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Ubiquitous Antennas: A Geometry Approach
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Abstract

The recent trends of densification and centralized signal processing in radio access networks suggest

that future networks may comprise ubiquitous antennas coordinated to form a network-wide gigantic

array, referred to as the ubiquitous array (UA). In this paper, the UA communication techniques are

designed and analyzed based on a geometric model. Specifically, the UA is modeled as a continuous

circular/spherical array enclosing target users and free-space propagation is assumed. First, consider the

estimation of multiuser UA channels induced by user locations. Given single pilot symbols, a novel

channel estimation scheme is proposed that decomposes training signals into Fourier/Laplace series and

thereby translates multiuser channel estimation into peak detection of a derive function of location. The

process is shown to suppress noise. Moreover, it is proved that estimation error due to interference

diminishes with the increasing minimum user-separation distance following the power law, where the

exponent is 1/3 and 1 for the circular and spherical UA, respectively. If orthogonal pilot sequences are

used, channel estimation is found to be perfect. Next, consider channel-conjugate data transmission that

maximizes received signal power. The power of interference between two users is shown to decay with

the increasing user-separation distance sub-linearly and super-linearly for the circular and spherical UA,

respectively. Furthermore, a novel multiuser precoding design is proposed by exciting different phase

modes of the UA and controlling the mode weight factors to null interference. The number of available

degrees of freedom for interference nulling using the UA is proved to be proportional to the minimum

user-separation distance.

I. INTRODUCTION

The explosive growth of mobile traffic is driving the rapid network densification to provide high-speed

wireless access to coverage regions. To rein in the escalating network cost and interference, wireless access

networks are evolving towards having an architecture with centralized signal processing and minimum

on-site hardware comprising merely antennas and RF units, called either cloud radio access networks or

base-station virtualization [1]. The network evolution as well as the advancements of other technologies
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such as small cells [2] and massive MIMO [3] will lead to future networks where antennas are ubiquitous

and have network-wide coordination to form a gigantic array, which is called the ubiquitous array (UA)

and forms the theme for the paper.

A. Prior Work and New Challenges

The UA system is equivalent to a distributed antennas system (DAS) with dense antennas and without

cells. DASs refers to cellular systems where in each cell, antennas are distributed over the cell region and

connected to a central processing unit [4]. This technology was initially developed to reduce transmission

power and improve network coverage by either simulcast over all distributed antennas or serve each user

using the nearest antennas [5], [6]. Recent research on DASs focuses on increasing the sum rate based

on multiuser MIMO transmission using the distributed antennas as a virtual array, addressing issues such

as inter-cell interference distribution [7], resource allocation [8], capacity analysis [9]–[11] and multi-cell

coordination [12]. Each MIMO channel in such systems has coefficients corresponding to heterogeneous

path loss depending on antenna locations and cannot be modeled as i.i.d. random variable as for the case

of co-located antennas (see e.g., [13]). This complicates the distributions of signals and interference [7]

and provides extra degrees of freedom, namely antenna locations, for sum-rate optimization [14], [15].

Essentially, this work is an attempt to quantify the advantages of extremely dense distributed antennas

for channel estimation and data transmission.

Given the proximity between the UA and users, the UA channel is typically over free space or at most

contains sparse scatterers. Combining free space channels and ubiquitous antennas shifts the paradigm

of MIMO communications in several aspects. First, a new approach is needed for analyzing the capacity

of the UA channel. Rich scattering is commonly assumed in a conventional MIMO channel, allowing

the channel to be modeled as a random matrix and its capacity analyzed using probability theory and

linear algebra (see e.g., [13]). This approach, however, is unsuitable for the UA channel with free space

propagation since the channel capacity depends on the array geometry and the user locations. Thus,

analyzing the capacity of the UA channel should rely on an approach merging geometry, electromagnetic

wave theory and information theory in the same vein as [16], [17]. Next, despite the massive number

of elements in the UA, the UA channel over free space is determined only by a few parameters such

as the user locations and this fact can be exploited to dramatically reduce the complexity of channel

estimation. In contrast, given rich scattering, deploying more antennas leads to continuous growth of the

number of degrees of freedom (DoF) in the channel, which makes channel estimation a key challenge in

designing massive MIMO systems [18]. Last, the classic technique for multiuser beamforming for free

space channels computes nulls by solving a linear system where the number of variables is equal to that

of transmit antennas [19], and thus is inefficient for the UA system with a massive number of transmit

antennas. This calls for the design of efficient transmission algorithms for the UA systems.
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B. Contributions and Organization

The paper represents the first attempt on designing the UA communication systems and focuses on

the signal-processing aspect, namely channel estimation and data transmission. For tractability, the work

considers a particular coverage region represented by a simple geometric model which comprises a

continuous circular UA communicating with U single-antenna users at fixed locations near the UA center.

In the model, propagation is constrained to be within the horizontal plane. The results are subsequently

extended to the case with propagation in the three-dimensional space and a continuous spherical UA.

Channels are assumed to be free space, narrow band, and reciprocal. The elements of the UA and user

antennas are all assumed to be omnidirectional. The layout of the above model is similar to that of

some existing ones for single-cell DASs (see e.g., [21]) that, however, assumes discrete antennas and

rich scattering. The continuity of the UA, modeling dense antennas, is a typical technique for avoiding

consideration of antenna placement (see e.g., [16]). More important, it is instrumental for the new findings

and the algorithmic designs as summarized in the sequel.

First, consider estimation of multiuser UA channels using only single pilot symbols. The channels

are determined by user locations and thus called location induced channels (LI-channels). The channel

responses are non-linear functions of the locations. This makes the conventional linear (mimimm-mean-

square-error or zero-forcing) estimation unsuitable and the optimal maximum-a-posteriori estimation

intractable since it requires solving a set of non-linear equations [22]. To address this issue, a novel low-

complexity channel-estimation technique is proposed based on decomposing the receive multiuser circular

training signal into a Fourier series for the circular UA or spherical harmonics for the spherical UA. This

leads to a derived function of location, called the user-location profile. The proposed estimation method

is to detect the locations of the peaks of the profile that yield estimated user locations. The estimation

procedure is shown to suppress noise by averaging and incur estimation errors only due to interference

between multi-channel etimation. The error is shown to decay with the minimum user-separation distance

following the power law with the exponent 1/3 and 1 for the circular and spherical UA, respectively.

Therefore, without orthogonal pilot sequences, multiuser channel estimation in the UA system is enabled

by sufficiently large user-separation distances instead of differentiation in multiuser angles of arrival as in

the conventional MIMO systems (see e.g., [23]). In addition, applying the method to the scenario where

users deploy orthogonal pilot sequences leads to almost-perfect channel estimation.

Next, consider channel conjugate data transmission using the UA. The signal-to-interference-and-noise

ratios (SINRs) are derived in closed-form. In particular, the power of interference between any two

users is shown be proportional to their separation distance (in wavelength) raised to the power of 2/3

and 2, corresponding to the circular and spherical UA, respectively. Therefore, even given single-user

transmission, interference can be suppressed by increasing users’ separation distances. Moreover, the

path lose is shown to be inversely proportional to the propagation distance or fixed regardless of the

distance for the circular and spherical UAs, respectively. In contrast, the loss for a conventional array
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with collocated elements is inversely proportional to the squared distance.

Last, a novel low-complexity precoding design is proposed for multiuser transmission using the UA.

Specifically, the precoders are designed in the form of Fourier series for the circular UA and spherical

harmonics for the spherical UA. Their coefficients are controlled as derived to excite different phase

modes of the circular array so as to null multiuser interference. For this sub-optimal design, the number

of DoF available for interference nulling is shown to be proportional to the minimum user separation

distance or its square for the circular and spherical UAs, respectively.

The reminder of the paper is organized as follows. The UA system model is described in Section II.

Algorithms for channel estimation and data transmission for the circular-UA system are presented in

Section III and IV, respectively. The results are extended to the spherical-UA system in Section V. Sim-

ulation results are provided in Section VI follows by concluding remarks in Section VII. In Appendix A,

Bessel functions and spherical harmonics are defined and their properties discussed. Last, Appendix B

contains the proofs for lemmas.

