where x̂ is the solution of (2).
Proof: Letting ∆x = x − x0 and v = y − ΦΨx0, we

can rewrite the optimization problem in (2) as

min
∆x

∥x0 +∆x∥1

s.t. ∥ΦΨ∆x− v∥22 ≤ ϵ,
(10)

where ϵ ≥ ∥v∥22 by definition. Define ∆x̂ as the solution of
(10). According to the triangle inequality, we have

∥ΦΨ∆x̂∥22 ≤ ∥ΦΨ∆x̂− v∥22 + ∥v∥22 ≤ 2ϵ. (11)

Now, define a diagonal scaling matrix D such that Ψ = Ψ̂D,
where columns of Ψ̂ have unit ℓ2 norm, and the minimal
and maximal diagonal elements of D are dmin and dmax,
respectively. Then the left-hand-side of (11) can be lower
bounded by

∥ΦΨ∆x̂∥22 = ∥ΦΨ̂D∆x̂∥22
=∆x̂TDTdiagm

(
Ψ̂

T
ΦTΦΨ̂

)
D∆x̂

+∆x̂TDTnondiagm
(
Ψ̂

T
ΦTΦΨ̂

)
D∆x̂

≥ρ∥D∆x̂∥22 + µ̂(Φ,Ψ)∆x̂TDT (1n̂×n̂ − In̂×n̂)D∆x̂

≥ρ∥D∆x̂∥22 − µ̂(Φ,Ψ)|∆x̂|TDT (1n̂×n̂ − In̂×n̂)D|∆x̂|
≥(ρ+ µ̂(Φ,Ψ))∥D∆x̂∥22 − µ̂(Φ,Ψ)∥D∆x̂∥21
≥d2min(ρ+ µ̂(Φ,Ψ))∥∆x̂∥22 − d2maxµ̂(Φ,Ψ)∥∆x̂∥21.

(12)

As ∆x̂ is the solution of (10), we have

0 ≥ ∥x0 +∆x̂∥1 − ∥x0∥1 ≥ ∥∆x̂∥1 − 2∥∆x̂J ∥1, (13)

where J denotes the support of x0. According to the inequal-
ities (11), (12) and (13), it follows that

2ϵ ≥ d2min(ρ+ µ̂(Φ,Ψ))∥∆x̂∥22 − d2maxµ̂(Φ,Ψ)∥∆x̂∥21
≥ d2min(ρ+ µ̂(Φ,Ψ))∥∆x̂∥22 − 4d2maxµ̂(Φ,Ψ)∥∆x̂J ∥21
≥ d2min(ρ+ µ̂(Φ,Ψ))∥∆x̂∥22 − 4sd2maxµ̂(Φ,Ψ)∥∆x̂J ∥22
≥ (d2minρ+ d2minµ̂(Φ,Ψ)− 4sd2maxµ̂(Φ,Ψ))∥∆x̂∥22,

(14)

which leads to the reconstruction error bound in (9) if

µ̂(Φ,Ψ) ≤ d2minρ

4sd2max − d2min

. (15)

Remark 1: As d2min − 4sd2max < 0, the upper bound of the
reconstruction error in (9) tends to increase with the growth
of the regularized mutual coherence, and tends to decrease
with the growth of the minimum ℓ2-norm of all columns. This
observation encourages our design for the activity scheduling
to promote a low regularized mutual coherence and a large
value of ρ.

Remark 2: In comparison to the mutual coherence defined
in (5) which requires normalization of the columns of the

equivalent sensing matrix, the use of regularized mutual co-
herence has the attraction that it only needs the computation
of column coherence and the ℓ2-norm of columns, which will
facilitate the derivation of the activity scheduling approach to
be presented shortly. Note that dmax and dmin are fixed values,
which are determined by the sparsifying basis Ψ.

Remark 3: The proposed regularized mutual coherence
extends the previous work of [27], where the mutual coherence
of sensing matrices requires each column to have uniform ℓ2-
norm. However, in our case, the sensing matrices have non-
uniform ℓ2-norm, which leads to a distinct proof presented (12)
and (14) that incorporates the effect of non-uniform ℓ2-norm.

B. The Proposed Design via Convex Optimization

Building upon the previous analysis, we now propose an ac-
tivity scheduling problem for cost-aware compressive sleeping
WSNs, that performs a balance between the CS reconstruction
accuracy and the total cost imposed by the activated SNs.

