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Abstract

We find large deviations rates for consensus-based distributed inference for directed networks. When

the topology is deterministic, we establish the large deviations principle and find exactly the corresponding

rate function, equal at all nodes. We show that the dependence of the rate function on the stochastic

weight matrix associated with the network is fully captured by its left eigenvector corresponding to the

unit eigenvalue. Further, when the sensors’ observations are Gaussian, the rate function admits a closed

form expression. Motivated by these observations, we formulate the optimal network design problem

of finding the left eigenvector which achieves the highest value of the rate function, for a given target

accuracy. This eigenvector therefore minimizes the time that the inference algorithm needs to reach

the desired accuracy. For Gaussian observations, we show that the network design problem can be

formulated as a semidefinite (convex) program, and hence can be solved efficiently. When observations

are identically distributed across agents, the system exhibits an interesting property: the graph of the rate

function always lies between the graphs of the rate function of an isolated node and the rate function

of a fusion center that has access to all observations. We prove that this fundamental property holds

even when the topology and the associated system matrices change randomly over time, with arbitrary

distribution. Due to generality of its assumptions, the latter result requires more subtle techniques than

the standard large deviations tools, contributing to the general theory of large deviations.
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I. INTRODUCTION

The field of wireless sensor networks (WSN) has significantly evolved since its beginnings about

two decades ago. Starting from wildlife monitoring, smart housing, and building and infrastructure

surveillance [1], the applications of WSNs have grown both in diversity and in scale. They now include

monitoring and control of some highly complex large scale systems, such as vehicular networks and

electric power grids. One of the important emerging trends in this field are also networks consisting of

thousands of very small and simple sensing devices, such as microrobots [2] and nano-networks [3].

Due to the increased complexity and scale of WSNs, there has been significant interest recently in

algorithms that process network information using local communications only [4], [5], [6]. A representa-

tive of this class of algorithms is the consensus algorithm [7], [8], [9]. With consensus algorithms, each

agent maintains over iterations an estimate of the quantity of interest and over time it communicates

the estimate to its immediate neighbors. In addition, intertwined with local communications are local

agents’ innovations, where agents collect new measurements and incorporate them in an iterative fashion

in their current estimates. Algorithms of this form referred to as consensus+innovations [10] possess

several desirable features, including scalability and simplicity of implementation. Further, they are robust

to structural changes in the system, such as node failures and intermittent communications, which are

typical for complex systems consisting of many structurally simple devices. In terms of applications, con-

sensus algorithms have been applied in various different contexts: distributed Kalman filtering [11], [12],

distributed detection [9], [13], [8], [14] and parameter estimation [7], [15], [10], distributed learning [16],

and tracking [17].

In this paper, we study large deviations performance of consensus algorithms when the underlying

network is directed. This complements the existing work that usually studies asymptotic variance or

asymptotic normality [10], [18]. Our goal is to compute (or characterize–when exact computation is not

possible) the rates at which the local nodes’ estimates converge to the desirable values (e.g., the vector

of true parameters that are being estimated). To explain the relevance of large deviations performance,

consider, for example, a binary hypothesis testing problem in a WSN. In this context, the rates of large

deviations correspond to error exponents, i.e., they provide answers to how fast the error probabilities –

false alarm, missed detection, or total error probability decay with time. In the context of estimation, large

deviation rates provide estimates of times to reach a desired accuracy region around the true parameter

that the local estimates converge to. Naturally, the higher the rate of a node, the better is the decision or

estimation produced by that node at a given time. One particular goal of this paper is to provide answers
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to questions such as: “How much faster a node in a network filters out the estimation noise compared

to a node that operates alone?”

Contributions. We consider both cases when the local nodes’ interactions are deterministic and when

they are random, where the local interactions are captured by associated stochastic system matrices1. For

the deterministic case, we prove the large deviation principle at each node, and we find the corresponding

rate function, equal at all nodes. We prove that its dependence on the (stochastic) system matrix A is

fully captured by the left eigenvector a of A associated with the eigenvalue one, i.e., the left Perron

vector of A. When the observations are Gaussian– independent, but non-identically distributed, we find

a closed form expression for the rate function. Motivated by the fact that the rate function strongly

depends on the eigenvector a, we formulate the following network design problem. For a given accuracy

region, find the optimal vector a that maximizes the value of the rate function on this fixed region. We

further show that for Gaussian observations with equal means (but different covariance matrices), this

problem can be formulated as a semidefinite program (SDP) and thus can be solved efficiently. Simulation

examples demonstrate that the optimized system significantly outperforms the system with the uniform

left eigenvector a that, in a sense, equally “weighs” all of the nodes’ estimates. Finally, considering the

special case when the observations are independent and identically distributed (i.i.d.), we reveal a very

interesting property: the rate function, independently of the choice of A, always lies between the rate

function of an isolated node and the rate function of a fusion center. Intuitively, this means that the

distributed system is always better than an isolated node, and that, on the other hand, can never beat the

performance of a fusion center. Moreover, we prove that this fundamental property holds with random

system matrices of arbitrary distribution (including, e.g., temporal dependencies), as long as they are

independent from the observations. Due to the generality of the assumptions, the proof of this result

requires much more sophisticated techniques than the deterministic case, which improve over the state

of the art large deviations techniques and hence constitute a contribution of its own.

Related work. Large deviations asymptotic performance of consensus+innovations algorithms has been

previously studied in [9],[13],[19],[20], and [21]. Reference [19] studies large deviations of the stochastic

Riccatti equation for the distributed Kalman filter, and it provides an upper and a lower bound for the

large deviations rate function. Reference [20] considers a consensus based distributed detection with

constant learning step. They show that the local decision statistics satisfy the large deviations principle and

characterize the corresponding rate function. Reference [21] studies belief formations in social networks

1With a stochastic matrix, rows sum to one, and all the entries are nonnegative.
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and characterizes error exponents (Kullback-Leibler divergences) for the distributed multiple hypothesis

testing problem. In our previous work [9],[13], we considered the case of i.i.d. networks, where each

topology realization is symmetric. Under this model, reference [9] finds an upper and a lower bound for

the rate function when the observations are Gaussian, and reference [13] extends the results of [9] to

arbitrary distributions of sensor observations. In this work, we go beyond these results in several important

directions. First, we study here directed random networks, and, furthermore, we make no restrictions on

the distribution of the system matrices; in particular, we allow for their arbitrary time correlations. Second,

when the system matrices are deterministic, asymmetric, we fully characterize the rate function and show

that it is amenable to optimization.

Notation. For arbitrary d ∈ N = {1, 2, ...}, we denote by 0d the d-dimensional vector of all zeros; by

1d the d-dimensional vector of all ones; by ei the i-th canonical vector of Rd (that has value one on the

i-th entry and the remaining entries are zero); by Id the d-dimensional identity matrix; by Jd the d× d

matrix whose all entries equal 1/d. For a matrix A, we let [A]ij and Aij denote its i, j entry and for a

vector a ∈ Rd, we denote its i-th entry by ai, i, j = 1, ..., d. For a function f : Rd 7→ R, we denote its

domain by Df =
{
x ∈ Rd : −∞ < f(x) < +∞

}
; the subdifferential (gradient, when f is differentiable)

of f at a point x by ∂f(x) (∇f(x)); log denotes the natural logarithm; for two sequences ft and gt that

are asymptotically equal at the logarithmic scale, limt→+∞ log ft/ log gt = 1, we shortly write ft
?∼ gt.

For N ∈ N, we denote by ∆N−1 the probability simplex in RN and by α the generic element of this set:

∆N−1 =
{
α ∈ RN : αi ≥ 0,

∑N
i=1 αi = 1

}
. We let λmax and λ2, respectively, denote the maximal and

the second largest (in modulus) eigenvalue of a square matrix; † denotes the pseudoinverse of a square

matrix; and ‖ · ‖ denotes the spectral norm. For a matrix S ∈ RN×N , we let R(S) denote the range of

S, R(S) =
{
Sx : x ∈ RN

}
, and for N square matrices S1, ..., SN , we let diag {S1, ..., SN} denote the

block-diagonal matrix whose ith block is Si, for i = 1, ..., N . An open Euclidean ball in Rd of radius

ρ and centered at x is denoted by Bx(ρ); the closure, the interior, the boundary, and the complement

of an arbitrary set D ⊆ Rd are respectively denoted by D, Do, ∂D, and Dc; B(Rd) denotes the Borel

sigma algebra on Rd; Ω denotes the probability space and ω denotes an element of Ω; P and E denote

the probability and the expectation operator; N (m,S) denotes Gaussian distribution with mean vector

m and covariance matrix S.

Paper organization. In Section II we present the system model and formulate the problem that we

study. In Section III we give preliminaries. Section IV presents our results for the deterministic case.

Using the results of Section IV, Section V formulates the network design problem and solves it for the
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case of Gaussian observations with equal means. Section VI presents the fundamental bounds on the

rate function for the generic case, when system matrices are random; proofs of this result are given in

Subsections VI-A and VI-B. Simulation results are presented in Section VII, and the conclusion is given

in Section VIII.

II. PROBLEM SETUP

This section explains the system model and the distributed inference algorithm that we study.

Network observations. Suppose that we have N geographically distributed agents (e.g., sensors, robots,

humans) that monitor and collect observations about their environment. We denote the set of agents by

V = {1, 2, . . . , N} such that i ∈ V denotes the i-th agent. At each new time instant t = 1, 2, ..., each

agent produces a d-dimensional observation vector. We denote by Zi,t ∈ Rd the observation vector of

agent i at time t, where we assume that the measurements are made synchronously across all agents. We

denote by mi the expected value of observations at node i, mi = E [Zi,t] (constant for all t).

Inter-agent communication. We assume that a direct communication is possible only between a subset of

agents’ pairs, e.g., the agents that are close enough to each other. (For instance, in a WSN, communication

links are established only between sensors that lie within a certain, predefined distance r from each

other.) We model the possible inter-agent communications via a directed graph Ĝ = (V, Ê), where set

Ê ⊆ V × V collects all possible (directed) communication links, i.e., all pairs (j, i) such that agent i

can receive messages from agent j in a single hop manner. The links in Ê should be understood only

as potential communication channels. In other words, at a certain time t, agent j may decide whether to

send or not send a message to agent i. Also, in the case a message from j to i was sent, its reception

at i could be unsuccessful due to imperfect channel effects (e.g., fading). For any link (j, i) ∈ Ê, we

say that (j, i) is active at time t if at time t a message is sent from j and successfully received at i.

