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Abstract—Recently, several high-resolution parameter estima-
tion algorithms have been developed to exploit the structure
of strictly second-order (SO) non-circular (NC) signals. They
achieve a higher estimation accuracy and can resolve up to twice
as many signal sources compared to the traditional methods
for arbitrary signals. In this paper, as a benchmark for these
NC methods, we derive the closed-form deterministicR-D NC
Cramér-Rao bound (NC CRB) for the multi-dimensional param-
eter estimation of strictly non-circular (rectilinear) si gnal sources.
Assuming a separable centro-symmetricR-D array, we show that
in some special cases, the deterministicR-D NC CRB reduces to
the existing deterministic R-D CRB for arbitrary signals. This
suggests that no gain from strictly non-circular sources (NC
gain) can be achieved in these cases. For more general scenarios,
finding an analytical expression of the NC gain for an arbitrary
number of sources is very challenging. Thus, in this paper, we
simplify the derived NC CRB and the existing CRB for the
special case of two closely-spaced strictly non-circular sources
captured by a uniform linear array (ULA). Subsequently, we
use these simplified CRB expressions to analytically compute the
maximum achievable asymptotic NC gain for the considered two
source case. The resulting expression only depends on the various
physical parameters and we find the conditions that provide the
largest NC gain for two sources. Our analysis is supported by
extensive simulation results.

Index Terms—Deterministic CRB, Cramér-Rao bound, non-
circular sources, rectilinear, DOA estimation.

I. I NTRODUCTION

T HE problem of estimating the parameters of multi-
dimensional (R-D) signals withR ≥ 1, such as their

directions of arrival, directions of departure, frequencies, and
Doppler shifts, has been an extensive research area with
widely-spread signal processing applications in radar, sonar,
channel sounding, and wireless communications. Recently,
various high-resolution parameter estimation algorithmssuch
as NC MUSIC [1], NC Root-MUSIC [2], NC Standard
ESPRIT [3], and NC Unitary ESPRIT [4], [5] have been
developed to exploit the structure of signals from strictly
second-order (SO) non-circular (NC) sources [6]. The term
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strictly SO NC (also called rectilinear) is based on the fact
that the non-circularity coefficient of these signals is equal to
one [6]. Examples of digital modulation schemes that use such
signals include BPSK, PAM, and ASK. The aforementioned
NC algorithms that exploit the non-circularity property are
known to achieve a higher estimation accuracy and can resolve
up to twice as many sources [5] compared to the traditional
methods for arbitrary signals [7]. However, the “NC gain”
achieved by these algorithms from estimating strictly non-
circular sources has so far only been quantified through sim-
ulations. Hence, analytical expressions are highly desirable to
study the properties of the NC gain under various conditions.
As deriving a generic formulation for an arbitrary number of
sources is very challenging, special cases can be considered to
provide insights towards devising more general expressions.
Based on the first-order performance analysis framework in
[8], the scenario of a single strictly non-circular source for NC
Standard ESPRIT was analyzed in [5]. It was found that no NC
gain can be achieved in this case. A first attempt at analytically
computing the NC gain of NC Standard ESPRIT for two
uncorrelated strictly non-circular sources with maximum phase
separation was taken in [9]. Despite the derivation of a closed-
form expression for the NC gain, the considered assumptions
in [9] are rather restrictive and do not provide the desired
comprehensive insights.

The performance of high-resolution parameter estimation
algorithms is often evaluated by comparing them to the deter-
ministic (conditional) and stochastic (unconditional) Cramér-
Rao bounds (CRBs) derived in [10] and [11], respectively.
Whereas the stochastic data assumption requires both the
signals and the noise to be complex Gaussian-distributed, the
deterministic model assumes that the signals are arbitrarynon-
random sequences while only the noise follows a complex
Gaussian distribution. Both CRBs are equally recognized in
the literature. For the data model used to describe weak-
sense non-circular sources whose non-circularity coefficient is
between zero and one, a stochastic NC CRB has been derived
in [12]. The follow-up papers [13] and [14] consider further
variations of the underlying stochastic model assumption.The
stochastic NC CRB in [12] was derived by extending the
original Slepian-Bangs formula for circular complex Gaussian
distributions [15] to weak-sense non-circular complex Gaus-
sian distributions. However, this bound does not apply in the
case of strict non-circularity, as in the weak-sense case, the
real part and the imaginary part of the signal can be treated
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as independent random variables. This is not true for strictly
non-circular sources, where the real and imaginary parts are
linearly dependent.