II. SYSTEM MODEL

As illustrated in Fig. 1, the UA is modeled as either a circular array or a spherical array, denoted as

O and O2, respectively, having the same radius denoted as r0. The dense UA is assumed to be continuous

for tractable analysis but this assumption is relaxed in simulation. The communication system comprises

the UA centered at the origin and a set of U single-antenna users enclosed by the UA, represented by their

fixed locations X1, X2, · · · , XU in the horizontal plane. A user, Xu, and a particular element of the UA,

A, are represented by their spherical coordinates (ru, ϕu,
π
2 ) and (r0, ϕ, θ), respectively, where (ϕu, ϕ)

are azimuth angles and (π2 , θ) are polar angles with θ = π
2 for the case of circular UA. In addition, there

are no scatterers.

Assumption 1. Users are located near the center of the UA such that ru/r0 � 1 for u = 1, · · · , U .

The assumption allows tractable analysis as it simplifies the expression for the propagation distances.

Specifically, given a user Xu and a UA antenna A, the separation distance and angle are denoted as

|Xu −A| and ψu(A), respectively, with

|Xu −A| =
√
r20 + r2u − 2r0ru cosψu(A)

= r0 − ru cosψu(A) + o (1)

where o represents O(maxu ru/r0). Note that the above model can be extended to include a set of

scatterers at given locations, which reflect communication signals between the UA and users in the

absence of lines of sight. Remarks on the extensions of results to scattering channels are provided in the

sequel.

The wave transmitted by an antenna is assumed to propagate as a plane wave in the three-dimensional

free space. All antennas are assumed to be omni-directional. Let hu(A) represents the response of the
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Fig. 1. A geometric model of a communication system using a continuous circular/spherical UA.

channel between Xu and A. As a result,

hu(A) =
1√

4π|Xu −A|
e−j

2π

λ
|Xu−A|, A ∈ O or O2

where λ denotes the carrier wavelength. Based on (1),

hu(A) =
1√

4πr0
e−j

2π

λ
r0+j

2π

λ
ruψu(A) +

o

r0
, A ∈ O or O2. (2)

Channel estimation at the UA is assisted by pilot signals transmitted by users. Time is divided into

slots with unit symbol durations. Since the effective aperture for a omni-directional antenna is λ2/4π

[24], the total pilot signal received at antenna A in an arbitrary slot, denoted as q(A), is given as

q(A) =
λ√
4π

U∑
u=1

hu(A)su + z(A), A ∈ O or O2 (3)

where su is a pilot symbol transmitted by user u and the noise z(A) is a spatial sample of the additive

white Gaussian noise CN (0, σ2) process at location A. The noise processes are assumed to be spatially

white as follows.

Assumption 2. The noise processes z(X) and z(Y ) at two locations X and Y are independent if X 6= Y .

Substituting (2) into (3) gives

q(A) =
λe−j

2π

λ
r0

4πr0

U∑
u=1

ej
2π

λ
ruψu(A)su + z(A) +

o

r0
, A ∈ O or O2. (4)

Next, consider downlink data transmission. The data symbol intended for user u is denoted as xu

and assumed to be distributed as a CN (0, 1) random variable. The symbol is precoded by a continuous

precoder represented by fu : O or O2 → C. Let Pt denote the transmission power per user. Then the

incident field at location u in an arbitrary slot, denoted as g(Xu), can be written as

g(Xu) =

√
Pt
∂A

∫
A
hu(A)

U∑
k=1

fk(A) dA xk, A = O or O2 (5)
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with hu(A) being the channel response in (2) and ∂A represents the circumference of a circular UA

(A = O) or the surface area of a spherical UA (A = O2). It follows that the corresponding received

signal is

yu =
λ√
4π
g(Xu) + zu, u = 1, 2, · · · , U (6)

where {zu} are i.i.d. CN (0, σ2) random variables representing channel noise.

III. COMMUNICATION USING THE CIRCULAR UA: CHANNEL ESTIMATION

Estimation of the LI-channels is to infer the user locations from the training signal, namely

{q(A) | A ∈ O} =⇒ {Xu}

with {q(A)} given in (4). As mentioned, the linear or MAP estimation techniques are intractable since

q(A) is a nonlinear function of {Xu}. To address this issue, a simple estimation scheme is proposed in

the following sub-sections, which reduces channel estimation to the detection of the peaks of a given

function.

A. LI-Channel Estimation with Single Pilot Symbols

Consider the scenario where users simultaneously transmit single pilot symbols {su} to facilitate

channel estimation at the UA. Without loss of generality, assume that the pilot symbols are all ones:

su = 1 ∀ u. Let the training signal q(A) in (3) be re-denoted as q(ϕ) since A = (r0, ϕ,
π
2 ).

The LI-channel estimation scheme is designed as follows. First, the proposed scheme is based on

decomposing the received training signal {q(ϕ)} into a Fourier series:

q(ϕ) =

∞∑
k=−∞

Qke
−jkϕ, ϕ ∈ [0, 2π] (7)

where the Fourier coefficients {Qk} are defined as

Qk =
1

2π

∫ 2π

0
q(ϕ) dϕ. (8)

The Fourier coefficients contain all information on the signal and thus can replace it in channel estimation.

To facilitate the algorithmic design, the structure of the coefficients is characterized as follows. To this

end, a few notations are introduced. Let Q represent the infinite sequence: · · · , Q−1, Q0, Q1, · · · . The

product between two sequences, V1 and V2, is denoted and defined as V1 ◦V2 =
∑∞

n=−∞[V1]
∗
n[V2]n

where [·]n yields the element with index n. Moreover, Jn : R → R represents Bessel function with an

integer index n as defined and discussed in Appendix A.

Lemma 1 (Training signal decomposition). The sequence Q can be decomposed as

Q =
λ

4πr0
e−j

2π
λ r0

U∑
u=1

V(Xu) +
o

r0
, a.s. (9)
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where V(Xu) = · · ·V−1(Xu), V0(Xu), V1(Xu) · · · with the function Vn(Y ) defined for a given location

Y = (rY , ϕY ,
π
2 ) as

Vn(Y ) = jnejnϕY Jn
(
2π
λ rY

)
. (10)

The proof is provided in Appendix B-A.

Remark 1. The Fourier coefficients {Qk} of the received training signal are noiseless. The noise

suppression is the combined result of the noise spatial whiteness in Assumption 2 and the integral

operation in (8).

Next, based on the decomposition of Q in Lemma 1, the key component of the proposed scheme for

LI-channel estimation is a function Φ : R2 → R+ defined as

Φ(Y ) =
4πr0
λ
|V(Y ) ◦Q| (11)

and called the channel observation profile . To derive a closed-form expression for Φ(Y ), a useful property

for V directly follows from the Addition Theorem in Property (B2) of Bessel functions in Appendix A

as shown below.

Lemma 2. Given two locations X,Y ∈ R2, the product between the sequences V(X) and V(Y ) satisfies

|V(X) ◦V(Y )| = J0
(
2π
λ |X − Y |

)
.

Combining Lemmas 1 and 2 and the definition of Φ(Y ) in (11) gives the following theorem.

Theorem 1 (Channel observation). The channel observation profile corresponding to the circular UA is

noiseless and given as

Φ(Y ) =

∣∣∣∣∑U

u=1
J0
(
2π
λ |Xu − Y |

)∣∣∣∣+ o, a.s. (12)

An example of Φ(Y ) is illustrated in Fig. 2.

LI-channel estimation scheme: One can observe from Theorem 1 that the U Bessel functions in

Φ(Y ) have their peaks at corresponding user locations since J0(x) is maximized at x = 0. Motivated

by this fact, the proposed scheme for estimating the user locations is to detect the peaks in the channel

observation profile Φ(Y ). Since the profile is noiseless, the only source for estimation errors is the

coupling (interference) between the Bessel functions in Φ(Y ) due to finite separation distances between

user locations.

Remark 2 (Channel estimation error). Channel estimation using the proposed scheme is close to perfect

for a single-user system since the corresponding channel observation profile Φ(Y ) ≈ J0
(
2π
λ |X1 − Y |

)
that is maximized at Y = X1 with Φ(X1) ≈ 1. Next, consider the estimation of multiuser LI-channels.

The accuracy for estimating the channel corresponding to user Xu can be evaluated by the difference
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Fig. 2. An example of the channel observation profile corresponding to three users with equal separation distances of 2

wavelengths where the peaks are identified by their Cartesian coordinates and the ripples arise from the tails of superimposed

Bessel functions (see Theorem 1).

between Φ(Xu) and the value of 1 for its single-user counterpart. This measures the interference due to

the presence of multiuser channels and can be obtained from Theorem 1 as follows:

|Φ(Xu)− 1| ≤
∣∣∣∑

k 6=u
J0
(
2π
λ |Xk −Xu|

)∣∣∣+ o, a.s.

