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Abstract

Parametric dictionaries can increase the ability of sparse representations to meaningfully capture 

and interpret the underlying signal information, such as encountered in biomedical problems. 

Given a mapping function from the atom parameter space to the actual atoms, we propose a sparse 

Bayesian framework for learning the atom parameters, because of its ability to provide full 

posterior estimates, take uncertainty into account and generalize on unseen data. Inference is 

performed with Markov Chain Monte Carlo, that uses block sampling to generate the variables of 

the Bayesian problem. Since the parameterization of dictionary atoms results in posteriors that 

cannot be analytically computed, we use a Metropolis-Hastings-within-Gibbs framework, 

according to which variables with closed-form posteriors are generated with the Gibbs sampler, 

while the remaining ones with the Metropolis Hastings from appropriate candidate-generating 

densities. We further show that the corresponding Markov Chain is uniformly ergodic ensuring its 

convergence to a stationary distribution independently of the initial state. Results on synthetic data 

and real biomedical signals indicate that our approach offers advantages in terms of signal 

reconstruction compared to previously proposed Steepest Descent and Equiangular Tight Frame 

methods. This paper demonstrates the ability of Bayesian learning to generate parametric 

dictionaries that can reliably represent the exemplar data and provides the foundation towards 

inferring the entire variable set of the sparse approximation problem for signal denoising, 

adaptation and other applications.
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I. Introduction

Signal representations are fundamental for denoising, interpolation, estimation, classification 

and recognition. Recently there has been an increased focus on sparse representations [1] 

which model a signal with a small number of components from a large overcomplete set of 

exemplar atoms, called dictionary. A dictionary D ∈ ℜP×K contains K atoms d1, …, dK ∈ 
ℜP that constitute the building blocks of a P- dimensional signal x ∈ ℜP. Specifically a 

signal can be expressed as an exact or approximate linear combination of a small number of 

atoms from the dictionary as x ≈ Dc, where c ∈ ℜK contains the coefficients of the 

corresponding atoms. In the typical case where K > P, an infinite set of solutions arise. This 

can be addressed by imposing a sparsity constraint on x, according to which x should be 

represented by the smallest number of dictionary atoms and the sparse representation 

problem can be expressed as an l0-norm minimization.

The problem of minimizing ‖c‖0 subject to the constraint x = Dc has been proven to be NP-

hard and several directions have been proposed to solve it. One approach includes greedy 

strategies that abandon exhaustive search in favor of locally optimal updates resulting in sub-

optimal solutions. Examples include matching pursuit [2] and orthogonal matching pursuit 

[3], [4] algorithms. An alternative is the relaxation of the discontinuous l0-norm leading to 

the more computationally expensive basis pursuit [5] and focal underdetermined system 

solver [6], [7] reaching global solutions. Bayesian methods with appropriate statistical 

assumptions have been further used to identify the desired sparse solution [8], [9], [10].

An essential step towards compact and reliable representations is the dictionary selection. 

Traditionally, analytic predesigned dictionaries comprising Gabor [11], wavelet [12], 

curvelet [13], or other atoms have been used, because of their localization, directionality and 

multi-resolution properties. Dictionary learning (DL) focuses on learning atoms from the 

available training data. It includes several well-known algorithms, such as the K-SVD [14] 

and the MOD [15], as well as probabilistic approaches [16]. Although non-parametric DL is 

effective for signal reconstruction [14], restoration [17], and classification [18], it depicts a 

highly non-convex nature, mostly yields non-structured dictionaries [19] and typically 

requires a large amount of training data [20].

These disadvantages can be mitigated by imposing a pre-determined structure through the 

use of carefully selected knowledge-driven parametric functions mapping a parameter space 

to structured dictionary atoms. This results in parametric dictionaries bridging the gap 

between pre-defined analytic dictionaries and purely numerical DL [21]. Dictionary atoms 

are expressed through an application-specific function ϕ of a parameter set, say dk = ϕ(θk), 

where θk ∈ ℜQ, Q < P, are the atom parameters optimized with respect to desirable 

properties [22], [23], [24]. Parametric DL is more likely to converge faster and have more 
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efficient implementations compared to the non-parametric problem [19]. It further provides 

higher signal interpretability yielding important metainformation [25], [26], [27], [28].

This paper proposes a Bayesian framework for learning the parameters of a dictionary given 

a predetermined parametric function. The formulation of the sparse representation problem 

from the Bayesian perspective assumes a probabilistic distribution for all variables in an 

effort to provide a posterior belief for their values [10], [29]. This allows the estimation of 

full posteriors rather than single estimates which can result in better handling uncertainty 

and benefits noise estimation.

Related Work

DL methods usually alternate between sparse decoding and dictionary update [19]. In the 

context of non-parametric DL, Ophir et al. have proposed a sequential learning algorithm by 

identifying the orthogonal directions to a data subset [30]. Engan et al. used matrix inversion 

to compute the dictionary matrix [15], while Aharon et al. introduced K-SVD, which is a 

constrained optimization approach performing atom-by-atom update [14]. Generalized 

principal component analysis models the data as a union of low-dimensional subspaces with 

orthogonal bases [31], while structured dictionaries have been proposed in an effort to 

enforce additional translation invariant, hierarchical and multiscale properties [32], [33], 

[34].

Parametric dictionaries depict higher interpretability, lower density of local minima and 

compact representation [19]. Dictionaries can be learnt as a result of translation of 

elementary signal segments over space and time [35], [36]. They can also contain atoms of 

predetermined structure, such as wavelets [37] or Gabor functions [22], whose parameters 

are adapted with steepest-descent (SD) [22] and other least-squares-based methods [25], 

[37]. Yanghoobi et al. proposed a method to find dictionaries close to the one with minimum 

coherence, called the equiangular tight frame (ETF) [24]. Finally, Thanou et al. [21] 

proposed a parametric DL for signals residing on weighted graphs.

Although the aforementioned deterministic DL methods perform well in various signal 

processing applications [14], [17], [18], they provide single-point estimates and cannot 

handle noise uncertainty. Bayesian approaches offer a way to address those disadvantages. 

They have been proposed for compressed sensing [8], [9], [38], [39] as well as for non-

parametric DL.

The problem of ensuring sparseness in Bayesian approximations has been addressed in a 

variety of ways. Early approaches have used continuous sparse-promoting distributions to 

the atom coefficients cn, such as the Laplacian [40], Cauchy [16], [41] and Student-t [42], 

[10]. Another way is the use of indicator variables that permit to independently sample each 

atom from the Bernoulli distribution [43], [44], [45]. Despite their computational efficiency, 

these can yield an arbitrarily large amount of non-zero coefficients, which might not be 

practical for many applications. More inline with our problem, previous studies have 

explored the use of appropriate probabilistic assumptions for keeping a constant number of 

dictionary atoms in the representation with proposal distributions iteratively conditioning on 

the atoms selected at previous steps [39], [46], [38]. Gaussian assumptions are typically 
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imposed on the dictionary atoms [43], [44] and the signal noise [38], [43], [44], [47], the 

latter being consistent with biomedical applications [48], [49].