We let Et denote the set of all active links at time t. Accordingly, the neighborhood of node i at time t

is Oi,t = {j : (j, i) ∈ Et}, that is, Oi,t is the set of all active links at time t that are pointing to i; for

any j ∈ Oi,t, we say that j is an active neighbor of i. Finally, we denote by Gt = (V,Et) the graph

realization at time t.

Consensus+innovations based distributed inference. The distributed inference algorithm that we study

operates as follows. Each node, over time, maintains a d-dimensional vector that serves as the node’s

estimate on the state of nature. The estimate of node i at time t is denoted by Xi,t, and we also refer

to it as the state of node i. The estimates (states) are continuously improved over time twofold. First,

each agent i incorporates its new observation Zi,t into its current state with the weight 1/t and forms an
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intermediate state update; subsequently, it transmits the intermediate state to (a subset of) its neighbors.

Finally, agent i forms a convex combination (weighted average) of its own and its active neighbors’

intermediate states, with the coefficients {Wij,t : j ∈ Oi,t}, i ∈ V . Mathematically, the state update of

agent i is:

Xi,t =
∑
j∈Oi,t

Wij,t

(
t− 1

t
Xj,t−1 +

1

t
Zj,t

)
, (1)

with the initialization Xi,0 = 0d. To derive a more compact representation, collect for each t the agents’

weights Wij,t in an N ×N matrix Wt as follows: for any pair (j, i) ∈ Ê that satisfies j ∈ Oi,t, [Wt]ij

is assigned the value Wij,t, and equals zero otherwise, and for any i ∈ V , [Wt]ii = 1 −
∑

j∈Oi,t [Wt]ij .

We refer to matrix Wt as the weight matrix. Due to the fact that {Wij,t : j ∈ Oij,t} form a convex

combination, Wt is stochastic for any t. Further, let Φ(t, s), for t ≥ 1 and t ≥ s ≥ 1 be defined as

Φ(t, s) = Wt · · ·Ws, for 1 ≤ s ≤ t. From (1), we obtain:

Xi,t =
1

t

t∑
s=1

N∑
j=1

[Φ(t, s)]ij Zj,s. (2)

Algorithms of form (1) and (2) have been previously studied, e.g., in [7],[8], and [9].

We now state our assumptions on the weight matrices and the agents’ observations.

Assumption 1 (Network and observation model).

1) Observations Zi,t, i = 1, . . . , N , t = 1, 2, . . . are independent both across nodes and over time;

2) For each agent i, Zi,t, t = 1, 2, ... are identically distributed;

3) Quantities Wt and Zi,s are independent for all i, s, t.

The model above is very general. In particular, in terms of the agents’ interactions, it allows for

directed topologies and asymmetric weight matrices, and it also allows for time dependencies between

the weight matrices; directed topologies and temporal dependencies are cases that are much less studied

in the literature. In terms of observations, we remark that the model above allows for non-identically

distributed observations.

We next introduce the rates of large deviations and motivate their use for performance characterization

of algorithm (1).

Rates of large deviations at individual agents. Suppose that, for some i, Xi,t converges almost surely

(a.s.) to a deterministic vector θ ∈ Rd, e.g., the vector of d parameters that the system wishes to estimate.

In many scenarios, it is of interest to determine at what rate this convergence occurs. To explain why

this is important, suppose that we wish to determine θ up to a certain accuracy defined by the accuracy
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region C ⊆ Rd, where θ ∈ C. Let Ti denote the time interval after which Xi,t belongs to C with a

prescribed, high probability, say 0.97. For convenience, define also the complement of C, D = Rd \ C,

usually called the deviation set. Since Xi,t converges a.s. to θ, we know that the probability that Xi,t

remains outside of C, P (Xi,t ∈ D), vanishes as t → +∞. The question that we ask then is how fast

this probability vanishes with time. It turns out that in many scenarios this convergence is exponential

(see [13] for the scalar, d = 1 case). That is:

P (Xi,t ∈ D)
?∼ e−tIi(D), (3)

for a certain function Ii, where, we recall, ?∼ means that the two functions are asymptotically equal at

the logarithmic scale. Function Ii : B
(
Rd
)
7→ R+ is usually called the rate function. Relating Ii with

time Ti, we see that Ti can be approximately computed as

Ti ≈ −
log(1− 0, 97)

Ii(D)
. (4)

The quality of the approximation in (4) improves for higher accuracies (i.e., smaller region C around θ).

In the context of, e.g., Neyman-Pearson hypothesis testing, rates Ii directly correspond to error exponents:

taking, for example D to be the false alarm region [0,+∞) under H0, Ii(D) gives the error exponent

of the false alarm probability at sensor i. The problem that we address in this paper is finding the rate

functions Ii, i ∈ V :

lim
t→+∞

−1

t
log P (Xi,t ∈ D) = Ii(D), (5)

whenever the limit above exists for any set D ∈ B(Rd). For further details on the use of large deviations

rate functions in probabilistic inference, we refer the reader to [22],[23],[24].

III. PRELIMINARIES

Before we start our analysis, we first review in Subsection III-A basic large deviations concepts and

tools. Subsection III-B then provides our intermediate results on the large deviations principle and the

corresponding rate functions of an isolated agent and a fusion node.

A. Large deviations preliminaries

We define the large deviations principle and introduce, for each i, the logarithmic moment generating

function of observations Zi,t. We then define the conjugate of a function and state some important

properties of log-moment generating functions and their conjugates in general, and in our particular

setup as well.

October 1, 2018 DRAFT



8

Large deviations principle. A rate function is any function that is lower semi-continuous, or equivalently,

that has closed sublevel sets. A sequence of random variables Ẑt ∈ Rd is said to satisfy the large deviations

principle (LDP) with rate function Î if for any measurable set D ∈ B(Rd) it holds that

− inf
x∈Do

Î(x) ≤ lim inf
t→+∞

1

t
P
(
Ẑt ∈ D

)
≤ lim sup

t→+∞

1

t
P
(
Ẑt ∈ D

)
≤ − inf

x∈D
Î(x). (6)

Essentially, what the large deviations principle tells is that, for any (nice enough) set D, probabilities

that Ẑt belongs to D decay with t exponentially, with the rate equal to Î(D) = infx∈D Î(x). One of

the key objects in proving the large deviations principle and computing the rate function in general (see

Cramér’s and Gärtner-Ellis theorem [25],[26]) are the log-moment generating function and its conjugate,

which we introduce next.

Log-moment generating function of observations Zi,t. The log-moment generating function Λi : Rd →

R ∪ {+∞} corresponding to Zi,t is given by:

Λi(λ) = logE
[
eλ

>Zi,t
]
, for λ ∈ Rd. (7)

For the special case when all the agents’ observations are identically distributed, we let Λ denote the

corresponding log-moment generating function, Λ ≡ Λi, for any i.

The second key object of interest in our analysis is the conjugate of a log-moment generating function.

Let Λ̂ be the log-moment generating function of a d-dimensional random vector Ẑ. Then, the conjugate,

or the Fenchel-Legendre transform, of Λ̂ is given by

Î(x) = sup
λ∈Rd

x>λ− Λ̂(λ), for x ∈ Rd. (8)

When Zi,t are i.i.d., we will denote by I the conjugate of Λ. To illustrate how to compute Λ and

I , we consider the case when Zi,t is a discrete random vector, i.e., when the agents’ measurements are

quantized.

Example 2 (Quantized observations). Suppose that the agents’ observations Zi,t are i.i.d., discrete random

vectors, taking values in the set A = {a1, ..., aL}, according to the probability mass function p =

(p1, ..., pL), where al ∈ Rd for l = 1, ..., L. For any λ ∈ Rd, the value Λ(λ) is then computed by

Λ(λ) = log

(
L∑
l=1

ple
λ>al

)
. (9)

It can be seen that the function Λ in (9) is finite on the whole space, i.e., DΛ = Rd. Also, for the special

case when al = el, the conjugate of Λ can be shown to be the relative entropy with respect to p, given
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by [26, p. 41]:

I(x) =

d∑
l=1

xl log
xl
pl
, (10)

for any x ∈ ∆d−1, and equals +∞, otherwise.

Example 3 (Gaussian observations). It can be shown by simple algebraic manipulations that when Zi,t

is i.i.d., Gaussian, with mean value m and covariance matrix S, the log-moment generating function Λ

and its conjugate I are both quadratic and given, respectively, by [26]:

Λ(λ) = m>λ+
1

2
λ>Sλ, I(x) =

1

2
(x−m)>S−1(x−m).

To simplify our analysis, we make the following assumption.

Assumption 4. DΛi = Rd, i.e., Λi(λ) < +∞ for all λ ∈ Rd, for each i.

Assumption 4 holds for arbitrary Gaussian and discrete random vectors, and also for many other

commonly used distributions; we refer the reader to [13] for examples of random vectors beyond

Examples 2 and 3 that have a finite log-moment generating function.

Properties of log-moment generating functions and their conjugates. For future reference, we list the

properties that an arbitrary log-moment generating function Λ̂ and its conjugate Î satisfy; proofs can be

found in [27, p.8] and [26, p.27, 35].

Lemma 5 (Properties of a log-moment generating function and its conjugate). Consider the log-moment

generating function Λ̂ and its conjugate Î , associated with an arbitrary d-dimensional random vector Ẑ.

Let θ = E[Ẑ]. Then:

1) function Λ̂ satisfies:

a) Λ̂(0) = 0 and ∇Λ̂(0) = θ, when 0 ∈ Do
Λ̂

;

b) Λ̂(·) is lower semi-continuous and convex;

c) Λ̂(·) is C∞ on Do
Λ̂

;

2) and function Î satisfies:

a) Î is nonnegative and Î (θ) = 0;

b) Î is lower semi-continuous and convex;

c) if 0 ∈ Do
Λ̂

, then Î has compact level sets.

d) Î is differentiable on Do
Î
.
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We end this subsection by stating a simple but important property of the log-moment generating

function that follows from its convexity and zero value at the origin. We note that the right-hand side of

inequality (11) was previously proven in [13] (for the case d = 1).

Lemma 6. Let Λ̂ be an arbitrary log-moment generating function. For any α ∈ ∆N−1 and λ ∈ Rd,

N Λ̂

(
1

N
λ

)
≤

N∑
i=1

Λ̂(αiλ) ≤ Λ̂(λ). (11)

Proof: We first prove the right-hand side inequality in (11). (The proof is analogous to the proof of

the same inequality for the special case d = 1 [13]; for completeness, we provide the proof here.) Fix

ς ∈ [0, 1]. Then, by convexity of Λ̂ and the fact that Λ̂(0) = 0, we have

Λ̂(ςλ) = Λ̂(ς λ+ (1− ς) 0) ≤ ς Λ̂(λ) + (1− ς) Λ̂(0) = ςΛ̂(λ).