Based on Property (B4) of Bessel functions in Appendix A,

|Φ(Xu)− 1| ≤ 1

ν

∑
k 6=u

(
2π
λ |Xk −Xu|

)− 1

3 + o, a.s.

≤ U − 1

ν

(
2π
λ min

u6=k
|Xk −Xu|

)− 1

3

+ o, a.s. (13)

The result shows that the interference magnitude diminishes with the increasing minimum user-separation

distance approximately following a sub-linear function. Given a pair of users, setting the upper bound

in (13) to a small value e.g., 0.1, a rule of thumb for the user-separation distance sufficiently large for

accurate multiuser channel estimation can be computed as 77λ, which is 23 m for a carrier of 1 Gz and

2.3 m for 10 Gz.

Remark 3 (Effect of wavelength on channel estimation). One can infer from (13) that with user locations

fixed, the accuracy of channel estimation can be improved by increasing the carrier wavelength λ.

However, this leads to a denser UA in practice since its elements are required to be separated by no more

than λ/2.

Remark 4 (Scattering Channels). Assuming the reflection at scatterers are isotropic, the channels between

the UA and users are determined not only by the scatterers’ locations but also by the channel coefficients

that combine the gains of the channels between scatterers and users and reflection attenuation at scatterers.

Estimation of the channels can follow a two-phase procedure. First, the scatter locations can be estimated
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following the same scheme as discussed earlier for estimating user locations. Next, resolving the scatter

locations allows the estimation of the training signals reflected by individual scatterers. However, further

estimating the individual channel coefficient between each pair of scatterer and user requires the use of

pilot sequences and exploiting their orthogonality. In other words, unlike that of free-space channels,

channel estimation using single pilot symbols is infeasible for scattering channels.

B. LI-Channel Estimation with Pilot Sequences

In this section, the results in the preceding section for single pilot symbols are extended to the case

with pilot sequences. Let the pilot sequence for the u-th user be denoted as su = [su(1), · · · , su(L)]T

with length L. In the channel training phase, the UA receives sequentially L infinite sequences over

L symbol durations, denotes as Q(1),Q(2), · · · ,Q(L), where Q(`) is modified from its single-symbol

counterpart in Lemma 1 as

Q(`) =
λe−j

2π
λ r0

4πr0

U∑
u=1

su(`)V(Xu) +
o

r0
, a.s. (14)

To estimate the user location Xu, {Q(`)} are coherently combined using su as
∑L

`=1 s
∗
u(`)Q(`). The

result, denoted as Qu, follows from (14) as

Qu =
λe−j

2π
λ r0

4πr0

U∑
k=1

s†uskV(Xk) +
o

r0
, a.s. (15)

A corresponding channel observation profile Φu(Y ) can be defined similarly as in (11):

Φu(Y ) =
4πr0
λ
|V(Y ) ◦Qu|. (16)

The profile Φu(Y ) is decomposed into the desired and interference terms as follows:

Φu(Y )=
∣∣∣J0 (2πλ |Xu−Y |

)
+
∑
k 6=u

s†uskJ0
(
2π
λ |Xk−Y |

) ∣∣∣2+o.

Then the deviation of Φu(Y ) from its single-user counterpart can been bounded as:∣∣Φu(Y )− J2
0

(
2π
λ |Xu − Y |

)∣∣ 6∑
k 6=u
|s†usk|J0

(
2π
λ |Xk − Y |

)
+ o, ∀ u. (17)

This leads to the following main result of this section.

Theorem 2 (Effect of pilot sequences). Given L ≥ U and orthogonal pilot sequences, the LI-channel

estimation using the circular UA is almost perfect since the channel observation profile is approximately

equal to the single-user counterpart:∣∣∣Φu(Y )−J0
(
2π
λ |Xu − Y |

) ∣∣∣ 6 o, u = 1, 2, · · · , U.

Comparing Theorems 1 and 2, the advantage of pilot sequences over single pilot symbols lies in

their capability of decoupling the estimation of multiuser LI-channels, thereby providing close-to-perfect

channel estimation.
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C. Effect of Finite Elements in the UA

Consider a discrete circular UA with N antennas uniformly placed on the circle centered at the origin

and with the radius r0. The discrete UA can be interpreted as a quantized version of the continuous

UA with the quantization error bounded by π/N . Based on this interpretation and assuming N is large,

the analysis for the continuous UA can be straightforwardly extended to the case of discrete UA by

including the quantization error. As a result, for channel estimation with single pilot symbols, the channel

observation profile for the discrete UA, denoted as Φ̂(Y ), can be written as

Φ̂(Y ) = Φ(Y ) +O

(
1

N

)
. (18)

where Φ(Y ) for the continuous UA is given in Theorem 1. Moreover, the result in Theorem 2 for the case

of pilot sequences can be modified by replacing o with o+O(1/N). Similarly, for data transmission using

the discrete UA, the receive SINR at user u, denoted as ŜINRu, can be shown to be ŜINRu = SINRu +

O(1/N) with SINRu corresponding to the continuous UA. The above results suggest that with respect

to the continuous counterpart, the discrete UA causes additional fluctuation in the channel observation

profile and receive SNRs, which can potentially degrades the performance of channel estimation and data

transmission.

IV. COMMUNICATION USING THE CIRCULAR UA: DATA TRANSMISSION

In this section, two precoding techniques are designed for the UA, namely the channel conjugate and

the multiuser phase mode (MU-PM) precoding. For simplicity, it is assumed that the UA has perfect

knowledge of the LI-channels.

A. Channel Conjugate Transmission

For channel conjugate transmission, the precoder applies a phase shift to each antenna for compen-

sating propagation delay to achieve coherent combining at the target user location, which is similar to

beamforming using a phase array. Specifically, the precoder fu(ϕ) is given as

fu(ϕ) =
h∗u(ϕ)

|hu(ϕ)|
, ϕ ∈ [0, 2π) (19)

where h(ϕ) is given in (2). It follows that

fu(ϕ) = ej
2π

λ
(r0−ruψu(ϕ)), ϕ ∈ [0, 2π). (20)

The normalization |fu(ϕ)|2 = 1 facilitates the UA implementation under the per-element power constraint

e.g., using a phase array.

The channel conjugate precoder {fu(ϕ)} shapes the distribution of the field power density such

transmission power is concentrated in a small region centered at the target location Xu. Characterizing

the distribution is useful for analyzing the precoder performance. To this end, consider the transmission of

an unmodulated wave using the UA after precoding using {fu(ϕ)} in (20). Conditioned on the precoder,
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let g(Xk | Xu) denote the resultant field measured at the location Xk. With the propagation distance in

(1), it can be obtained that

g(Xk | Xu) =

√
Pt

2πr0
× 1√

4πr20
×
∫ 2π

0
ej

2π

λ
(−r0+ru cosψu(ϕ))fk(ϕ)r0dϕ+

o
√
r0
. (21)

At the right-hand side of (21), the three factors of the dominant term correspond to the density of

transmission power uniformly distributed over the UA, the propagation loss and the wave superposition

at Xu, respectively. Substituting the precoder in (20) into (21) yields

g(Xk | Xu) =

√
Pt

2r0
× 1

2π

∫ 2π

0
ej

2π

λ
(ru cosψu(ϕ)−rk cosψk(ϕ))dϕ+

o
√
r0
. (22)

The field power density at location Xk can be represented by p(Xk | Xu) = |g(Xk | Xu)|2. Using

(22), a closed-form expression for p(Xk | Xu) is obtained as shown in the following lemma proved in

Appendix B-B.

Lemma 3 (Field power density distribution). Given the circular UA and channel conjugate precoding

targeting user Xu, the field power density measured at the user location Xk is given as

p(Xk | Xu) =
Pt

2r0
J2
0

(
2π
λ |Xu −Xk|

)
+

o

r0
. (23)

The result shows that the field power density function p(Xk | Xu) depends only on the distance

|Xk − Xu| and thus can be rewritten as p(d) with d > 0 denotes the the distance from the location

targeted by the precoder. Then the distribution of the field power density can be characterized by the

function p(d)/p(0) = J0
(
2πd
λ

)
that is plotted in Fig. 3. It can be observed from the figure that the

channel-conjugate precoder shapes the field distribution such that most power is concentrated within a

circular region centered at the target location and having a radius of half wavelength. The tail of the

distribution function is undesirable as it causes interference to nearby unintended receivers. However,

the envelop of the tail decays with distance d, allowing interference suppression by spatial separation as

further discussed in the sequel.