Bayesian inference casts DL into an optimization problem for maximizing the posterior 

distribution. The overcomplete dictionaries containing many atoms in combination with the 

large amount of training data yield a high-dimensional framework, for which closed form 

solutions are usually difficult to derive and approximate inference methods are followed. 

Common approaches include the evidence maximization [8], [9], relevance vector machine 

[10], Markov Chain Monte Carlo (MCMC) [38], [44], and variational approximation [43].

Contributions

We propose a Bayesian framework for learning the parameters of dictionary atoms, given a 

parametric function that maps the dictionary parameters to the actual atoms. Our approach 

imposes probabilistic distributions to the variables of the sparse representation problem that 

are estimated through MCMC methods because of their simplicity and ability to fully 

perform Bayesian inference [50]. Compared to previous Bayesian DL [43], [44], our 

approach introduces parametric dictionaries where non-closed-form solutions are handled 

with a combination of Gibbs and Metropolis-Hastings (MH) sampling (MH-within-Gibbs). 

Our approach differs from previous parametric DL [22], [24] because of its stochastic 

framework that yields estimation of the full problem variables. This results in parametric 

dictionaries that take into account the structure of the training data and are less prone to 

overfitting. The parametric nature of our problem further requires the use of appropriate 

sparse-imposing priors that keep the selected number of dictionary atoms within a pre-

determined range. We perform atom sampling with and without replacement formalized 

through the Multinomial and the Wallenius’ hypergeometric distribution, respectively.

One key challenge with MCMC is to determine its asymptotic behavior, i.e. whether it 

provides accurate posterior approximations. The goal is to create an aperiodic and 

irreducible Markov Chain (MC) with stationary distribution same as the posterior 

distribution of interest [51]. Irreducibility ensures that any state of the space is accessible, 

while aperiodicity makes sure that the chain does not return to the same state at regular 

times. Uniformly ergodic MCs are a special case in which the MC converges to the invariant 

distribution independently of the initial state. They guarantee geometrically fast convergence 

and are key sufficient conditions in order to establish central limit theorems for empirical 

averages and provide consistent estimators of MCMC standard errors [51], [52]. Because of 

these, we discuss the geometric ergodicity of MCMC in our proposed Bayesian inference 

framework that ensures convergence. We further perform qualitative and quantitative 

diagnostics to evaluate the reliability of the generated samples and resulting distributions.

We demonstrate the ability of our algorithm for parallel processing with experiments on 

synthetic data and real biomedical signals. DL is performed for each sample separately and 

the resulting dictionaries from each exemplar data are further combined into a unified 

model. Our results indicate that the proposed approach yields benefits in terms of superior 

signal reconstruction compared to previous SD [22] and ETF [24] methods. When we have 

precise a priori knowledge of the optimal parametric function ϕ representing the data, our 
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parametric framework also yields better performance than the classical non-parametric 

approach of K-SVD [14].

In the following, we provide the problem formulation (Section II) and describe the proposed 

MCMC approach for learning the parameters for the considered problem (Section III). We 

describe the parallel implementation framework of our algorithm (Section IV) and discuss 

the use of various parametric functions and their effect on the sample-generating procedure 

(Section V). We further analyze the geometric ergodicity properties of the proposed MH-

within-Gibbs algorithm yielding uniform convergence (Section VI). In Section VII, we 

provide experimental results and the results of MCMC diagnostics. Finally, we discuss our 

results and offer conclusions in Sections VIII and IX.

Notation

We denote matrices with bold uppercase letters X and vectors with bold lowercase letters x. 

Lowercase letters with appropriate numerical indices will either refer to the columns of a 

matrix, i.e. X = [x1 … xN] or the elements of a vector, i.e. x = [x1 … xN]T. We denote (X)ij 

the entry of matrix X corresponding to the ith row and jth column. The pth order norm of a 

vector is symbolized as ‖x‖p, while the N × 1 identity vector and N × N identity matrix are 

noted as 1N and IN, respectively. The vectorization of matrix X, obtained by stacking its 

columns on top of one another, is defined as vec(X) = [x1
T, …, xN

T]T. Finally the gradient 

and Hessian of a scalar valued function f(x), x ∈ ℜN, are denoted as ∇f(x) ∈ ℜN×1 and Hf = 

∇2f(x) ∈ ℜN×N, where  and , respectively.

II. Problem Formulation

Let X = [x1 … xN] ∈ ℜP×N be a data matrix of N examples xn ∈ ℜP. We formulate the 

parametric DL problem by assuming an overcomplete dictionary Dn ∈ ℜP×K containing K 
prototypical atoms dnk ∈ ℜP for each exemplar data xn separately. This approach, also 

found in similar studies [43], enjoys computational benefits compared to batch methods, 

since it can yield faster reliable estimates of the considered variables (Section III-B) and can 

be easily parallelized to run on multiple computational threads (Section III-E).

In the case of parametric dictionaries, the atoms can be expressed with an appropriate 

domain-specific function ϕ : ℜQ → ℜP in terms of a parameter vector θnk ∈ ℜQ, Q < P, as 

dnk = ϕ(θnk), therefore Dn = [ϕ(θn1) … ϕ(θnK)]. Typically dictionary atoms have a unitary 

l2-norm, i.e. ‖ϕ(θnk)‖2 = 1. Each signal xn can be expressed as a linear combination of a 

small number of atoms, L ≪ K, with additive noise εn ∈ ℜP

(1)

where εn is the error and cn ∈ ℜK, ‖cn‖0 = L, are the coefficients with non-zero values only 

for the used atoms. According to the Bayesian framework, each variable in (1) is assumed to 

follow an underlying probabilistic distribution.
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Especially in parametric DL, where we jointly sample the parameters of the selected 

dictionary atoms (Section III-B), a small number of selected atoms can keep the 

implementation computationally tractable. For this reason, we are interested in imposing 

explicit sparseness constraints, similarly to previous studies [38], [39], [46] (Section I). We 

will describe two different ways to approach this using the Multinomial and the Wallenius’ 

hypergeometric distribution, that allow sampling with and without replacement.

A. Atom Sampling with Replacement

A straightforward method to sample the dictionary atoms is to relax the l0-sparsity norm 

constraint into ‖cn‖0 ≤ L allowing independent sampling of the dictionary atoms L times 

with replacement through the Multinomial distribution. Since the population size is much 

larger than the sample size (L≪K), duplicate atoms are rare [53]. If we assume a discrete 

multinomial distribution for selecting one dictionary atom out of the possible K, (1) can be 

re-written as

(2)

where znl ∈ ∪ ui, ui = [0, 0, …, 1, …, 0]T with 1 in the ith entry (i ≤ K) and 0 in the rest K−1 

entries. The vector ‖znl‖0 = 1 is binary activating one dictionary atom at a time and sn = [sn1 

… snL]T ∈ ℜL only contains the coefficients of the selected atoms. If atom dk is the lth 

representation term, then znlk′ = 1, znlk′ = 0, ∀k′ ≠ k, and snl consists the kth entry of vector 

cn in (1), i.e. snl = cnk. The probability of selecting atom k for data xn is πnk such that znl ~ 

Multinomial (1, πn) with πn = [πn1, …, πnK]T ∈ ℜK. If the same atom is selected more 

than once, the corresponding coefficient is only once estimated.

