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Validity of time reversal for testing
Granger causality

Irene Winkler, Danny Panknin, Daniel Bartz, Klaus-Robert Müller and Stefan Haufe

Abstract—Inferring causal interactions from observed data is a
challenging problem, especially in the presence of measurement
noise. To alleviate the problem of spurious causality, Haufe et
al. (2013) proposed to contrast measures of information flow ob-
tained on the original data against the same measures obtained on
time-reversed data. They show that this procedure, time-reversed
Granger causality (TRGC), robustly rejects causal interpretations
on mixtures of independent signals. While promising results have
been achieved in simulations, it was so far unknown whether
time reversal leads to valid measures of information flow in the
presence of true interaction. Here we prove that, for linear finite-
order autoregressive processes with unidirectional information
flow between two variables, the application of time reversal for
testing Granger causality indeed leads to correct estimates of
information flow and its directionality. Using simulations, we
further show that TRGC is able to infer correct directionality
with similar statistical power as the net Granger causality
between two variables, while being much more robust to the
presence of measurement noise.

Index Terms—Granger causality, time reversal, noise, TRGC

I. INTRODUCTION

THE estimation of causal relations between time series
is a signal processing topic promising to enhance our

understanding of dynamical systems in numerous application
domains. For data with time structure, the concept of Granger
causality (GC) has gained popularity as a simple testable
definition of causality based on temporal precedence. Signal
processing techniques based on Granger-causality have been
studied in a variety of fields such as econometrics [1], neuro-
science [2], [3], [4], [5], and climate science [6], [7].

In its original formulation, a time series xt is said to
Granger-cause a time series yt, if the past of xt helps to
predict yt above what can be predicted by using ‘all other
information in the universe’ besides the past of xt [8]. In
the bivariate framework, it is common to consider only the
information contained in the past of xt and yt (cf. [9]).

A serious problem for the estimation of information flow
using Granger causality is that spurious Granger causality can
occur due to measurement noise. On one hand, if two sensors
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measuring the same signal are superimposed with noise, they
mutually help predicting each other’s future [10], [11]. This
is a problem especially in the study of brain connectivity
using non-invasive electrophysiology, where the activity at
a given sensor is typically a mixture of contributions from
several neuronal sources due to the volume conduction of
electric currents in the head [12], [13], [14], [15], [16]. On
the other hand, noise that is correlated across sensors has a
similar adverse effect on estimates of directed interaction even
if the actual signals-of-interest are not mixed into different
sensors [17], [18]. Such spurious causality can occur in any
measure based on the concept of Granger causality, including
multivariate [19], [20] and non-linear [21], [22], [23] variants.

Recently, a number of ways to make causality estimates
more robust to the presence of mixed signals and noise have
been proposed. These include novel measures of directed
information flow [12], [10], [11] as well as novel ways of
assessing their statistical significance [24], [23], [17], [16],
[18]. Recently, Haufe et. al [17], [16] suggested to contrast
causality scores obtained on the original time series to those
obtained on time-reversed signals. The intuitive idea behind
this approach is that, if temporal order is crucial to tell a driver
from a recipient, directed information flow should be reduced
(if not reversed) if the temporal order is reversed. In fact,
Haufe et al. showed that for correlated, but non-interacting
signals, the use of time reversal for testing Granger causality
scores (here referred to as time-reversed Granger causality,
TRGC) and other metrics based on cross-spectral estimates
or linear autoregressive modeling correctly leads to rejection
of causal interpretations. This was confirmed for Granger
causality in an independent simulation study [18] showing
that TRGC leads to a much smaller fraction of false positive
detections compared to the original Granger causality index,
and also compares favorably against the Phase Slope Index
(PSI) [11].

While time-reversed Granger causality thus displays an
intriguing noise robustness property, and yields very encour-
aging results in simulations, its behavior in the presence of
causal interactions is still poorly understood. In particular, it
is currently unclear how Granger causality scores computed
on time-reversed signals link to the causal interactions on the
original time-series, and therefore whether TRGC correctly
indicates the direction of causality. Theoretical guarantees have
only been derived for special cases in which either the signal’s
auto- and cross-covariances are very small in magnitude, or in
which both signals have very similar autocorrelations [18].

The aim of this paper is two-fold. In the theory section, we
provide new theoretical insights on time-reversal for testing
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Granger causality between two variables. After introducing the
concepts of linear autoregressive modeling, Granger causality,
and time-reversed Granger causality (Section II-A and II-B),
we elaborate on the existing result of Haufe et al. [16] showing
that, for mixtures of independent signals, causality measures
based on cross-covariances are invariant to the reversal of the
temporal order (Section II-C). This is the theoretical basis
for the noise-robustness property of time-reversal testing of
causality scores. We then investigate the time-reversal of a
process fulfilling the assumptions typically made by Granger
causality estimators: a finite-order vector autoregressive (VAR)
process that is unaffected by measurement noise. We review
what is known about the time-reversal of a VAR process
(Section II-D), based on what we provide an analytic descrip-
tion of Granger causality scores of time-reversed signals in
terms of their autoregressive coefficients (Section II-E) and
a minimal example (Section II-F). Using these insights, we
prove our main result stating that, in the case of unambiguous
unidirectional information flow from xt to yt, time reversal
leads to a decrease of the Granger-causal net information
flow relative to the original time series. The difference of
net Granger causality scores obtained on original and time-
reversed data thus indicates the correct direction of interaction
(Section II-G).

In the second part of the paper (Section III), we revisit
scenarios known to cause problems for conventional Granger
causality. Using simulations, we illustrate when and how the
theoretical guarantees of TRGC lead to measurable perfor-
mance increases in practice. We point out the implications of
our theoretical and empirical results in Section IV, along with
a discussion of ambiguities in causal interpretation caused by
the presence of correlated residuals in VAR models.

II. THEORY

Vectors are considered to be column vectors (unless other-
wise stated), and are generally typed in bold. The symbol ·>
denotes the transpose operator, I the identity matrix, and [·, ·]
concatenation. The symbol ⊗ refers to the Kronecker product,
and vec(·) to the vectorization operator, which converts a ma-
trix into a column vector. The symbol 〈·〉 denotes expectation.
The cross-covariance matrices of a stationary process zt are
denoted by

Cz(h) :=
〈

(zt − 〈z〉)(zt−h − 〈z〉)>
〉

∀h ∈ Z .

We use the notation zt both for an observed time series and its
underlying data generating process. We denote all quantities
related to the time-reversed process z̃t := z−t with a tilde.

A process εt is said to be white noise if it is stationary with
mean zero, finite covariance and zero autocorrelation; that is, if
Cε(h) = 0 ∀h ∈ Z\{0}. Note that the covariance matrix Cε(0)
is not necessarily diagonal, and that neither independence nor
joint Gaussianity is required.

A. Granger causality and the linear VAR model
Consider a stable bivariate vector autoregressive process of

lag order p (VAR(p) process), zt =

[
xt
yt

]
∈ R2,

zt = A1zt−1 +A2zt−2 + . . .+Apzt−p + εt , (1)

where εt ∈ R2 is a 2-dimensional white noise process (that is,
〈εt〉 = 0, 〈εtε>t−h〉 = 0 for h ∈ Z \ {0}, and 〈εtz>t−h〉 = 0 for
h ∈ N \ {0}) with residual covariance matrix

Σ = 〈εtε>t 〉 =

[
Σxx Σxy
Σxy Σyy

]
. (2)

The noise variables εt are also called innovations or residuals.
Stability requires that det(I −A1λ− . . .−Apλp) 6= 0 for all
λ ∈ C with |λ| ≤ 1.

Following [25], xt and yt possess themselves autoregressive
(AR) representations, which we denote by

xt =

∞∑
k=1

akxt−k + ξxt , Var(ξxt ) =: Σx and (3)

yt =

∞∑
k=1

bkyt−k + ξyt , Var(ξyt ) =: Σy . (4)

The residuals ξxt and ξyt of these two univariate processes
are each serially uncorrelated, but may be correlated with each
other at various lags. Importantly, even though the bivariate
autoregressive process (1) is of finite order, the univariate
processes (3) and (4) are in general of infinite order. We refer
to (1) as the unrestricted or full model, while (3) and (4)
contain the restricted models.

