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Abstract—As a robust nonlinear similarity measure in kernel space, correntropy has received 

increasing attention in domains of machine learning and signal processing. In particular, the 

maximum correntropy criterion (MCC) has recently been successfully applied in robust regression 

and filtering. The default kernel function in correntropy is the Gaussian kernel, which is, of course,  

not always the best choice. In this work, we propose a generalized correntropy that adopts the 

generalized Gaussian density (GGD) function as the kernel (not necessarily a Mercer kernel), and 

present some important properties. We further propose the generalized maximum correntropy  

criterion (GMCC), and apply it to adaptive filtering. An adaptive algorithm, called the GMCC 

algorithm, is derived, and the mean square convergence performance is studied. We show that the 

proposed algorithm is very stable and can achieve zero probability of divergence (POD). Simulation 

results confirm the theoretical expectations and demonstrate the desirable performance of the new 

algorithm.   
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 I. INTRODUCTION 

      Selecting a proper cost function (usually a statistical measure of the error signals) is a key issue in 

adaptive filtering theory and applications [1-3]. The mean square error (MSE) is widely used as a cost 

function since it has attractive features, such as smoothness, convexity, mathematical tractability, low 

computational burden and optimality under Gaussian assumption. The well-known least mean square (LMS) 

algorithm and its variants, such as normalized LMS (NLMS) and variable step-size LMS (VSSLMS), were 

developed under this criterion [1, 2]. The MSE is desirable if the signals are Gaussian distributed. In 
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non-Gaussian situations, however, its performance may degrade considerably and in these cases, a 

non-quadratic cost will be, in general, better than MSE [3]. 

     Generally speaking, there are two types of non-Gaussian distributions: light-tailed (e.g. uniform, binary, 

etc.) and heavy-tailed (e.g. Laplace,  -stable, etc.) distributions. When the desired signals are disturbed by 

light-tailed non-Gaussian noises, a higher-order statistical (HOS) measure of the error is usually more 

desirable. A typical example is the least mean fourth (LMF) family algorithms, which use the mean even 

power of the error as the cost function [4]. Compared with the LMS algorithm, the LMF may achieve a 

faster convergence speed and a lower steady-state mean square deviation (MSD) especially in light-tailed 

noises. One drawback of the LMF algorithm however is that the stability is not guaranteed, which depends 

on the input and noise powers, and the initial values of the weights. A more general class of algorithms are 

the least mean p -power (LMP) family algorithms, which adopt the p -order absolute moment of the error 

as the adaptation cost [5]. 

       When the desired signals are disturbed by heavy-tailed impulsive noises (which may cause large 

outliers), a lower-order statistical (LOS) measure of the error is usually more robust (i.e. less sensitive to 

impulsive interferences). For example, the sign algorithm (SA), which employs the mean absolute value of 

the error as the cost function, is rather robust to the presence of large noises [6-8]. The convergence speed 

and steady-state performance of the SA algorithm is however not so good in general. In the literature many 

other robust cost functions have been proposed to develop robust adaptive filtering algorithms. Typical 

examples include mixed-norm [9, 10], M-estimation cost [11,12], and error entropy [13-18]. Particularly in 

recent years, the maximum correntropy criterion (MCC) has been successfully used in robust adaptive 

filtering, wherein the filter weights are adapted such that the correntropy between the desired signal and 

filter output is maximized [19-24]. The correntropy is a nonlinear and local similarity measure directly 

related to the probability of how similar two random variables are in a neighborhood of the joint space 

controlled by the kernel bandwidth, which also has its root in Renyi's entropy (hence the name 
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"correntropy") [13, 19]. Since correntropy is insensitive to outliers especially with a small kernel bandwidth, 

it is naturally a robust adaptation cost in presence of heavy-tailed impulsive noises.   

      The kernel function in correntropy is usually a Gaussian kernel, which is desirable due to its smoothness 

and strict positive-definiteness. With a Gaussian kernel, the correntropy induces a nonlinear metric called 

the correntropy induced metric (CIM) which behaves like an 2L  norm when data are relatively small 

compared with the kernel bandwidth, an 1L  norm as data get larger, and an 0L  norm when data are far 

away from the origin [19, 25]. However, Gaussian kernel is, of course, not always the best choice. In the 

present work, we propose to use the generalized Gaussian density (GGD) [26, 27] function (which is not 

necessarily a Mercer kernel) as a kernel function in correntropy, and the new correntropy is called the 

generalized correntropy. Some important properties of the generalized correntropy are presented. In 

particular, we show that the order-  generalized correntropy induced metric (GCIM) or generalized 

correntropic loss (GC-loss) function behaves like different norms (from L to 0L ) of the data in different 

regions.  

      Similar to the original correntropy with Gaussian kernel, the generalized correntropy can also be used as 

an optimization cost in estimation-related problems. It can be proven that in essence the generalized 

maximum correntropy criterion (GMCC) based estimation is a smoothed maximum a posteriori probability 

(MAP) estimation, including the MAP and the least mean p -power (LMP) estimation as the extreme cases. 

In this work, we focus mainly on applying the GMCC criterion to adaptive filtering. We show that the 

optimal solution of GMCC filtering is in form similar to the well-known Wiener solution, except that the 

autocorrelation matrix and cross-correlation vector are weighted by an error nonlinearity. If the signals 

involved are zero-mean Gaussian,  the optimal solution will equal to the Wiener solution. Under the GMCC 

criterion, a stochastic gradient based adaptive filtering algorithm, called the GMCC algorithm, is developed. 