B. Atom Sampling without Replacement

Sampling without replacement avoids duplicate atoms and keeps the l0-sparsity constraint 

intact. The problem of selecting L atoms out of the possible K can be formalized similarly to 

the classical experiment of taking colored balls at random from an urn without replacement 

[54], [55]. If the balls have a different weight, the result follows the Wallenius’ noncentral 

hypergeometric distribution [56].

In the considered problem, we can assume K dictionary atoms each of a different type (i.e. 

each ball in the urn has a different color) and selection probability π = [π1, …, πK]. If zn = 

[zn1, …, znK] ∈ ℜK, znk ∈ {0, 1} and ‖zn‖0 = L, indicates the selected atoms for xn, then (1) 

becomes

(3)

where “◦” represents the Hadamard or entrywise product and sn ∈ ℜK and zn follows the 

Wallenius distribution.
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C. Additional Probabilistic Assumptions

We assume independent atom coefficients sn1, …, snL each following a normal distribution 

with mean μsnl and precision γs, i.e. . We have considered a 

different mean μsnl for each exemplar data n and selected dictionary atom l to account for the 

various signal energy levels and possible atom configurations. We further hypothesize 

dictionary parameters of normal distribution θnk ~ Normal (gnk, Gn
−1) with mean gk and 

precision Gn. Finally, we assume zero mean Gaussian noise with variance , i.e. 

. Similar distributions have been also hypothesized in prior work 

[16], [41], [44] (Section I).

The Bayesian framework further treats the parameters of the above variables as random 

components in order to better capture uncertainty. We introduce conjugate prior distributions 

that simplify computations. Specifically, we assume that πn follows a Dirichlet prior, i.e. 

πnk ~ Dirichlet (α), where α = [a1 … aK]T, and the precision of the Gaussian noise follows a 

Gamma prior, i.e. γεn ~ Gamma (e, f). The mean vector gnk and precision matrix Gn of the 

dictionary atom parameters are modeled with Gaussian and Wishart distributions, 

respectively, i.e. gnk ~ Normal (g0, G0
−1) and Gn ~ Wishart (ν0, R0).

D. Objective

The goal is to find  such that

(4)

(5)

(6)

The probabilistic assumptions for (4)–(6) are summarized in Table I.

III. Inference with MCMC Sampling

The inference problem aims at finding solutions , n = 1 …, N, that maximize (4). Since 

(4) is not analytically tractable, we use MCMC for approximate inference because of its 

simple and fast implementation. We describe the inference procedure in Section III-A and 

provide the corresponding derivations in Sections III-B, III-C, and III-D.

A. MCMC Sampling

The large number of variables in our problem renders the simultaneous sampling from the 

full posterior quite prohibitive. For this reason, we divide the variable space y into blocks, a 
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technique which is usually referred as “block-at-a-time” MCMC [57], [58]. Suppose that the 

variable space is split into B blocks specified according to the problem characteristics, i.e. y 
= [y1

T, …, yB
T]T. Without loss of generality, we hypothesize these blocks are sampled 

sequentially from y1 to yB. This is referred as “deterministic-scan” MCMC sampling [59], 

[60], [61] and will be the focus of our paper.

When the posterior probability of a block b yields a known probabilistic distribution, we use 

the Gibbs sampler, otherwise we sample based on the MH [62], [63]. MH generates a 

sample with a candidate-generating (or proposal) density q. The MC transitions to the 

generated sample with a predefined probability of move. A critical component is the 

selection of proposal density, based on which MH samplers are divided into two categories. 

The first is the random-walk [62] with samples generated around the current value of the 

corresponding variables. Despite its simplicity, this method often depicts slow convergence 

depending on the variance of q [58], [64]. The second type, called independent MH [63], 

samples independently of the previous state. Its proposal density is close to the target 

distribution in a certain sense benefiting convergence. Previous work has considered 

Student-t distributions tailored to the target density [65], [66], [67], whose long tails ensure 

that no areas of the state space are left unexplored. The “MH-within-Gibbs” sampler uses 

MH to generate samples for blocks whose posterior does not yield a known distribution, and 

Gibbs to generate samples for the remaining blocks.

We will further discuss the use of “MH-within-Gibbs sampler” for our problem and the 

derivation of posteriors for each variable (Table II). We will assume that y−yb contains all 

variables except the ones included in the bth block (i.e. yb), which are currently being 

generated.

B. Sampling Dictionary Parameters

Let  be the indices of dictionary atoms that represent signal xn and 

 the corresponding atom parameters. The joint posterior of 

 can be written as
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(7)

where  and

Because of ϕ, we cannot find a known probabilistic distribution for (7), therefore we use MH 

for sampling θ̃n. The proposal density is a multivariate Student-t distribution with location 

μ̂θ̃n tailored to the target density with ν1 degrees of freedom and identity scale matrix V̂θ̃n, 

defined as

(8)

(9)
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(10)

The choice of Student-t is crucial for the uniform ergodicity of MCMC (Section VI). In the 

experiments (Section VII), we find a numerical solution to (9) using the Nelder Mead’s 

simplex [68] because of its simplicity compared to gradient-based approaches. From (8–9), 

we are able to jointly generate the parameters of the selected atoms, rather than generating 

each one separately. A large number of selected atoms increases the computational cost 

towards maximizing (9).

The posterior for the remaining atoms θnk ∉ ℐDn, generated with Gibbs, is

(11)

C. Sampling Atom Indices and Coefficients

The probabilistic selection of dictionary atoms gives the opportunity to test unseen 

combinations. This can alleviate disadvantages of greedy algorithms, since the 

randomization might overcome locally optimal solutions, as also observed in [39]. Because 

the atom indices and coefficients are interdependent, we will describe the sampling 

procedure for both.

In the case of sampling with replacement, the atom indices and coefficients are generated 

with the Gibbs sampler, as their posterior can be analytically derived based on the 

assumptions for their priors (Section II). In the following, we will denote εnl = xn − ∑l′≠l snl′ 
Dnznl′ the error for the exemplar data xn when we exclude the lth atom from the 

representation. Then the total representation error can be expressed as

(12)

The posterior distribution of znl can be written as

(13)

For deriving the above expression we took into account that znlk ∈ {0, 1} is a binary 

variable, implying that  and aznlk = aznlk, ∀a ∈ ℜ. Also znl has unit l0-norm, i.e. 
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‖znl‖0 = 1, resulting in znlkznlk′ = 0, ∀k′ ≠ k. As indicated in (13), this update procedure 

considers the similarity of dictionary atoms to the signal residual and the prior knowledge 

for selecting atom k. Finally, the posterior of snl is

(14)

By completing the square of the above quadratic formula with respect to snl and assuming 

dictionary atoms of unit norm, snl can be generated from a normal distribution (Table II).