Directed Granger-causal information flow is defined based
on the so-called Granger-scores [25]

Fy→x := log

(
Σx
Σxx

)
and Fx→y := log

(
Σy
Σyy

)
. (5)

Granger causality from xt to yt implies that information
from the past of xt improve the prediction of the present
of yt compared to what can be predicted by the past of yt
alone. That is, the residual variance Σyy of the unrestricted
model is required to be smaller than the residual variance Σy
of the restricted model. Under the assumption of Gaussian-
distributed residuals, Fy→x and Fx→y are asymptotically χ2

distributed, giving rise to an analytical test of their significance
[25]. An asymptotically equivalent test is given by an F-test of
the goodness-of-fit of the two models (cf. [9], [4]). We refer
to this approach as standard Granger causality (standard GC).

As variables in physical systems often mutually influence
each other, it is also of interest to determine the net driver of
the interaction by assessing whether more information is flow-
ing from xt to yt then from yt to xt or vice versa. Following
[11], [26], net Granger causality (Net-GC) is defined as the
difference of the Granger causality scores, that is

F (net)
x→y := Fx→y − Fy→x and F (net)

y→x := −F (net)
x→y . (6)

As the analytical distributions of these differences are
unknown, statistical significance of Net-GC scores needs to
be assessed using resampling methods as outlined in Sec-
tion III-A.

B. Time-reversed Granger causality (TRGC)

To avoid false detections of causal interactions, Haufe et
al. proposed to contrast causality measures applied to the
original time series with the same measures obtained from
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time-reversed signals z̃t := z−t [17], [16]. Here, we formalize
this idea in the context of Granger causality.

Given a bivariate VAR(p) process, its time-reversed process
z̃t also possesses a VAR(p) representation, which we derive
in Section II-D. We denote the residual covariance matrix of
the time-reversed process by

Σ̃ =

[
Σ̃xx Σ̃xy
Σ̃xy Σ̃yy

]
. (7)

The restricted AR models of the time-reversed data have
a simple structure, as they are concerned with univariate
time series. The autocovariance function of a univariate
time series is symmetric, i.e., we have Cx(h) = Cx(−h)
and Cy(h) = Cy(−h) for all h ∈ Z. As a result of this
and (19) (Section II-C), the time-reversed signals will have the
same autocovariances as the original series. Because the AR
representation is uniquely determined by the autocovariance
function (cf. Section II-D1), they also share the same AR
representation. The restricted models of the time-reversed
univariate processes are thus given by

xt =

∞∑
k=1

akxt+k + ξ̃xt , Var(ξ̃xt ) =: Σ̃x and (8)

yt =

∞∑
k=1

bkyt+k + ξ̃yt , Var(ξ̃yt ) =: Σ̃y (9)

with

Σ̃x = Σx and Σ̃y = Σy . (10)

In analogy to the original time series, we define the time-
reversed Granger scores as

F̃ỹ→x̃ := log

(
Σ̃x

Σ̃xx

)
and F̃x̃→ỹ := log

(
Σ̃y

Σ̃yy

)
, (11)

and the net Granger causality scores as

F̃
(net)
x̃→ỹ := F̃x̃→ỹ − F̃ỹ→x̃ and F̃

(net)
ỹ→x̃ := −F̃ (net)

x̃→ỹ . (12)

Finally, the differences of the Granger scores obtained on
original and time-reversed signals are given by

D̃y→x := Fy→x − F̃ỹ→x̃ , (13)

D̃x→y := Fx→y − F̃x̃→ỹ , and (14)

D̃(net)
x→y := F (net)

x→y − F̃
(net)
x̃→ỹ . (15)

Time-reversed Granger causality can be applied in the
following variants.

a) Conjunction-based time-reversed Granger causality
(Conj-TRGC): Here, net information flow from xt to yt is
inferred if

F (net)
x→y > 0 and F̃

(net)
x̃→ỹ < 0 , (16)

that is, if the directionality of net Granger causality reverses
for time-reversed signals. This variant has been investigated
in [18].

b) Difference-based time-reversed Granger causality
(Diff-TRGC): Here, net information flow from xt to yt is
inferred if

D̃(net)
x→y > 0 , (17)

that is, we require that net Granger causality from xt to yt is
reduced on the time-reversed signals. Note that this is a weaker
requirement than conjunction-based TRGC, as all signals for
which (16) holds also fulfill (17).

c) Conjunction of Net-GC and Diff-TRGC: Finally, we
can require both the time-reversed net difference and the net
Granger score to be significantly larger than zero in order to
infer net information flow from xt to yt, that is

D̃(net)
x→y > 0 and F (net)

x→y < 0 . (18)

Just as for Net-GC, statistical significance of Conj-TRGC
and Diff-TRGC, as well as the combination of Net-GC and
Diff-TRGC can be assessed using resampling techniques (see
Section III-A).

C. Robustness of time-reversed Granger causality (TRGC)

In [16] it is pointed out that time-reversed Granger causality
robustly rejects causal interpretations for mixtures of non-
interacting signals such as correlated noise sources. The math-
ematical basis for this noise robustness property is the fact
that the cross-covariance matrices C̃z̃(·) of the time-reversed
signals are equal to the transposed cross-covariance matrices
of the original signals, that is

C̃z̃(h) = 〈z̃tz̃>t−h〉 = 〈ztz>t+h〉 = Cz(−h) =
(
Cz(h)

)>
(19)

for all h ∈ Z. If a series ηt only contains a mixture of
independent signals, all its cross-covariance matrices are sym-
metric [27]: consider ηt = Mst where st contains a number
of independent sources. Then, for all h ∈ Z, Cs(h) = diag
and thus Cη(h) = MCs(h)M> is symmetric. For mixtures of
independent noise sources, any causality measure that is solely
based on a series’ cross-covariance matrices therefore yields
the same result on the original and the time-reversed signals.
This includes Granger causality, but also other popular variants
such as directed transfer function (DTF) [19] and partial
directed coherence (PDC) [20]. Given sufficient amounts of
data, the conditions for Conj-TRGC and Diff-TRGC cannot
be fulfilled for mixtures of independent sources using these
measures, preventing the detection of spurious interaction.

D. The VAR representation of a time-reversed process

There is so far no theoretical argument guaranteeing that
time-reversed Granger causality correctly indicates the pres-
ence of information flow as well as its direction in the presence
of actual interaction. In order to provide such a guarantee,
we here study the time-reversal of (linear) finite-order VAR
processes. Note that studying this case is sufficient since, as
a results of Wold’s decomposition theorem, every stationary,
purely nondeterministic, process can be approximated well by
a finite order VAR process [28], [1].

We start by briefly revisiting the link between cross-
covariance matrices and VAR representation, which we use
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throughout the paper, in Section II-D1. In Sections II-D2 and
II-D3, we then review the theoretical result of Andel [29]
stating that the time-reversed signal of any VAR(p) process
has again a VAR(p) representation that can be expressed
analytically in terms of the original process. As the description
for p > 1 is mathematically involved, we only treat the case
p = 1 in the main paper, while the proof for arbitrary p is
presented in Appendix A.

We use these results to provide an analytic description of
difference-based TRGC scores in terms of their autoregressive
coefficients (Section II-E), give a minimal example (Sec-
tion II-F), and prove our main result stating that, in the case of
unambiguous unidirectional information flow, difference-based
time-reversed Granger causality indeed yields the correct result
(Section II-G).

1) The cross-covariance function of a VAR process: Most
of the insights in this paper are based on the direct link
between autoregressive coefficient matrices A1, . . . , Ap and
residual covariance matrices Σ on one hand, and cross-
covariance matrix Cz(·) on the other hand. This link is
established by the Yule-Walker equations as follows (see e.g.
[1]). For a VAR(1) process

zt = A1zt−1 + εt , (20)

the Yule-Walker equations read

Cz(0) = A1 · Cz(0) ·A>1 + Σ and (21)
Cz(h) = A1 · Cz(h− 1) (∀h ∈ N \ {0}) . (22)

Given A1 and Σ, the cross-covariances are uniquely deter-
mined from (21) through

vec(Cz(0)) = (I −A1 ⊗A1)−1 vec Σ , (23)

while higher-order cross-covariances Cz(h) can be recursively
computed using (22). Conversely, A1 and Σ are uniquely
determined by the cross-covariances through

A1 = Cz(1)Cz(0)−1 and (24)

Σ = Cz(0)−A1Cz(0)A>1 . (25)

Results on VAR(1) processes can typically be extended to
higher-order VAR(p) processes by reducing VAR(p) processes
to their VAR(1) form. The VAR(1) representation of a VAR(p)
process as well as the Yule-Walker equations for general
VAR(p) processes are provided in Appendix A-A.