In this paper, we derive a closed-form expression of the
deterministicR-D NC CRB for strictly non-circular signals
impinging on an arbitraryR-D sensor array. The derivation
is based on the conventional Slepian-Bangs formula, which is
still applicable due to the complex Gaussian noise assumption.
Note that our initial contribution in [16] only states the 2-D
result without providing a proof and further analysis. Based
on the devisedR-D NC CRB and assuming theR-D array
to be separable and centro-symmetric, we show that in the
special cases of equal rotation phases and full coherence of
all strictly non-circular signals as well as for a single strictly
non-circular source, the deterministicR-D NC CRB reduces
to the existing deterministicR-D CRB for arbitrary signals
[10]. This suggests that no NC gain from strictly non-circular
sources can be achieved in these special cases. Note that the
single source case of theR-D NC CRB has been analyzed
in [5] for a uniformR-D array that contains a uniform linear
array (ULA) in each mode. Here, we provide a generalization
of this case to arbitrarily-formed (non-uniform) separable and
centro-symmetricR-D arrays. Furthermore, the fact that twice
as many sources can be resolved from the strictly non-circular
data model is highlighted.

In our second contribution, we assume 1-D parameter esti-
mation and simplify the derived deterministic NC CRB and the
deterministic CRB for the special case of two closely-spaced
strictly non-circular sources captured by a uniform lineararray
(ULA). These simplified expressions are subsequently used to
analytically compute the maximum achievable NC gain, which
only depends on the physical parameters, e.g., the number of
sensors, the SNR, the correlation, the phase separation, and
the location of the phase reference of the array. The devised
expression is based on a truncated Taylor series expansion for
closely-spaced sources. This is, however, the scenario, where
high-resolution algorithms are primarily applied. Due to the
fact that the NC gain expression is very general, the properties
of the NC gain are studied in terms of the above-mentioned
physical parameters. For instance, it is shown that the NC gain
is largest if the sources are uncorrelated, the phase separation
is maximum, and the phase reference is at the array centroid.
Under these conditions, the two sources entirely decouple and
do not influence each other.

The remainder of this paper is organized as follows: The
data model is introduced in Section II. In Section III, the
derivation of the deterministicR-D NC CRB is provided while
its analysis is presented in Section IV. The asymptotic NC
gain for two closely-spaced sources is analytically computed
in Section V. Section VI illustrates and discusses the numerical
results, and concluding remarks are drawn in Section VII.

Notation: We use italic letters for scalars, lower-case bold-
face letters for column vectors, and upper-case bold-face letters
for matrices. The superscriptsT, ∗, H, and −1 denote the
transposition, complex conjugation, conjugate transposition,
and the inversion of a matrix, respectively. The Hadamard
product of two matricesA andB is represented byA⊙B, the
Kronecker product is symbolized byA⊗B, and the Khatri-

Rao product (column-wise Kronecker product) is denoted by
A ⋄ B. The operatorvec {A} stacks the columns of the
matrix A ∈ CM×N into a column vector of lengthMN × 1,
the operatorTr {A} returns the trace of the matrixA, and
diag{a} returns a diagonal matrix with the elements ofa

placed on its diagonal. The matrixΠM is theM×M exchange
matrix with ones on its antidiagonal and zeros elsewhere.
Also, the vector1M denotes theM × 1 vector of ones while
1M×M is theM ×M matrix of ones. Moreover,Re {·} and
Im {·} extract the respective real and imaginary parts of a
complex number or a matrix,| · | represents the absolute
value of a complex number, andE {·} stands for the statistical
expectation.

II. DATA MODEL

Let N subsequent time instants of the measurement data
sampled on an arbitrary separableR-D grid1 of sizeM1×. . .×
MR be represented by a linear superposition ofd undamped
exponentials in additive noise. Thet-th time snapshot of the
observed samples can be modeled as [17]

xm1,...,mR
(t) =

d∑

i=1

si(t)
R∏

r=1

ejkmrµ
(r)
i + nm1,...,mR

(t), (1)

where mr = 1, . . . ,Mr, t = 1, . . . , N , si(t) denotes the
complex amplitude of thei-th undamped exponential at time
instantt, andkmr

defines the sampling grid2. Moreover,µ(r)
i

is the spatial frequency in ther-th mode withi = 1, . . . , d and
r = 1, . . . , R, andnm1,...,mR