To the best of our knowledge, we found no conjugate prior for the Wallenius’ 

hypergeometric distribution [53], therefore we used the independent MH with proposal 

distribution tailored to the Wallenius prior for sampling without replacement.

D. Sampling the Parameters of the Priors

The conjugate assumptions for the distribution of the parameters of the aforementioned 

variables allow us to use the Gibbs sampler to generate the corresponding samples. For the 

sake of completeness, we briefly sketch the derivation of the posteriors with sampling 

distributions shown in Table II.

(15)

(16)

(17)

(18)

where the dash “−” denotes {xn, ℋn}
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Algorithm 1

MCMC inference of parametric dictionary learning variables

Require: Data xn, hyperparameters ℋn

1: for n = 1, …, N do

2:   for m = 1, …, M do

3:

    Sample atom indices  or 

4:

    Find  s.t. 

5:

    Sample atom coefficients 

6:

    Sample noise vector 

7:

    Sample dictionary parameters 

8:

    Sample dictionary priors 

9:

    Sample atom selection probability priors 

10:

    Sample noise variance 

11:

    Sample  for generating 

12:

    Compute 

13:   end for

14: end for

E. Implementation of Bayesian DL

The problem variables (5) are inferred for each exemplar data separately. This method can 

yield signal-specific estimations of the noise variance, useful for denoising applications. It 

also allows sharing computational cost in MCMC inference, which typically requires a large 

amount of iterations to converge. Since more training samples are likely to require more 

MCMC iterations, if we had trained one dictionary on the entire dataset, the sequential 

nature of MCMC would have significantly slowed down convergence. It is worth mentioning 

that similar studies have acknowledged the difficulty of performing Bayesian inference in 

large datasets [43]. The MCMC inference procedure is outlined in Algorithm 1.

IV. Combination of Generated Dictionaries

The variables of the considered Bayesian problem are inferred for each exemplar data 

separately yielding sample-specific information useful for denoising and other applications, 

and allowing parallel implementations (Sections II, III). The latter is beneficial because of 
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the large amount of data in many applications, that render batch DL methods 

computationally expensive or even prohibitive. However, in order to obtain generalizable 

dictionaries, that are able to reliably represent unseen data, we need to combine the 

corresponding results into a unified model (Algorithm 2). While the Bayesian framework 

aims to maximize the posterior probability of the model parameters, DL is usually evaluated 

based on the reconstruction error. For this reason, the combination of the dictionaries that 

result from the Bayesian inference is performed based on a root mean square (RMS) error 

criterion.

Let  be the dictionaries generated with the MH-within-Gibbs sampler (Section III-E). In 

order to evaluate their performance using signal reconstruction criteria, we need to use a 

sparse decomposition algorithm, that can represent the original signal based on the inferred 

dictionaries. We use OMP [3], [4] because of its simplicity and effectiveness. Let  be 

the relative RMS error that yields from decomposing xn based on dictionary . Also let 

 be the dictionaries that yield the lowest relative RMS error for each signal n 

and  the parameters of the atoms that were selected by 

OMP based on .  are concatenated into a unified dictionary

Algorithm 2

Combination of generated dictionaries

Require: Data xn, generated dictionaries  , number of
      K-means clusters Nb

1: for n = 1, …, N do

2:   for m = 1, …, M do

3:

    Reconstruct xn based on  with OMP

4:

    Compute relative RMS error 

5:   end for

6:

  Find  such that 

7:
  Retrieve parameters of dictionary atoms selected by
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  OMP based on 

8: end for

9:

Concatenate 

10: Quantize dictionary parameters ΘQ=K-means(ΘU)

11: Compute the final dictionary DQ = ϕ (ΘQ) where ϕ
operates on each column of matrix ΘQ

Ideally, we could have used ΘU as the parameters of our final dictionary. However, in 

practice the large amount of data renders ΘU computationally expensive. For this reason, the 

parameter vectors of ΘU are further quantized with K-means clustering using Nbin centers. 

This results in parameter matrix ΘQ with corresponding final dictionary DQ. The 

aforementioned procedure is performed on the training data, while the test data are not seen 

at all during this step (Section VII-B5).

This approach can be applied to combine dictionaries learnt from any other method, 

therefore it also provides a unified platform that allows comparison of the considered 

parametric DL approaches in our paper (Section VII).

V. Choosing the Parametric Dictionary Function

The choice of the parametric dictionary function is not trivial and is usually guided by the 

application of interest. If designed appropriately, parametric dictionaries can yield 

interpretable information about meaningful signal characteristics for a variety of 

applications. Previous studies have used Gabor [69] and Gammatone [24] atoms to represent 

speech signals because of their good localization properties and similarities to the human 

auditory system. Other efforts have proposed Gaussian-like functions to efficiently capture 

spherical stereo images [70], diffusion-based dictionaries to model MRI [25], and other 

wavelet-like atoms for digitizing fingerprint images [71]. Gabor dictionaries have been used 

for the electroencephalogram (EEG) [72], spline wavelets for the electrocardiogram (ECG) 

[73], and sigmoid-exponential functions for the electrodermal activity (EDA) [28].

Our Bayesian parametric DL approach generates the parameters of the dictionary atoms 

based on the MH sampler (Section III-B). The mean of the corresponding distribution 

depends on the considered parametric function and is selected so that it maximizes the 

corresponding posterior distribution (7). We will further show that the concavity of (7) 

generally depends on function ϕ. It is unusual that a function ϕ is concave with respect to all 

the parameters of interest, but in practice even the estimation of local optima is enough to 

generate useful samples (Section VII-C).

The posterior (7) of the dictionary atom parameters is:
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(19)

If we set ψn (θ̃n) = xn − Sn ϕ̃n (θ̃n), then (19) becomes

(20)

The gradient vector and Hessian matrix of (20) are

(21)

(22)

where

(23)

If Hψnp
 is the Hessian of ψnp, p = 1, …, PL, then from (23)

(24)

The Hessian of ψnp can be computed as
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(25)

(26)

From (22), (24) and (26), we get

(27)

The first two terms of (27) are postive-definite matrices, whereas the positive-definiteness of 

the third term depends on ϕ. In our experiments (Section VII) and in the literature mentioned 

in this section, function ϕ is selected with a knowledge-driven approach based on the 

application of interest. Although this does not guarantee that the generated atom parameters 

are the global maxima, in practice the corresponding sampling method yields satisfactory 

results (Section VII-C).

VI. MCMC Convergence for Bayesian DL

Ergodicity properties of large-dimensional MC have been the subject of several studies [60], 

[74]. We discuss the uniform ergodicity property of the considered MC which implies 

convergence independently of the initial state [51], [52]. We focus on the sampling with 

replacement case, although our discussion can be extended for atom sampling without 

replacement. We show that the MC used for inferring the variables of the Bayesian DL 

problem is uniformly ergodic by proving that it meets the conditions of Theorem 6.1. This 

theorem establishes uniform ergodicity for the MH-within-Gibbs sampler and its proof can 

be found in [61].