With the field distribution in (3), the performance of the channel-conjugate precoding is readily analyzed

in terms of receive SINRs as follows. Let Pr and Pi denote the signal and interference powers at user

Xu, respectively. Since the effective aperture of the receive omni-directional antenna is λ/4π, Pr and Pi

are given as

Pr =
λ

4π
p(Xu | Xu) and Pi =

λ

4π

∑
k 6=u

p(Xu | Xk). (24)

The receive SINR for user Xu can be written in terms Pr and Pi as

SINRu =
Pr

Pi + σ2
. (25)

Substituting Lemma 3, (24) into (25) yields the following main result of this section.
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Fig. 3. Given channel-conjugate transmission, the distribution of field power density (normalized by its peak) as a function of

distance from the peak location.

Theorem 3 (Receive SINRs). For channel conjugate transmission using the circular UA, the receive

SINR for user u is given as

SINRu =
1∑

k 6=u
J2
0

(
2π
λ |Xu −Xk|

)
+ 1

SNR

+ o, u = 1, 2, · · · , U (26)

where the receive SNR is given as

SNR =
Ptλ

8πσ2r0
+

o

r0
. (27)

Remark 5 (High SNR). Applying the bound on the Bessel function in Property (B4) in Appendix A,

for a high SNR, the signal-to-interference ratio (SIR) at user u scales with the distance to the nearest

interferer, namely mink 6=u |Xk −Xu|, and the wavelength λ as

SIRu >
ν2

U − 1

(
2πmin

k 6=u

|Xk −Xu|
λ

) 2

3

+ o, ∀ u. (28)

Thus the receive SIRs increase with the increasing minimum user-separation distance (in wavelength)

following a sub-linear function. Moreover, the result in (28) suggests that denser simultaneous users can

be supported by reducing the wavelength without compromising the system throughput. Specifically, the

user density can scale linearly with 1/λ2.

Remark 6 (Free space vs. scattering channels). Free-space channels allow the UA to focus signal energy

at intended users such that the signal power decays rapidly with the distance from the target location. As

a result, given single-user (channel-conjugate) transmission, interference can be suppressed by increasing

user spatial separation as shown in (28). However, this is infeasible in the scenario of scattering channels

as scattering introduces additional cross coupling between multiuser signals. Suppressing the resultant
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interference cannot rely on increasing users’ spatial separation and multiuser precoding has to be used

for this purpose.

Remark 7 (High Mobility). Given fixed user locations, the sum rate is thus
∑

u log2(1 + SINRu) with

SINRu given in (26). For the scenario where users have high mobility, it is more appropriate to consider

the ergodic sum rate given as

R̄ = E

[∑
u

log2(1 + SINRu(X1, · · · , XU ))

]
(29)

where {Xu} are random. The ergodic sum rate can be analyzed by combining the results in Theorem 3

and stochastic geometry [32].

Last, the received SNR given in (27) implies the following result.

Corollary 1 (Propagation loss). Given channel-conjugate transmission using the circular UA, the prop-

agation loss is given as
Pr

Pt
=

λ

8πr0
+

o

r0
. (30)

In other words, transmission using the circular UA reduces the loss such that it is inversely proportional

to the propagation distance instead of its square as in the case of a conventional array of collocated

antennas.

B. Multiuser Phase Mode Precoding

In this section, MU-PM precoders are designed under the zero-forcing constraints to avoid multiuser

interference. Exploiting the circular structure of the UA, the precoder for each user, say f ′u(ϕ) for user

u, can be expressed in terms of the Fourier series representing the sequence of phase modes:

f ′u(ϕ) = fu(ϕ)

∞∑
m=−∞

cu,me
−jmϕ, ϕ ∈ [0, 2π) (31)

where fu(ϕ) is the channel-conjugate precoder in (19) for compensating the channel phase shift and

the summation is the said Fourier series. The precoder coefficients {cu,m} satisfy the power constraint:∑∞
m=−∞ |cu,m|2 ≤ 1 for all u.

The precoder coefficients are designed to avoid the inter-user interference as follows. Without multiuser

interference, it is unnecessary to analyze the field spatial distribution as in the case of channel conjugate

transmission and instead the remainder of the section focuses on the precoder design and the analysis

of the received signal power. To this end, the received signal at user u is obtained by substituting the

precoder in (31) into (5):

yu =

√
λPt
8πr0

U∑
k=1

(
1

2π

∫ 2π

0

h∗k(ϕ)hu(ϕ)

|hk(ϕ)|2
∞∑

m=−∞
ck,me

−jmϕ dϕ

)
xk + zu.
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The substitution of the channel response in (2) yields

yu =

√
λPt
8πr0

cu,0xu +

√
λPt
8πr0

∑
k 6=u

∞∑
m=0

ck,mJu,k,mxk + zu +
o

r0
(32)

where the first term and the summation represent the signal and interference, respectively, and Ju,k,m is

defined as

Ju,k,m =
1

2π

∫ 2π

0
ej

2π

λ
(ru cos(ϕu−ϕ)−rk cos(ϕk−ϕ))−jmϕ dϕ. (33)

A closed-form expression for Ju,k,m can be obtained as follows, following similar steps as in the proof

for Lemma 3 with the details omitted for brevity.

Lemma 4. The coefficients {Ju,k,m} defined in (33) can be written as

Ju,k,m = ejmβu,kJm

(
2π

λ
|Xu −Xk|)

)
(34)

where 1 ≤ u, k ≤ U and m is an integer.

The interference term in the signal in (32) can be nulled by enforcing the following zero-forcing

constraints: ∞∑
m=−∞

ck,mJu,k,m = 0, ∀ k 6= u. (35)

In practice, given a discrete UA and a constraint on computation complexity, it is infeasible to implement

MU-PM precoders with an infinite number of phase modes and only a finite set of modes is considered

in the design. Let the corresponding coefficient set be denoted as {cu,m | 1 ≤ u ≤ U,−M ≤ m ≤ M}

with M being a fixed integer and other coefficients set to zero. Under the zero-forcing constraints

in (35), it is desirable to choose the precoder coefficients such that the correspond set of coefficients

{Ju,k,m | 1 ≤ u, k ≤ U,−M ≤ m ≤ M} are significant. Then applying Property (B4) of Bessel

functions in Appendix A gives that

M = 2πmin
u,k

⌊
|Xu −Xk|

λ

⌋
(36)

where users are assumed to be separated by distances much larger than a single wavelength, yielding the

following fact.

Remark 8 (Degrees of freedom). Given MU-PM transmission using a circular UA, the total number

of degrees of freedom for interference avoidance is approximately equal to (2M + 1) with M given in

(36), which is proportional to the minimum user-separation distance.

Transmission over only (2M + 1) phase modes allows the precoder coefficients for user u to be

represented by the vector cu =
[
cu,−M , · · · , cu,0, · · · , cu,M

]T
. Furthermore, the zero-forcing

constraints in (35) can be written in a matrix form:

Jucu = 0 (37)
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where the matrix Ju is defined as

Ju =



Ju,1,−M , · · · , Ju,1,0, · · · , Ju,1,M
...

. . .
...

. . .
...

Ju,u−1,−M , · · · , Ju,u−1,0, · · · , Ju,u−1,M
Ju,u+1,−M , · · · , Ju,u+1,0, · · · , Ju,u+1,M

...
. . .

...
. . .

...

Ju,U,−M , · · · , Ju,U,0, · · · , Ju,U,M


(38)

with the elements specified in Lemma 4. Given the constraints obtained in (37), the main result of the

section can be readily stated as follows.

Theorem 4 (Multiuser UA precoding). For MU-PM transmission using the circular UA, the precoder

coefficients are given as

cu ∈ null(Ju), u = 1, 2, · · · , U (39)

where the matrix Ju is given in (38) and null(Ju) denotes the null-space of Ju.

With interference avoided, the receive SNR for user u follows from (32) as

SNRu =
λPt|cu,0|2

8πr0σ2
+

o

r0
=
λPt|e†0cu|2

8πr0σ2
+

o

r0
(40)

where e0 = [0, · · · , 0, 1, 0, · · · , 0]T . Thus, to maximize SNRu, the precoder-coefficient vector cu should

be chosen as the projection of e0 onto null(Ju) that contains cu according to Theorem 4. This gives the

following corollary.