The mean-square convergence performance of the GMCC algorithm is analyzed. In particular, we present a 

simple example to show that the GMCC will have a zero probability of divergence (POD).  A theoretical 
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value of the steady-state excess mean square error (EMSE) of the GMCC algorithm is also derived. 

Simulation results confirm the theoretical expectations and the desirable performance of the GMCC.  

       The rest of the paper is organized as follows. In section II, we define the generalized correntropy, and 

present some important properties. In section III, we propose the generalized maximum correntropy 

criterion (GMCC). In section IV, we apply the GMCC criterion to adaptive filtering and develop the GMCC 

algorithm. In section V, we analyze the mean square convergence of the GMCC algorithm. In section VI, 

we present Monte Carlo simulation results to verify the theoretical results and demonstrate the performance 

of the new algorithm. Finally in section VII, we give the conclusion. 

II. GENERALIZED CORRENTROPY 

A. Definition 

Given two random variables X andY , the correntropy is defined by [19, 28] 

V( , ) [ ( , )] ( , ) ( , )XYX Y X Y x y dF x y   E                                          (1) 

where E denotes the expectation operator, ( , )   is a shift-invariant Mercer kernel, and ( , )XYF x y denotes 

the joint distribution function of ( , )X Y . Without mentioned otherwise, the kernel function of correntropy is 

the Gaussian kernel:  

 
2

2

2

1 1
( ) G ( ) exp exp

22 2

e
x, y e e 

 

 
     

 
                           (2) 

where e x y  , 0  is the kernel bandwidth, and
21 2    is the kernel parameter. The correntropy 

V( , )X Y can also be expressed as  

 ( ) ( )V( , ) ( ) ( )T

X YX Y X Y trace      E R                                          (3) 
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where
( ) ( ) ( ) ( )T

X Y X Y      R E , and (.) denotes a nonlinear mapping induced by  , which 

transforms its argument into a high-dimensional (infinite for Gaussian kernels) Hilbert space F , satisfying 

( ) ( ) ( , )TX Y X Y    [19]. The correntropy is therefore essentially a second-order statistic of the 

mapped feature space data.  

      There is a well-known generalization of Gaussian density function called the generalized Gaussian 

density (GGD) function, which with zero-mean is given by [26, 27] 

  , ,G ( ) exp exp
2 (1 )

e
e e





   


 

  

 
    

 
 

                                (4) 

where (.) is the gamma function, 0  is the shape parameter, 0  is the scale (bandwidth) parameter, 

1   is the kernel parameter, and  , 2 (1 )      is the normalization constant. This 

parametric family of symmetric distributions include the Gaussian ( 2  ) and Laplace ( 1  ) 

distributions as the special cases. Further, as  , the GGD density converges point-wise to a uniform 

density on ( , )  .  

     In this work, we use the GGD density function as the kernel function of correntropy, and define 

, , ,V ( , ) [G ( )] [G ( )]X YX Y E X Y       E E                                               (5) 

where X YE X Y   .To make a distinction between (5) and the correntropy with Gaussian kernel, we call 

it the generalized correntropy. Clearly, the correntropy with Gaussian kernel corresponds to the generalized 

correntropy with 2  . 

     Remark 1: It is worth noting that in the generalized correntropy, the kernel function does not necessarily 

satisfy the Mercer's condition. Actually, the kernel function ,( ) G ( )x, y x y    is positive definite if and 

only if 0 2   (see [29] page 434).  
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     In practice, the joint distribution of X andY is usually unknown, and only a finite number of samples 

 
1

( , )
N

i i i
x y


 are available. In this case, the sample estimator of the generalized correntropy is 

, ,

1

1
V̂ ( , ) G ( )

N

i i

i

X Y x y
N

   


                                                      (6)  

B. Properties 

     Below we present several basic properties of the generalized correntropy. Some of them are simple 

extensions of the properties presented in [19], and will not be proved here. 

Property 1:  ,V ( , )X Y  is symmetric, that is , ,V ( , ) V ( , )X Y Y X    . 

Property 2:  ,V ( , )X Y  is positive and bounded: , , ,0 V ( , ) G (0)X Y        , and it reaches its 

maximum if and only if X Y . 

Property 3: The generalized correntropy involves higher-order absolute moments of the error variable 

X YE X Y   : , ,

0

( )
V ( , )

!

n
n

n

X Y X Y
n



   








   
  E . 

     Remark 2: When the kernel parameter is small enough, we have  , ,V ( , ) 1X Y X Y


        
 

E . 

In this case, the generalized correntropy is, approximately, an affine linear function of the  -order absolute 

moment of the error X YE  .   

Property 4: Assume that the samples  
1

( , )
N

i i i
x y


 are drawn from the joint PDF ( , )XYp x y . Let ˆ ( )Ep e be the 

Parzen estimate of the error PDF from samples 
1

N

i i i i
e x y


   , with the GGD density function ,G  as the 

Parzen window kernel. Then ,V̂ ( , )X Y  is the value of ˆ ( )Ep e evaluated at the point 0e  , that is 

,
ˆ ˆV ( , ) (0)EX Y p                                                               (7) 
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where
,

1

1
ˆ ( ) G ( )

N

E i

i

p e e e
N

 


  . 