To facilitate the design, we define Φ̃ = ΦTΦ, which is an
n× n diagonal matrix such that

Φ̃i,i =

{
1, SN i is activated
0, otherwise . (16)

The activity matrix Φ can be obtained directly from Φ̃.
Defining D as the set of all diagonal matrices, we now put
forth the following optimization problem

min
Φ̃∈D

cTdiag(Φ̃)

s.t. nondiagm(Ψ̂T Φ̃Ψ̂) ≤ η,

diag(Ψ̂T Φ̃Ψ̂) ≥ ρ,

Φ̃i,i ∈ {0, 1}, i = 1, . . . , n,

Tr(Φ̃) = m.

(17)

where c ∈ Rn denotes the cost profile for activating different
SNs, η (0 < η < 1) relates to the required regularized mutual
coherence, and ρ (0 < ρ < 1) denotes the threshold for the ℓ2-
norm of the columns of Φ̃Ψ̂. Note that the first two constraints
guarantee that the reconstruction error is bounded according
to Theorem 1. The value of η and ρ can be tuned if some
training data is available or chosen as η = µ̂(Φrand,Ψ) and
ρ = mini ∥ârandi ∥22, where Φrand ∈ Rm×n is a randomly
selected activity matrix and Ârand

i = ΦrandΨ̂, which makes
the worst-case error bound of the optimized activity matrix
no worse than that of a random one. Although more strict
constraints that involve a lower value of η and a larger value
of ρ could improve the worst-case performance, they reduce
the size of the feasible solution set and could rule out good
solutions with a low sampling cost, which reflects the trade-off
between the reconstruction accuracy and the sampling cost.

This optimization problem is 0-1 integer linear program-
ming (ILP), and provided the number of SNs is small, a
variety of algorithms such as the cutting-plane method and the
branch-and-bound method can be used to solve the problem
exactly [30]. However, as ILP is in general NP-hard, the
computational complexity for solving this problem increases
exponentially with a growing number of SNs. To deal with
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the computational complexity issue, a widely used heuristic
approach for solving the 0-1 ILP problem with a low com-
putational complexity is to ignore the integer constraints and
solve the resulting relaxed convex problem, which leads to

min
Φ̃∈D

cTdiag(Φ̃)

s.t. nondiagm(Ψ̂T Φ̃Ψ̂) ≤ η,

diag(Ψ̂T Φ̃Ψ̂) ≥ ρ,

0 ≤ Φ̃i,i ≤ 1, i = 1, . . . , n,

Tr(Φ̃) = m.

(18)

Then the m largest Φ̃i,i are rounded up and the others are
rounded down. This heuristic approach is also used in the
related work on activity scheduling designs [21]–[23] and
many other applications such as antenna selection in multi-
antenna wireless communication systems [31], and sensor
selection for parameter estimation [32].

We note that extra cost is required to communicate the
IDs of the active nodes (that are obtained from the sampling
matrix) via the downlink from the FC. However, i) it is
not usually necessary to change the node activation matrix
very frequently (e.g., changing the activation pattern for every
100 rounds of data collection from SNs), and ii) the energy
consumed by the SN to receive a message from the FC is often
much lower than the energy used to transmit its message to
the FC (if the distance between the FC and the SN is large).
In these cases, the cost of transmitting the information about
the SN activation could be a relatively minor factor.

IV. EXTENSIONS WITH PRIOR INFORMATION OF THE
SIGNAL SUPPORT

In many cases it has been observed that various support
patterns occur with different probabilities. For example, as the
physical phenomena have correlation in both the spatial and
the temporal domains, it is likely that the actual support has
some overlap with the signal support in a previous time slot.
This prior information concerning the signal support is not
utilized in the activity matrix design presented previously, and
the regularized mutual coherence employed in the previous
section actually characterizes the quality of an activity matrix
in terms of the worst case performance. In this section, we
consider extending the proposed activity scheduling approach
to the case where prior information about the signal support is
available. This additional knowledge is exploited to improve
the trade-off between the CS reconstruction accuracy and the
sampling cost.

To indicate the CS reconstruction accuracy of the equivalent
sensing matrix with non-uniform signal support probability,
we adopt the oracle estimator MSE in the evaluation. The
oracle estimator performs ideal LS estimation based on prior
knowledge of the sparse vector support. The MSE of this
oracle LS estimator coincides with the unbiased Cramèr-Rao
bound for exactly s-sparse deterministic vectors [24], so that
it represents the best achievable performance for any unbiased
estimator. It has been shown that the oracle estimator MSE
performance acts as a performance benchmark for the key
sparse recovery algorithms such as the BPDN, the Dantzig

selector, the orthogonal matching pursuit (OMP) and thresh-
olding algorithms [33].