Now, fix an arbitrary α ∈ ∆N−1. Applying the preceding inequality for ς = αi, for i = 1, ..., N , yields

the claim by summing out the resulting left and right hand sides.

To prove the left hand side inequality in (11), consider the function gλ : RN 7→ R, gλ(β) =∑N
i=1 Λ̂(βiλ), for β ∈ RN . We prove the claim if we show that the minimum of gλ over the unit

simplex ∆N−1 is attained at 1/N 1N = (1/N, . . . , 1/N) ∈ ∆N−1. Since gλ is convex (being the sum

of convex functions), it suffices to show that there exists a Lagrange multiplier ν ∈ R such that the pair

(1/N 1N , ν) satisfies the Karush-Kuhn-Tucker (KKT) conditions [28]. To this end, define the Lagrangian

L(β, ν) = gλ(β) + ν(1>N β − 1), for some ν ∈ R, β ∈ RN . We have

∂βiL(β, ν) = λ>∇Λ̂(βiλ) + ν.

Taking βi = 1/N and ν = −λ>∇Λ̂(1/Nλ), proves the claim.

B. Two extreme cases: isolation and fusion

To set benchmarks for the performance of distributed inference (1), we consider two extreme cases of

the agents’ cooperation: 1) complete agent’s isolation, when an agent operates alone, making inferences

based on its own observations only; and 2) network-wide fusion, when each agent has access to all of

the observations. Mathematically, the state of agent i corresponding to these two cases are as follows:

X isol
i,t = 1/t

∑t
s=1 Zi,s, for i ∈ V , for the case of isolated agents obtained when in (2) Wt ≡ Id, and

Xcen
t = 1/(Nt)

∑t
s=1

∑N
i=1 Zi,s, for the case of fusion center obtained when Wt ≡ Jd. Theorem 7

computes the corresponding large deviation rates, and it also asserts that, when the observations are i.i.d.,

the fusion-based rate scales linearly (with constant one) with the number of participating agents.
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Theorem 7. Suppose that Zi,t are i.i.d. for all i and t. Then,

1) for each i, the sequence X isol
i,t satisfies the LDP with rate function I isol

i ≡ I;

2) the sequence Xcen
t satisfies the LDP with rate function Icen ≡ NI .

Clearly, by the strong law of large numbers, with both isolated nodes and fusion center, the corre-

sponding states X isol
i,t , i = 1, ..., N , and Xcen

t converge a.s. to m := E[Zi,t].

Proof: Since Zi,s are i.i.d., part 1 follows by a direct application of Cramér’s theorem [25], [26,

p.36]. Turning to part 2, note that Xcen
t can be written as an average of i.i.d. samples 1/N

∑N
i=1 Zi,s,

Xcen
t = 1/t

∑t
s=1 1/N

∑N
i=1 Zi,s. Thus, again by an application of Cramér’s theorem [25], we see that to

prove part 2 it suffices to show that the conjugate of the log-moment generating function of 1/N
∑N

i=1 Zi,s

is NI . Computing the log-moment generating function of 1/N
∑N

i=1 Zi,s at λ ∈ Rd, we obtain:

logE
[
e

1

N

∑N
i=1 λ

>Zi,s
]

=

N∑
i=1

logE
[
e

1

N
λ>Zi,s

]
= NΛ

(
λ

N

)
,

where in the first equality we used the fact that the Zi,s are independent, for fixed s, and in the second

equality we used that they are identically distributed, with log-moment generating function Λ. Finally,

simple algebraic manipulations reveal that the conjugate of NΛ(λ/N) equals NI: for any x ∈ Rd

sup
λ∈Rd

x>λ−NΛ

(
λ

N

)
= N

(
sup
λ∈Rd

x>
(
λ

N

)
−NΛ

(
λ

N

))
= NI(x).

Theorem 7 asserts that the rate function of any isolated agent i is I isol
i ≡ I , where I is the conjugate

of the log-moment generating function of its observation, whereas the rate function of the network-wide

fusion is N times higher, Icen
i ≡ NI . Intuitively, for the general case of algorithm (1), we expect that the

rate function of a fixed agent i should be between these two functions, I and NI . It turns out that this is

indeed the case – Corollary 9 proves this for deterministic matrices, and Theorem 15 later in Section VI

confirms that this is true even for arbitrary (asymmetric) random matrices.

IV. RATE FUNCTIONS Ii FOR DETERMINISTIC WEIGHT MATRICES

This section considers deterministic weight matrices. The first result that we present, Theorem 8,

computes the rate functions Ii for the case when the weight matrices at all times are equal to a stochastic

matrix A such that |λ2(A)| < 1. (This means that the underlying network has only one initial class2,

2An initial class of a directed graph G is any communication class of G that has no incoming edges [29]. We also note that

initial classes of G correspond to essential classes of the transpose of G (the graph that results from reversing the directions of

edges in G [30]).
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e.g., [31], [30].) We then focus on the special case when all observations are Gaussian (with possibly

different parameters across agents), and we calculate the rate functions in closed form. Further, we

formulate the problem of optimal network design and show that it can be efficiently solved by an SDP

when the observations are Gaussian.

Theorem 8. Let Wt ≡ A for each t and let Assumptions 1 and 4 hold. Suppose that |λ2(A)| < 1 and let

a denote the left eigenvector of A corresponding to the eigenvalue 1. Then, for each i, Xi,t, t = 1, 2, ...

satisfies the LDP with the rate function Ii ≡ Ĩ , where Ĩ is the conjugate of

Λ̃(λ) :=

N∑
j=1

Λj(ajλ), λ ∈ Rd.

Moreover, for each i, Xi,t converges a.s. to m̃ :=
∑N

j=1 ajmj .

Proof: To prove the first part of the theorem, we apply the Gärtner-Ellis theorem [26]. Fix i ∈ V

and let Λt(λ) := 1
t logE

[
etλXi,t

]
, for λ ∈ Rd. Using that Zi,t are independent and that Φ(t, s) = At−s+1

are constant, we obtain

Λt(λ) =
1

t
logE

[
eλ

∑t
s=1

∑N
j=1[Φ(t,s)]ijZj,s

]
=

1

t

t∑
s=1

N∑
j=1

logE
[
eλ[Φ(t,s)]ijZj,s

]

=
1

t

t∑
s=1

N∑
j=1

Λj
(
[At−s+1]ijλ

)
=

N∑
j=1

1

t

t∑
r=1

Λj ([Ar]ijλ) . (12)

From |λ2(A)| < 1 we have that Ar → 1a> as r → +∞ [32], and, hence, for any i, [Ar]ij → aj . Consider

now a fixed j. Then, by continuity of Λj , Λj ([Ar]ijλ)→ Λj(ajλ), and hence the Césaro averages must

converge to the same number:

lim
t→+∞

1

t

t∑
r=1

Λj ([Ar]ijλ) = Λj(ajλ).

Going back to (12) and taking the limit yields limt→+∞ Λt(λ) =
∑N

j=1 Λ(ajλ). Thus, conditions for

applying the Gärtner-Ellis theorem are fulfilled, and thus we have that, for each i, Xi,t satisfies the large

deviations principle with the rate function equal to the conjugate of
∑N

j=1 Λj(ajλ).

It remains to prove that Xi,t at each i converges to m̃ =
∑N

j=1 ajmj . First, note that Λ̃ is in fact the

log-moment generating function of
∑N

j=1 ajZj,t, for any t. This easily follows from the independence
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of the Zj,t’s, for t fixed:

logE
[
eλ

> ∑N
j=1 ajZj,t

]
=

N∑
j=1

logE
[
eajλ

>Zj,t
]

=

N∑
j=1

Λj(ajλ).

Thus, being a log-moment generating function, Λ̃ satisfies the properties given in Lemma 1. In particular,

from the lower semicontinuity and convexity of Λ̃ it follows that Λ̃ and Ĩ are the conjugates of each

other. Invoking a classical result for conjugate functions, see, e.g., eq. (1.4.6) on p. 222 in [33], we have:

Argmin
{
Ĩ(x) : x ∈ Rd

}
= ∂Λ̃(0), (13)

where, we recall, ∂Λ̃(0) denotes the subdifferential3 of Λ̃ at λ = 0. We will show that ∂Λ̃(0) is a singleton

and that it equals {m̃}. To do this, note that, by our assumption, Di = Rd for each i. Thus, DΛ̃ = Rd.

In particular, 0 ∈ Do
Λ̃

and the claim follows by combining parts 1a and 1c of Lemma 1 and noting that

E[
∑N

j=1 ajZj,t] =
∑N

j=1 ajmj = m̃. We conclude that Ĩ(x) = 0 if and only x = m̃.

We next use the previous conclusion together with convexity of Ĩ to show that, for any ε > 0,

inf
x: ‖x−m̃‖≥ε

Ĩ(x) > 0. (14)

First, since Ĩ is convex and it achieves its minimum at m̃, it must be that Ĩ is nondecreasing along any

half-line that starts at m̃. Hence, inft∈[ε,+∞) Ĩ(m̃+ td) = Ĩ(m̃+ εd), for any d. This in particular implies

that infx∈Rd:‖x−m̃‖≥ε Ĩ(x) = infx∈Rd:‖x−m̃‖=ε Ĩ(x). To prove the claim in (14), we need to show that the

preceding infimum is strictly greater than zero. Since Ĩ is lower semi-continuous and the set under the

infimum ∂Bm̃(ε) is compact, it follows by Weierstrass theorem that Ĩ attains a minimum on ∂Bm̃(ε);

denote this minimum by x̂ε. Recalling now that Ĩ(x) > 0 for any x 6= m̃, we conclude that it must be

that Ĩ(x̂ε) > 0. This concludes the proof of the claim in (14).

Having (14), it is now easy to complete the proof of the second part of Theorem 8. Fix i ∈ V . From

the upper bound of LDP, proved in the first part, and (14), we have that for any ε > 0:

lim sup
t→+∞

1

t
log P (‖Xi,t − m̃‖ ≥ ε) ≤ −Cε < 0, (15)

where we denoted Cε = Ĩ(x̂ε). The previous inequality implies that for any δ > 0 we can find a constant

Kδ such that, for all t, P (‖Xi,t − m̃‖ ≥ ε) ≤ Kδe
−(Cε−δ)t. Choosing for each ε, δ = Cε/2, we obtain

exponential convergence of Xi,t to m̃. By the first Borel-Cantelli lemma [34], this in turn implies almost

sure convergence of Xi,t.