Property 5: For the case 0 2  , the generalized correntropy is a second-order statistic of the mapped 

feature space data. 

 Proof: When 0 2  , the kernel function ,( ) G ( )x, y x y    is a Mercer kernel, and hence we have 

, , ,V ( , ) ( ) ( )TX Y X Y         E , where , (.)  is a nonlinear mapping induced by ,G  . 

     In data analysis such as regression and classification, a measure called the correntropic loss (C-loss) is 

usually used instead of using the correntropy [30, 31]. A generalized C-loss (GC-loss) function between 

X andY can be defined as  

, ,( , ) G (0) V ( , )GC lossJ X Y X Y                                                           (8) 

The GC-loss satisfies ( , ) 0GC lossJ X Y  , and when 0 2  , it can be expressed as 

2

, ,

1
( , ) ( ) ( )

2
GC lossJ X Y X Y    

  
  

E                                               (9) 

which is a mean-square loss in the feature space F  induced by Mercer kernel ,( ) G ( )x, y x y    . 

Clearly, minimizing the GC-loss will be equivalent to maximizing the generalized correntropy.  

       Let 
1

( , )
N

i i i
x y


be the samples drawn from XYp . Then an estimator of the GC-loss is 

, ,

, ,

1

, ,

1

ˆ ˆ( , ) G (0) V ( , )

1
                    G ( )

1
                    G ( )

GC loss

N

i i

i

N

i

i

J X Y X Y

x y
N

e
N

   

   

   











 

  

 





                                             (10) 
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Property 6: Let  1, ,
T

NX x x ,  1, ,
T

NY y y . Then the function   ˆ, ( , )GC lossGCIM X Y J X Y   , 

called the generalized correntropy induced metric (GCIM), defines a metric in the N -dimensional sample 

vector space when 0 2  . 

Proof: See Appendix A.  

    For the case in which  1 2,
T

X x x ,  0,0
T

Y  , 4  , and 1  , the surface of the  ,GCIM X Y with 

respect to 1x and 2x  is shown in Fig. 1. As one can see, the GCIM behaves like different norms 

(from L to 0L ) of the data in different regions. This observation, which is similar to that obtained with 

Gaussian kernel [19], is confirmed by Properties 7 and 8.  
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Fig.1 Surface of the GCIM in 3D space ( 4  , 1   ). 

Property 7: As 0    (or 0, 1, ,ix i N  ), the function  
1/

,

,

ˆ ( ,0)GC loss

N
L X J X



 

 


 
   
 

will 

approach the l -norm of X , that is    
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1/

,

1

N

i

i

L X X x




 




 
   

 
 , as 0                                            (11) 

Proof: See Appendix B.  

Property 8: Assume that ix  , : 0ii x  , where is a small positive number. As    (or 0   ), 

minimizing the function  ,L X   will be, approximately, equivalent to minimizing the
0l -norm of X , that is   

 ,
0

min min
X X

L X X 
 

, as                                            (12) 

where denotes a feasible set of X .  

Proof: Similar to the one presented in [32]. See Appendix C for the detailed derivation. 

     Below we present some optimization properties of the GC-loss. Similar results for the C-loss can be 

found in [31]. 

Property 9: Let  1, ,
T

Ne e e . Then the following statements hold: 

1) if 0 1  , then the GC-loss ˆ
GC lossJ  is concave at any e with 0ie   ( 1, ,i N ) ; 

2) if 1  , then the GC-loss ˆ
GC lossJ  is convex at any e with  

1
0 ( 1)ie


      ( 1, ,i N ); 

3) if 0   , then for any e with 0ie   ( 1, ,i N ), the GC-loss ˆ
GC lossJ  is concave at e  for 0 1  , 

and convex at e  for 1  . 

Proof: See Appendix D. 

Property 10: For 1  , the GC-loss ˆ
GC lossJ  is a differentiable invex function of  1, ,

T

Ne e e  

with ie M  ( 1, ,i N ), where M is an arbitrary positive number.  

Proof: See Appendix E. 
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III. GENERALIZED MAXIMUM CORRENTROPY CRITERION 

Similar to the correntropy, the generalized correntropy can also be used as an optimization cost in 

estimation-related problems. Given two random variables: X  , an unknown real-valued parameter to be 

estimated, 
mY  , a vector of observations (measurements), an estimator of X can be defined as a 

function ofY : ˆ ( )X g Y , where g is solved by optimizing a certain cost function. Under the generalized 

maximum correntropy criterion (GMCC), the estimator g will be solved by maximizing the generalized 

correntropy between X and X̂ , that is    

, ,
ˆarg maxV ( , ) arg max [G ( ( ))]GMCC

g g

g X X X g Y   
 

  
G G

E                                  (13) 

where G stands for the collection of all measurable functions ofY . If
my  , X has a conditional 

PDF ( )
X Y

p x y , then the estimation error ˆ
ˆ

X X
E X X


   has PDF 

( ) ( ( ) | ) ( )
mE YX Y

p e p e g y y dF y                                                 (14) 

where ( )YF y is the distribution function ofY . It follows that 

,arg max G ( ) ( ( ) | ) ( )
mGMCC YX Y

g

g e p e g y y dF y de 


  
G

                               (15) 

In [28], it has been proven that the MCC estimate is a smoothed maximum a posteriori probability (MAP) 

estimate, which equals the mode (at which the PDF attains its maximum value) of a smoothed a posteriori 

distribution. A similar result holds for the GMCC estimation.  