In the presence of a standard Gaussian noise vector, the
oracle estimator MSE can be written as

Ex,z

(∥∥Foracle(y,ΦΨ)− x
∥∥2
2

)
=σ2EJ

(
Tr

(
(ET

JΨTΦTΦΨEJ )−1
))

=σ2
∑
J∈S

Pr (J )Tr
(
(ET

JΨT Φ̃ΨEJ )−1
)
,

(19)

where F(·) denotes the oracle estimator, J ⊂ {1, . . . , n̂}
denotes the support of x, and S is the set of all support
patterns. For a fixed sparsity level s, the size of S is

(
n̂
s

)
.

Building upon the previous analysis and the proposed activ-
ity scheduling framework in Section III, we will henceforth be
concerned with a new activity scheduling problem as follows

min
Φ̃∈D,J∈S

cTdiag(Φ̃)

s.t.
∑
J∈S

Pr (J )Tr
(
(ET

JΨT Φ̃ΨEJ )−1
)
≤ α,

nondiagm(Ψ̂T Φ̃Ψ̂) ≤ η,

diag(Ψ̂T Φ̃Ψ̂) ≥ ρ,

0 ≤ Φ̃i,i ≤ 1, i = 1, . . . , n,

Tr(Φ̃) = m,

(20)

where α > 0. The first constraint in (20) guaran-
tee that the oracle estimator MSE is upper bounded by
α
σ2 . The value of α can be tuned with training da-
ta or selected by using a random sampling scheme, i.e.,
α =

∑
J∈S Pr (J )Tr

(
(ET

JΨT (Φrand)TΦrandΨEJ )−1
)
.

As ET
JΨT Φ̃ΨEJ is a positive semidefinite matrix, according

to the Schurs complement in A.5.5 of [34] we can rewrite (20)
as

min
Φ̃∈D,QJ ,J∈S

cTdiag(Φ̃)

s.t.
∑
J∈S

Pr (J )Tr
(
QJ

)
≤ α,[

ET
JΨT Φ̃ΨEJ Is

Is QJ

]
≽ 0, ∀J ∈ S,

nondiagm(Ψ̂T Φ̃Ψ̂) ≤ η,

diag(Ψ̂T Φ̃Ψ̂) ≥ ρ,

0 ≤ Φ̃i,i ≤ 1, i = 1, . . . , n,

Tr(Φ̃) = m.
(21)

After solving (21), the m largest Φ̃i,i are chosen and the
corresponding indexes relate to the selected nodes.

Generally, the computational complexity for solving (21)
is high owing to large number of possible support patterns
in S. Specifically, as the semidefinite programming prob-
lem in (21) consists of one diagonal matrix variable Φ̃ of
size n × n and

(
n̂
s

)
matrix variables QJ of size s × s, it

can be iteratively solved using interior point methods with
computational complexity growing at most O(n3 +

(
n̂
s

)3
s6)

arithmetic operations in each iteration [17]. Therefore, if the
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Fig. 2. The GSM, the 3G and the 4G signal strength maps of Cambridge.

number of SNs, i.e., n, is large, the computational complexity
grows exponentially owing to the term

(
n̂
s

)
where n̂ ≥ n. To

reduce the computational complexity, one can randomly select
a subset of support patterns S ′ ⊂ S based upon the signal
support probability Pr (J ), and approximately calculate the
oracle estimator MSE by

Ex,z

(∥∥Foracle(y,ΦΨ)− x
∥∥2
2

)
≈σ2

∑
J∈S′

Pr (J )Tr
(
(ET

JΨT Φ̃ΨEJ )−1
)
.

(22)

This computational complexity reduction method has also
been used in [17], where a uniform support distribution is
assumed. For the case that there is a support pattern J ′ with a
dominant probability, one can ignore the other support patterns
and solve the following activity scheduling problem instead

min
Φ̃∈D,QJ′

cTdiag(Φ̃)

s.t. Tr
(
QJ ′

)
≤ α,[

ET
J ′ΨT Φ̃ΨEJ ′ Is

Is QJ ′

]
≽ 0,

nondiagm(Ψ̂T Φ̃Ψ̂) ≤ η,

diag(Ψ̂T Φ̃Ψ̂) ≥ ρ,

0 ≤ Φ̃i,i ≤ 1, i = 1, . . . , n,

Tr(Φ̃) = m.

(23)

For a typical environmental monitoring application, in view of
the high temporal correlation of the spatial signal, the support
of the signal in the previous time slot can be chosen as the
support pattern J ′ in (23).

V. EXPERIMENTAL RESULTS

In this section, we assess how the proposed activity schedul-
ing approaches perform in comparison with other approaches
including the random scheme, the greedy scheme, the RCS
scheme proposed in [22], and the ONS scheme proposed
in [21], where the ONS scheme is only suitable for the scenario
where prior information of the signal support is available.