Let P be a Markov transition kernel (Section III-A) and Y(m), Y(m+1) be two consecutive 

MCMC states generating observations y(m), y(m+1). We will assume that  and  are 

the values of block b at the current and previous MCMC state, noted as m+1 and m, 

respectively. Also,  contains all variables that have already been sampled at state m 

+ 1 and  the ones from the previous state m.

Definition 6.1 (Conditional Weight Function)

If block b generated with the MH sampler, its conditional weight function is defined as
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(28)

Theorem 6.1 (MH-within-Gibbs Uniform Ergodicity)

Given p(y|X, ℋ) on state space y = [y1
T … yB

T]T, let P = P1 … PB be the Markov kernel of 

the Gibbs sampler and Qb, b ∈ ℐB′, where ℐB′ = {bi1, …, biB′}, B′ < B, be the Markov 

kernel of the MH sampler with conditional weight wyb′ as in (28). If each conditional 

weight wyb′, b′ ∈ ℐB′, of the MH sampler is bounded, sup wyb′ < ∞, and the Gibbs 

sampler with Markov kernel P1 … PB is uniformly ergodic, then the MH-within-Gibbs 

sampler, resulting from substituting kernels Pb′ with Qb′, b′ ∈ ℐB′, is also uniformly 

ergodic.

Based on Theorem 6.1, we show the MCMC uniform ergodicity for our case. Theorem 6.2 

describes the minorization condition of the Gibbs sampler. This consists a multivariate 

extension from Jones et. al [61] (Proposition 2). Lemma 6.1 assists with its proof and 

ensures the minorization of the first B − 1 blocks. Lemma 6.2 ensures that the conditional 

weight for θk is bounded away from infinity. Finally, Theorem 6.3 combines all the 

aforementioned to prove the uniform ergodicity of the considered MC. The proofs of the 

theorems 6.2, 6.3 and lemmas 6.1, 6.2 can be found in Appendix A

Lemma 6.1 (Minorization Condition of B − 1 Blocks)

Let P((Y1, Y2, …, YB), A1 × A2 × … × AB) be the Markov kernel of a Gibbs sampler, where 

A1, …, AB are elements of the Borel σ-algebra on the variable space Y1, …, YB, 

respectively. We further assume that all updates of the Gibbs sampler, except the one 

corresponding to YB, are minorisable, in the sense that for b = 1, …, B − 1, there is εb > 0 

and a probability measure νb, such that PYb(y−yb, A−b) ≥ εbνb(A−b), where A−b = A1 × … × 

Ab−1 × Ab+1, …, AB. The Gibbs sampler with Markov kernel P1 … PB−1 is minorisable, i.e. 

there exist ε0 > 0 and probability measure ν0 such that

Theorem 6.2 (Partial Minorization Condition for Gibbs)

Let the same assumptions from Lemma 6.1 hold, then the Gibbs sampler with Markov 

kernel P1 … PB is minorisable.

Lemma 6.2 (Bounded Conditional Weight of Dictionary Parameters)

Let the same assumptions from Lemma 6.1 hold. The conditional weight of the Bth block 

that includes the “super-vector” θ̃n of dictionary parameters and is generated with MH 

according to (8)–(10), is bounded, i.e. sup wθ̃n < ∞.
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Theorem 6.3 (MC Uniform Ergodicity for Bayesian DL Inference)

Let yn be the variables of the parametric DL problem (4) generated with the MH-within-

Gibbs sampler (Algorithm 1), according to which all variables except θ̃n are sampled with 

Gibbs (first B − 1 blocks), while θ̃n is sampled with MH (Bth block). Then the 

corresponding MC {Y(1), Y(2), …} is uniformly ergodic.

VII. Experiments

We compare the Bayesian DL model against the previously proposed parametric SD [22] 

and ETF [24], which are conceptually closer to our approach. We further perform 

experiments with the non-parametric K-SVD [14] yielding dictionaries of arbitrary structure, 

therefore not directly comparable to our approach. We use synthetic and real biomedical data 

from EDA signals. Because of their characteristic structure, these types of signals favor 

sparse representation approaches with parametric dictionaries providing interpretable 

information [28].

EDA is decomposed into a slow moving tonic part depicting the general trend and a phasic 

part which contains fast fluctuations superimposed onto the tonic signal, also called skin 

conductance responses (SCR). The tonic part is mathematically expressed as a straight line, 

while SCRs are represented by sigmoid-exponential functions with a steep rise and slow 

recovery. Taking this into account, dictionaries contain tonic and phasic atoms as shown in 

Table III. Since SCR shapes typically contain higher variability than the signal level, which 

remains fairly constant throughout an analysis window, for the sake of simplicity we 

perform DL on the phasic atoms for learning the parameters θ = [t0, Trise, Tdecay]T. The 

initial dictionaries are created from the combination of all parameters reported in Table III, 

resulting in 63 tonic and 144 phasic atoms. The analysis window is 5sec, i.e. 160 samples 

with typical sampling frequency of 32Hz [28].

A critical issue of MCMC is whether a certain number of iterations is enough to stop 

sampling. In high-dimensional problems, all inferred variables need to converge to the target 

distribution. Since examining each variable separately is not always feasible, we use a 

combination of monitoring and diagnostic strategies to quantitatively assess MCMC 

convergence.

In the following, we describe the data (Section VII-A), the experimental setup (Section VII-

B), and the results evaluating the learned dictionaries (Section VII-C) and providing 

diagnostics for MCMC convergence (Section VII-D).

A. Data Description

1) Synthetic Data—We randomly generate 1000 synthetic signals that simulate the EDA 

structure. Each signal is expressed as the sum of a constant c and R number of SCRs

(29)
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where  is given in Table III with parameters  and . In contrast to the rest of 

the paper, in which superscript “(·)” denotes the MCMC state, here it symbolizes the SCR 

index. The parameters of the synthetic data are randomly generated within a pre-specified 

range  samples, Trise,(r), , and R ∈ [1, 5]. Since the number of 

SCRs for each signal is known a priori, DL was performed with K = R + 1 number of atoms, 

from which one captures the tonic part and the rest, the phasic.

2) Real Data—We further evaluate the considered DL methods on human EDA data from 

the database of emotion analysis using physiological signals (DEAP) [75]. DEAP contains 

40 one-minute recordings from 32 subjects watching long excerpts of music videos designed 

to study the relation of multimedia content with mood and temperament [75]. Because of the 

expected SCR rate in the considered 5sec analysis window [76], training was performed 

with K = 3 atoms, although similar results yield for different values.