Theorem 1: The GMCC estimator can be expressed as 

,( ) arg max ( | )GMCC
x

g y x y 


 , 
my                                                (16) 

where , ,( | ) ( ) ( | )
X Y

x y G x p x y       (“ ”denotes the convolution operator with respect to x ). 

Proof:  See Appendix F. 
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     Remark 3: Considering the conditional PDF ( )
X Y

p x y as an a posteriori PDF given the observation y , 

the function , ( | )x y   will be a smoothed (by convolution) a posteriori PDF. Therefore, the GMCC 

estimate is a smoothed MAP estimate.   

Corollary 1: When 0   (or  ), the GMCC estimation becomes the MAP estimation. 

Proof:  As 0   , the GGD function ,G (.)   will approach the Dirac delta function, and the smoothed 

conditional PDF , ( | )x y  will reduce to the original conditional PDF ( )
X Y

p x y . In this case, the GMCC 

estimation will be equivalent to the MAP estimation. 

Theorem 2: The GMCC estimator can also be expressed as 

,arg max (0)GMCC E
g

g p 




G

                                                  (17) 

where
,

,( ) ( ) G ( )E Ep x p x x 

   is the smoothed error PDF. 

Proof:  It is easy to derive 

 
 

ˆ, ,

,
0

, 0

,

G ( ) G ( ) ( )

                         G ( ) ( )

                         ( ) G ( )

                         (0)

EX X

E
x

E x

E

E e p e de

x e p e de

p x x

p

   

 

 

 







   

 

 







E

                                           (18) 

And hence 

,

ˆ,arg max G ( ) arg max (0)GMCC EX X
g g

g E p 

  
 

   
G G

E                                          (19) 

     Remark 4: Theorem 2 implies that the GMCC estimator will make the error distribution concentrated 

around zero with a high peak.   

Theorem 3: When   (or 0   ), the GMCC estimation will be equivalent to the least mean 

p -power (LMP) estimation with p  . 
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Proof:  Under the LMP criterion, the optimal estimator is solved by minimizing the mean p -power of the 

error: 

ˆ
ˆarg min arg min

pp

LMP X X
g g

g E X X


 

    
      G G

E E                                     (20) 

On the other hand, as 0   , we have , ,
ˆ ˆV ( , ) 1X X X X



            
E . It follows that 

,
ˆ ˆmaxV ( , ) minX X X X



 
 
  

E                                              (21) 

That is, as 0   , the GMCC estimation will be, approximately, equivalent to the LMP estimation 

with p  . 

IV. ADAPTIVE FILTERING UNDER GMCC CRITERION 

     

A. Cost function 

     In the context of linear adaptive filtering, under the GMCC criterion the optimal weight vector of the 

filter can be solved by maximizing 

 , ,G ( ( )) exp ( )GMCCJ e i e i


           
E E                                        (22) 

where the error 

( ) ( ) ( ) ( ) ( )Te i d i y i d i W X i                                                        (23) 

with ( )d i  being the desired value at time i , ( ) ( )Ty i W X i  the output of the filter, 

 1 2, , ,
T m

mW w w w  the weight vector, and ( ) mX i   the input vector, generally given by 

 ( ) ( ), ( 1), , ( 1)
T

X i x i x i x i m                                                     (24) 

where ( )x i is the input signal. 
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B. Optimal solution 

     On the optimal weight vector of GMCC adaptive filtering, we summarize the main result as the 

following theorem. 

Theorem 4: The optimal weight vector that maximizes
GMCCJ can be expressed as 

1
h h

opt XX dXW


   R P                                                             (25) 

where  ( ) ( ) ( )h T

XX h e i X i X i   R E  is a weighted autocorrelation matrix of the input signal, in which the 

weighting is a function of the error   2
( ( )) exp ( ) ( )h e i e i e i

 



  , and  ( ) ( ) ( )h

dX h e i d i X i   P E  is a 

weighted cross-correlation vector between the desired and the input vector.  

Proof:  Let 0GMCCJ
W





, we have  

   

  

   

1

1

exp ( ) ( ) ( ) ( ) 0

( ) ( ) ( ) ( ) 0

( ) ( ) ( ) ( ) ( ) ( )

T

T

h h

XX dX

e i e i sign e i X i

h e i d i W X i X i

h e i X i X i W h e i d i X i

W

 






  
 

   
 

      

    

E

E

E E

R P

                             (26) 

     Remark 5: For the case 2  , we have  2( ( )) exp ( )h e i e i  . In this case, as 0   , we 

have ( ( )) 1h e i   , and 
1

opt XX dXW R P with ( ) ( )T

XX X i X i   R E ,  ( ) ( )dX d i X iP E , which 

corresponds to the well-known Wiener solution. 

Theorem 5: If ( )x i and ( )d i are both zero-mean Gaussian processes, then the optimal solution under 

GMCC criterion is equal to the Wiener solution. 