2) The VAR representation of a time-reversed VAR(1) pro-
cess: The time-reversed autoregressive representation of a
VAR(1) process zt has been derived by Bartlett in 1955 [30].
Suppose we generate an infinite sequence of zt according to
the VAR(1) process (20). The VAR representation of the time-
reversed or backward process is given by

zt = Ã1zt+1 + ε̃t , (26)

where
Ã1 = Cz(0) ·A>1 · Cz(0)−1 , (27)

and where the reversed residuals ε̃t are calculated from zt as

ε̃t := zt − Ã1zt+1 (28)

with residual covariance matrix

Σ̃ = 〈ε̃tε̃>t 〉 = Cz(0)−Cz(0)·A>1 ·Cz(0)−1 ·A1 ·Cz(0) . (29)

It is easy to show that the sequence ε̃t is indeed white noise,
that is for all h ∈ Z\{0}: 〈ε̃t·ε̃>t−h〉 = 0 and for all h ∈ N\{0}:
〈ε̃t · z>t+h〉 = 0.

From (27), we see that the time-reversed coefficient matrix
Ã1 is similar to A1, and thus shares some of its properties,
notably its eigenvalues, determinant, trace and rank. However,
in the context of Granger causality, it is important to note that
many properties of A1 do not transfer to Ã1. In particular, if
A1 is triangular, diagonal, or symmetric, this is not generally
the case for Ã1.

3) The VAR representation of a time-reversed VAR(p) pro-
cess: The result of Bartlett on the time-reversed VAR(1)
process has been generalized to VAR(p) processes by Andel
in 1972 [29], in a paper that received, so far, little attention.
Andel showed that any stable VAR(p) process (1) has a time-
reversed representation

zt = Ã1zt+1 + Ã2zt+2 + . . .+ Ãpzt+p + ε̃t (30)

that is again of order p with uniquely defined autoregressive
coefficients Ã1, . . . Ãp and residual covariance matrix Σ̃. We
reproduce this result in Appendix A-B. Note that, while
we only treat bivariate VAR processes in this paper, the
analytic description of the time-reversed VAR process holds
for processes of arbitrary dimensionality.

E. Analytic description of Diff-TRGC

Contrasting Granger scores obtained on original with those
obtained on time-reversed signals is simplified by the fact
that the AR representation of a univariate time series does
not depend on the direction of time. It follows immediately
from (10), that the differences of the Granger scores related to
original and time-reversed data do not depend on the restricted
models:

D̃y→x = Fy→x − F̃ỹ→x̃ = log Σ̃xx − log Σxx

D̃x→y = Fx→y − F̃x̃→ỹ = log Σ̃yy − log Σyy

D̃(net)
x→y = F (net)

x→y − F̃
(net)
x̃→ỹ

= (Fx→y − Fy→x)− (F̃x̃→ỹ − F̃ỹ→x̃)

= log Σ̃yy − log Σ̃xx − log Σyy + log Σxx .

(31)

The Granger score differences D̃y→x, D̃x→y , and D̃
(net)
x→y

thus only depend on the residual covariance matrices of the
full models of the original and time-reversed data. For the
VAR(1) process, these are given in (25) and (29). For VAR(p)
processes, the residual covariance matrices can be obtained
through (56) and (59) as described in Appendix A-A and A-B.

Please note that while (31) implies that the unrestricted
models can be neglected when computing Granger scores
differences, we might gain from including them in finite
sample settings. We investigate this issue through simulations
in Section III.
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F. A minimal example

It is not intuitive to see how the residual variance of the
time-reversed process, and thus Granger causality, depends on
the autoregressive coefficients of the model. Interpretation is
made difficult by the occurrence of Cz(0)−1 in (29).

Let us therefore consider the following minimal case: a
VAR(1) process zt with Cz(0) = I . In that case, Cz(h) = Ah1
and C>z (h) = (A>1 )h for all h ∈ Z \ {0} (from (22)). All
asymmetries in the cross-covariance matrices Cz(h) are thus
due to asymmetries in A1.

Furthermore, time-reversing the signal leads to transposition
of the autoregressive coefficient matrix Ã1 = A>1 as a result
of (27). The residual covariance matrices (25) and (29) are
now given by

Σ = I −A1 ·A>1 and Σ̃ = I −A>1 ·A1 .

Denote with A1 =

[
a11 a12
a21 a22

]
the autoregressive coeffi-

cients. We then have

Σxx = 1− a211 − a212 , Σ̃xx = 1− a211 − a221 ,

and

D̃y→x = log Σ̃xx − log Σxx > 0⇔ Σxx < Σ̃xx

⇔ a212 > a221 .

The difference of the Granger scores computed on the
original and time-reversed time series thus indicates the correct
net direction of information flow. We will in general not be
able to infer whether xt has a Granger-causal influence on yt.
However, we will be able to tell whether xt Granger-causes yt
more than yt Granger-causes xt, or vice versa.

While this simple case will almost never occur in practice,
we give theoretical guarantees for more general cases in the
next section.

G. Validity of TRGC for unidirectional information flow

We now prove our main result, the validity of difference-
based time-reversed Granger causality in the presence of
unidirectional information flow. Consider a bivariate VAR(p)
process with unambiguous unidirectional information flow.
This is the case when all coefficient matrices are triangular
and the residual covariance matrix Σ is diagonal. Then the
following theorem holds.

Theorem 1. Let zt =

[
xt
yt

]
∈ R2 be a stable bivariate VAR(p)

process (1) with the time-reversed representation (30). Under
the assumptions
(A1) A1, . . . , Ap are lower triangular matrices (i.e., xt may

Granger-cause yt, but yt does not Granger-cause xt),
and

(A2) Σ is a diagonal matrix, i.e. Σxy = 0 (the residuals are
uncorrelated), and

(A3) Cz(0) is invertible ,
it holds that

Σ̃xx ≤ Σxx , (32)

and that

Σ̃yy ≥ Σyy . (33)

Corollary 1. Under assumptions (A1)-(A3), Theorem 1
and (31) immediately imply the following inequalities for the
differences of Granger scores:

D̃y→x = Fy→x − F̃ỹ→x̃ ≤ 0 (34)

D̃x→y = Fx→y − F̃x̃→ỹ ≥ 0 (35)

D̃(net)
x→y = (Fx→y − Fy→x)− (F̃x̃→ỹ − F̃ỹ→x̃) ≥ 0 . (36)

As a result of Corollary 1, net Granger-causal information
flow from xt to yt is reduced or remains the same when the
signal is time-reversed. Thus, in the case of unambiguous uni-
directional information flow, difference-based time-reversed
Granger causality yields the correct result. Note that it is not
true in general that the net flow between the time-reversed
signals x̃t and ỹt, F̃

(net)
x̃→ỹ , is negative (reverses compared to

the original series). That is, conjunction-based TRGC might
in some cases incorrectly reject the presence of true causal
interaction.

Corollary 1 states that each of the three difference scores,
D̃y→x, D̃x→y , and D̃

(net)
x→y alone is sufficient to infer the

correct directionality under assumptions (A1)–(A3). As (A1)
requires information flow to be unidirectional, the individual
scores D̃y→x and D̃x→y only indicate net information flow,
which is what is also observed in Section II-F.

The three scores will behave differently if the assumption
of uncorrelated residuals (A2) is violated. Then, Σ̃xx ≤ Σxx
and D̃y→x ≤ 0 still hold, but the inequalities Σ̃yy ≥ Σyy ,
D̃x→y ≥ 0 and D̃

(net)
x→y ≥ 0 do not. On average, the net dif-

ference D̃(net)
x→y (which equals D̃x→y − D̃y→x) is less affected

by the presence of correlations in the residuals than any of
the individual scores, which is why we defined difference-
based TRGC based on D̃(net)

x→y in (17). Nevertheless, all three
scores are valid measures for net information flow, as residuals
should be uncorrelated if the VAR model accurately describes
a physical process. The significance of uncorrelated as opposed
to correlated residuals is discussed in Section IV-A.