It is worth mentioning that for a random Gaussian sparsify-
ing basis or a random sampling cost map, the greedy scheme
not only has the lowest sampling cost but also maintains
good reconstruction accuracy, and thus outperforms the other
approaches. However, in practical applications, the sparsifying

basis often has a structure and the sampling cost map has
a high spatial correlation. In this case, the greedy scheme
may not perform well, which motivates our work. In order to
generate correlated cost maps in the experiments, we use maps
showing the mean signal strength for the global system for
mobile communications (GSM), 3G and 4G mobile systems
in Cambridge that we assume to be nonchanging as shown
in Fig. 2, and we also assume that the sampling cost is
inversely proportional to the signal strength. We consider the
cost ratio, i.e., the cost owing to the active SNs over the cost
if all SNs are activated. Consequently it is only the relative
signal strength that matters, which is indicated by the signal
strength bar in Fig. 2. We assume that the SNs are placed at a
16× 16 grid placed over the maps in Fig. 2 and are used for
monitoring environmental parameters. We generate synthetic
data to evaluate the CS reconstruction accuracy, which will be
described in related subsections in the sequel.

In addition, in the evaluation, we consider two different
sparsifying bases, i.e., the discrete Fourier transform (DFT)
basis and the discrete cosine transform (DCT) basis. We
use CVX [35], a package for specifying and solving con-
vex programs, to solve the proposed convex-relaxed activity
scheduling problems and to reconstruct the signals. The re-
construction accuracy performance is evaluated by using the
averaged relative error which is the average of ∥f̂−f∥2

2

∥f∥2
2

, where

f̂ denotes a reconstructed vector including all the SNs’ data.
For our proposed approaches, the value of η, ρ and α are
chosen by using a random activity scheduling matrix. All the
experiments consist of 5000 independent trials.

A. Experiments With a Uniform Signal Support Probability

We now consider the case with no knowledge about the
signal support, and generate the signal support with a uniform
distribution. In each trial, s non-zero components of the signal
representation x are drawn from an independent and identi-
cally distributed (i.i.d.) zero mean and unit variance Gaussian
distribution, and the sensor measurements are corrupted by
additive zero-mean Gaussian noise with variance σ2.

Fig. 3 and Fig. 4 show the performance trade-off between
the reconstruction accuracy and the sampling cost for the
various approaches using the DFT and the DCT basis, re-
spectively. In these experiments, we fix the signal sparsity
level to be s = 5, and vary the number of active SNs m,
which results in different sampling costs and reconstruction
accuracy. We can observe that the averaged relative error of
the CS reconstruction decreases with an increasing sampling
cost ratio for all the approaches. Interestingly, with the same
settings, the greedy approach performs worse than the random
approach for the DCT basis, while the reverse is observed for
the DFT basis. In addition, the performance gap between the
greedy approach and the random approach varies for different
cost maps. These observations demonstrate the limitations of
the random and the greedy approaches, i.e., their performance
is significantly affected by the spatial correlation cost map
and the signal sparsifying basis. We note that the proposed
approach is superior to the other approaches for all the spatial
correlation cost maps and the signal sparsifying basis.
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Fig. 3. The accuracy-cost trade-off performance with the DFT basis and uniformly generated signal supports. (σ2 = 10−2 and s = 5)
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Fig. 4. The accuracy-cost trade-off performance with the DCT basis and uniformly generated signal supports. (σ2 = 10−2 and s = 5)
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Fig. 5. The comparison of different approaches with various settings of
parameters for the scenario of a uniform signal support probability. (DFT
basis and the GSM cost map)

More performance comparisons for various parameter set-
tings including the signal sparsity s and the noise variance
σ2 are shown in Fig. 5, where the DFT basis and the GSM
cost map of Cambridge are used. The proposed approach
provides a good trade-off between the sampling cost and
the reconstruction accuracy, and outperforms all the other
competitors in all the scenarios.

B. Experiments With Prior Information of the Signal Support

In each trial of the experiments, we first generate a non-
uniform signal support probability, where s randomly selected
entries are associated with the probability 9

10
Constant

s , and the
other entries are associated with the probability 1

10
Constant

n−s .
Then we generate the sparse signal representation x with
this signal support probability, and the amplitude of non-
zero components are drawn from an i.i.d. zero mean and
unit variance Gaussian distribution. The proposed optimization
problem (23) is solved to obtain the activity scheduling pattern
with the use of the prior information on the signal support.