3The subdifferential of a convex function f : Rd 7→ R at a point x ∈ Rd is the set of all points s ∈ Rd such that, for all

y ∈ Rd, f(y) ≥ f(x) + s>(y − x) [33].
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Let G denote the induced graph of A, i.e., G = (V,E) where E = {(i, j) : Aji > 0}, e.g., [35].

Corollary 9. When Zi,t are i.i.d. (identical agents), it holds

I ≤ Ĩ ≤ NI, (16)

where I is the conjugate of an agent’s log-moment generating function Λ ≡ Λj and the inequalities

in (16) hold in the pointwise sense. Moreover, the lower bound in (16) is attained whenever there exists a

“leader” agent i that satisfies Aii = 1 and for any j there is a (directed) path from i to j in the induced

graph of A. The upper bound is attained when A is doubly stochastic with positive diagonals and the

induced graph of A is strongly connected.

Proof: When Zi,t are i.i.d.,

Λ̃(λ) =

N∑
j=1

Λ(ajλ). (17)

By Lemma 6 applied to α = a (note that a is a stochastic vector), from eq. (17) we obtain

λ>x− Λ(λ) ≤ λ>x− Λ̃(λ) ≤ λ>x−NΛ (1/Nλ) .

Taking the supremum, the right-hand side inequality in (16) follows by the following simple manipulations

supλ∈Rd λ
>x−NΛ (1/Nλ) = N(supλ′∈Rd λ

′>x−Λ(λ′)) = NI(x). The left-hand side inequality in (16)

is proven similarly. By Lemma 6, the log-moment generating in (17) is upper bounded by Λ, and, by

similar calculations as in the above, we get Ĩ(x) = supλ∈Rd λ
>x− Λ̃(λ) ≥ supλ∈Rd λ

>x−Λ(λ) = I(x).

To prove the second part of Corollary 9, suppose that, for some i, Aii = 1 and that in the induced

graph of A there is a path from i to any node j. By Theorem 8 the claim is proven if we show that

λ2(A) < 1 and that ei is the left eigenvector of A corresponding to the eigenvalue 1. Let G denote the

induced graph of A. To prove that λ2(A) < 1, it suffices to show that G has exactly one initial class and

that this class is aperiodic [31]. Since A is stochastic and Aii = 1, we have Aij = 0 for all j ∈ V , j 6= i.

Thus, {i} is an initial class of G. We next show that this is in fact the only initial class in G. Fix a node

j 6= i and let C(j) denote the class of G that j belongs to. Note that C(j) cannot contain i (otherwise

it would be possible to reach i from j, which can’t be true because Ail = 0, for all l 6= i, and thus there

are no edges pointing to i). Since (by our assumption) j can be reached by a directed path from i, and,

on the other hand, i /∈ C(j), there must be an edge pointing to C(j). Hence, C(j) is not an initial class

of G. Repeating this for every j, we prove that there are no other initial class of G beside {i}. Finally,

it easy to see that {i} is also aperiodic (Aii > 0), hence proving that λ2(A) < 1.
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It only remains to verify that ei is the left eigenvector: since Aii = 1 and A is stochastic, the i-th row

of A, e>i A, equals ei. This completes the proof of the claim.

Suppose now that A is doubly stochastic with positive diagonals and a strongly connected induced

graph. Similarly as with the lower bound, by Theorem 8, it is sufficient to prove that 1/N1N is the left

eigenvector of A corresponding to the eigenvalue 1 and that λ2(A) < 1. Since A is doubly stochastic, it

must be that a>A = a> for a = 1/N1N . Finally, since A has positive diagonals and a strongly connected

induced graph, we have that A is irreducible and aperiodic, and hence λ2(A) < 1 [31] (see also Corollary

8.4.8. in [32]). This completes the proof of Corollary 9.

Rate Ĩ for Gaussian observations. Of special interest is the case when observations Zi,t are all Gaussian.

For this case, Lemma 10 gives a closed form expression for the rate function Ĩ .

Lemma 10. Suppose that Zj,t ∼ N (mj , Sj), for j ∈ V , where Sj , for each j, is a positive definite

matrix. Function Ĩ from Theorem 8 is then given by

Ĩ(x) =
1

2
(x− m̃)S̃−1(x− m̃), (18)

where m̃ =
∑N

j=1 ajmj and S̃ =
∑N

j=1 a
2
jSj . In particular, when mj ≡ m and Sj ≡ S, Ĩ(x) =

1/(
∑N

j=1 a
2
j )I(x), where I(x) is the nodes’ individual rate function given in Example 3.

Proof: Fix x ∈ Rd and recall that the log-moment generating function of a Gaussian vector of mean

m and covariance S is λ 7→ λ>m+ 1/2λ>Sλ. Then Λ̃(λ) =
∑N

j=1 ajλ
>mj + a2

j
1
2λ
>Sjλ, and thus

Ĩ(x) = sup
λ∈Rd

λ>x−
N∑
j=1

aj

(
λ>mj + a2

j

1

2
λ>Sjλ

)
. (19)

Since the function under the supremum is (strictly) concave, we obtain the optimizer λ? from the first

order optimality condition

x−
N∑
j=1

ajmj −
N∑
j=1

a2
jSjλ = 0.

It follows that λ? =
(∑N

j=1 a
2
jSj

)−1 (
x−

∑N
j=1 ajmj

)
, which, when inserted in (19), yields the

identity (18).

Remark 11. It is possible to determine Ĩ analytically even when matrices Sj , j = 1, ..., N , and vector

a are such that S̃ is not invertible. It can be shown that the expression for Ĩ for this case is:

Ĩ(x) =

 (x− m̃)>S̃†(x− m̃), x ∈ R(S̃)

+∞, otherwise
.
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V. NETWORK DESIGN

From Theorem 8 and Corollary 9, it is clear that the performance of algorithm (1) critically depends

on the choice of the weight matrix A, and in particular, on its left eigenvector a. We therefore pose the

problem of optimizing a, for a fixed desired accuracy region C:

maximize infx∈Rd\C Ĩ(x)

subject to a ∈ ∆N−1
, (20)

where Ĩ is the rate function from Theorem 8. We denote by a?C and I?C , respectively, an optimal solution

and the optimal value of problem (20).

We exploit the analytical expression (18) for the rate function from Lemma 10, to show that, for the

Gaussian observations, problem (20) can be solved efficiently. We assume that all the nodes are observing

the same set of physical quantities θ = (θ1, ..., θd)
>, embedded in the local sensor noises. Hence, the

observations Zi,t have the same expected value θ =: m ≡ mi across all nodes. We show in Lemma 12

that when C is a ball, (20) can be formulated as an SDP.

Lemma 12. Consider the setup of Lemma 10 when mi ≡ m. When the confidence set C is an Euclidean

ball of some arbitrary radius ζ > 0 centered at m, Bm(ζ), the optimal solution of (20) is obtained by

solving:
minimize γ

subject to

 γId I S̃

S̃ I> INd

 � 0

a ∈ ∆N−1

, (21)

where S̃ ∈ RNd×Nd is a block diagonal matrix given by S̃ = diag
{
a1S

1/2
1 , . . . , aNS

1/2
N

}
, and I =

[Id . . . Id] ∈ Rd×Nd, where Id repeats N times. Furthermore, I?C = ζ2/(2γ?), where γ? is the optimum

of (21).

Remark 13. Although problem (20) involves the expected value of the observations m (which we don’t

know), it is clear from the equivalent reformulation (21) that, under the stated assumption, the knowledge

of m is not needed for discovering the optimal a in (20). We also remark that, for the same assumptions,

the solution of (20) does not depend on the particular accuracy ζ: once (21) is solved, the same vector

a?C applies for all C = Bm(ζ), ζ > 0.
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Remark 14. When the observations are one-dimensional (d = 1), it can be shown that the SDP in (21)

reduces to a quadratic program (QP).

Proof: We start by finding a closed form expression for the objective function infx∈Rd\Bm(ζ) Ĩ(x),

for a given vector a. Similarly as in the proof of Theorem 8, it can be shown that for any ζ > 0,

inf
x∈Rd\Bm(ζ)

Ĩ(x) = inf
x∈Rd:‖x−m‖≥ζ

Ĩ(x) = min
x∈Rd:‖x−m‖=ζ

Ĩ(x).

It is easy to see that the latter problem can be reformulated as:

min
v∈Rd:‖v‖=1

ζ2

2
v>S̃−1v = 1/λmax(S̃). (22)

Maximizing 1/λmax(S̃) corresponds to minimizing λmax(S̃) and hence we obtain that (20) is equivalent

to:
minimize λmax

(∑N
j=1 a

2
jSj

)
subject to a ∈ ∆N−1

(23)

where the optimal value of (20) I?C is obtained as ζ2/(2λ?), where λ? is the optimal value of (23). We next

show that (23) can be recast in the SDP form (21). Introducing the epigraph variable γ ∈ R [28] yields

the constraint
∑N

j=1 a
2
jSj � γId, which can be equivalently represented as γId − IS̃(INd)

−1S̃I> � 0.

Since the identity matrix INd is positive definite, equivalence of (23) and (21) follows from the Schur

complement theorem [28].

VI. UNIVERSAL BOUNDS ON THE RATE FUNCTIONS FOR GENERAL, RANDOM WEIGHT MATRICES

We have seen in the previous section (Corollary 9) that, when the weight matrices Wt are determin-

istic and constant, the states exhibit a very interesting and fundamental property: their large deviation

probabilities P (Xi,t ∈ D) have the rates that are always lower than the corresponding rate of the fusion

center, and always higher than the corresponding rate of a node working in isolation. Theorem 15 that we

present next asserts that this property in fact holds, not only for deterministic, but for arbitrary sequences

of random weight matrices.

Theorem 15. Consider the distributed inference algorithm (1) under Assumptions 1 and 4, when Zi,t

are i.i.d. (identical agents). For any measurable set G ⊆ Rd, for each i:

− inf
x∈Go

NI(x) ≤ lim inf
t→+∞

1

t
logP (Xi,t ∈ G) (24)

≤ lim sup
t→+∞

1

t
logP (Xi,t ∈ G) ≤ − inf

x∈G
I(x). (25)
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Theorem 15 asserts that, no matter how we design the agents’ interactions (represented by the weight

matrices), in terms of large deviations performance, algorithm (1) can never be worse than when a node

is working in isolation, but it also can never beat the fusion center. This result is important as it provides

fundamental bounds for large deviations performance of any algorithm of the form (1) that satisfies

Assumptions 1 and 4 and processes i.i.d. observations. In the next two subsections we state our proofs

of Theorem 15.