Sketch of the proof. The first inequality (32) is relatively
easy to prove. The intuition is the following: Since yt does
not Granger-cause xt, the prediction of xt is only based on
past xt. In contrast, the coefficient matrices Ã1, . . . , Ãp of
the time-reversed representation are in general not triangular.
This means that prediction of the time-reversed signals x̃t is
not only based on past x̃t, but can also use information from
past ỹt. We would thus expect that x̃t can be better predicted
than xt, and that the corresponding residuals are smaller.

The proof of the second inequality (33) is more involved.
The intuition is the following: we would expect that the
‘amount’ of unexplainable variance is the same for both the
original and the time-reversed process. Thus, since the residual
variance of xt decreases, the residual variance of yt should
increase. Mathematically, we prove that

det(Σ) = det(Σ̃) . (37)

The proof of (37) is the only part that requires the analytic
description of Σ̃, and is the main difficulty of the overall
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proof. It is not straightforward, because Σ̃ depends on the
inverse of the covariance matrix Cz(0), while we only have
an analytic description of vecCz(0). From (37), it is easy to
infer Σ̃yy ≤ Σyy, which completes the proof. It is only in this
final step that we need assumption (A2) that Σ is diagonal.

Proof (Part 1: Proof that Σ̃xx ≤ Σxx):
As A1, . . . , Ap are lower triangular matrices (assumption

(A1)), xt is an autoregressive process of order p,

xt = a1xt−1+. . .+apxt−p+ξxt with Var(ξxt ) = Σxx (38)

Its time-reversed representation (cf. Section II-B) is

xt = a1xt+1+. . .+apxt+p+ξ̃xt , with Var(ξ̃xt ) = Σxx (39)

Because the unrestricted (or full) model (30) extends the
restricted model by including yt, (32) follows:

Σ̃xx ≤ Var(ξ̃xt ) = Σxx . (40)

Proof (Part 2: Proof that Σ̃yy ≤ Σyy):
As mentioned in the proof sketch, we need to derive (37),

the equality of the determinants det Σ and det Σ̃ . To improve
readability, we here treat only the case p = 1, and derive (37)
for general p ∈ N \ {0} in Appendix A-C.

The proof relies on Sylvester’s determinant theorem [31],
which states that for any matrices K ∈ Rn×m, L ∈ Rm×n:

det(I +KL) = det(I + LK) . (41)

We then have:

det Σ
(21)
= det(Cz(0)−A1 · Cz(0) ·A>1 )

= det(Cz(0)) · det(I −A1 · Cz(0) ·A>1 · Cz(0)−1)
(41)
= det(Cz(0)) · det(I − Cz(0) ·A>1 · Cz(0)−1A1)

= det(Cz(0)− Cz(0) ·A>1 · Cz(0)−1A1 · Cz(0))
(29)
= det Σ̃ .

From the result of Part 1 (32), the equality of residual
covariance determinants (37) (derived for general p in Ap-
pendix A-C), and assumption (A2) of uncorrelated residuals
in Σ, we then obtain:

ΣxxΣyy
(A2)
= det Σ

(37)
= det Σ̃ = Σ̃xxΣ̃yy − Σ̃xyΣ̃xy

≤ Σ̃xxΣ̃yy
(32)
≤ ΣxxΣ̃yy

⇔ Σyy ≤ Σ̃yy .

Strict inequality. Let us further note that inequality (36)
for difference-based TRGC is strict in the presence of causal
interaction. The following theorem holds.

Theorem 2. Under assumptions (A1)-(A3), it holds that

D̃(net)
x→y = 0⇔ A1, . . . , Ap are diagonal . (42)

The proof is provided in Appendix A-D. Combined with
Corollary 1, Theorem 2 immediately implies that D̃(net)

x→y > 0
in the presence of unidirectional information flow from xt

to yt. That is, net Granger-causal information flow from xt
to yt is truly reduced and cannot remain the same when the
signal is time-reversed.

III. EXPERIMENTS

In this section, we provide an empirical investigation of
model violations and other factors influencing the performance
of Granger causal measures using numerical simulations. Af-
ter describing the tested methods and performance measures
(Section III-A), we compare several variants of TRGC in
either the presence or absence of noise (Section III-B). We
then investigate the influence of common drivers, various
types of noise (Section III-C and III-D) and downsampling
(Section III-E) on standard Granger causality and Diff-TRGC.

A. Experimental setup

We consider bivariate time series in the presence of uni-
directional information flow (xt → yt) as well as in the
absence of causal interaction. Unless otherwise stated, time
series of length T = 2000 are generated from stationary
VAR(5) processes, whose autoregressive coefficients are drawn
from a normal distribution with mean 0 and standard deviation
σA = 0.2. The absence of causal interaction is modeled
by setting respective AR coefficients to zero. Residuals are
generated from a normal distribution with diagonal covariance
matrix, whose entries are drawn from the standard uniform
distribution.

We compare standard GC as well as Net-GC to Diff-
TRGC (see (17)). In Section III-B, we also include Conj-
TRGC (see (16)), the conjunction of Net-GC and Diff-TRGC
(see (18)), and a variation of Diff-TRGC, in which D̃(net)

x→y is
computed using only the full bivariate models according to
(31). This variant is denoted by Diff-TRGC (full).

All statistical tests are performed at significance level
α = 0.05. For standard GC, we perform two separate F-tests,
one to assess whether xt Granger-causes yt, and one to assess
whether yt Granger-causes xt. It is possible that both vari-
ables are estimated to Granger-cause each other. In contrast,
all other metrics indicate net directionality. We assess their
statistical significance by bootstrapping residuals from the
regression model: We regress zt on its past and future values
zt−p, . . . , zt−1, zt+1, . . . zt+p, and retain the fitted values ẑt
and residuals ε̂t := zt−ẑt. In each bootstrap repetition, causal-
ity metrics are computed on synthetic variables z∗t := ẑt + ε̂s,
where s is selected randomly for each t. Percentile confidence
intervals are then constructed from the bootstrap sampling
distribution. Significance is determined by evaluating if the
confidence interval does not contain 0. We use 500 bootstrap
samples and select the number of lags p as the optimizer of
Schwarz’s Bayesian Information Criterion (BIC) [32].

All experiments are repeated 300 times. In each run, a true
positive (TP) is defined as a significant detection of the true
direction of interaction. The true positive rate (TPR) is the
fraction of true positives among all runs. It is here also referred
to as the sensitivity or power. A false positive (FP) is defined
as a significant detection of the wrong direction of interaction,
or a significant detection of causal interaction in the absence
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Fig. 1. Performance of Granger causality and different variants of time-
reversed Granger causality (TRGC). (a) True positive rate in the noiseless
case as a function of the number of samples T for fixed standard deviation
σA = 0.2 of the AR coefficients, and as a function of σA for fixed T = 2000.
(b) True and false positive rates as a function of the SNR for additive mixed
autocorrelated noise (according to (43)) for T = 2000 and σA = 0.2.

of any causal interaction. The false positive rate (FPR) is the
fraction of false positives among all tested runs.

B. Comparison of TRGC variants under interaction

We assess Granger causality and time-reversed Granger
causality in the presence of unidirectional interaction consid-
ering differing sample sizes, standard deviations of the AR
parameters, noise types and signal-to-noise ratios (SNR).

In a first experiment, we consider the noiseless case, and
vary the sample size from 400 to 4000 for a fixed standard
deviation σA = 0.2 of the AR coefficients. In a second
experiment, we vary the standard deviation σA at a constant
sample size of T = 2000. This experiment thus tests the
impact of the strength of the causal connections relative to
the innovation noise. The standard deviations tested are 0.05,
0.1, 0.2, ..., and 0.6. Finally, for a fixed standard deviation
σA = 0.2, and a fixed sample size T = 2000, we add linearly
mixed, autocorrelated measurement noise ηt ∈ R2 to each
system according to[

xt
yt

]
= (1− γ)

[
x
(l)
t

y
(l)
t

]
+ γ · ηt , (43)

where the subscript (l) denotes the underlying latent variables
and γ defines the signal-to-noise ratio (SNR). Noise ηt is

generated by multiplying two independent AR(5) time-series
with a random matrix B, with det(B) = 1. We consider the
signal-to-noise ratios 0, 0.25, 0.5, 0.75, 0.9 and 1.