Proof: First, we derive 
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,

,

,

,

, , ( )

( ) ,
0

( ) ,
0

( )
0 :G ( )

G ( ) G ( ) ( )

                      ( ) G ( )

                      ( ) G ( )

                      ( )

e i

e i

e i

e i
e e

e i e p e de

p e e d de

p e e de d

p e de d

 

 

 

 

   



 



 





 

 









   

 

 

 
  

 



 

 

 

E

 ,

( )
0

                      ( )e ip e de d
  





  

                                (27) 

where (.) denotes an indicator function, and  is a certain positive number satisfying 

, ,G ( ) G ( )        .Since ( )x i and ( )d i are both zero-mean Gaussian processes, then the error ( )e i is 

also a zero-mean Gaussian process, with PDF 

2

( ) 2

( )( )

1
( ) exp

22
e i

e ie i

e
p e



 
   

 

                                                 (28) 

where
2 2

( ) ( )e i e i    E is the error variance. Hence 

( )

( )

( ) erf
2

e i

e i

p e de








 
  

 
 

                                                     (29) 

with
21

erf ( ) exp( )
x

x
x t dt

 
  being the error function, which is a monotonically increasing function 

of x . Therefore, ( ) ( )e ip e de


 is a monotonically decreasing function of
2

( )e i . It follows that   

  2

, ( ) ( )max G ( ) max ( ) mine i e ie i p e de


 





     E                                  (30) 

That is, the maximization of the generalized correntropy  ,G ( )e i 
  E will be equivalent to the 

minimization of the mean square error
2 2

( ) ( )e i e i    E . Clearly, in this case, the optimal solution under 

GMCC criterion will be equal to the Wiener solution
1

XX dX


R P . 
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C. Adaptive algorithm 

     Based on the cost function of (22), a stochastic gradient based adaptive algorithm, called in this work the 

GMCC algorithm,  can be simply derived as 

 

 

 

1

1

( 1) ( ) exp ( )
( )

( )
            ( ) exp ( ) ( ) ( ( ))

( )

            ( ) exp ( ) ( ) ( ( )) ( )

W i W i e i
W i

e i
W i e i e i sign e i

W i

W i e i e i sign e i X i



 

 

 

 

 






   




  



  

                          (31) 

where  is the step-size parameter. 

    We have the following observations: 

1) When 2  , the GMCC algorithm becomes 

 2( 1) ( ) exp ( ) ( ) ( )W i W i e i e i X i                                               (32) 

which is the original MCC algorithm [20]. 

2) The weight update equation of (31) can be rewritten as 

1
( 1) ( ) ( ) ( ) ( ( )) ( )W i W i i e i sign e i X i





                                               (33)  

where  ( ) exp ( )i e i


    . Therefore, the GMCC algorithm can be viewed as an LMP algorithm with 

p  and a variable step-size ( )i . The LMP algorithm is derived under the LMP (least mean p -power) 

criterion, which includes SA ( 1p  ), LMS ( 2p  ), and LMF ( 4p  ) as special cases  (see [5] for the 

details).  

3)  When 0+  , we have ( )i  . In this case, the GMCC algorithm reduces to the traditional LMP 

algorithm with p  : 
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1
( ) ( 1) ( ) ( ( )) ( )W i W i e i sign e i X i





                                             (34) 

In particular, when 2  , (34) becomes the well-known LMS algorithm: 

( ) ( 1) ( ) ( )W i W i e i X i                                                        (35)   

4)  When ( )e i  , we have ( ) 0i  . Thus, a large error will have little influence on the filter weights. 

This implies that the GMCC algorithm will be robust to large outliers (or impulsive noises), which often 

cause large errors. 

     Remark 6: One can further derive various variants of the GMCC algorithm, such as the variable step-size 

GMCC and normalized GMCC, where the step-size is changed across iterations or divided by the squared 

norm of the input vector. 

     The computational complexity of the GMCC algorithm is almost the same as the LMP algorithm, and the 

only extra computational effort needed is to calculate the term  exp ( )e i


 , which is obviously not 

expensive.  

V. MEAN-SQUARE CONVERGENCE ANALYSIS 

     In this section, we analyze the mean-square convergence performance of the proposed GMCC algorithm. 

The algorithm (31) can be written in a general form: 

 ( ) ( 1) ( ) ( )W i W i f e i X i                                                     (36) 

where  ( )f e i is a nonlinear function of ( )e i , 

    1
( ) exp ( ) ( ) ( ( ))f e i e i e i sign e i

 



                                           (37) 

Assume that the desired signal ( )d i can be expressed as 

0( ) ( ) ( )Td i W X i v i                                                              (38) 
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where 0W denotes an unknown weight vector that needs to be estimated, and ( )v i stands for the disturbance 

noise, with variance
2

v . Then, we have 

( ) ( 1) ( ) ( ) ( ) ( )T

ae i W i X i v i e i v i                                                 (39) 

where
0( 1) ( 1)W i W W i    is the weigh error vector at iteration 1i  , and ( ) ( 1) ( )T

ae i W i X i  is 

referred to as the a priori error. After some simple algebra, one can obtain [33]:   

 
2 2 22 2( ) ( 1) 2 ( ) ( ( )) ( ) ( ( ))aW i W i e i f e i X i f e i         

        
E E E E                   (40) 

A. Mean Square Stability 

      From (40), if the step-size is chosen such that for all i  

 

 
 

2 2

1

2 2( 1)

2 ( ) ( ( ))

( ) ( ( ))

2 ( )exp ( ) ( ) ( ( ))
   

( ) exp 2 ( ) ( )

a

a

e i f e i

X i f e i

e i e i e i sign e i

X i e i e i

 

 












 
 

 
 
 
 

E
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                              (41) 

then the sequence of weight error power
2

( )W i 
  

E  will be decreasing and converging. According to the 

analysis results presented in [33], the following theorem holds. 