B. Experimental Setup

1) Bayesian DL—The proposed MCMC inference (Algorithm 1) is performed with 1000 

and 500 iterations for the synthetic and real data, respectively. The atom indices znl, 

coefficients sn and selection probabilities πn are initialized based on the decomposition of 

each exemplar signal with OMP. The mean μsn of the coefficients’ prior was initialized with 

the average of the coefficients of the selected atoms from OMP. The mean and precision of 

dictionary atoms’ prior g0 and G0 were initialized with the mean and inverse covariance 

matrix of the initial parameters (Table III). The scale matrix R0 of the Wishart distribution 

for sampling Gn was also initialized with the covariance of dictionary parameters. The 

remaining hyperparameters were empirically set to αk = 2, e = 1, f = 2, ν0 = 3, γs = 10, and 

γe = 8.

Dictionary combination (Algorithm 2) was performed on the generated vector parameters 

[Trise, Tdecay]T with Nb = 100, 225, 400. We did not include the time offset t0 in this 

procedure, since it does not contribute to the shape of the dictionary atoms; the final 

dictionaries should contain the learnt versions of phasic atoms shifted across the entire 

analysis frame. Therefore, the quantized matrix of dictionary parameters ΘQ ∈ ℜ2×Nb is 

replicated for all values of t0 (Table III), yielding final dictionaries with 16Nb phasic atoms.

2) Steepest descent DL—Dictionaries are trained in parallel for each exemplar data 

using the SD [22], in which OMP alternates with a least-squares fit step for estimating the 

parameters of the selected atoms. SD was run over 250 iterations. We perform the same 

procedure for combining the learnt parameters, yielding dictionaries of same size with 

MCMC.

3) Equiangular tight frame DL—This method alternates between finding the dictionary 

with minimum Frobenius distance from the ETF and updating the corresponding parameters 

[24]. These steps involve an ETF relaxation constraint value and a gradient descent step, 

crucial for the overall performance, referred in [24] as αk and ε. In our experiments, 

dictionaries were trained with different combinations of αk ∈ {0.1, 0.5, 0.9} and ε ∈ 
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{0.001, 0.002, 0.003, 0.004}. The dictionary { , ε*} that showed the lowest relative RMS 

error on the training data was used to evaluate the corresponding test data. In order to ensure 

the same dictionary size as the other approaches, parameters are uniformly initialized within 

the intervals Trise ∈ [8, 18], Tdecay ∈ [10, 20] with  different values.

4) K-SVD—K-SVD is a classical non-parametric DL method generalizing K-means and 

iteratively estimating each dictionary atom in order to minimize the reconstruction error 

[14]. The original dictionaries used in this method were the same as the initial ones of the 

aforementioned approaches.

5) Evaluation—Evaluation of the final dictionaries is performed based on the relative RMS 

error computed between the original signal and its corresponding approximation through 

OMP based on the final dictionaries. RMS error is a common metric in related studies [14], 

[15], [24]. In order to ensure that our results reflect the ability of the algorithms to represent 

unseen data, all experiments are performed within a 10-fold cross-validation for the 

synthetic data and a leave-one-subject-out cross-validation setup for the real EDA signals. 

We note that OMP has two functionalities in our framework. It serves as a decomposition 

technique, based on which the learned dictionaries are evaluated against the test data, and is 

also used at the dictionary combination step (Section IV) in order to “prune” the atoms of 

the generated dictionaries. OMP does not operate on the test data during this dictionary 

combination framework, but rather at the evaluation step, during which the final dictionary is 

already created independently of the test set.

Besides signal reconstruction, dictionary coherence is an additional evaluation criterion. It is 

defined as the absolute value of the largest inner-product between any atoms of the 

dictionary and is an important property related to signal reconstruction quality [24]. We 

computed the resulting coherence of the dictionaries after training.

C. Results

Visual inspection of the final dictionaries indicates that SD does not always preserve the 

initial dictionary structure (Figs. 1a–b), while ETF yields less variable dictionaries (Fig. 1c). 

MCMC results in a variety of atoms preserving the original shape (Fig. 1e–f). In contrast to 

parametric DL, non-parametric K-SVD yields very unstructured non-interpretable atoms 

(Fig. 1d). Further comparison between an exemplar input and the reconstructed signals 

suggests that our approach depicts superior signal representation (Fig. 2).

Dictionaries learnt from our proposed Bayesian DL yield lower reconstruction errors 

compared to the initial ones and the ones learnt through SD and ETF (Fig. 3). Atom 

sampling with and without replacement are not significantly different, since the two 

distributions are very similar for K≫L. Dictionaries trained using SD perform quite poorly 

on unseen synthetic data (Figs. 3a–c), which might occur because their simple structure 

causes significant overfitting to least-squares-based methods. Despite the fact that ETF DL 

is not prone to overfitting, since it does not take into account exemplar data during training, 

it lacks adaptation to more complex real data (Figs. 3d–f). K-SVD appears more accurate for 

real signals than the parametric approaches (Figs. 3d–f), indicating its ability to learn more 
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complex patterns, not necessarily of the same structure as the initial dictionaries. Similar 

results occur for different dictionary sizes, omitted here for the sake of simplicity.

The large number of atoms generally yields dictionaries of high coherence. All considered 

methods appear quite equivalent, with ETF achieving the lowest coherence, since this is 

included as an optimization metric (Table IV).

D. MCMC Diagnostics

Besides theoretical analysis (Section VI), another way to examine MCMC convergence is to 

see how well the MC is mixing, which is usually achieved through visual inspection. 

Traceplots of several problem variables from an exemplar signal indicate that the considered 

chains move around the parameter space and are not only limited in certain areas suggesting 

good mixing (Figs. 4a–d). Density plots of the generated samples further validate that the 

estimated posteriors are close to the target distributions (Figs. 4e–h).

Convergence diagnostics can further quantitatively assess if there is a bias from generated 

samples. We use the Geweke diagnostic [77], because it only requires one running chain and 

attempts to address issues of both bias and variance [78]. It takes two non-overlapping parts 

of the MC (usually the first 0.1 and last 0.5) and compares their mean using a difference of 

means test. If the samples are drawn from the stationary distribution of the chain, the two 

means are equal. The test statistic is a standard Z-score with values under convergence 

within two standard deviations from zero, i.e. |z| < 2 for the standard normal distribution. We 

perform the Geweke test for both datasets and atom sampling methods (Sections II-A,II-B) 

with the first 100 samples used as a burn-in period.

The high-dimensionality of our problem prohibits us to report diagnostics for each variable 

separately, therefore we will summarize the results for groups of variables. For each group 

of variables, we report the proportion of chains for which |z| < 2 (Table V). Most of the 

variables in our framework succeed on the Geweke diagnostic. The dictionary parameters, 

generated with MH, usually have a lower success percentages. Although there is a reduced 

number of cases where the Geweke diagnostic fails, given the large number of variables and 

the signal reconstruction results (Section VII-C), the performed number of MCMC iterations 

appears to result in meaningful dictionaries learned through this process.

MH acceptance rate refers to the fraction of candidate draws that are accepted and is 

important for convergence. Very high acceptance rates suggest that the chain is not mixing 

well, while very low rates might be inefficient. The acceptance rates for the variables of our 

problem (Table VI) are close to previously proposed optimal values in the literature [79] 

suggesting a good mixing of the considered MC.