The TP and FP rates attained in the three experiments
are depicted in Figure 1. From Figure 1(a), we see that
Diff-TRGC (full), which computes the difference score D̃(net)

x→y
only using the full model according to (31), seems to be
suboptimal for finite samples. While we have demonstrated
the equivalence of (31) to the original definition (15) for
infinite samples in Section II-E, this equivalence does not hold
for the finite samples studied here. Estimating residuals from
the restricted models increased the power of the test for all
investigated parameter settings.

Conj-TRGC has lower power relative to Diff-TRGC. This is
particularly so for high σA, which corresponds to a dominance
of the dynamical and causal aspects of the model comprised
in the AR coefficients relative to the innovation noise. This
result is not unexpected, as time-reversing the signals does
not necessarily reverse the direction of information flow. Note
that, on the other hand, Conj-TRGC is the more conservative
measure compared to Diff-TRGC and could be expected
to produce fewer spurious results in the presence of noise.
However, as we see in Figure 1(b), both variants yield almost
no spurious results in the presence of measurement noise. We
will therefore use Diff-TRGC in the remaining experiments.

C. Impact of latent variables and measurement noise in the
absence of causal interaction

Already Granger pointed out that standard Granger causality
can lead to spurious results if not all relevant variables are
incorporated in the model [8]. In a bivariate system, GC
cannot determine whether the observed variables xt and yt are
both driven by a third common cause. This argument extends
to multivariate systems, if a relevant confounding variable
is not part of the measurement. Furthermore, standard GC
is susceptible to measurement noise [33], [10], [11], [26],
[34], [18] and to instantaneous linear mixing of activity,
which is a major problem for example in the analysis of
electroencephalographic (EEG) recordings [13], [14], [16]. We
demonstrate these effects here in additional simulations, in
all of which no actual interaction occurs. We consider three
different scenarios.

(A) Linear mixing. The observed time series xt and yt are
a linear mixture of two independent signals x(l)t , y(l)t , that is[

xt
yt

]
= M

[
x
(l)
t

y
(l)
t

]
, (44)

where M ∈ R2×2 denotes the mixing matrix. x(l)t and y
(l)
t

were generated as two independent univariate AR(5) pro-
cesses.

(B) Common hidden cause. The observed time series xt
and yt are driven by a common unobserved cause gt. Time
series xt, yt, and gt are generated from a three-dimensional
VAR(5) model with σA = 0.3, in which gt Granger-causes xt
and yt, with no causal interaction between xt and yt as
modeled by the respective AR coefficients being set to zero.
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Fig. 2. False positive rates of Granger causality (standard GC and Net-GC) and difference-based time-reversed Granger causality (Diff-TRGC) as a function
of the SNR for two signals lacking any causal connection. (A) Instantaneous linear mixture of two independent univariate AR(5) processes. (B) Common
unobserved cause. xt and yt. (C) Superposition of two independent univariate AR(5) processes with additive Gaussian noise.

(C) Additive noise. The observed time series xt and yt
are a superposition of two independent univariate AR(5)
processes x

(l)
t , y(l)t and additive noise ηt as in (43), with

γ ∈ {0, 0.25, 0.5, 0.75, 0.9, 1} adjusting the SNR. We consider
three different types of noise. Independent white noise is
generated from a normal distribution with diagonal covariance
matrix, whose entries are drawn from the standard uniform
distribution. Mixed white noise is created by multiplying
independent noise with a random matrix B with det(B) = 1.
Mixed autocorrelated noise is created by multiplying two
independent AR(5) time-series with B.

Figure 2 illustrates the behavior of standard Granger causal-
ity, Net-GC and Diff-TRGC in the various simulation settings.
Values on the y-axis indicate the FP rate at significance level
α = 0.05. As all experiments are characterized by the absence
of any interaction between xt and yt, any significant detection
of information flow either from xt to yt or yt to xt is counted
as a false positive.

It is apparent from Figure 2 that standard GC and Net-GC
lead to spurious detection of causality in all tested scenarios.
Their behavior in the presence of noise (panel C) depends
on the properties of that noise. Mixed noise (left and center
plots of panel C) is generally very problematic, especially if
it is also autocorrelated (left part). As xt and yt are already
independent, adding independent noise (obviously) does not
pose a problem here (right part of panel C).

In contrast to standard GC and Net-GC, time-reversed
Granger causality implemented through Diff-TRGC is insen-

sitive to mixtures of independent sources regardless of their
spatial and temporal correlation structure (see panels A and
C). This behavior thus reflects its known theoretical properties
discussed in Section II-C. The presence of a hidden common
confounder, however, cannot be ruled out by using time-
reversed Granger causality (panel B).

D. Impact of noise in the presence of causal interaction

We further study the behavior of standard GC, Net-GC and
Diff-TRGC in the presence of unidirectional causal interac-
tions superimposed with noise. Four different scenarios are
considered. In all cases, data are generated according to (43)
with x

(l)
t Granger-causing y

(l)
t . In the first three scenarios,

(A-C), interacting signals from bivariate VAR(5) models are
superimposed with noise. As in Section III-C, we use mixed
autocorrelated noise (scenario A), mixed white noise (B), and
independent white noise (C). The same signal to noise ratios
as in Section III-C are used.

In the fourth scenario, (D), we simulate the following
VAR(1) process with long memory:[

x
(l)
t

y
(l)
t

]
=

[
0.95 0

1 0.5

] [
x
(l)
t−1
y
(l)
t−1

]
+ εt εt ∼ N (0, I)

xt = (1− γ) · x(l)t + γ · ηt ηt ∼ N (0, 1)

yt = y
(l)
t ,

(45)

adopted from [26], where N denotes the normal distribution.
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Fig. 3. Performance of Granger causality (standard GC and Net-GC) and difference-based time-reversed Granger causality (Diff-TRGC) for two signals with
unidirectional information flow from xt to yt. Shown are the fractions of true positives (xt → y detected) and false positives (yt → xt detected), when
xt and yt are corrupted by noise (A-D), downsampling (E), and temporal aggregation (F). The underlying latent signals x(l) and y(l) were generated from
VAR(5) processes with random AR coefficients, except for D, in which signals follow a VAR(1) process with long memory according to (45).

True positive and false positive rates as estimated from 300
simulation runs are reported in Figure 3 (A-D). Just as in the
absence of causality (cf. Section III-C), we observe that lin-
early mixed, autocorrelated noise leads to the highest numbers
of false detections for standard GC, while independent white
noise leads to lowest FP rates. Diff-TRGC is characterized
by negligible amounts of false positives in all cases at the
cost of slightly decreased sensitivity as compared to standard
GC in scenarios (A-C). Interestingly, Net-GC behaves very
similar to Diff-TRGC in the presence of non-autocorrelated
noise both in terms of sensitivity and specificity (B-C). In these
settings, spurious causality could already be almost entirely
eliminated by testing for net Granger causality. This result,
however, does not imply that Net-GC cannot be affected by

non-autocorrelated noise in general. A counterexample is the
system with long memory studied in scenario (D). Here, Net-
GC (as well as standard GC) fails, because yt contains delayed
but cleaner information about x(l)t than xt itself and thus
may help to predict future xt. Diff-TRGC, however, robustly
identifies xt as the driver.

Our examples show time-reversed Granger causality almost
completely eliminates spurious causalities arising from any
kind of additive noise. At the same time, it exhibits similar
statistical power as net Granger causality. We also observe that
net Granger causality is typically more robust with respect to
additive noise than standard Granger causality.
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E. Impact of downsampling and temporal aggregation

Spurious Granger causality has also been reported to arise
due to downsampling and temporal aggregation [35], [36],
[37], posing serious problems, for example, in functional
magnetic resonance imaging (fMRI) [38], [39].