Theorem 6: Assume that the noise sequence { ( )}v i  is i.i.d. and independent of ( )X i , and the filter is long 

enough such that ( )ae i is Gaussian. Then, for the GMCC algorithm (31), the weight error power 

2

( )W i 
  

E  will be monotonically decreasing if the step-size satisfies 
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1/2
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( ) exp 4 ( ) ( )
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e
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                    (42) 
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where  
2

2 2 1
: (0)

4
a a XXe e Tr W

                
E E R E , in which   is a Cramer-Rao lower bound 

defined in [33].  

     To better understand the mean-square stability of the GMCC, it's more important to investigate the 

probability of divergence (POD) [34]. Here the divergence means 
2

lim ( )
i

W i


  in a realization of an 

adaptive algorithm. For the LMF algorithm, the POD is nonzero when the input  distribution has infinite 

support, no matter how small the step-size is chosen [34]. Below we present a simple example to show that 

the GMCC is rather stable and may have zero POD, no matter what input distribution. Let's consider the 

scalar filtering case [34], in which the desired signal is 0( ) ( )d i W X i , where 0W  and ( )X i  are both 

scalars, and the noise ( )v i is assumed to be zero for simplicity. Then, we have 
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( ) ( 1) ( ) ( )
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        = 1 exp ( ) ( ) ( 1) ( 1)
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                                  (43) 

It is easy to show  

  1
0 exp ( ) ( ) exp( 1)e i e i

 



                                                    (44) 

So it holds that if  
2

( 1) exp 1
2

W i



   , then 

 
2

0 exp ( ) ( ) ( 1) 2e i e i W i
 

 


                                               (45) 

In this case, we have  
2

1 exp ( ) ( ) ( 1) 1e i e i W i
 

 


    , and 

 
2

2 2 2

2

( ) 1 exp ( ) ( ) ( 1) ( 1)

          ( 1)
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                               (46) 
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Therefore, the limit (if exists) of ( )W i always satisfies lim ( )
i

W i


  , which implies that in this simple 

example the GMCC will never diverge (or its POD is zero).  

        When ( )W i is a vector and there is a noise ( )v i , the analysis of the POD of GMCC is very complicated 

and is left open in this work. However, our simulation results suggest that in most situations the POD of 

GMCC is zero, even when the noise signal contains large outliers.  

          

B. Steady-State Mean Square Performance 

    With a similar derivation presented in [35], one can analyze the mean square transient behaviors of the 

algorithm (31). This is a trivial but quite tedious task since we have to evaluate the expectations 

  1
( )exp ( ) ( ) ( ( ))ae i e i e i sign e i

 


 
 

E  and  2 2( 1)
( ) exp 2 ( ) ( )X i e i e i

 


 
 

E . In the following, we 

only analyze the steady-state mean square performance by using the Taylor expansion method [23].     

     As the filter reaches the steady-state, we have
2 2

( ) ( 1)W i W i    
      

E E . By (40), it holds that 

 
2 22 ( ) ( ( )) ( ) ( ( ))ae i f e i X i f e i  

 
E E                                           (47) 

Assume that 
2

( )X i is asymptotically uncorrelated with
2 ( ( ))f e i ( the rationality of this assumption has 

been discussed in [33]). Then (47) becomes 

    22 ( ) ( ( )) ( ( ))a XXe i f e i Tr f e i    E R E                                           (48) 

In the steady-state, the distributions of ( )ae i and ( )e i are independent of i , thus one can omit the time index 

and simply write (48) as 

    22 ( ) ( )a XXe f e Tr f e    E R E                                           (49) 
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      Let
2 2lim ( )a a

i
S e i e


       E E  be the steady-state excess mean square error (EMSE). An approximate 

analytical expression of S can be derived . Before proceeding we give two common assumptions:   

       A1: The noise ( )v i is zero-mean, independent, identically distributed, and is independent of the input. 

      A2: The a priori error ( )ae i  is zero-mean and independent of the noise.  

     Taking the Taylor expansion of ( )f e with respect to ae around v , we obtain 

2 21
( ) ( ) ( ) ( ) ( ) ( )

2
a a a af e f e v f v f v e f v e o e                                        (50) 

where
2( )ao e denotes the third and higher-order terms, and 

     2
exp ( 1)f v v v v

  
  


                                         (51) 

        2 3 3 3 3 2 3
exp ( ) ( 1) ( 1)( 2) (2 2)f v v sign v v v v v

    
       

   
             (52) 

If
2( )ao e  E is small enough, then based on the assumptions A1 and A2 we can derive 

   2 2( ) ( ) ( ) ( ) ( )a a a ae f e e f v f v e o e f v S      E E E                               (53) 

22 2( ) ( ) ( ) ( ) ( )f e f v f v f v f v S            
E E E                                 (54)    

Substituting (53) and (54) into (49), we obtain 
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R E

E R E
                               (55) 

Further, substituting (51) and (52) into (55) yields 
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( ) exp 2

2 exp ( 1) ( ) ( )
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Tr v v
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R E

E R E
                      (56) 
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where 