(t) contains the additive zero-
mean circularly symmetric complex Gaussian noise samples
with varianceσ2

n.
In the array signal processing context, each of theR-D

exponentials represents a narrow-band planar wavefront from
stationary far-field sources and the complex amplitudessi(t)
are the source symbols. The objective is to estimate theRd

spatial frequenciesµi = [µ
(1)
i , . . . , µ

(R)
i ]T, ∀i, from (1). We

will also use the notationµ(r) = [µ
(r)
1 , . . . , µ

(r)
d ]T, ∀r, for the

spatial frequencies of all sources in ther-th mode.
In order to obtain a more compact formulation of (1),

we collect the observed samples into a measurement matrix
X ∈ CM×N with M =

∏R
r=1 Mr by stacking theR spatial

dimensions along the rows and aligning theN time snapshots
as the columns. Subsequently,X can be modeled as

X = AS +N ∈ C
M×N , (2)

where S ∈ Cd×N is the source symbol matrix andN ∈
CM×N contains the noise samples. Furthermore,A =
[a(µ1), . . . ,a(µd)] ∈ CM×d is referred to as the array
steering matrix, which consists of the array steering vectors
a(µi) defined by

a(µi) = a(1)
(

µ
(1)
i

)

⊗ · · · ⊗ a(R)
(

µ
(R)
i

)

∈ C
M×1, (3)

1An R-D sampling grid is defined to be separable when it is decomposable
into the outer product ofR one-dimensional sampling grids [8].

2 The numberkmr represents the coordinates of the sampling grid along
ther-th mode. In terms of the spatial domain, it represents the sensor positions
of the array in aλ/2 sampling grid. For a uniform sampling grid, we have
kmr = mr − 1.
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where a(r)(µ
(r)
i ) ∈ CMr×1 is the array steering vector of

the i-th spatial frequency in ther-th mode. An alternative
expression ofA is given by

A = A(1) ⋄A(2) ⋄ · · · ⋄A(R), (4)

whereA(r) = [a(r)(µ
(r)
1 ), . . . ,a(r)(µ

(r)
d )] ∈ CMr×d repre-

sents the array steering matrix in ther-th mode.
The non-circularity of a random variable can be defined

through the non-circularity coefficient [6]. For every complex
random variableZ with zero mean, the non-circularity coef-
ficient is given by

κ =
E
{
Z2
}

E {|Z|2}
= |κ|ejψ, 0 ≤ |κ| ≤ 1. (5)

The cases|κ| = 0 and 0 < |κ| < 1 represent a circularly
symmetric random variable and a weak-sense non-circular
variable, respectively. The case|κ| = 1 represents a strictly
non-circular (strict sense or rectilinear) random variable. It can
be shown that for|κ| = 1, the real part and the imaginary part
of Z are linearly dependent [6], i.e.,c1 ·Re {Z} = c2 · Im {Z}
for constantsc1, c2 ∈ R.

In the context of array processing, the assumption of strictly
SO non-circular sources requires that the complex symbol
amplitudes of each source lie on a rotated line in the complex
plane. This scenario is found, for instance, when real-valued
data is transmitted by distinct sources causing different delays
that result in different phase shifts. In this case, the symbol
matrix S can be decomposed as [4]

S = ΨS0, (6)

whereS0 ∈ R
d×N is a real-valued symbol matrix andΨ =

diag{ejϕi}di=1 contains stationary complex phase shifts on its
diagonal that can be different for each source.

Using (6), the model (2) can be written as

X = AΨS0 +N . (7)

III. D ETERMINISTIC R-D NC CRAMÉR-RAO BOUND

In many applications, estimating the parameters ofR-D
signals with R ≥ 1, can be of high importance. As a
benchmark of such estimators, the corresponding CRBs for the
multi-dimensional parameter estimation case are desirable. In
this section, we first review theR-D CRB for arbitrary multi-
dimensional signals and then derive theR-D NC CRB for
multi-dimensional strictly non-circular signals. Additionally,
we provide simplified expressions of the respective CRBs for
the 1-D parameter estimation case.