Fig. 6 and Fig. 7 illustrate the performance trade-off for
various approaches using the DFT and the DCT bases, re-
spectively, where we set σ2 = 10−2 and s = 5. As with the
previous experiments, by varying the number of active SNs
m, we obtain the trade-off of the sampling cost versus the
reconstruction accuracy for the various methods. It is observed
again that for all the cost maps, the proposed approach
provides the best performance trade-off. We note in Fig. 6 and
Fig. 7 that the ONS approach doesn’t provide a good activity
scheduling in terms of the trade-off between sampling cost and
reconstruction accuracy, since it requires a relatively accurate
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Fig. 6. The accuracy-cost trade-off performance with the DFT basis and prior information of the signal support. (σ2 = 10−2 and s = 5)

0.08 0.1 0.12 0.14

10
−2

10
−1

GSM

Cost ratio

A
ve

ra
ge

d 
re

la
tiv

e 
er

ro
r

 

 

Random
Greedy
RCS
ONS
Proposed

0.08 0.1 0.12 0.14

10
−2

10
−1

3G

Cost ratio

A
ve

ra
ge

d 
re

la
tiv

e 
er

ro
r

 

 

Random
Greedy
RCS
ONS
Proposed

0.08 0.1 0.12 0.14

10
−2

10
−1

4G

Cost ratio

A
ve

ra
ge

d 
re

la
tiv

e 
er

ro
r

 

 

Random
Greedy
RCS
ONS
Proposed

Fig. 7. The accuracy-cost trade-off performance with the DCT basis and prior information of the signal support. (σ2 = 10−2 and s = 5)

0.08 0.1 0.12 0.14
10

−4

10
−3

10
−2

10
−1

Cost ratio

A
ve

ra
ge

d 
re

la
tiv

e 
er

ro
r

s = 6

 

 

Random
Greedy
RCS
ONS
Proposed

0.08 0.1 0.12 0.14
10

−4

10
−3

10
−2

10
−1

σ2 = 0.05

Cost ratio

A
ve

ra
ge

d 
re

la
tiv

e 
er

ro
r

 

 

Random
Greedy
RCS
ONS
Proposed

Fig. 8. The comparison of different approaches with various settings of
parameters for the scenario with prior information of the signal support. (DFT
basis and the GSM cost map)

knowledge of the signal support. In addition, in comparison
to the results of the experiment in the previous subsection, all
the designs work better with prior knowledge owing to the fact
that prior knowledge is exploited in the CS reconstruction in
(4).

Fig. 8 provides more comparison results for the various
schemes for different settings including the signal sparsity

s and the noise variance σ2, where the DFT basis and the
GSM cost map of Cambridge are used. Again, we note that
the proposed approach has a superior performance trade-off in
comparison to other schemes.

C. Convex Relaxation vs. Exhaustive Search

In this experiment, we investigate the performance degra-
dation caused by convex relaxation in (18). Owing to the high
computation cost in solving the original design problem in
(17), we conduct simulations with only n = 20 SNs. We
generate the elements of the dictionary Ψ and the sparse
signal representation x from an i.i.d. zero mean and unit
variance Gaussian distribution. The sampling cost of each SN
is generated following an i.i.d. uniform distribution in the
range from 0 to 1.

Fig. 9 illustrates the accuracy-cost trade-off performance
for the random scheme, the proposed approach with convex
relaxation and the original proposed design. Although the SNs
selected by the proposed approach with convex relaxation
and a rounding scheme are not guaranteed to satisfy all the
constraints in the original design problem, we do not observe
significant performance degradation (as least for the problem
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Fig. 9. Convex relaxation vs. exhaustive search. (σ2 = 10−2 and s = 2)

with a small ambient dimension). Both the original design
by exhaustive search and the one with convex relaxation
outperform the random scheme.

VI. CONCLUSIONS

In this paper, we have considered the design of cost-
aware activity scheduling for compressive sleeping WSNs
that exploit the CS principle in data acquisition. In contrast
to the conventional CS framework that implicitly assumes
equal cost for all samples and is only concerned with the
reconstruction accuracy, the proposed activity scheduling ap-
proach aims to improve the performance trade-off between the
reconstruction accuracy and the sampling cost in view of the
non-uniform sampling cost often experienced in compressive
sleeping WSNs. We formulate the activity scheduling as an
optimization problem which exploits the regularized mutual
coherence of the equivalent sensing matrix as an indicator of
the reconstruction accuracy, and further extend the approach
to the case where prior information of the signal support is
available. The proposed designs exhibit performance trade-off
gains in relation to the conventional random activity scheme
and the greedy activity scheme as well as to other optimized
designs.
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