We generate data using a VAR(5) model with random
coefficients with σA = 0.3, in which xt Granger-causes yt.
These data are decimated at different factors τ in two ways. In
the downsampling scenario (E), causal measures are applied to
time series of length T = 2000 constructed from the original
time series by skipping τ − 1 time points in between sampled
data points. In the temporal aggregation scenario (F), time
series of length T = 2000 are constructed from the original
time series by averaging over τ data points. No noise was
added.

Figure 3 (E-F) depicts TP and FP rates attained in the two
scenarios as a function of τ . We see that Net-GC and Diff-
TRGC are more robust then standard GC. Both Net-GC and
Diff-TRGC did not result in spurious causality.

IV. DISCUSSION

We established the theoretical guarantee that difference-
based time-reversed Granger causality (Diff-TRGC) indicates
the correct direction of causality in bivariate autoregressive
processes characterized by unambiguous unidirectional infor-
mation flow. Our results complement previous work by [16],
[17] showing that TRGC in general correctly rejects causal
interpretations for mixtures of non-interacting sources (thus,
in the absence of any causality). While further compelling
intuitive ideas for robust causality measures have been pre-
sented [11], [23], [18], our result provides, to the best of our
knowledge, the first proof of the correctness of one of such
techniques (Diff-TRGC) for a relatively general class of time-
series models.

Our theory is accompanied by simulations, in which we con-
firmed that time-reversed Granger causality robustly detects
the presence of true causal interactions in various realistic sce-
narios including mixed noise and downsampling. We showed
that Diff-TRGC is able to infer correct directionality with
similar power as net Granger causality, while at the same time
producing fewer (in most cases, negligible amounts of) false
alarms than Net-GC and standard GC. We therefore suggest
to use Diff-TRGC whenever the data under study are likely to
be corrupted by noise.

A. Correlated residuals

To define an unambiguous uni-directional information flow,
our theory assumes uncorrelated residuals, as is common
in the literature. Correlated residuals indicate instantaneous
effects that the variables exert on each other. While we would
not expect correlated residuals if the VAR model accurately
describes the data generating process, such effects are likely
to occur in practice (e.g., if the sampling rate of the acquired
data falls below the time scale of the causal interactions).
They pose severe problems for causal estimation, because they
can be explained by several possible data generating models,

the coefficients of which cannot be uniquely identified using
second order information only.

Data generating models. Instantaneous interactions can be
modeled implicitly through correlated residuals in classical
VAR processes, or explicitly, for example using so-called
‘structural’ VAR (SVAR) processes [1], [40], [41]. By aug-
menting the VAR model with an instantaneous mixing matrix
Γ0, the SVAR model

zt =

p∑
h=0

Γhzt−h + ε̄t , (46)

achieves that the residuals ε̄t are uncorrelated. Here, the
diagonal of Γ0 is assumed to be zero.

Correlated residuals emerge naturally in electrophysiolog-
ical neuroimaging data, where the signals observable at the
sensors (e.g., EEG electrodes) are a linear mixture of the latent
activity of possibly interacting neuronal populations within the
brain. A model for such mixtures of potentially interacting
sources is given by

zt = Mz
(l)
t , z

(l)
t =

p∑
h=1

Bhz
(l)
t−h + έt , (47)

where zt ∈ Rd denotes the observed data, z(l)t ∈ Rd denotes
the activity of underlying latent variables (e.g., brain sources)
following a VAR(p) process with uncorrelated residuals έt, and
M ∈ Rd×d is an unknown mixing matrix (representing, e.g.,
the volume conduction effect of the human head). We call (47)
the ‘mixture of interacting sources’ model.

Note that VAR models with correlated residuals, SVAR
models, and mixture of interacting sources models can be used
interchangeably to represent the same statistical process. For
example, an interacting sources model (47) can be equivalently
written as a VAR(p) process (1) with coefficients

Ah = MBhM
−1 , h ∈ {1, . . . , p} (48)

and correlated residuals εt = Mε̃t. Likewise, an SVAR(p)
process (46) can be converted into a VAR(p) process with
correlated residuals εt = (I − Γ0)−1ε̄t and coefficients

Ah = (I − Γ0)−1Γh , h ∈ {1, . . . , p} . (49)

The reverse transformations from VAR models to SVAR or
interacting source models, as well as the transformations
between SVAR and interacting source models, are, however,
not unique (see Model identifiability).

Ambiguous causal interpretations can emerge in cases where
one of the three models indicates time-delayed causal inter-
actions through non-zero off-diagonal coefficients in the Ah,
Bh or Γh, while another one does not. This ambiguity can in
general only be resolved if the model generating the data is
known a-priori. In case of EEG data, for example, (47) reflects
the true data-generating process. Therefore, only the param-
eters Bh of the source VAR process (47) permit meaningful
causal interpretation (wrt. to the source variables z

(l)
t ), while,

for example, the VAR parameters in (48) are distorted by the
mixing matrix M .
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Model identifiability. A further complication in the presence
of instantaneous effects in the data is that for mixture of inter-
acting sources as well as SVAR models, the parameters are not
uniquely defined from second order information only. This can
be best seen for the latter model (47). Identifying the model
parameters requires the estimation of a full factorization of the
data into a mixing matrix M and source time series z

(l)
t . This

means that the estimation problem falls into the blind source
separation (BSS) setting, in which Gaussianity of the factors
is not sufficient for their identification. The classical approach
to BSS, independent component analysis (ICA) assumes sta-
tistical independence and non-Gaussianity of the sources z

(l)
t

to ensure identifiability. This concept can be adopted in the
context of source AR models by enforcing independence/non-
Gaussianity of the residuals of the source AR process in (47)
[13], [15], [42]. In a similar way, independence of residuals
has been used in the identification of SVAR models [40], [43].

Example. Consider the following VAR(1) process with cor-
related residuals:

[
xt
yt

]
=

[
0.7 0
−0.12 0.9

] [
xt−1

yt−1

]
+ εt, 〈εtε>t 〉 =

[
1 0.6

0.6 1

]
.

This process can also be represented by the SVAR(1) model

[
xt
yt

]
=

[
0 0

0.6 0

] [
xt
yt

]
+

[
0.7 0
−0.54 0.9

] [
xt−1

yt−1

]
+ ε̄t

as well as the mixtures of interacting sources model

[
xt
yt

]
=

[
1 0

0.6 0.8

] [
x
(l)
t

y
(l)
t

]
,

[
x
(l)
t

y
(l)
t

]
=

[
0.7 0
0 0.9

][
x
(l)
t−1

y
(l)
t−1

]
+ έt,

with uncorrelated residuals 〈ε̄tε̄>t 〉 =

[
1 0
0 0.64

]
, 〈έtέ>t 〉 = I.

Note that both the VAR(1) and the SVAR(1) representation
indicate unidirectional causal interaction between the observed
variables xt and yt, whereas the mixture model suggests
that the observed data can also arise from a mixture of two
independent latent sources x

(l)
t and y

(l)
t . However, another

equivalent mixture model

[
xt
yt

]
=

[
−
√

0.2
√

0.8√
0.2
√

0.8

] [
x
(l)
t

y
(l)
t

]
,

[
x
(l)
t

y
(l)
t

]
=

[
0.86 0.08
0.08 0.74

] [
x
(l)
t−1

y
(l)
t−1

]
+ ˜̃εt

with 〈˜̃εt˜̃ε>t 〉 = I suggests bidirectional informational flow
on the source level. Similarly, the following SVAR(1) model
indicates bidirectional flow

[
xt
yt

]
=

[
0 0.6
0 0

] [
xt
yt

]
+

[
0.772 −0.54
−0.12 0.9

] [
xt−1

yt−1

]
+ ¯̄εt ,

〈¯̄εt¯̄ε>t 〉 =

[
0.64 0

0 1

]
.

B. Future work

Further effort is required to investigate the behavior of
TRGC in the presence of bidirectional information flow. Also,
our theoretical analysis only covers the bivariate framework.
Both Granger causality and TRGC can result in spurious
causality when relevant variables are not included (cf. Fig. 2,
panel B). Therefore, an extension of the analysis of time-
reversal to general multivariate signals would be very interest-
ing. Furthermore, it would be desirable to obtain theoretical
guarantees for the performance of TRGC in the presence of
true interaction superimposed by noise in the form of bounds
on the false positive rate. A major difficulty here is to obtain
the residual covariance of the superposition of a VAR process
and additive noise. Analytically computing Granger causality
in the presence of noise is mathematically involved even for
special cases [44].