A. Proof of the upper bound

Fix an arbitrary i ∈ V . To prove (24) for node i, it suffices to show that, for any closed set F ,

lim sup
t→+∞

1

t
logP (Xi,t ∈ F ) ≤ − inf

x∈F
I(x). (26)

To see why this is true, note that, for an arbitrary measurable set D, there holds P (Xi,t ∈ D) ≤

P
(
Xi,t ∈ D

)
. Applying (26) to the closed set F = D yields (24).

The proof of (26) consists of the following three steps.

Step 1: We use the exponential Markov inequality, together with conditioning on the matrices W1, ...,Wt,

to show that, for any measurable set D ⊆ Rd,

1

t
logP (Xi,t ∈ D) ≤ − inf

x∈D
λ>x− Λ(λ). (27)

Step 2: In the second step, we show that (27) is a sufficient condition for (26) to hold for all compact

sets F . Lemma 16 formalizes this statement.

Lemma 16. Suppose that (27) holds for any measurable set D ⊆ Rd. Then the inequality (26) holds for

all compact sets F .

The proof of Lemma 16 uses the standard “finite cover” argument: for a compact set F , a finite number

of balls forming a cover of F is constructed, and then (27) is applied to each of the balls. The details of

this derivation are given in Appendix A.

Step 3: So far, Steps 1 and 2 together imply that (26) holds for all compact sets. To extend (26) to all

closed sets F , by a well known result from large deviations theory, Lemma 1.2.18 from [26], it suffices

to show that the sequence of measures µi,t : B(Rd) 7→ [0, 1], µi,t(D) := P (Xi,t ∈ D) is exponentially

tight. We prove this by considering the family of compact sets Hρ := [−ρ, ρ]d, with ρ increasing to

infinity. The result is given in Lemma 17, and the proof can be found in Appendix B.

October 1, 2018 DRAFT



19

Lemma 17. For every i ∈ V ,

lim
ρ→+∞

lim sup
t→+∞

µi,t
(
Hc
ρ

)
≤ −∞. (28)

Hence, the sequence {µi,t}t=1,2,... is exponentially tight.

We now provide the details of Step 1.

Step 1. The proof of (27) is based on two key arguments: exponential Markov inequality [34] and

the right hand side inequality of Lemma 6. For any measurable set D ⊆ Rd and any λ ∈ Rd, by the

exponential Markov inequality, we have

1{Xi,t∈D} ≤ e
tλ>Xi,t−t infx∈D λ>x, (29)

which, after computing the expectation, yields

P (Xi,t ∈ D) ≤ e−t infx∈D λ>xE
[
etλ

>Xi,t
]
. (30)

We now focus on the right hand side of (30). Conditioning on W1, . . . ,Wt, the summands in (2) become

independent, and using the fact that the Zi,t’s are i.i.d. with the same log-moment generating function

Λ, we obtain

E
[
etλ

>Xi,t
∣∣∣W1, ...,Wt

]
= e

∑t
s=1

∑N
j=1 Λ([Φ(t,s)]ijλ). (31)

Applying now the right-hand side inequality Lemma 6 to
∑N

j=1 Λ ([Φ(t, s)]ijλ) for each fixed s (note

that, for a fixed s, [[Φ(t, s)]i1, ..., [Φ(t, s)]iN ] ∈ ∆N−1 ), it follows that the conditional expectation above

is upper bounded by etΛ(λ), i.e.,

E
[
etλ

>Xi,t
∣∣∣W1, ...,Wt

]
≤ etΛ(λ). (32)

for any λ ∈ Rd. Since in (32) W1, ...,Wt were arbitrary, taking the expectation, we get E
[
etλ

>Xi,t
]
≤

etΛ(λ). Combining this with (30), we finally obtain

1

t
logP (Xi,t ∈ D) ≤ − inf

x∈D
λ>x+ Λ(λ). (33)

B. Proof of the lower bound

We prove (25) following the general lines of the proof of the Gärtner-Ellis theorem lower bound,

see [26]. However, as we will see later in this proof, we encounter several difficulties along the way

that force us to depart from the standard Gärtner-Ellis method and use finer arguments. The main reason

for this is that, in contrast with the setup of the Gärtner-Ellis theorem, the sequence of the (scaled) log-

moment generating functions of Xi,t (see ahead (35)) need not have a limit. Nevertheless, with the help
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of Lemma 6, we will be able to “sandwich” each member of this sequence between Λ(·) and NΛ (1/N ·).

This is the key ingredient that allows us to derive (25). The proof is organized in the following four

steps.

Step 1. In this step, we derive a sufficient condition, given in Lemma 18, for (25) to hold. Namely,

to prove (25) for a given set D, it suffices to confine Xi,t to a smaller region Bx(δ) within D, and

show that, conditioned on any realization of the matrices W1, ...,Wt, the rate of this event is at most

NI(x). Lemma 18 is proven by applying Fatou’s lemma [34] to the sequence of random variables

Rt := 1
t logP (Xi,t ∈ D|W1, ...,Wt), and then combining the obtained result with the simple fact that,

for every x ∈ Do and all δ sufficiently small, Bx(δ) ⊆ D. The proof is given in Appendix C.

Lemma 18. If for every x ∈ Rd and ω ∈ Ω,

lim
δ→0

lim inf
t→+∞

1

t
logP (Xi,t ∈ Bx(δ)|W1, ...,Wt)≥−NI(x), (34)

then (25) holds for all measurable sets D.

Step 2. To prove (34), we introduce the scaled log-moment generating function of Xi,t, under the

conditioning on W1, ...,Wt,

Λt(λ) :=
1

t
logE

[
etλ

>Xi,t
∣∣∣W1, . . . ,Wt

]
. (35)

It can be shown (similarly as in Step 1 of the proof of the upper bound) that, for any λ ∈ Rd,

Λt(λ) =
1

t

t∑
s=1

N∑
j=1

Λ ([Φ(t, s)]ijλ) , (36)

where Φ(t, s) = Wt · · ·Ws. Note that Λt is convex and differentiable. However, Λt is not necessarily

1-coercive [33], which is needed to show (34) for all points4 x ∈ Rd. To overcome this, we introduce a

small Gaussian noise to the states Xi,t and define, for each t, Yi,t = Xi,t + V/
√
Mt, where V has the

standard multivariate Gaussian distribution N (0d, Id), and, we assume, is independent of Zj,t and Wt,

for all j and t (hence, V is independent of Xi,t, for all t). The parameter M > 0 controls the magnitude

of the noise, and the factor 1/
√
t adjusts the noise variance to the same level of the variance of Xi,t.

For each fixed M , let Λt,M denote the log-moment generating function associated with the correspond-

ing Yi,t, under the conditioning on W1, ...,Wt. It can be shown, using the independence of V and Xi,t,

4More precisely, the problem arises when x is not an exposed point of the conjugate It of Λt, as will be clear from later

parts of the proof (see also Exercise 2.3.20 in [26]).

October 1, 2018 DRAFT



21

that

Λt,M (λ) = Λt(λ) +
‖λ‖2

2M
, λ ∈ Rd. (37)

Hence, the noise adds a (strictly) quadratic function to Λt, thus making Λt,M 1-coercive, as proved in the

following lemma. Lemma 19 gives the properties of Λt,M that we use in the sequel; the proof is given

in Appendix D.

Lemma 19. 1) Function Λt,M is convex, differentiable, and 1-coercive. Thus, for any x ∈ Rd, there

exists ηt = ηt(x) such that ∇Λt,M (ηt) = x.

2) Let θ = E [Zi,t]. For any x, the corresponding sequence ηt, t = 1, 2, ..., is uniformly bounded, i.e.,

‖ηt‖ ≤M ‖x− θ‖ , for all t. (38)

Using the results of Lemma 19, we prove in Step 3 the counterpart of (34) for the sequence Yi,t –

(39), and in Step 4 we complete the proof of (25) by showing that (34) (a sufficient condition for (25))

is implied by (39).

Step 3. We show that, for any fixed x, M > 0, and ω ∈ Ω,

lim
δ→0

lim inf
t→+∞

1

t
log νt,M (Bx(δ)) ≥ −NI(x). (39)

where νt,M is the conditional probability measure induced by Yi,t, νt,M (D) = P (Yi,t ∈ D|W1, ...,Wt),

D ∈ B(Rd).

To this end, fix an arbitrary x, δ,M, and ω. We prove (39) by the change of measure argument. For

any t ≥ 1, we use the point ηt from Lemma 19 to change the measure on Rd from νt,M to ν̃t,M by:

dν̃t,M
dνt,M

(z) = e t η
>
t z− tΛt,M (ηt), z ∈ Rd. (40)

Note that, in contrast with the standard method of Gärtner-Ellis Theorem where the change of measure

is fixed (once x is given), here we have a different change of measure5 6 for each t. Expressing the

5The reason for this alteration of the standard method is the fact that our sequence of functions Λt,M does not have a limit.
6It can be shown that all distributions ν̃t,M , t ≥ 1, have the same expected value x; we do not pursue this result here, as it

is not crucial for our goals.
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probability νt,M (Bx(δ)) through ν̃t,M , for each t, we get:

1

t
log νt,M (Bx(δ)) =

= Λt,M (ηt)− η>t x+
1

t
log

∫
z∈Bx(δ)

etη
>
t (x−z)dν̃t,M (z)

≥ Λt,M (ηt)− η>t x− δ ‖ηt‖+
1

t
log ν̃t,M (Bx(δ)) . (41)

We analyze separately each of the terms in (41). First, since ηt is uniformly bounded, by Lemma 19, we

immediately obtain that the third term vanishes:

lim
δ→+0

lim inf
t→+∞

−δ ‖ηt‖ ≥ − lim
δ→0

δM‖x− θ‖ = 0. (42)

We consider next the sum of the first two terms. Let It,M denote the conjugate of Λt,M . By Lemma 19,

we have that ηt is the maximizer of λ 7→ λ>x − Λt,M (λ). Thus, the sum of the first two terms in (41)

equals −It,M (x) = Λt,M (ηt) − η>t x. Further, starting from the fact that Λt,M ≥ Λt and then invoking

Lemma 6 (lower bound), we obtain:

It,M (x) ≤ sup
λ∈Rd

λ>x− Λt(λ) ≤ sup
λ∈Rd

λ>x−NΛ(λ/N)

= NI(x), (43)

which holds for all t ≥ 1 and all M > 0. Comparing with (39), we see that it only remains to show that

the lim inf as t→ +∞ of the last term in (41) vanishes with δ.