 

2

2 4 22 2

( ) ( ) ( ) ( )

       exp 2 ( 1)(2 3) 5 ( 1) 2
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                     (57) 

When the step-size is small enough, (57) can be simplified to 

 
   

2 2

2

( ) exp 2

2 exp ( 1)

XXTr v v
S

v v v

 

  

 

  





 
 

   
 

R E

E
                                                 (58) 

    Remark 7:  Given a noise distribution, one can evaluate the expectations in (56) and obtain a theoretical 

value of the steady-state EMSE.  It is, however, worth noting that the steady-state EMSE of (56) is derived 

under the assumption that the steady-state a priori error ae is small such that its third and higher-order terms 

are negligible. When the step-size or noise power is too large, the a priori error will also be large. In this 

case, the derived EMSE value will not accurately enough characterize the performance. 

VI. SIMULATION RESULTS 

Now we present simulation results to confirm the theoretical predictions and demonstrate the desirable 

performance of the proposed GMCC algorithm.  

First, we investigate the stability problem of the GMCC algorithm. Note that the steady-state 

performance is valid only when the algorithm does not diverge. In many cases, however, an adaptive 

algorithm may diverge especially at the initial convergence stage. Below we present some simulation 

results about the probability of divergence (POD) of the GMCC (with 4.0  ), compared with that of the 

LMF algorithm, whose probability of divergence has been studied in [34]. The weight vector of the 

unknown system is assumed to be 0W =[0.1,0.2,0.3,0.4,0.5,0.4,0.3,0.2,0.1], and the initial weight vector of 

the adaptive filter is a null vector. The input signal and the disturbance noise are both zero-mean Gaussian 

with variance 1.0. The PODs with different step-sizes are illustrated in Fig. 2. To evaluate the PODs, 1000 

independent Monte Carlo simulations were performed and in each simulation, 1000 iterations were run. We 



 22 

labeled a learning curve as "diverging" if at the last iteration the weight error power 
2

0 )(iWW   is larger 

than 100. As one can see clearly, compared with the LMF, the GMCC is rather stable and does not diverge 

at all, and this coincides with our theoretical expectation. 
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Fig.2 PODs with different step-sizes 

 

Second, we show the theoretical and simulated steady-state performance of the GMCC. In the 

simulation, we set 4  , and 0.03  . The filter length is 20, the input signal is a zero-mean white 

Gaussian process with variance 1.0, and the disturbance noise is assumed to be zero-mean and uniform 

distributed over 3, 3 
 

. Fig. 3 shows the steady-state EMSEs with different step-sizes and the noise 

variances, where the simulated EMSEs are computed as an average over 100 independent Monte Carlo 

simulations, and in each simulation, 50000 iterations were run to ensure the algorithm to reach the steady 

state, and the steady-state EMSE was obtained as an average over the last 1000 iterations. One can observe: 

i) the steady-state EMSEs are increasing with step-size and noise variance; ii) when the step-size and noise 

variance are small, the steady-state EMSEs computed by simulations match very well the theoretical values 
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computed by (56) ; iii) when the step-size and noise variance become large, the experimental results will, 

however, gradually differ from the theoretical values, and this also coincides with the theoretical prediction.  
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Fig.3 Theoretical and simulated EMSEs: (a) with different step-sizes; (b) with different noise variances 

 

Third, we compare the performance of the GMCC and the LMP family algorithms with different 

p values, namely SA ( 1p  ) , LMS ( 2p  ), and the LMF ( 4p  ). The unknown system is assumed to 

be the same as that in the first simulation. In particular, we consider a noise model with 

form ( ) (1 ( )) ( ) ( ) ( )v i a i A i a i B i   , where ( )a i is a binary independent and identically distributed process 
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with  Pr ( ) 1a i c  ,  Pr ( ) 0 1a i c   , and 0 1c  is an occurrence probability; whereas ( )A i is a noise 

process with smaller variance, and ( )B i is another noise process with substantially much larger variance to 

represent large outliers (or impulsive disturbances). The noise processes ( )A i  and ( )B i are mutually 

independent and they are both independent of ( )a i .  In the simulation, c is set at 0.06, and )(iB is a white 

Gaussian process with zero-mean and variance 15. For the noise ( )A i , we consider four distributions: a) 

Gaussian distribution with zero-mean and unit variance; b) Binary distribution over {-1,1} with probability 

mass Pr{x=-1}=Pr{x=1}=0.5; c) Laplace distribution with zero-mean and unit variance; d) Uniform 

distribution over 3, 3 
 

. The convergence curves in terms of the weight error power 
2

0 )(iWW   

averaged over 100 independent Monte Carlo runs are shown in Fig. 4. In the simulation, the step-sizes are 

chosen such that all the algorithms have almost the same initial convergence speed. The parameter   in 

GMCC is experimentally chosen such that the algorithm achieves desirable results. From the simulation 

results we can observe: 1) the GMCC family algorithms are much more stable (robust) than the LMP family 

algorithms (In this example, when 4p  , the LMP will not converge); 2) the GMCC with 2  may 

outperform significantly the original MCC  ( 2  ) algorithm. In particular, the GMCC with 6   

achieves the best performance when ( )A i is of Binary or Uniform distribution. In order to further 

demonstrate the robustness of the GMCC against large outliers, we increase the variance of the outlier noise 