Finally, [16] showed that for any causality measure based
on cross-covariances, differences of the scores obtained on
the original and time-reversal signals correctly indicate the
absence of causality on mixtures of independent sources.
While we focused here on Granger causality, it remains to
be shown whether validity of time-reversal in the presence of
causal interaction can also be demonstrated for other causality
measures.

APPENDIX A
PROOFS FOR VAR(p)

A. The VAR(p) process and its cross-covariance function
Consider a stable bivariate VAR(p) process, zt ∈ R2, as defined

in (1),

zt = A1zt−1 +A2zt−2 + . . .+Apzt−p + εt ,

where εt ∈ R2 is a 2-dimensional white noise process (i.e. 〈εt〉 = 0,
〈εtε>t−h〉 = 0 for h ∈ Z \ {0}, and 〈εtz>t−h〉 = 0 for h ∈ N \ {0} )
with residual covariance matrix Σ = 〈εtε>t 〉.

Many results on VAR(1) processes can be extended to higher order
VAR(p) processes by considering their VAR(1) form. Given the 2-
dimensional VAR(p) process zt, the corresponding 2p-dimensional
VAR(1) representation is defined as

Zt = AZt−1 + Et , (50)

with

Zt =


zt

zt−1

...
zt−p+1

 ,A =


A1 A2 · · · Ap−1 Ap

I 0 · · · 0 0
0 I · · · 0 0

. . .
...

0 0 · · · I 0

 , Et =


εt
0
...
0

 ,

and residual covariance matrix

ΣE = 〈EtE
>
t 〉 =


Σ 0 · · · 0
0 0 · · · 0
...

. . .
...

0 0 · · · 0

 . (51)

The cross-covariances of Zt are linked to the cross-covariances of zt
through

CZ(h) =


Cz(h) Cz(h+1) · · · Cz(h+p−1)

Cz(h−1) Cz(h) · · · Cz(h+p−2)
...

...
. . .

...
Cz(h−p+1) Cz(h−p+2) · · · Cz(h)

 (52)
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for all h ∈ Z. The Yule-Walker equations can then be expressed as

CZ(0) = A · CZ(0) ·A> + ΣE and (53)
CZ(h) = A · CZ(h− 1) ∀h ∈ N \ {0} . (54)

Given A1, . . . , Ap, and Σ, the cross-covariances
are uniquely determined: Equation (53) implies that
vec(CZ(0)) = (I −A⊗A)−1 vec ΣE , while CZ(h) for h > 1
can be recursively computed using (54). Conversely, A1, . . . , Ap

and Σ are uniquely determined by the cross-covariances through

[A1, A2, · · · , Ap] = [Cz(1), Cz(2), · · · , Cz(p)] · CZ(0)−1 (55)

and

Σ = Cz(0)− [A1, A2, · · · , Ap] · CZ(0) · [A1, A2, . . . , Ap]> . (56)

B. The time-reversed VAR(p) process
The results of Bartlett on the analytical description of time-

reversed VAR(1) processes have been generalized to VAR(p) pro-
cesses by Andel in 1972 [29]. Given a 2-dimensional VAR(p) process
zt as in (1), Andel considers a second VAR(p) process

zt = Ã1zt−1 + Ã2zt−2 + . . .+ Ãpzt−p + et , (57)

where et is white noise with covariance matrix Σ̃ = 〈ete>t 〉.
Now, denote with Q := CZ(0)−1 the inverse of the covariance of

Zt, with block matrix notation

Q =: (Qlk)pl,k=1 =


Q1,1 Q1,2 · · · Q1,p

Q2,1 Q2,2 · · · Q2,p

...
...

. . .
...

Qp,1 Qp,p−1 · · · Qp,p

 ∈ R2p×2p ,

where Qlk are 2× 2 blocks.
Andel proves that Cz(h) = Cz(−h) for all h ∈ Z (that is, zt has

the same cross-covariance matrices as zt reversed in time), if and
only if Ã1, . . . , Ãp and Σ̃ are defined as follows: for 1 ≤ j ≤ p,

Ãj = −(Qpp +A>p Σ−1Ap)−1(Qp,p−j +A>p Σ−1Ap−j) (58)

and

Σ̃ = (Qpp +A>p Σ−1Ap)−1 , (59)

where Qp,0 := 0 and A0 := −I . Andel further proves that Ãp 6= 0,
if and only if Ap 6= 0 , and that, if zt is stable, so is zt.

Note that, while we only treat bivariate VAR processes in this
paper, the analytic description reviewed above holds for arbitrary
dimensionality.

C. Proof that det(Σ) = det(Σ̃) for general p – this completes
the proof of Theorem 1

Given Andel’s result, we can complete the proof for Theorem 1.
The only missing part of the proof (cf. Section II-G) is the proof of
(37), det(Σ) = det(Σ̃), for arbritrary p ∈ N \ {0}.

Preliminaries. We will make use of the following well-known
equalities. Let K be a positive definite matrix with L = K−1, and
let

K =

[
K1,1 K1,2

K2,1 K2,2

]
, L =

[
L1,1 L1,2

L2,1 L2,2

]
be the block matrix notations of L and K, where K1,1 is a square
matrix of the same size as L1,1. Then the standard Schur complement
formula (e.g. [45], Theorem 2.7) is given as

L2,2 =
[
K2,2 −K2,1K

−1
1,1K1,2

]−1
. (60)

Let T and W be invertible matrices, then for all matrices U and V
of fitting size

det(T + UWV ) = det(W−1 + V T−1U) det(T ) det(W ) . (61)

This relation is known as the generalized matrix determinant lemma
and a straightforward extension of Sylvester’s determinant theo-
rem (41).

Let K be a matrix with block notation as above, and K1,1 be
invertible, then, (see e.g. [45], Theorem 2.1)

det(K) = det(K1,1) det(K2,2 −K2,1K
−1
1,1K1,2) . (62)

Let us also introduce the following notation for the blocks of
CZ(0):

CZ(0) =

[
CZ\p R>

R Cz(0)

]
=

[
Cz(0) R̄
R̄> CZ\p

]
,

where we define

R :=
[
Cz(p− 1)> Cz(p− 2)> · · · Cz(1)>

]
∈ R2×2(p−1)

R̄ :=
[
Cz(1) . . . Cz(p− 1)

]
∈ R2×2(p−1) ,

and

CZ\p :=

 Cz(0) · · · Cz(p− 2)
...

. . .
...

Cz(2− p) · · · Cz(0)

 ∈ R2(p−1)×2(p−1) .

Step 1: Analytic expression for Cz(0)− R̄C−1

Z\pR̄
>.

We first prove that

Cz(0)− R̄C−1

Z\pR̄
> = Σ +ApQ

−1
pp A

>
p , (63)

that is, the residual variance when regressing zt on
zt−1, . . . , zt−(p−1) given by Cz(0) − R̄C−1

Z\pR̄
> can be expressed

as the sum of ApQ
−1
pp Ap and the residual variance when regressing

zt on zt−1, . . . , zt−(p−1), zt−p, given by Σ.
Recall the Yule-Walker equation (53)

CZ(0) = A · CZ(0) ·A> + ΣE .

and let us rewrite

ΣE =

[
Σ 0
0 0

]
and A =

[
A\p Ap

I 0

]
,

where we define

A\p :=
[
A1 . . . Ap−1

]
∈ R2×2(p−1) .

The Yule-Walker equation can then be written in blocks as[
Cz(0) R̄
R̄> CZ\p

]
=

[
A\p Ap

I 0

] [
CZ\p R>

R Cz(0)

] [
A>\p I

A>p 0

]
+

[
Σ 0
0 0

]
.