It is easy to show that the log-moment generating function associated with ν̃t,M is Λ̃t,M := Λt,M (λ+

ηt)− Λt,M (ηt). Let Ĩt,M denote the conjugate of Λ̃t,M . Similarly as in the proof of the upper bound in

Section VI-A, it can be shown that

1

t
log ν̃t,M (Bc

x(δ)) ≤ − inf
w∈Bc

x(δ)
Ĩt,M (w). (44)

The next lemma asserts that the right-hand side of (44) is strictly negative7, and uniformly bounded away

from zero. The proof is given in Appendix E.

7In the proof of the lower bound of the Gärtner-Ellis theorem, the sequence Λ̃t (our Λ̃t,M ) has a limit Λ̃, and, because of

this, it is sufficient to show that infw∈Bc
x(δ)

Ĩ(w) is strictly negative, where Ĩ is the conjugate of Λ̃. Here, since we do not have

the limit of the Λ̃t,M s, we need to prove that the latter holds for each function of the sequence Ĩt,M , t ≥ 1, and moreover, that

the strict negativity does not “fade out” with t.
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Lemma 20. For any t, there exists a minimizer wt = wt(x, δ) of the optimization problem infw∈Bc
x(δ) Ĩt,M (w).

Furthermore, there exists ξ = ξ(x, δ) > 0 such that

Ĩt,M (wt) ≥ ξ, for all t. (45)

Combining (44) and (45), we get

ν̃t,M (Bx(δ)) ≥ 1− e−ξt, for all t.

which, together with the fact that ν̃t,M is a probability measure (and hence ν̃t,M (Bx(δ)) ≤ 1), yields

lim
t→+∞

1

t
log ν̃t,M (Bx(δ)) = 0. (46)

Since (46) holds for all δ > 0, we conclude that the last term in (41) vanishes after the appropriate limits

have been taken. Summarizing (42), (43), and (46) finally proves (39).

Step 4. To complete the proof of (25), it only remains to show that (39) implies (34). Since Xi,t =

Yi,t − V/
√
tM , we have

P (Xi,t ∈ Bx(2δ)|W1, ...,Wt)

≥ P
(
Yi,t ∈ Bx(δ), V/

√
tM ∈ Bx(δ)|W1, ...,Wt

)
≥ νt,M (Bx(δ))− P

(
V/
√
tM /∈ Bx(δ)

)
. (47)

From (39), the rate for the probability of the first term in (47) is at most NI(x). On the other hand, the

probability that the norm of V is greater than
√
tMδ decays exponentially with t at the rate Mδ2/2,

lim
t→+∞

1

t
logP

(
V/
√
tM ∈ Bx(δ)

)
= −Mδ2

2
. (48)

Observe now that, for any fixed δ, for all M large enough so that NI(x) < Mδ2

2 , the exponential decay

of the difference in (47) is determined by the rate of the first term, NI(x). This finally establishes (34),

which combined with 18 proves (25).

VII. SIMULATION RESULTS

This section presents our simulation results for the performance of algorithm (1) for both deterministic

and random weight matrices. In the deterministic case, we optimize the weight matrix A by optimizing first

its left eigenvector a; then we subsequently optimize A such that it achieves the fastest averaging speed

(see ahead (49)), subject to the condition on the obtained left eigenvector. We estimate by Monte Carlo

simulations the corresponding estimation error. Simulations show that the optimized system significantly

outperforms the system where the eigenvector a is uniform and A is doubly stochastic, hence proving
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Fig. 1: Estimated error probabilities P̂i,t vs. number of iterations t, for each i. Left (deterministic model):

dotted lines correspond to Wopt, and full lines correspond to Wunif . Middle and Right (random model):

dashed curves correspond to the i.i.d. model, dotted curves to the Markov chain model, and full curves

to an isolated node (upper) and the fusion center (lower); p = 0.1, q1 = q2 = 0.3 (middle) and p = 0.5,

q1 = 0.7, q2 = 0.1 (right).

the benefit of network design. We then consider randomly time-varying weight matrices and verify by

simulations Theorem 15 for the following cases: 1) Wt are i.i.d. in time, with i.i.d. link failures; and

2) link failures of each link in the network, independently from other links, are governed by a Markov

chain.

Simulation setup. The number of nodes is N = 10. Communication graph Ĝis formed by placing the

nodes uniformly at random in a unit square and forming the (biderectional) links between the nodes that

are within distance r = 0.4 from each other. Observations Zi,t are standard Gaussian, for each i, with the

same expected value mi ≡ m chosen uniformly at random from the [0, 1] interval. In the deterministic

case, the variances Si = σ2
i are different across nodes, whereas in the random case all the nodes have

the same variance S = σ2. The quantities Si, i = 1, ..., N , and S are chosen uniformly at random, and,

in the deterministic case, independently for each i, in the [0, 1] interval.

A. Network design for the deterministic case

In this section, we consider the deterministic case, when the weight matrix is constant at all times,

and when the observations are scalar (d = 1). Since all the nodes have the same expected value m, we

have that m̃ = m (see Theorem 8), and thus all the states Xi,t converge (a.s.) to m. We wish to find

the weight matrix A = Aopt that achieves this convergence with the fastest possible rate function Ĩ . The

accuracy region that we target is C = [m− ζ,m+ ζ], where we set ζ = 0.035.
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We obtain Aopt as follows. We first solve problem (21) via CVX [36],[37] to obtain the optimal left

eigenvector aopt of Aopt. Then, we optimize A by minimizing the spectral norm of A− 1Na
>
opt, while

respecting the sparsity pattern dictated by the communication graph Ĝ, as in [38]. Hence, Aopt is obtained

as the solution of the following optimization problem:

minimize
∥∥A− 1Na

>
opt

∥∥
subject to A1N = 1N

a>optA = a>opt

A ∈ A

, (49)

where A :=
{
A ∈ RN×N+ : Aij = 0, if (i, j) /∈ Ĝ, i, j ∈ V

}
; see also Section 7.3 in [38]. Note that the

rate function is dependent on A only through its left eigenvector a, but the significance of ‖A− 1Na
>‖

is in the finite time performance (i.e., vertical shift of the curves in Figure 1 (bottom) further ahead).

For the purpose of comparison, we also solve problem (49) when aopt is replaced by aunif = 1/N1N ;

we denote the corresponding solution by Aunif (Aunif hence represents the doubly stochastic matrix with

the fastest averaging on the same topology Ĝ as Aopt).

At each node i and each time t, we estimate the probability of error P̂i,t, by Monte Carlo simulations:

we count the number of times that the state of node i at time t, Xi,t, falls outside of the accuracy

region C, and then we divide this number by the number of simulation runs K = 1000000, P̂i,t =

1
K

∑K
k=1 1{Xk

i,t /∈ C}. We do this both for the case when algorithm (1) runs with the weight matrix

Aopt and when it runs with the weight matrix Aunif .

The leftmost plot in Figure 1 plots the evolution of the error probability over iterations, in the log-

scale, for each node i; dotted lines correspond to Aopt while full lines correspond to Aunif . We can see

from Figure 1 (left) that for both Aopt and Aunif the curves at all nodes have the same slope, equal to

the value of the corresponding rate function over the set C. For the same weight matrix, the vertical

shift in different curves (that correspond to different nodes) is due to the difference in the observations

parameters (intuitively, nodes with higher variances σ2
i need more time to filter out the noise – and

thus their error probability curves are shifted upwards), and the placement in the network (nodes with

more central location in the network converge faster). We can see that the algorithm with the optimized

left eigenvector achieves much higher large deviations rate than the one with the uniform eigenvector, as

predicted by our theory. For example, for the target error probability of e−5 ≈ 0.007, the optimized system

requires around 140 iterations on average (across nodes), while the system with the uniform vector a needs

around 250 iterations for the same accuracy. The reason for this behavior is quite intuitive: optimizing
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the vector a corresponds to choosing different weights for different sensors depending on their local

variances (i.e., covariance matrices, when d > 1).

B. Random weight matrices

This subsection considers random weight matrices Wt for two cases: i.i.d. link failures and Markov

chain link failures. With the i.i.d. model, each directed link (i, j) ∈ Ê can fail with probability 1− p at

any given time t; this occurs independently from other link failures and independently from past times.

With the Markov chain model, each link (i, j) ∈ Ĝ behaves as a Markov chain, independent from the

Markov chains of other links, such that with probability q1 the link stays online, if it was online in the

previous time slot, and with probability q2 stays offline. (For example, if at time t a link is online, then at

time t+1 this link stays online with probability q1 and fails with probability 1− q1). With both i.i.d. and

the Markov chain model, the weight matrix at time t equals Wt = IN − αLt, where Lt is the Laplacian

of the (directed) topology realization at time t, α = 1/(dmax + 1), and dmax is the maximal degree in Ĝ.

The middle and the right plot in Figure 1 show the estimated error probabilities versus the number of

iterations for both the i.i.d. and the Markov chain model, for two different sets of parameters: p = 0.1,

q1 = q2 = 0.3 (left) and p = 0.5, q1 = 0.7, q2 = 0.1 (right). Both simulations are obtained for the same

value of accuracy ζ = 0.1, and one-dimensional Gaussian observations with parameters m and S = σ2

chosen uniformly at random from the [0, 1] interval. The results for the i.i.d. model are plotted in dashed

lines, while the results for the Markov chain model are plotted in dotted lines. For reference, we also

plot the estimated error probabilities for perfect fusion and isolation (full lines), see Section III-B; the

lower curve corresponds to fusion. We can see from the plots that, under both models, the rate at which

the error probability at each node decays is between the decay rate of the isolated node and fusion center

curves, as predicted by Theorem 15. We can also see that the agents’ decay rates for the Markov chain

model are faster than the ones for the i.i.d. model. This is expected since, for both sets of parameters,

links in the i.i.d. model are online less frequently than the links in the Markov chain model, once the

system reaches a stationary regime. Also, we see that improvements in the system parameters (higher p,

in the i.i.d. model, and higher q1 and lower q2 in the Markov chain model) significantly affect the large

deviations rates: in the right plot, the rates at each node got closer to the optimal, fusion center rate.