Corollary 2. For MU-PM transmission using the circular UA, the maximum receive SNRs are given as

SNRu =
λPt

∣∣∣e†0bu∣∣∣2
8πr0σ2

+
o

r0
, u = 1, 2, · · · , U (41)

where bu is a basis of null(Ju).

With respect to the case of channel-conjugate transmission, the term
∣∣∣e†0bu∣∣∣2 represents the loss in

receive SNR due to interference nulling.

V. COMMUNICATION USING THE SPHERICAL UA

In the preceding section, the UA is modeled as the circular array. The results are extended in this section

to the spherical UA system, which shows its performance improvements with respect to the circular-UA

counterpart. Essentially, the difference in analysis arises from the use of spherical harmonics as the tool

in place of Fourier series.
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A. Spherical LI-Channel Estimation

Assume that users transmit single pilot symbols: {su} = {1}. The estimation scheme in Section III is

extended to the spherical UA as follows. To this end, the training signal in (4), re-denoted as q(ϕ, θ),

is expanded as a Laplace series as follows by using the harmonic functions {Y m
` }, defined in (74) in

Appendix A, as the basis:

q(ϕ, θ) =

∞∑
`=0

∑̀
m=−`

Qm` Y
m
` (ϕ, θ), θ ∈ [0, π), ϕ ∈ [0, 2π) (42)

where the Laplace coefficients {Qm` } are defined as

Qm` =

U∑
u=1

∫ 2π

θ=0

∫ π

ψ=0
q(ϕ, θ)Y m

` (ϕ, θ) sinϕdϕdθ. (43)

To derive a closed-form expression for Qm` , a useful result is given as follows.

Lemma 5. Given two points (r0, ϕ, θ), (ru, ϕu, θu) ∈ R3,

ej
2π

λ
ru cosψu = (2π)

3

2

∞∑
`=0

∑̀
m=−`

j`J`+ 1

2

(
2π
λ ru

)
(
2π
λ ru

) 1

2

Y m
` (ϕu, θu)Y m

` (ϕ, θ) (44)

where ψu denotes the angle between the vectors corresponding to the two points.

The lemma is proved in Appendix B-C. Using the orthogonality of the basis functions {Y m
` (ϕ, θ)},

substitution of the expression for q(ϕ, θ) in (4) and Lemma 5 into (43) leads to the following lemma.

Lemma 6 (Training signal decomposition). The training signal received at the spherical UA, namely

{q(ϕ, θ)} in (42), has the Laplace coefficients given as follows:

Qm` =
λ(2π)

3

2

4πr0

U∑
u=1

j`J`+ 1

2
(2πru/λ)

(2πru/λ)
1

2

Y m
` (ϕu, θu) +

o

r0
(45)

where ` = 1, 2, · · · and −` ≤ m ≤ `.

Define two sets Q̃ and Ṽ(Y ) as Q̃ = {Qm` } and Ṽ(Y ) = {V m
` (Y )} with their elements Qm` given in

(45) and V m
` : R3 → R being a function defined as

V m
` (Y ) = (2π)

3

2

jnJ`+ 1

2

(
2π
λ ru

)
(
2π
λ ru

) 1

2

Y m
` (ϕu, θu). (46)

Using these definitions, the channel observation profile corresponding to the spherical UA, represented

by Φ̃(Y ), can be defined similarly as in (11):

Φ̃(Y ) =
r0
λ

∣∣∣Ṽ(Y ) ◦ Q̃
∣∣∣

=
r0
λ

∣∣∣∣∣
U∑
u=1

∞∑
`=0

∑̀
m=−`

[V m
` (Y )]∗Qm`

∣∣∣∣∣ .
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Substituting (45) and (46) gives

Φ̃(Y ) =

∣∣∣∣∣2π2
U∑
u=1

∞∑
`=0

J`+ 1

2

(
2πru
λ

)
J`+ 1

2

(
2πrY
λ

)
(
2πru
λ

) 1

2
(
2πrY
λ

) 1

2

∑̀
m=−`

[Y m
` (Y )]∗Y m

` (Xu)

∣∣∣∣∣+ o (47)

where noise varnishes for the same reason as for the case of circular UA. By applying Addition Theorem

in Property (S3) for spherical harmonics in Appendix A,

Φ̃(Y ) =

∣∣∣∣∣π2
U∑
u=1

∞∑
`=0

(2`+ 1)J`+ 1

2

(
2πru
λ

)
J`+ 1

2

(
2πrY
λ

)
(
2πru
λ

) 1

2
(
2πrY
λ

) 1

2

P` (cosψu)

∣∣∣∣∣
2

+ o. (48)

Next, applying Addition Theorem in Property (B3) of Bessel functions in Appendix A further simplifies

the expression as shown in the following theorem.

Theorem 5 (Channel observation). The channel observation profile corresponding to the spherical UA

is given as

Φ̃(Y ) =

∣∣∣∣∣
U∑
u=1

sinc
(
2π
λ |Y −Xu|

)∣∣∣∣∣+ o, a.s. (49)

Remark 9 (Channel estimation error). As in Remark 2 for the circular UA, the accuracy of channel

estimation can be evaluated using the difference
∣∣∣Φ̃(Xu)− 1

∣∣∣. Since |sinc(d)| 6 d−1, it can be obtained

from Theorem 5 that ∣∣∣Φ̃(Xu)− 1
∣∣∣ ≤ 2π(U − 1) min

u6=k

(
|Xk−Xu|

λ

)−1
+ o, a.s. (50)

The error bound is observed to diminish inversely with the increasing minimum user-separation distance

(in wavelength) following an inverse function that is faster than the circular-UA counterpart in (13). This

quantifies the gain of increasing the UA by one dimension from the perspective of channel estimation.

Next, consider the case where users transmit pilot sequences with length of L symbols. Following the

same procedure as for deriving Theorem 2 yields the following corollary.

Corollary 3 (Effect of pilot sequences). Given L ≥ U and orthogonal pilot sequences, the LI-channel

estimation using the spherical UA is almost perfect since the channel observation profile is approximately

equal to the single-user counterpart:∣∣∣Φ̃u(Y )− sinc
(
2π
λ |Xu − Y |

) ∣∣∣ 6 o.
Remark 10. If orthogonal pilot sequences are used, the spherical UA does not have an advantage over

the circular counterpart in terms of channel estimation. However, the former improves the performance

of channel estimation in the case of single pilot symbols as well as that of data communication as shown

in the sequel.
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B. Data Transmission Using the Spherical UA

1) Channel Conjugate Transmission: For channel conjugate transmission using the spherical UA, the

spherical precoder, denoted as f̃u(ϕ, θ), is modified from the circular counterpart in (20) as

f̃u(ϕ, θ) =
h∗u(ϕ, θ)

|hu(ϕ, θ)|
, θ ∈ [0, 2π), ϕ ∈ [0, π). (51)

The resultant receive SNRs are derived as follows. Let q̃(Xu | Xk) and p̃(Xu | Xk) denote the field

and its power density measured at location Xu given a precoder targeting user Xk. Then q̃(Xu | Xk) can

be obtained by modifying the circular-UA counterpart in (21) by replacing the integration over a circle

with one over a sphere:

g̃(Xu | Xk) =

√
Pt

4πr20
× 1√

4πr20
×
∫∫

ej
2π

λ
(ru cosψu−rk cosψk)r20 sin θ dθ dϕ+ o

=

√
Pt

4π

∫∫
ej

2π

λ
(ru cosψu−rk cosψk) sin θ dθ dϕ+ o. (52)

To facilitate analysis, a set of coefficients {Ju,k,m,n} with integer indices (u, k,m, n) are defined as

Ju,k,m,` =

∫∫
ej

2π
λ (ru cosψu−rk cosψk)Y m

` (ϕ, θ) sinϕ dϕ dθ (53)

with 1 ≤ u, k ≤ U , n ≥ 0 and −` ≤ m ≤ `, which are also used for designing multiuser precoders

in the next sub-section. They can be written in a closed form as shown in the following lemma that is

proved in Appendix B-D.