)(iB from 15 to 100. In this case, the LMP family algorithms, except SA and LMS, will diverge, while the 

GMCC family algorithms can still work well. We show in Fig. 5 the simulation results when ( )A i is Uniform 

distributed.  
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Fig.4 Convergence curves with different distributions of ( )A i : (a) Gaussian; (b) Binary; (c) Laplace; (d) Uniform 
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Fig.5 Convergence curves with larger outliers 

 

 

VII. CONCLUSION
 

     Correntropy is a novel nonlinear similarity measure in kernel space, and the maximum correntropy 

criterion (MCC) has recently been widely applied in domains of machine learning and signal processing. In 

previous studies, the kernel function in correntropy is however limited to the Gaussian kernel without 

mentioned otherwise. Gaussian kernel is desirable in many cases but obviously, it is not always the best 

choice. In this work, we proposed a generalized correntropy, using the generalized Gaussian density (GGD) 

function as the kernel (not necessarily a Mercer kernel). The new definition is very general and flexible, 

which includes the original correntropy with Gaussian kernel as a special case. Some important properties 

of the generalized correntropy were presented. The generalized maximum correntropy criterion (GMCC) 

was also proposed as an optimality criterion in estimation related problems. In particular, we applied the 

GMCC criterion to adaptive filtering. The optimal solution under GMCC and an adaptive algorithm, called 

the GMCC algorithm, were derived. Further, we investigated the mean square convergence behaviors of the 
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developed algorithm. A simple example was presented to show that the GMCC algorithm is very stable and 

will have a zero probability of divergence (POD). A theoretical value of the steady-state excess mean 

square error (EMSE) was also derived. Theoretical results and excellent performance of the GMCC were 

confirmed by Monte Carlo simulation results.       

     

APPENDIX A 

PROOF OF PROPERTY 6 

Proof: When 0 2  , we can construct a nonlinear mapping:  , , 1 ,( ) , , ( )
T

T T

NX x x           . 

It follows that 
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                               (A. 1) 

which implies that the GCIM function  ,GCIM X Y defines a "Euclidean distance" in the Hilbert space 

N

F . Hence,  ,GCIM X Y is a metric in the sample vector space since it satisfies: i)  , 0GCIM X Y  ; ii) 

   , ,GCIM X Y GCIM Y X ; iii)      , , ,GCIM X Z GCIM X Y GCIM Y Z  . 

APPENDIX B 

PROOF OF PROPERTY 7 

Proof: As 0    (or 0, 1, ,ix i N  ), we have 
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APPENDIX C 

PROOF OF PROPERTY 8 

Proof: Let 0X be the solution obtained by minimizing
0

X over  and lX the solution achieved by 

minimizing  ,L X  . Then    , , 0lL X L X    , and hence 

   , , 0

1 1
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                                                      (C. 1) 

where ( )l iX denotes the i th component of lX . It follows that  
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                                  (C. 2) 

Thus we have 
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                        (C. 3) 

Since ix  , : 0ii x  , as  the right hand side of (C. 3) will approach zero. Therefore, if is large 

enough, it holds that 
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0 0
0 0 0

lX X X                                                         (C. 4) 

where is a small positive number arbitrarily close to zero. 

APPENDIX D 

PROOF OF PROPERTY 9 

Proof: The Hessian (if exists) of ˆ
GC lossJ 

with respect to e is 
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where   2
( ) expT x x x

 



  .  From (D. 1) one can see:  

i) if 0 1  , then  ˆ
GC lossJ

e


H 0 for any e with 0ie   ( 1, ,i N ) ;  

ii) if 1  , then  ˆ
GC lossJ

e


H 0 for any e with  
1

0 ( 1)ie


      ( 1, ,i N );  

iii) if 0   , then for any e with 0ie   ( 1, ,i N ), we have  ˆ
GC lossJ

e


H 0  for 0 1  , and 

 ˆ
GC lossJ

e


H 0 for 1  . 

APPENDIX E 

PROOF OF PROPERTY 10 

Proof: A differentiable function :f S  ( NS  ) is said to be invex, if and only if [] 

2 1 1 2 1( ) ( ) ( , ) ( )Tf x f x q x x f x   , 
1 2,x x S                                              (E. 1) 
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where ( )f x denotes the gradient of f with respect to x , and 
1 2( , )q x x is some vector valued function. 

For 1  , the GC-loss ˆ
GC lossJ  is a differentiable function of e , and the gradient ˆ ( )GC lossJ e is 

   1 1,

1 1 1
ˆ ( ) exp ( ) exp ( )
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GC loss N N NJ e e e sign e e e sign e
N

    
 

 


    
 

       (E. 2) 

where (.)sign is the sign function. Since ie M , we have ˆ ( )GC lossJ e  0 if and only if e  0 . On the other 

hand, we have ˆ ˆ( ) ( ) 0GC loss GC lossJ e J  0 . So we can construct the following function 
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such that it holds 

2 1 1 2 1
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GC loss GC loss GC lossJ e J e q e e J e                                            (E. 4) 

APPENDIX F 

PROOF OF THEOREM 1 

It is easy to derive 
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where ( )e e g y   , and (a) comes from the symmetry of , (.)G  . Thus 
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,

,

arg max ( ( ) | ) ( )

 ( ) arg max ( | ),

mGMCC Y
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                                     (F. 2) 

which completes the proof.    
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