VIII. CONCLUSION

We studied large deviations rates for consensus based distributed inference, for deterministic and

random asymmetric weight matrices. For the deterministic case, we characterized the corresponding
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large deviations rate function, and we showed that it depends on the weight matrix only through its left

eigenvector that corresponds to its unit eigenvalue. When the observations are Gaussian (not necessarily

identically distributed across agents), the rate function has a closed form expression. Motivated by these

insights, we formulate the optimal weight matrix design problem and show that, in the Gaussian case,

it can be formulated as an SDP and hence efficiently solved. When the weight matrices are random, we

prove that the rate functions of any node in the network lie between the rate functions corresponding to

a fusion node, that processes all observations, and a node in isolation. The bounds hold for any random

model of weight matrices, with the single condition that the weight matrices are independent from the

agents’ observations.

APPENDIX A

PROOF OF LEMMA 16

For every δ > 0, define Iδ : Rd 7→ R, Iδ(x) := min{I(x)− δ, 1
δ}, and note that for any D ⊆ Rd,

lim
δ→0

inf
x∈D

Iδ(x) = inf
x∈D

I(x). (50)

Fix a compact set F . For every y ∈ F , choose λy ∈ Rd for which λ>y q − Λ(λy) ≥ Iδ(y) 8 Also, for

each y choose ρy > 0 such that ρy‖λy‖ ≤ δ.

Now, fix arbitrary y ∈ F . Then, by construction of ρy and λy, we have:

− inf
x∈By(ρy)

λ>x ≤ −λ>y y + δ.

Applying (27) for D = By(ρy) and λ = λy and combining it with the preceding equation yields

1

t
logP (Xi,t ∈ By(ρy)) ≤ δ − λ>y y + Λ(λy). (51)

Extracting a finite cover {Byi(ρyi) : i = 1, ...,K} of F from the family of balls {By(ρy) : y ∈ F}, and

applying (51) to each of the balls, we obtain by the union bound

1

t
logP (Xi,t ∈ F ) ≤ 1

t
logK + δ − min

i=1,...,K
λ>yiyi − Λ(λyi).

Recalling that for each y, λy satisfies λ>y y − Λ(λy) = Iδ(y), and letting t→ +∞,

lim sup
t→+∞

1

t
logP (Xi,t ∈ F ) ≤ δ − min

i=1,...,K
Iδ(yi) ≤ δ − inf

y∈F
Iδ(y).

Finally, letting δ → 0 and using the property (50) of Iδ, the bound (26) for compact sets follows.

8Such a point must exist because of the following: If I(y) is finite, then, since I(y) equals the supremum supλ∈Rd λ
>q−Λ(λ),

for every δ > 0, there must exist a point λ′ = λ′(δ) such that λ′>y −Λ(λ′) ≥ I(y)− δ. Since I(y)− δ ≥ I(y), taking λy to

be λ′(δ) verifies the inequality. We can show in a similar way the existence of λy in the case when I(y) = +∞.
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APPENDIX B

PROOF OF EXPONENTIAL TIGHTNESS OF {µi,t}t=1,2,...

This section proves Lemma 17. Fix i and, for each t and l, l = 1, ..., d, define µli,t to be the probability

measure on R induced by the l-th coordinate of vector Xi,t,

µli,t ((−∞, ρ]) := P
(
X l
i,t ≤ ρ

)
,

for ρ ∈ R. For each l let Λl denote the log-moment generating function of Z li,t, Λl(ν) := logE
[
eνZ

l
i,t

]
,

ν ∈ R; note that Λl(ν) = Λ(νel). Also, let I l denote the conjugate of Λl,

I l(ρ) = sup
ν∈R

ρν − Λl(ν). (52)

Now, fix ρ > 0. By the union bound, we have

µi,t
(
Hc
ρ

)
≤

d∑
l=1

µli,t((−∞,−ρ]) +

d∑
l=1

µli,t([ρ,+∞]). (53)

We focus on the term on the right-hand side sum that corresponds to a fixed l. For any fixed ν ≥ 0, we

have

P
(
X l
i,t ≥ ρ

)
≤ E

[
etνX

l
i,t−tρν

]
.

Similarly as in eqs. (31), conditioning on W1, ...Wt, we obtain:

E
[
etνX

l
i,t

∣∣∣W1, . . . ,Wt

]
= E

[
e
∑t
s=1

∑N
j=1 νe

>
l [Φ(t,s)]ijZj,s

∣∣∣W1, . . . ,Wt

]
= e

∑t
s=1

∑N
j=1 Λl([Φ(t,s)]ijν)

= e
∑t
s=1

∑N
j=1 Λ([Φ(t,s)]ijνel),

where the second equality follows by the fact that, given W1, . . . ,Wt, terms νe>l [Φ(t, s)]ijZj,s in the

double sum above are independent. Applying now Lemma 6 for λ = νel, and using the fact that Λl(ν) =

Λ(νel) yields

E
[
etνX

l
i,t

∣∣∣W1, . . . ,Wt

]
≤ etΛl(ν).

Combining the preceding three equations together with the monotonicity of the expectation, we obtain

1

t
logP

(
X l
i,t ≥ ρ

)
≤ Λl(ν)− ρν. (54)

We show that if ρ > e>l θ = θl, the infimum of the right hand side of (54) over all ν ≥ 0 equals −I l(ρ).

To prove this, it suffices to show that if ρ ≥ θl, the supremum is not achieved for the negative values

of ν. Function Λl is convex and differentiable for all ν, and in particular at ν = 0 (as a log-moment
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generating function, see Lemma 1). Thus, for any ν, Λl(ν) ≥ Λl(0) + (Λl)′(0)ν = θlν. Thus, for ν < 0,

we have ρν − Λl(ν) ≤ ν(ρ− θl) < 0. Since we know that I l must be non-negative (see Lemma 1), the

claim above follows. Thus, for all ρ ≥ θl, we have:

1

t
logµli,t([ρ,+∞]) ≤ −I l(ρ). (55)

By a similar procedure, one can also obtain that 1
t logµli,t((−∞,−ρ]) ≤ −Il(−ρ).

Now, recall that by Assumption 4, DΛ = Rd; hence, DΛl = R. Then, for any ρ

Il(ρ) = sup
ν∈R

νx− Λl(ν) ≥ ν|ρ| − inf
ν:|ν|≤ν0

Λl(ν),

where ν0 is an arbitrary positive number. Noting that the second term on the right hand side is finite, we

see that Il grows unbounded as |ρ| → +∞. Since l was arbitrary, we have that each of the exponents

in (53) grows unbounded as ρ increases to +∞. This completes the proof of Lemma 17.

APPENDIX C

PROOF OF LEMMA 18

Fix a measurable set D. We first show that if (34) holds for any x ∈ Do and any ω ∈ Ω, then for any

x ∈ Do

lim
δ→0

lim inf
t→+∞

1

t
logP (Xi,t ∈ Bx(δ)) ≥ −NI(x). (56)

To this end, fix x ∈ Do and fix ω ∈ Ω.

Applying Fatou’s lemma [34] to the sequence of random variables Rt := 1
t logP (Xi,t ∈ D|W1, . . . ,Wt),

t = 1, 2, . . ., we get

lim inf
t→+∞

E
[

1

t
logP (Xi,t ∈ D|W1, . . . ,Wt)

]
≥ E [R?] . (57)

where R?(ω) := lim inft→+∞Rt(ω), ω ∈ Ω. Consider the left-hand side of (57). By linearity of the

expectation and concavity of the logarithmic function, we have

E
[

1

t
logP (Xi,t ∈ D|W1, . . . ,Wt)

]
≤ 1

t
logE [P (Xi,t ∈ D|W1, . . . ,Wt)] =

1

t
logP (Xi,t ∈ D) .

Taking the lim inf as t → +∞ on both sides of the preceding inequality and combining the result

with (57), yields:

lim inf
t→+∞

1

t
logP (Xi,t ∈ D) ≥ E [R?] . (58)

We now focus on the random variable Rt. Note that we assumed that Do is nonempty (if the interior

of D is empty, the lower bound (25) holds trivially). Since Do is open, for any x ∈ Do, we can find a
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small neighborhood Bx(δ0) that is fully contained in Do (where δ0 = δ0(x)). Hence, for all δ ≤ δ0, we

have Bx(δ) ⊆ Do ⊆ D, and thus, for any fixed ω ∈ Ω

Rt ≥
1

t
logP (Xi,t ∈ Bx(δ)|W1, ...,Wt) (59)

(we used here that the logarithmic function is non-decreasing). Since (59) holds for all t and all δ

sufficiently small, taking the corresponding limits yields

R? ≥ lim
δ→0

lim inf
t→+∞

1

t
logP (Xi,t ∈ Bx(δ)|W1, ...,Wt) .

Using now the assumption (34) of the lemma to bound the right-hand side of the preceding inequality,

we obtain R? ≥ −NI(x), which, we note, holds for every point x in Do. Taking the supremum over all

x ∈ Do, we obtain that for every ω ∈ Ω,

R? ≥ − inf
x∈Do

NI(x). (60)

Taking the expectation in the left-hand side, and combining with (C), we finally obtain the lower

bound (25):

lim inf
t→+∞

1

t
logP (Xi,t ∈ D) ≥ − inf

x∈Do
NI(x).

Since D was arbitrary, the claim of Lemma 18 is proven.

APPENDIX D

PROOF OF LEMMA 19

Being the sum of Λt and a (convex) quadratic function, Λt,M inherits convexity and differentiability

from Λt (in fact, Λt,M is strictly convex due to strict convexity ‖λ‖2/(2M)). To prove 1-coercivity, by

convexity of Λt, we have that Λt(λ) ≥ λ>θ. Hence,

Λt,M (λ) ≥ λ>θ +
‖λ‖2

2M
.