Lemma 7. The coefficient Ju,k,m,` defined in (53) can be written as

Ju,k,m,` =
(2π)

3

2 j`J`+ 1

2

(
2π
λ |Xu −Xk|

)√
2π
λ |Xu −Xk|

Y m
` (ϕu,k, θu,k)

where the angles ϕu,k and θu,k are defined by the following equations:

sinϕu,k cos θu,k =
ru sinϕu cos θu − rk sinϕk cos θk

ru,k

sinϕu,k sin θu,k =
ru sinϕu sin θu − rk sinϕk sin θk

ru,k

cosϕu,k =
ru cosϕu − rk cosϕk

ru,k
. (54)

Using the fact that

J 1

2
(x) =

√
2

π

sinx√
x
, Y0,0(ϕu,k, θu,k) =

1√
4π

(55)

and Lemma 7, the field in (52) can be obtained in a closed form, yield the following result.

Lemma 8 (Field power density distribution). Given the spherical UA and channel conjugate precoding

targeting user Xu, the field power density measured at the user location Xk is given as

p̃(Xu | Xk) = Pt sinc2
(
2π
λ |Xu −Xk|

)
+ o. (56)
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As in the case of circular UA, p̃(Xu | Xk) can be rewritten as p̃(d) with d being the distance from the

location targeted by the precoder. Then the distribution of the field power density can be characterized

by the function p̃(d)/p̃(0) = sinc2
(
2πd
λ

)
that is plotted in Fig. 3. Like the circular-UA counterpart,

by channel-conjugate precoding, the spherical UA focuses the transmission power into a region within a

distance of half wavelength from the target location. The advantage of the spherical UA is reflected in that

the tail of the distribution function has an envelop diminishing with the increasing distance much faster

than that corresponding to the circular UA. This reduces multiuser interference and leads to substantial

performance improvements as shown in the analysis and observed from simulation results.

Given the SINR defined similarly as in (25), the result in Lemma 8 leads to the spherical-UA counterpart

of Theorem 3 as follows.

Theorem 6 (Receive SINRs). For channel conjugate transmission using the spherical UA, the receive

SINR for user u, denoted as S̃INR is given as

S̃INRu =
1∑

k 6=u
sinc2

(
2π
λ |Xu −Xk|

)
+ 1

SNR

+ o, u = 1, 2, · · · , U (57)

where the receive SNR is

SNR =
Ptλ

2

4πσ2
. (58)

Remark 11 (High SNR). Using the fact |sinc(d)| 6 d−1, the SIR lower bound in (28) for the circular

UA can be modified for the current case as

S̃IRu >
1

U − 1

(
2πmin

k 6=u

|Xk −Xu|
λ

)2

+ o. (59)

Thus, the receive SIRs increase with the minimum user-separation distance (in wavelength) at least

following a super-linear function with the exponent 2, which is faster than the sub-linear function for the

circular UA (see Remark 5). This specifies the gain of increasing the UA by one dimension from the

perspective of received signal quality.

Last, the received SNR in (58) suggests the following result.

Corollary 4 (Propagation loss). Given channel-conjugate transmission using the spherical UA, the

propagation loss is approximately equal to the receive antenna aperture:

Pr

Pt
=
λ2

4π
+ o. (60)

In other words, the path loss is a constant and independent with the propagation distance r0. In contrast,

the loss corresponding to the circular UA and the conventional array is inversely proportional to r0 (see

Corollary 1) and r20, respectively.
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2) Multiuser Phase Mode Transmission: The phase modes for the spherical UA correspond to different

spherical harmonics. Then the spherical MU-PM precoder for user u, denoted as f̃ ′u, is modified from

the circular counterpart in (31) as

f̃ ′u(ϕ, θ) = f̃u(ϕ, θ)

∞∑
`=0

∑̀
m=−`

cu,m,`Y
m
` (ϕ, θ) (61)

where {cu,m,`} are the precoder coefficients to be designed, f̃u(ϕ, θ) is the channel conjugate precoder

in (51) and the spherical harmonic function Y m
` (ϕ, θ) is defined in (74). By substitution of (61) into (5),

the signal received at user Xu is given as

ỹu = λ

√
Pt
4π

U∑
k=1

(
1

4π

∫∫
h∗k(ϕ, θ)hu(ϕ, θ)

|hk(ϕ, θ)|

∞∑
`=0

∑̀
m=0

ck,m,`Y
m
` (ϕ, θ) sinϕdϕdθ

)
xk + zu

= λ

√
Pt
4π
cu,0,0xu + λ

√
Pt
4π

∑
k 6=u

(
1

4π

∫∫
ej

2π
λ (ru cosψu−rk cosψk)

∞∑
`=0

∑̀
m=−`

ck,m,`Y
m
` (ϕ, θ) sinϕdϕdθ

)
xk

+ zu + o

= λ

√
Pt
4π
cu,0,0xu + λ

√
Pt
4π

∑
k 6=u

∞∑
`=0

∑̀
m=0

ck,m,`Ju,k,m,`xk + zu + o (62)

where the coefficients {Ju,k,m,`} are defined earlier in (53). It can be observed from Lemma 7 that

Ju,k,m,` is proportional to J`+ 1

2
(2πλ |Xu −Xk|). Therefore, following the same reason as for the circular

UA, only the set of coefficients {Ju,k,m,` | 0 ≤ ` ≤M} have significant values. Considering only these

values reduces the precoder coefficients to a finite set {ck,m,` | 0 ≤ ` ≤M}, yielding the following fact.

Remark 12 (Degrees of freedom). Given MU-PM transmission using a spherical UA, the total number

of degrees of freedom for interference avoidance is approximately equal to (M + 1)2 with M given in

(36). As a result, since M is much greater than one, the number of degrees of freedom generated by

the spherical UA is approximately proportional to M2 that is much larger than that, namely 2M , for the

circular counterpart.

Next, the said finite set of precoder coefficients can be designed by applying the zero-forcing constraints

that follow from (62) as
M∑
`=0

∑̀
m=−`

ck,m,`Ju,k,m,` = 0, ∀ k 6= u. (63)
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The constraints can be written in the matrix form. To this end, define the matrix Hu,` as

Hu,` =



Ju,1,−`,`, Ju,1,−`+1,`, · · · Ju,1,`,`
...

...
. . .

...

Ju,u−1,−`,`, Ju,u−1,−`+1,`, · · · Ju,u−1,`,`
Ju,u+1,−`,`, Ju,u+1,−`+1,`, · · · Ju,u+1,`,`

...
...

. . .
...

Ju,U,−`,`, Ju,U,−`+1,`, · · · Ju,U,`,`


and the row vector au,` =

[
cu,−`,`, cu,−`+1,`, · · · cu,`,`

]
where ` = 0, 1, · · · . Moreover, using these

matrices/vectors as elements, define

J̃u =
[
Hu,0,Hu,2, · · · ,Hu,M

]
, cu =

[
au,1,au,2, · · · ,au,M̃

]T
. (64)

Using these definitions, the zero forcing constraints in (63) can be written as

J̃uc̃u = 0, u = 1, 2, · · · , U. (65)

The main result of the section is summarized in the following theorem.

Theorem 7 (Multiuser UA precoding). For MU-PM transmission using the circular UA, the precoder

coefficients under the zero-forcing constraints are given as

c̃u ∈ null(J̃u), u = 1, 2, · · · , U (66)

where null(J̃u) denotes the null-space of J̃u.

The spherical-UA counterpart of Corollary 2 is as follows.

Corollary 5 (Receive SNRs). For MU-PM transmission using the circular UA, the maximum receive

SNR for user u is given as

SNRu =
η2Pt

∣∣∣e†0bu∣∣∣2
σ2

+ o, u = 1, 2, · · · , U (67)

where bu is a basis of null(J̃u).

Remark 13. Theorem 7 and Corollary 5 are observed to have the same forms as Theorem 3 and

Corollary 2, respectively. However, the space null(J̃u) corresponding to the sperical UA is much larger

than its circular-UA counterpart null(Ju). The extra degrees of freedom allow the spherical-UA system

to support a larger number of simultaneous users and reduce the received SNR loss due to interference

avoidance.
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Fig. 4. (a) Circular UA with a radius of r0 = 20 m. (b) Spherical UA with the same radius. (c) Collocated array with a radius

of rd = 5 m. The number of users is 10.

VI. SIMULATION RESULTS

In simulation, discrete UAs with finite numbers of antennas are considered. As illustrated in Fig. 4,

the UA antennas are uniformly distributed on a circle for the case of circular UA or a sphere for the case

of spherical UA, both of which have the fixed radius r0 = 20 m modeling a small deployment region.