VIII. Discussion

An important benefit of Bayesian methods yields in providing estimates of the entire 

variable set of a problem. In the considered setup this can help inferring the dictionary size, 

the optimal number of dictionary atoms for a given signal, and the corresponding noise 

levels. Estimation of the dictionary size is not as crucial in our greedy sparse representation 
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approach, that is not as prone to overcomplete dictionaries as basis pursuit methods [5]. 

Inferring the optimal number of dictionary atoms is important, as it can yield high 

compression rates and help interpret the underlying signal information. An extension of our 

method could have imposed discrete probabilistic distributions onto the number of atoms 

appropriately inferred through MH.

Another advantage of Bayesian methods is that they are less prone to overfitting, which 

usually occurs with deterministic algorithms that might describe the random noise instead of 

the actual data [81]. This is reflected in our results (Section VII-C), since deterministic SD, 

that does not include prior knowledge of the signal structure, performs more poorly on 

unseen data. On the other side, ETF avoids overfitting, but does not learn the morphology of 

training data. Bayesian inference appears to compromise between the two.

Inherent differences exist between parametric and non-parametric DL methods. The first 

impose a predetermined structure on the input space (through function ϕ) and learn the 

parameters that represent this structure from the training data. Their major benefit lies in 

their interpretability, since the considered dictionary atoms are able to meaningfully capture 

the characteristics of input signals and can be used for knowledge-driven classification and 

inference. On the other hand, the exemplar signals learned from non-parametric methods are 

hardly interpretable and can blindly represent the input space. Since the functionality and 

scope of these methods is so different, meaningful comparison is challenging. In the case of 

synthetic data, where function ϕ is a perfect match to the signal (i.e. input signals are built 

with the same functions as the dictionary atoms), our proposed parametric Bayesian 

approach is more reliable than K-SVD in learning the hidden atom parameters. This means 

that given a perfectly constructed dictionary function, Bayesian parametric DL yields better 

results, even compared to non-parametric approaches. However, in the case of real signals, 

function ϕ cannot always perfectly selected, therefore parametric approaches seem to 

perform slightly worse than K-SVD. While more precise function might have yielded lower 

errors, the problem of finding the optimal mapping function is still active in research [82].

Although our proposed approach is general for learning the parameters of the dictionary 

atoms, we need to have good knowledge about the appropriate mapping function ϕ between 

the parameters and the data. As discussed in Section V, the selection of ϕ is usually guided 

by the application of interest and can vary for different types of signals. In the case of 2D 

images, for example, the dictionary needs to be constructed using a function ϕ that captures 

the context of the image, such as a Gabor or wavelet-like function. In order to reduce 

complexity, we can convert the 2D image into a 1D vector with dimensionality equal to the 

number of pixels, as typically performed [14], [40], [44]. Given a function ϕ suitable for the 

image of interest, our Bayesian approach can learn the parameters that efficiently capture the 

shape of the data.

In this paper, for the sake of simplicity we considered a simple dictionary combination 

approach with K-means quantization (Section IV). However, there exist more sophisticated 

approaches of block-coordinate descent with warm restarts [17] and weighted batch 

averaging [43].
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Convergence is a critical component of MCMC in the context of Bayesian inference. In 

Section VI, we discussed the uniform ergodicity of the corresponding MH-within-Gibbs 

sampler, ensuring that the MC converges to the invariant distribution. Convergence rate is 

another important issue, for which previous studies have proposed explicit theoretical 

bounds in simple scenarios [59], [83]. The computation of these bounds can be quite 

difficult in such high-dimensional problems [84], therefore it goes beyond the scope of our 

study.

IX. Conclusions

We propose a sparse Bayesian model for parametric DL, whose problem variables follow 

appropriately selected probabilistic distributions. We use MH-within-Gibbs to infer the 

corresponding variables, because of its ability to compensate for posterior distributions that 

cannot be analytically computed. We further show the uniform ergodicity of the proposed 

MCMC through the minorization of the corresponding Gibbs sampler and the bounded 

conditional weights of the MH. Our experimental results performed on synthetic and real 

biomedical signals indicate that this approach offers benefits in terms of signal 

reconstruction compared to previously proposed SD and ETF methods and also provides a 

good tradeoff between learning the signal structure and avoiding overfitting.
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Appendix A

MCMC Ergodicity Proofs

We provide the proofs for the theorems and lemmas of Section VI.

Proof of Lemma 6.1

We assume that the sampling order is Y1, …, YB−1. Let  and {y1, …, yB} be 

the block variables at the current and previous MCMC state, respectively. The conditional 

probability for sampling the first B − 1 blocks is
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where y−b contains all variables except yb. The Markov kernel for the first B − 1 blocks can 

be written as in (30). The first and second inequalities in (30) occur from the minorization of 

the (B − 1)th and (B − 2)th blocks. Therefore  and  (a 

probability measure) that satisfy the desired inequality.

(30)

Proof of Theorem 6.2

If we assume that the sampling order is Y1, …, YB, the Markov kernel of the Gibbs sampler 

can be expressed as in (31). The first inequality in (31) results from Lemma 6.1 and can 

yield to a minorization condition for the entire Gibbs sampler.
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(31)

Proof of Lemma 6.2

From Def. 6.1, Table II, and (7–8)

(32)

Using (10), we have

since G̃
n is the precision matrix of Gaussian distribution, therefore has finite eigenvalues and 

determinants, and τ < ∞. Moreover  because  for n = 

1, …, N and γεn > 0. Finally the function

(33)

is bounded since f(θ̃n) → 0, ‖θ̃n‖ → ∞, and f is continuous. Function f remains bounded at 

‖θñ‖ → ∞, since the quadratic forms (θ̃n − g̃n)T G̃
n(θ̃n − g̃n) and 

 increase to infinity at the same rate, and the denominator 

increases exponentially fast, while the numerator with polynomial rate.

Proof of Theorem 6.3

The first B − 1 blocks of yn, that are generated with the Gibbs sampler, follow well-known 

distributions (Table I), therefore it is trivial to show that their updates are minorisable. From 
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Theorem 6.2, since the partial updates for all blocks except the last one are minorisable, the 

entire Gibbs sampler is minorisable, therefore uniformly ergodic. From Lemma 6.2, the 

conditional weight of the Bth block yθ̃n generated with the MH is bounded. Thus the MH-

within-Gibbs sampler meets the conditions of Theorem 6.1, therefore it is uniformly ergodic.

Appendix B

Computational Complexity

We analyze the computational complexity of our proposed framework for each MCMC step 

(Algorithm 1, Table II) using the “ ” notation. For an input signal and MCMC iteration, the 

weight of the Multinomial distribution for each atom is computed with cost (P), i.e. (PK) 

for all atoms. Sampling L indices from K dictionary atoms with replacement results in 

(LK), therefore the final cost yields (PK + LK). For sampling without replacement, re-

adjusting the atom weights requires  ((K − 1) + … + (K − L + 1)) ~ (LK). Since each of 

the L iterations takes into account the previously selected atoms [55], the cost of the 

Wallenius distribution is  (K + (K − 1) + … + (K − L + 1)) ~ (LK).