We see from the top line that

R̄ = A\pCZ\p +ApR

⇔ ApR = R̄−A\pCZ\p , (64)

and that

Cz(0)

= A\pCZ\pA
>
\p +A\pR

>A>p +ApRA
>
\p +ApCz(0)A>p +Σ

(64)
= −A\pCZ\pA

>
\p +A\pR̄

>+R̄A>\p +ApCz(0)A>p +Σ (65)

from which we conclude that

Σ+ApQ
−1
pp A

>
p

(60)
= Σ+Ap

[
Cz(0)−RC−1

Z\pR
>
]
A>p

= Σ+ApCz(0)A>p −ApRC
−1

Z\pR
>A>p

(64)
= Σ+ApCz(0)A>p −

[
R̄−A\pCZ\p

]
C−1

Z\p

[
R̄−A\pCZ\p

]>
= Σ+ApCz(0)A>p −R̄C−1

Z\pR̄
>+A\pR̄

>+R̄A>\p−A\pCZ\pA
>
\p

(65)
= Cz(0)−R̄C−1

Z\pR̄
> .
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Step 2. Derive det Σ = det Σ̃ from Andel and (63).
From Andel (59) we know that Σ̃ = (Qpp +A>p Σ−1Ap)−1. As

Q is positive definite, Qpp is invertible such that

1

det(Σ̃)
= det(Qpp +A>p Σ−1Ap)

(61)
= det(Σ+ApQ

−1
pp A

>
p )

det(Qpp)

det(Σ)
.

It therefore suffices to show that

det(Σ+ApQ
−1
pp A

>
p ) = det(Q−1

pp ) . (66)

Drawing on Step 1, Equation (66) can be proven as follows:

det(Σ+ApQ
−1
pp A

>
p ) = det(Q−1

pp )
(63),(60)⇔ det(Cz(0)−R̄C−1

Z\pR̄
>) = det(Cz(0)−RC−1

Z\pR
>)

(62)⇔ det

([
CZ\p R̄>

R̄ Cz(0)

])
det(C−1

Z\p) = det(CZ(0)) det(C−1

Z\p)

⇔ det

([
CZ\p R̄>

R̄ Cz(0)

])
= det(CZ(0)) .

Switching rows or columns of a matrix leaves its determinant
invariant up to a factor of (−1)i+j , where i and j are corresponding
row or column indices. In the following, we perform block-wise
rotation of a matrix block to the bottom, and to right, respectively.
This is a concatenation of several row and column switches giving
us a factor (−1)r for a given r. Note that r is the same for both
operations due to their symmetric behavior. Therefore we have

det

([
CZ\p R̄>

R̄ Cz(0)

])
= (−1)r det

([
R̄ Cz(0)

CZ\p R̄>

])
= (−1)2r det

([
Cz(0) R̄
R̄> CZ\p

])
= det

([
Cz(0) R̄
R̄> CZ\p

])
= det(CZ(0)) ,

which completes the proof.

D. Proof of Theorem 2
Proof ”⇐”
If A1, . . . , Ap are diagonal, then under assumption (A2) of uncor-

related residuals, xt and yt are independent. It follows immediately
from the argumentation in Section II-C that D̃(net)

x→y = 0.
Proof ”⇒”
Let D̃(net)

x→y = 0. From (32) and (33) in Theorem 1 we necessarily
have Σ̃xx = Σxx and Σ̃yy = Σyy .

From the equality of determinants det(Σ) = det(Σ̃) in (37) and
assumption (A2) of uncorrelated residuals, Σxy = 0, it follows:

Σ = Σ̃ = diag .

Now, the induction proof of the following statement completes the
whole proof.
Proof via induction:
Statement S(p): In any stable bivariate VAR(p) process (1) with the
time-reversed representation (30) fulfilling (A1), (A2) and (A3), and

(AS) : Σ = Σ̃ = diag ,

the A1, . . . , Ap are diagonal.
Preliminaries.

First, note that (AS) implies that the time-reversed coefficient
matrices Ã1, Ã2, . . . , Ãp are lower triangular, since

Σ̃xx
(AS)
= Σxx

(A1)
= Σx

(10)
= Σ̃x . (67)

From Andel (58) we know that

Ãp︸︷︷︸
lower

Σ︸︷︷︸
diag

= Σ̃︸︷︷︸
diag

A>p︸︷︷︸
upper

.

With (AS),
Ap = Ãp = diag (68)

immediately follows.
Basis: Show that the statement holds for p = 1.

Follows directly from (68).
Inductive step: Show that if S(p-1) then S(p).

From Andel (59):

Σ
(AS)
= Σ̃

(59)
= (Qpp +A>p Σ−1Ap)−1 = (Qpp +A2

pΣ−1)−1

⇒ Σ−1 = Qpp +A2
pΣ−1

⇒ Qpp = (I−A2
p)Σ−1 = diag. (69)

Denote with Z̃t the VAR(1) representation of the time-reversed
process z̃t, and with Q̃ := CZ̃(0)−1 its inverse covariance matrix
with block notation Q̃ =: (Q̃lk)pl,k=1. Then, due to symmetry,

Q̃pp = (I−Ã2
p)Σ̃−1 (68),(AS)

= (I−A2
p)Σ−1 = Qpp. (70)

Let us now define the VAR(p−1) process z′t by

z′t =

p−1∑
i=1

Biz
′
t−i +ξt, 〈ξtξ>t 〉 = Σ′, (71)

where

[B1, . . . , Bp−1] := [Cz(1), . . . , Cz(p−1)] ·CZ\p(0)−1

= R̄ ·CZ\p(0)−1

Σ′ := Cz(0)−R̄CZ\p(0)−1R̄>

arise from solving the Yule-Walker equations with respect to
Cz(0), Cz(1), . . . , Cz(p−1). They are the least squares solution
when regressing zt onto zt−1, . . . , zt−p+1.

Denote with B̃1, . . . , B̃p−1 and Σ̃′ the time-reversed coefficients
and residual covariance matrix of z̃′t := z′−t. By definition of time
reversal, the coefficients of z̃′t are the solution of the Yule-Walker
equations with respect to Cz(0), Cz(−1), . . . , Cz(1−p). They are
the least squares solution when regressing z̃t onto z̃t−1, . . . , z̃t−p+1.

We now show that all assumptions in S(p−1) hold for z′t.
[A0] Stability of z′t.

Since zt is stable, performing an insufficient lag-order fit
(which is the case for z′t) preserves stability (see [46]).

[A1] Lower triangularity of B1, . . . , Bp−1.
Equations (8) and (10) in [47] state the following relations:[

A1, . . . , Ap−1

]
=
[
B1, . . . , Bp−1

]
−Ap

[
B̃p−1, . . . , B̃1

]
(72)[

Ã1, . . . , Ãp−1

]
=
[
B̃1, . . . , B̃p−1

]
− Ãp︸︷︷︸

Ap

[
Bp−1, . . . , B1

]

Since all Ai and Ãi are lower triangular ((A1), (67)), and
Ap is diagonal, we deduce:[

B̃p−k

]
12

= [Ap]−1
11 [Bk]12[

B̃p−k

]
12

= [Ap]11 [Bk]12

, ∀k ∈ {1, . . . , p−1} .

This may only be fulfilled when either [Ap]11 = 1 or all Bk

(and B̃k) are lower triangular. Recalling that Ap is diagonal
and Qpp = (I−A2

p)Σ−1 is invertible, necessarily we have
[Ap]11 6= 1. Therefore, B1, . . . , Bp−1 are lower triangular.

[A2] Diagonality of Σ′

[AS] and Σ′ = Σ̃′.
From [47], page 6, we have that

Q−1
pp = Σ̃′ and Q̃−1

pp = Σ′.

From (69) and (70),

Σ′ = Σ̃′ = diag
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immediately follows.
[A3] Invertibility of Cz′(0).

By construction z′t is the solution of the Yule-
Walker equations with respect to the autocovariances
Cz(0), . . . , Cz(p−1). Thus, Cz′(0) = Cz(0), which is
invertible.

Therefore, we can apply the induction claim S(p−1) for z′t
saying that B1, . . . , Bp−1 are diagonal. With the same argument
B̃1, . . . , B̃p−1 are also diagonal.

Using the factorization (72)

Ak = Bk︸︷︷︸
diag

− Ap︸︷︷︸
diag

B̃p−k︸ ︷︷ ︸
diag

, k ∈ {1, . . . , p−1}

we have that A1, . . . , Ap are diagonal, which completes the proof.
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