For benchmarking, the conventional collocated array is also included in simulation whose antennas are

uniformly distributed in a horizontal disk with a radius denoted as rd and right above the origin with a

vertical distance equal to r0 as shown in Fig. 4(c). Note that this location and orientation of the collocated

UA are found by simulation to yield the best performance among other configurations with the same

disk radius and distance to the origin. The radius of the collocated UA is set as rd = 5 m in Fig. 4 for

ease of illustration and rd = 1 m for all other simulation results. In addition, relaxing Assumption 1, the

users are uniformly distributed in the horizontal disk with a radius of 0.5r0 instead of being near the

origin. Moreover, the carrier frequency is 2.5 GHz and the noise variance is −100 dBm.



23

600100 200 300 400 500

100

10-5

10-4

10-3

10-2

10-1

Number of antennas

A
ve

ra
ge

 c
ha

nn
el

 e
st

im
at

io
n 

er
ro

r 
(m

)

(1) Conventional array 
(2) Circular UA
(3) Spherical UA

(1)

(2)

(3)

(a) Effect of the number of antennas

202 3 6 9 12 15 18

100

10-6

10-5

10-4

10-3

10-2

10-1

Number of users

A
ve

ra
ge

 c
ha

nn
el

 e
st

im
at

io
n 

er
ro

r 
(m

)

(1)

(2)

(3) (1) Conventional array 
(2) Circular UA
(3) Spherical UA

(b) Effect of the number of users
Fig. 5. Consider LI-channel estimation with single pilot symbols. (a) Effect of the number of antennas on channel estimation

error for 10 users. (b) Effect of the number of users on channel estimation error for 200 transmit antennas.

A. Channel Estimation

Consider channel estimation using single pilot symbols and algorithms from straightforward extension

of those in Sections III and V-A to discrete arrays. The average channel estimation error is defined as

the difference between the estimated and actual locations of a typical user as averaged over the random

distributions of users and antennas. Fig. 5 displays the curves of average channel estimation error versus

the number of antennas and those of average error versus the number of users in two separate sub-figures.

Several observations can be made from the curves. As the number of antennas increases, the average

errors for the circular and spherical UAs both diminishes rapidly and converges to a small constant

corresponding to the continuous arrays analyzed in the preceding sections. Moreover, the errors grows

rapidly as the number of users increases. For relatively small numbers of users (e.g, fewer than 9) or large

numbers of antennas (e.g., larger than 200), the performance of channel estimation for the UAs is much

better than that using a collocated UA; the spherical UA outperforms the circular UA. The conventional

array’s incapability of accurate LI-channel estimation is mainly due to its confined geometry that is more

suitable for estimating signals’ angles-of-arrival. For verification, it can observed from Fig. 5 that the

average error for the collocated array is insensitive to the numbers of antennas and users, suggesting that

they are not the performance limiting factors.

B. Data Transmission

Consider data transmission assuming perfect channel-state-information at the transmitter. The curves

of sum throughput versus transmission power per user are plotted in Fig. 6 with the number of users

fixed at 10. The plots account for two transmission schemes including multiuser phase-mode (PM) and

single-user channel-conjugate (CC) transmission and different numbers of antennas, namely 100 and 400.

Several observations are made by comparing the curves. First, the combination of spherical UA and PM
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Fig. 6. Sum throughput versus transmission power per user for a transmit array with (a) 100 or (b) 400 antennas. The number

of users is fixed at 10.

transmission yields much higher sum throughput than any other combination since distributing antennas

over a larger area allows the spherical UA to generate a much higher number degrees of freedom for

avoiding interference and enhancing received signal power compared with other arrays (see Remark 12).

Second, the sum throughputs for CC transmission using three types of arrays are comparable and higher

than those achieved by PM transmission using the circular UA and collocated UA in the power range

of −70 to −45 dBm; beyond this range, interference resulting from CC transmission dominates noise,

causing the corresponding sum throughputs to saturate. Last, increasing the number of antennas from 100

to 400 contributes approximately the same throughput gain, about 20 b/s/Hz, for different combinations

of array and transmission scheme.

The curves of sum throughput versus number of users are plotted in Fig. 7 with the transmission

power per user fixed at −40 dBm. For PM transmission, the sum throughputs are observed to increase

approximately linearly with the increasing number of users or equivalently the increasing number of

simultaneous data streams. Furthermore, the curve corresponding to the spherical UA has a slope much

larger than those for the other types of arrays that are comparable. In contrast, operating in the interference

limiting regime, the sum throughputs for CC transmission using 100 antennas saturate and are observed

to be insensitive to the increase of the number of users. This issue can be alleviated by deploying more

antennas (400) that leads to a substantial throughput gain e.g., about 20 b/s/Hz for the number of users

equal to 18. Nevertheless, the gains for PM transmission are much larger and about 60 b/s/Hz at the

same number of users.

VII. CONCLUSION

Techniques have been designed for channel estimation and data transmission in the UA system by

modeling the UA as a gigantic continuous circular/spherical array and assuming free-space propagation. It
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Fig. 7. Sum throughput versus number of users for a transmit array with (a) 100 or (b) 400 antennas. The transmission power

per users is fixed at −40 dBm.

has been shown that the UA enables accurate estimation of multiuser channels even if single pilot symbols

are used provided that the user-separation distances are sufficiently large. If orthogonal pilot sequences

are used, channel estimation is found to be always close to perfect. For single-user data transmission using

the UA, inter-user interference can be suppressed by increasing user-separation distances. Alternatively,

interference can be nulled at the UA based a novel design of multiuser phase-mode precoders. The

resultant number of available degrees of freedom for interference nulling is shown to be proportional to the

minimum user-separation distance. Furthermore, the spherical UA provides performance gain compared

with the circular counterpart.

This work opens up several interesting directions for further research. First, the current analysis is based

on the model of a continuous circular/spherical UA and targets users near the UA center. Generalizing

the model and user locations makes the analysis more challenge and requires the development of new

analytical techniques. Second, it is important to address practical issues in the design and analysis of

UA communication techniques such as delay and error in message exchange between the UA elements

and the presence of sparse scatterers. Furthermore, it is also interesting to design algorithms/protocols

for resource allocation, broadband transmission, and power control for the UA systems.

APPENDIX A

MATHEMATICS PRELIMINARY: BESSEL FUNCTIONS AND SPHERICAL HARMONICS

Bessel functions and spherical harmonics are extensively used in the subsequent analysis. In this

appendix, the functions are defined and some key properties useful for the analysis are summarized.
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A. Bessel Functions and Their Properties

Only Bessel functions of the first kind are needed in the analysis and referred to simply as Bessel

functions. A Bessel function with an integer order n can be defined in an integral form as [25]:

Jn(x) =
1

2π

∫ 2π

0
ej(x sinϕ−nϕ)dϕ. (68)

Several useful properties of Bessel functions are described as follows.

(B1) The Jacobi-Anger expansion decomposes an exponential function of a trigonometric function into

its harmonics as follows [25]:

ejx cosϕ =

∞∑
n=−∞

jnJn(x)ejkϕ. (69)

(B2) Addition Theorem I [26, (6.61)]:

Jn(R)ejnω =

∞∑
k=−∞

Jk(a)Jn+k(b)e
jkϕ

where R =
√
a2 + b2 − 2ab cosϕ and sinω = (a/R) sinϕ.

(B3) Addition Theorem II rewritten from [26, (6.62)]:

sinc(R) =
π

2

∞∑
n=0

(2n+ 1)
Jn+ 1

2
(a)Jn+ 1

2
(b)

√
ab

Pn(cosϕ)

where Pn(x) with x ∈ [−1, 1] is the Legendre polynomial defined as

Pn(x) =
1

2nn!

dn

dxn
(x2 − 1)n. (70)

(B4) The Bessel function J0(x) can be upper bounded as [27]

J0(x) 6 νx−
1

3 (71)

where the constant ν = 0.7857 · · · .

(B5) Given 0 < z ≤ 1, a Bessel function with a high order satisfies [28, 9.3.5 and 9.3.6]1

Jn(zn) ∼ c(z)

n
1

3

, n→∞ (72)

where c(z) is a positive constant whose value depends only on z. Consequently, for x � 1 and

|n| > x, Jn(x) ≈ 0 [16].

(B6) Gegenbauer’s generalization of Poisson’s integral [28, 10.1.14]:√
π

2x
Jn+ 1

2
(x) =

1

2
(−j)n

∫ 1

−1
ejxτPn(τ)dτ (73)

where Pn(x) is the Legendre polynomial defined in (70).