Each of the L coefficients is generated from the normal distribution, whose mean requires 

(P), therefore the entire complexity is (LP). Regarding the dictionary atom parameters, 

their posterior (7) requires  (L(P + Q2)), while the typical cost of the Nelder Mead’s 

simplex is  (Q2) [80]. Finally, complexity results in (1) for the noise εn, (K + L) for the 

Dirichlet prior πn, (Q2) for the mean gnk and precision Gn of the dictionary parameters 

prior, and (P) for the noise precision γεn.

Taking these into account, the total complexity when using sampling with and without 

replacement, respectively, yields:

(34)

(35)

Our approach requires first-order polynomial time with the signal dimensionality P, the 

number of dictionary atoms K, and the number of selected atoms in the representation L ≪ 
K, and second-order polynomial cost with respect to the number of dictionary parameters Q. 

We note that Q ≪ P, L, therefore the latter is not too expensive.

We further compare run-time statistics of all the approaches. We report the average duration 

of one training iteration and the number of estimated variables for each approach (Table B1). 

Experiments were performed with an Intel Core i7 Processor with CPU at 2.93Hz and RAM 

at 7.8GB. SD and K-SVD require a decomposition step, therefore they compute slightly 

more variables than ETF. Our method estimates the highest number of variables, including 

the priors of the considered problem. Results indicate that SD and ETF are computationally 

less expensive than the proposed MCMC. Consistently with previous observations [19], K-
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SVD also has high computational cost. MCMC sampling with and without replacement 

yield computation times of the same order.

TABLE B1

Average computation time of dictionary learning algorithms

Method # Variables Computation Time
(sec / training iteration)

SD 438 0.1173

ETF 432 0.0616

K-SVD 438 3.9536

MCMC w- rplcm 1024 3.5014

MCMC w-o rplcm 1024 4.9638
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Fig. 1. 
Example of initial dictionary and dictionaries learnt Steepest Descent (SD), Equiangular 

Tight Frame (ETF), K-SVD and Markov Chain Monte Carlo Bayesian inference (MCMC) 

using atom sampling with and without replacement (w-,w-o rplcm). Dictionary combination 

is performed with Nb = 400. An instance of phasic atoms shifted with t0 = 30 is shown.
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Fig. 2. 
Example of input EDA signal (solid cyan line) and reconstructed signals using the original 

dictionary (blue dashed line) and the dictionaries learnt with Steepest Descent (SD), 

Equiangular Tight Frame (ETF), and Markov Chain Monte Carlo Bayesian inference 

(MCMC) (black-triangle, green-asterisk, and red-circled lines, respectively). Reconstruction 

is performed using orthogonal matching pursuit with 4 iterations.
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Fig. 3. 
Relative root mean square (RMS) error between original and reconstructed signal with 

respect to the number of (orthogonal) matching pursuit (OMP) iterations. Dictionaries are 

learnt with Steepest Descent (SD), Equiangular Tight Frame (ETF), K-SVD, and Markov 

Chain Monte Carlo Bayesian inference (MCMC). During MCMC atom sampling is 

performed with (w-) and without (w-o) replacement (rplcm).
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Fig. 4. 
Example MCMC trace plots and generated posteriors for the first element of vectors 

containing the (a,e) dictionary atoms θn, (b,f) atom coefficients sn, (c,g) atom priors πn, and 

(d,h) for the noise precision γεn.
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TABLE I

Prior distributions of Bayesian dictionary learning variables.

Variable Type Expression (Hyper) Parameters

znl
† ∈ ∪ ui

Multinomial (1, πn)

πn: outcome
probability

zn
‡ ∈ ℜK Wallenius (1K, L, πn)

sn ∈ ℜL

Normal (μsn, )

μsn: mean
γs: precision

θnk ∈ ℜQ Normal (gnk, Gn
−1) gnk: mean

Gn: precision

εn ∈ ℜP

Normal (0, )

γεn : precision

πn ∈ ℜK Dirichlet (α) α: concentration
parameters

gnk ∈ ℜQ Normal (g0, G0
−1) g0: mean

G0: precision

Gn ∈ ℜQ×Q Wishart (ν0, R0) ν0 > Q − 1: dof
R0: scale matrix

γεn ∈ ℜ Gamma (e, f) e: shape
f: rate

Γ, ΓQ: (multivariate) gamma functions, dof: degrees of freedom, 1K = [1, …, 1]T ∈ ℜK

†
: atom sampling with replacement (‖znl‖0 = 1), ui = [0, 0, …, 1, …, 0]T with 1 in the ith entry, 0 otherwise

‡
: atom sampling without replacement (‖zn‖0 = L)
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TABLE II

Description of Metropolis-Hastings-within-Gibbs sampling distributions.

Variable Sampling Distribution/Proposal Sampling Method

znl
† ∈ ℜK

Multinomial (1, pnl)
Gibbs

zn
‡ ∈ ℜK Wallenius (1k, L, πn) Metropolis-Hastings

snl ∈ ℜ Gibbs

* 

Student-t (μ̂θ̃n, V̂θ̃n, ν1) Metropolis-Hastings

† θnk ∈ ℜQ, k ∉ ℐDn
Normal (gnk, Gn) Gibbs

εn ∈ ℜP Gibbs

πn ∈ ℜK Gibbs

gnk ∈ ℜQ Gibbs

Gn ∈ ℜQ×Q Gibbs

γεn ∈ ℜ Gibbs

*
,

†
, 1K = [1, …, 1]T ∈ ℜK

†, ‡
: atom sampling with/without replacement
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TABLE III

Description of EDA-specific dictionary atoms and initial parameters.

Tonic Atoms

ϕ1(t) = Δ0 + Δ · t Δ0 ∈ {−20, −10, 1}
Δ ∈ {−0.01, −0.009, …,
0, 0.01, 0.02, …, 0.1}

Phasic Atoms

Trise ∈ {8, 14, 18}
Tdecay ∈ {10, 15, 20}

t0 ∈ {0, 10, 20, …, 150}

u(t) = 1, t ≥ 0 and u(t) = 0 otherwise

IEEE Trans Signal Process. Author manuscript; available in PMC 2017 June 23.



A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

Chaspari et al. Page 40

TABLE IV

Final dictionary coherence

Method Synthetic Data Real Data

Initial 1 1

SD 0.9990 0.9992

ETF 0.9988 0.9990

K-SVD 0.9989 0.9991

MCMC w- rplcm 0.9989 0.9991

MCMC w-o rplcm 0.9989 0.9991
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TABLE VI

Metropolis-Hastings acceptance rates (%)

Synthetic Data Real Data

w- rplcm w-o rplcm w- rplcm w-o rplcm

23.22 31.52 25.48 38.15
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