Dividing both sides by ‖λ‖ and using in the right hand side that λ> ≥ −‖λ‖‖θ‖, we obtain

Λt,M (λ)

‖λ‖
≥ −‖θ‖+

‖λ‖
2M
→ +∞,

when ‖λ‖ → +∞, proving that Λt,M is 1-coercive. Strict convexity, differentiability, and 1-coercivity of

Λt,M imply that the gradient map ∇Λt,M is a bijection, see, e.g., Corollary 4.1.3 in [33], p. 239. This

proves the first part 1.
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We now prove part 2. Fix x and fix t ≥ 1. Note that ηt is the maximizer in It,M (x) = supλ∈Rd λ
>x−

Λt,M (λ), and thus it holds that It,M (x) = η>t x − Λt,M (ηt). Since Λt is convex (and differentiable), its

gradient map is monotone. Hence,

(∇Λt(ηt)−∇Λt(0))> (ηt − 0) ≥ 0. (61)

We next show that the value of the gradient of Λt at 0 equals θ. From (36), we have

∇Λt(λ) =
1

t

t∑
s=1

N∑
j=1

[Φ(t, s)]ijΛ([Φ(t, s)]ijλ). (62)

The gradient of Λ at λ = 0 equals θ, see Lemma 1. Using the fact that, for each fixed s,
∑N

j=1[Φ(t, s)]ij =

1, we obtain that ∇Λt(0) = θ. Thus, from (61) we have

(∇Λt(ηt)− θ)> ηt ≥ 0. (63)

Now, note from (36) that ∇Λt(λ) = ∇Λt,M (λ)−λ/M , for arbitrary λ. Using now the fact ∇Λt,M (λ) =

x, (63) implies (x− 1/Mηt − θ)>ηt ≥ 0. Thus, (x− θ)>ηt ≥ η>t ηt/2, proving the claim of the lemma

for this fixed t and x. Since these were arbitrary, the proof of the lemma is complete.

APPENDIX E

PROOF OF LEMMA 20

From the fact that DΛ̃t,M
= Rd, one can show that Ĩt,M has compact level sets (note that Ĩt,M is

lower semicontinuous). Thus, the infimum in (44) has a solution. Denote this solution by wt and let ζt

denote a point for which wt = ∇Λ̃t,M (ζt) (= ∇Λt,M (ζt + ηt)) (such a point exists by Lemma 19). We

now show that ‖wt‖ is uniformly bounded for all t, which, combined with part 2 of Lemma 19, in turn

implies that ηt + ζt is uniformly bounded.

Lemma 21. For any fixed δ > 0 and M > 0, there exists R = R(x, δ,M) < +∞ such that for all t:

1) ‖wt‖ ≤ R, and

2) ‖ζt + ηt‖ ≤M(R+ ‖θ‖).

Proof: Fix M > 0, δ > 0. Define fM , fM : Rd 7→ R as

fM (z) = sup
λ∈Rd

λ>z −NΛ (1/Nλ)− ‖λ‖
2

2M
,

f
M

(z) = sup
λ∈Rd

λ>z − Λ(λ)− ‖λ‖
2

2M
,
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for z ∈ Rd. Note that both fM , fM are lower semicontinuous, finite for every z, and have compact level

sets. Let c = infz∈Bc
x(δ) fM (z) < +∞, and define Sc =

{
z ∈ Rd : f

M
(z) ≤ c

}
.

Fix arbitrary t ≥ 1. One can show, with the help of Lemma 6, that, for any z ∈ Rd,

f
M

(z) ≤ It,M (z) ≤ fM (z). (64)

Observe now that It,M (wt) = infz∈Bc
x(δ) It,M (z) ≤ infz∈Bc

x(δ) fM (z) ≤ c. On the other hand, taking

in (64) z = wt, yields f
M

(wt) ≤ It,M (wt), and it thus follows that wt belongs to Sc.

Finally, as Sc is compact, we can find a ball of some radius R = R(x,M, δ) > 0 that covers Sc,

implying wt ∈ B0(R). Since t was arbitrary, the claim in part 1 follows.

We now prove part 2. Recall that, for any t, wt and ζt + ηt satisfy wt = ∇Λt0,M (ζt + ηt). Applying

part 2 of Lemma 19 for z = wt, we have that ‖ζt + ηt‖ ≤ M ‖wt − θ‖. Combining this with part 1 of

this lemma,

‖ζt + ηt‖ ≤M ‖wt − θ‖ ≤M sup
w∈B0(R)

‖w − θ‖ ≤M(R+ ‖θ‖).

This completes the proof of part 2 and the proof of Lemma 21.

Fix x, δ and M and define r1 = M ‖z − θ‖, r2 = M(R+ ‖θ‖), where R is the constant that verifies

Lemma 21. Fix now t ≥ 1 and recall that ηt, ζt, and wt are chosen such that x = ∇Λk,M (ηt), Ĩt,M (wt) =

infz∈Bc
x(δ) It,M (z), and wt = ∇Λt,M (ηt + ζt). By part 2 of Lemma 19 and part 2 of Lemma 21 we have

for ηt and ζt, ‖ηt‖ ≤ r1, ‖ηt + ζt‖ ≤ r2. To prove Lemma 20, we first show that there exists some

positive constant r3, independent of t, such that ‖ζt‖ ≥ r3 for all t. To this end, consider the gradient

map λ 7→ ∇Λt,M (λ), and note that ∇Λt,M is continuous, and hence uniformly continuous on every

compact set. Note also that ‖ηt‖ , ‖ηt + ζt‖ ≤ max{r1, r2}; that is, points ηt and ηt + ζt are uniformly

bounded for all t. Suppose now, for the sake of contradiction, that for some sequence of times tk,

k = 1, 2, ..., ‖ζtk‖ → 0, as k → +∞. Then, ‖(ηtk + ζtk)− ηtk‖ → 0, and hence, by the uniform

continuity of ∇Λt,M (·) on B0(max{r1, r2}) we have

‖∇Λt,M (ηtk)−∇Λt,M (ηtk + ζtk)‖ → 0, as t→∞.

Recalling that x = ∇Λt,M (ηtk), wtk = ∇Λt,M (ηtk), yields

‖wtk − x‖ → 0.

This contradicts with the fact that, for all t, wt ∈ Bc
x(δ). Thus, we proved the existence of r3

independent of t such that ‖ζt‖ ≥ r3, for all t.
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Now, let

Υ =
{

(η, ζ) ∈ Rd × Rd : ‖η‖ ≤ r1, ‖η + ζ‖ ≤ r2, ‖ζ‖ ≥ r3

}
,

and introduce g : Rd × Rd 7→ R,

g(ζ, η) = Λt,M (η)− Λt,M (ζ + η) +∇Λt,M (ζ + η)>ζ. (65)

By strict convexity of Λt,M (·), we see that, for any η and ζ 6= 0, the value g(η, ζ) is strictly positive.

Further, note that since Λt,M and ∇Λt,M are continuous, function g is also continuous. Consider now

ξ := inf
(η,ζ)∈Υ

g(η, ζ). (66)

Because Υ is compact, by the Weierstrass theorem, the problem in (66) has a solution, that is, there

exists (η0, ζ0) ∈ Υ, such that g(η0, ζ0) = ξ. Finally, because g is strictly positive at each point in Υ (note

that ζ 6= 0 in Υ), we conclude that ξ = g(η0, ζ0) > 0.

Returning to the claim of Lemma 20, by Lemma 21, (ηt, ηt + ζt) belongs to Υ, and, thus,

Ĩt,M (wt) = Λt,M (ηt)− Λt,M (ζt + ηt) +∇Λt,M (ζt + ηt)
>ζt

= g (ηt, ζt) ≥ ξ.

This completes the proof of Lemma 20.

REFERENCES

[1] I. Akyildiz, W. Su, Y. Sankarasubramaniam, and E. Cayirci, “A survey on sensor networks,” Communications Magazine,

IEEE, vol. 40, no. 8, pp. 102–114, Aug. 2002.

[2] J. Abbott, Z. Nagy, F. Beyeler, and B. Nelson, “Robotics in the small, part I: Microbotics,” Robotics Automation Magazine,

IEEE, vol. 14, no. 2, pp. 92–103, June 2007.

[3] I. F. Akyildiz and J. M. Jornet, “Electromagnetic wireless nanosensor networks,” Nano Communication Networks, vol. 1,

no. 1, pp. 3 – 19, 2010.

[4] S. Barbarossa, S. Sardellitti, and P. D. Lorenzo, “Distributed detection and estimation in wireless sensor networks,” SIAM

Journal of Control and Optimization, July 2013, http://arxiv.org/abs/1307.1448.

[5] N. E. Leonard and A. Olshevsky, “Cooperative learning in multiagent systems from intermittent measurements,” SIAM

Journal of Control and Optimization, vol. 53, no. 1, pp. 1–29, 2015.
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[14] S. S. Stanković, N. Ilić, M. S. Stanković, and K. H. Johansson, “Distributed change detection based on a consensus

algorithm,” IEEE Transactions on Signal Processing, vol. 59, no. 12, pp. 5686–5697, Dec. 2011.

[15] G. Mateos, I. D. Schizas, and G. B. Giannakis, “Performance analysis of the consensus-based distributed LMS algorithm,”

EURASIP J. Adv. Signal Process, vol. 68, Jan. 2009.

[16] P. Di Lorenzo and A. Sayed, “Sparse distributed learning based on diffusion adaptation,” IEEE Transactions on Signal

Processing, vol. 61, no. 6, pp. 1419–1433, March 2013.

[17] R. Rahman, M. Alanyali, and V. Saligrama, “Distributed tracking in multihop sensor networks with communication delays,”

IEEE Transactions on Signal Processing, vol. 55, no. 9, Sep. 2007.

[18] S. Kar and J. M. F. Moura, “Asymptotically efficient distributed estimation with exponential family statistics,” IEEE

Transactions on Information Theory, vol. 60, no. 8, pp. 4811–4831, Aug. 2014.

[19] D. Li, S. Kar, J. M. F. Moura, H. V. Poor, and S. Cui, “Distributed Kalman filtering over massive data sets: Analysis through

large deviations of Random riccati equations,” IEEE Transactions on Information Theory, vol. 61, no. 3, pp. 1351–1372,

March 2015.

[20] P. Braca, S. Marano, V. Matta, and A. H. Sayed, “Asymptotic performance of adaptive distributed detection over networks,”

Jan. 2014, http://arxiv.org/abs/1401.5742.

[21] A. Lalitha, A. Sarwate, and T. Javidi, “Social learning and distributed hypothesis testing,” in Information Theory (ISIT),

2014 IEEE International Symposium on, June 2014, pp. 551–555.

[22] T. M. Cover and J. A. Thomas, Elements of Information Theory. New York: John Wiley and Sons, 1991.

[23] H. Chernoff, “A measure of the asymptotic efficiency of tests of a hypothesis based on a sum of observations,” The Annals

of Mathematical Statistics, vol. 23, no. 4, pp. 493–507, Dec. 1952.

[24] M. Arcones, “Large deviations for M-estimators,” Annals of the Institute of Statistical Mathematics, vol. 58, no. 1, pp.

21–52, 2006.
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