1Two functions f and g are asymptotic equivalent, denoted as f(x) ∼ g(x), if limx→∞ f(x)/g(x) = 1.
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B. Spherical Harmonics and Their Properties

The spherical harmonic functions denoted as {Y m
` (ϕ, θ)} with integer indices ` = 0, 1, · · · and −` 6

m 6 ` are defined as [25]:

Y m
` (ϕ, θ) =

√
2m+ 1

4π

(`−m)!

(`+m)!
Pm` (cos θ)ejmϕ, θ ∈ [0, π], ϕ ∈ [0, 2π] (74)

where Pm` (cos θ) represents the associated Legendre polynomial defined as

Pm` (x) =
(−1)m

2``!

(
1− x2

)m
2
dm+`

dxm+`

(
x2 − 1

)`
, −1 ≤ x ≤ 1. (75)

Note that Pm` (cosϕ) with m = 0 reduces to the Legendre polynomial in (70).

Several useful properties of the spherical harmonics are described as follows.

(S1) The functions {Y m
` (ϕ, θ)} are orthonormal over the spherical surface:∫ 2π

ϕ=0

∫ π

θ=0
[(Y m

` )(ϕ, θ)]∗Y m′

`′ (ϕ, θ) sin θ dθdϕ = δm,m′δ`,`′ (76)

where δm,m′ is equal to 1 if m = m′ and 0 otherwise.

(S2) Funk-Hecke Theorem [30, Theorem 3]: Let ψu(ϕ, θ) denote the angle between the vectors Xu =

(ru, ϕu, θu) and (1, ϕ, θ) ∈ R3. The Laplace series of a function w(cosψu(ϕ, θ)) is given as

w(cosψu(ϕ, θ)) =

∞∑
`=0

∑̀
m=−`

cm` (ϕu, θu)Y m
` (ϕ, θ)

where the coefficient cm` (ϕu, θu) = c`Y
m
` (ϕu, θu) with

c` = 2π

∫ 1

−1
w(τ)P`(τ)dτ.

(S3) Spherical Harmonic Addition Theorem [25, (16.57)]:∑̀
m=−`

[Y m
` (A)]∗Y m

` (Xu) =
2`+ 1

4π
P` (cosψu(A)) (77)

where A,Xu ∈ R3 and ψu(A) denotes their separation angle.

APPENDIX B

PROOFS OF LEMMAS

A. Proof of Lemma 1

By substituting (4) and ϕu(A) = ϕu − ϕ into (8),

Qk =
λe−j

2π

λ
r0

4πr0

U∑
u=1

∫ 2π

0
ej

2π

λ
ru cos(ϕu−ϕ)ejkϕdϕ+

1

2π

∫ 2π

0
z(ϕ)ejkϕdϕ+

o

r0
. (78)

The noise term can be written as

1

2π

∫ 2π

0
z(ϕ)ejkϕdϕ = lim

N→∞

1

N

N∑
n=1

z

(
2πn

N

)
ejk

2πn

N . (79)
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For ease of notation, define z̃n = z
(
2πn
N

)
ejk

2πn

N . Since z0, z1, · · · , z̃N is an i.i.d. sequence of CN (0, σ2)

random variables under Assumption 2, by applying the law of large numbers, it follows from (79) that

1

2π

∫ 2π

0
z(ϕ)ejkϕdϕ = 0, a.s. (80)

Next, based on the Jacobi-Anger expansion in Property (B1) of Bessel functions in Appendix A, the first

exponential term in (79) can be decomposed as

ej
2π

λ
ru cos(ϕu−ϕ) =

∞∑
n=0

jnJn
(
2π
λ ru

)
ejn(ϕu−ϕ). (81)

By substituting (80) and (81) into (78), it can be obtained that

Qk =
λe−j

2π

λ
r0

4πr0

U∑
u=1

∞∑
n=0

jnJn
(
2π
λ ru

) ∫ 2π

0
ejn(ϕu−θ)ejkθdθ +

o

r0
, a.s. (82)

Based on the following equality
1

2π

∫ 2π

0
ej(k−n)θdθ = δk,n,

the desired result follows from (82). �

B. Proof of Lemma 3

Using trigonometric identities, it can be obtained that

ru cos(ϕu − θ)− rk cos(ϕk − θ) = |Xu −Xk| (cosβu,k cos θ − sinβu,k sin θ)

= |Xu −Xk| cos(βu,k + θ)

where the angle βu,k is defined by

tanβu,k =
ru cos(ϕu)− rk cos(ϕk)

ru sin(ϕu)− rk sin(ϕk)
. (83)

It follows that

1

2π

∫ 2π

0
ej

2π

λ
(ru cos(ϕu−θ)−rk cos(ϕk−θ)) dθ =

1

2π

∫ 2π

0
ej

2π

λ
|Xu−Xk| cos(βu,k+θ) dθ

=
1

2π

∫ 2π

0
ej

2π

λ
|Xu−Xk| sin(βu,k+θ+π2 ) dθ.

Using the definition of Bessel function in (68),

1

2π

∫ 2π

0
ej

2π

λ
(ru cos(ϕu−θ)−rk cos(ϕk−θ)) dθ = jejβu,kJm

(
2π
λ |Xu −Xk|

)
. (84)

Substituting (84) into (23) gives

g(Xk | Xu) =

√
Pt

2r0
jejβu,kJ0

(
2π
λ |Xu −Xk|

)
+

o
√
r0
.

The desired result follows. �



29

C. Proof of Lemma 5

By substitution of the training signal in (4), its Laplace coefficients defined in (43) are obtained as

Qm` =
η

r0

U∑
u=1

∫ 2π

θ=0

∫ π

ψ=0
ej

2π

λ
ru cosψuY m

` (ϕ, θ) sinϕdϕdθ+

∫ 2π

θ=0

∫ π

ψ=0
z(ϕ, θ) sinϕdϕdθ +

o

r0

=
η

r0

U∑
u=1

∫ 2π

θ=0

∫ π

ψ=0
ej

2π

λ
ru cosψuY m

` (ϕ, θ) sinϕdϕdθ +
o

r0
, a.s. (85)

where the vanishment of noise follows similar analysis as in the proof for Lemma 1. Using the Funk-

Hecke Theorem in (S2) , the exponential term in the last equation can be also expanded into a Laplace

series as

ej
2π

λ
ru cosψu =

∞∑
`=0

∑̀
m=−`

c`Y
m
` (ϕu, θu)Y m

` (ψ, θ) (86)

where

c` = 2π

∫ 1

−1
ej

2π

λ
ruτP`(τ)dτ. (87)

Using Property (B6) in Appendix A, it follows from (87) that

c`(ru) =
(2π)

3

2 j`J`+ 1

2

(
2π
λ ru

)
(
2π
λ ru

) 1

2

Y m
` (ϕu, θu). (88)

Combining (86) and (88) gives the desired result. �

D. Proof of Lemma 7

Since ψu is the angle between two unit vectors with spherical coordinates (1, ϕ, θ) and (1, ϕu, θu),

cosψu = sinϕ cos θ sinϕu cos θu + sinϕ sin θ sinϕu sin θu + cosϕ cosϕu. (89)

It follows that

ru cosψu − rk cosψk = sinϕ cos θ(ru sinϕu cos θu − rk sinϕk cos θk)+

sinϕ sin θ(ru sinϕu sin θu − rk sinϕk sin θk)+

cosϕ(ru cosϕu − rk cosϕk). (90)

To rewrite the right-hand side of (90) in a compact form, define the spherical coordinates (ru,k, ϕu,k, θu,k) ∈

R3 such that

r2u,k = (ru sinϕu cos θu − rk sinϕk cos θk)
2 + (ru sinϕu sin θu − rk sinϕk sin θk)

2+

(ru cosϕu − rk cosϕk)
2 (91)
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and the angles ϕu,k and θu,k as in the lemma statement. Moreover, let ψu,k denote the angle between

(r0, ϕ, θ) and (ru,k, ϕu,k, θu,k). Using these definitions, (90) can be reduced to

ru cosψu − rk cosψk = ru,k cosψu,k (92)

It can be obtained from (91) that r2u,k = |Xu −Xk|2. Thus,

ru cosψu − rk cosψk = |Xu −Xk| cosψu,k. (93)

Substituting this result into (53) yields

Ju,k,m,` =

∫∫
ej

2π
λ |Xu−Xk| cosψu,kY m

` (ϕ, θ) sinϕ dϕ dθ. (94)

Applying Lemma 5 gives the desired result. �
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