A. DeterministicR-D Cramér-Rao Bound

In the case of arbitrary signals, the set of parameters that
needs to be considered for the deterministicR-D CRB is
given by the angular parametersµ = [µ(1)T , . . . ,µ(R)T ]T ∈
RRd×1, the real part and the imaginary part of the symbols
s = vec {S} ∈ CNd×1, and the noise powerσ2

n. For this
parameter set that contains a total of(2N+R)d+1 parameters,
the deterministic CRB matrix in theR-D parameter estimation

case was derived in [10]. Its closed-form expression is given
by

C =
σ2
n

2N
·Re

{(
DH

Π
⊥
AD

)
⊙ R̂

(R)T

S

}−1

∈ R
Rd×Rd, (8)

where

Π
⊥
A = IM −A

(
AHA

)−1
AH ∈ C

M×M (9)

and

D =
[
D(1) · · · D(R)

]
∈ C

M×Rd (10)

with D(r) = [d
(r)
1 , . . . ,d

(r)
d ] ∈ CM×d, r = 1, . . . , R, contains

the partial derivatives ofA with respect to the components of
µi, i = 1, . . . , d, in ther-th mode. The vectorsd(r)

i are given
by d

(r)
i = ∂a(µi)/∂µ

(r)
i , ∀i. Writing ai instead ofa(µi) to

simplify the notation and using (3), we obtain

d
(r)
i = a

(1)
i ⊗ · · · ⊗ a

(r−1)
i ⊗ d̃

(r)
i ⊗ a

(r+1)
i ⊗ · · · ⊗ a

(R)
i ,

(11)

where d̃
(r)
i = ∂a

(r)
i /∂µ

(r)
i . Moreover, R̂(R)

S = 1R×R ⊗
R̂S contains the estimated signal covariance matrixR̂S =
Ψ

∗R̂S0Ψ, where the real-valued sample covariance matrix
R̂S0 is given by R̂S0 = S0S

T
0 /N . Note thatR̂S0 can be

written in matrix form as

R̂S0 =









P̂1 ρ̂1,2
√

P̂1P̂2 . . . ρ̂1,d
√

P̂1P̂d

ρ̂2,1
√

P̂1P̂2 P̂2 . . . ρ̂2,d
√

P̂2P̂d
...

...
. . .

...

ρ̂d,1
√

P̂1P̂d ρ̂d,2
√

P̂2P̂d . . . P̂d









,

whereP̂i = ‖s0i‖
2
2 /N is the empirical source power of thei-

th source andsT0i ∈ R1×N is thei-th row ofS0. Furthermore,
the empirical correlation coefficientŝρi,j that represent the
empirical correlation between thei-th and thej-th source
vector are defined by

ρ̂i,j =
1

N
·
sT0is0j
√

P̂1P̂2

, ∀ i 6= j, i, j = 1, . . . , d. (12)

Note thatR̂S0 is symmetric such that̂ρi,j = ρ̂j,i.
In the special case of 1-D parameter estimation, the array

steering matrixA reduces toA = [a(µ1), . . . ,a(µd)] ∈
CM×d and the deterministic CRB matrix in (8) simplifies to

C =
σ2
n

2N
·Re

{(
DH

Π
⊥
AD

)
⊙ R̂T

S

}−1

∈ R
d×d, (13)

whereD becomes

D =
[
d1 · · · dd

]
∈ C

M×d (14)

with di = ∂a(µi)/∂µi, ∀ i.

B. DeterministicR-D NC Craḿer-Rao Bound

In contrast to the case of arbitrary signals, the set of
parameters for the strictly non-circular source model in (7) is
given by the angular parametersµ ∈ RRd×1, the real-valued
symbolss0 = vec {S0} ∈ RNd×1, the rotation phase angles
ϕ ∈ Rd×1, and the noise powerσ2

n. Thus, the number of
parameters is now equal to(N +R+1)d+1, which requires
the derivation of a new CRB for this parameter set.
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The resulting closed-form expression for the deterministic
NC CRB matrix C(nc) in the R-D case is stated in the
following theorem:

Theorem 1. TheR-D deterministic NC CRB matrixC(nc) for
strictly non-circular sources is given by

C(nc) =
σ2
n

2N
·
{(

G2 −G1G
−1
0 GT

1

)
⊙ R̂

(R)
S0

+
[(
G1G

−1
0 H0

)
⊙ R̂

(R)
S0

][(
G0 −HT

0 G
−1
0 H0

)
⊙ R̂

(R)
S0

]−1

·
[(
HT

1 −HT
0 G

−1
0 GT

1

)
⊙ R̂

(R)
S0

]

+
[

H1 ⊙ R̂
(R)
S0

]

·
[

G0 ⊙ R̂
(R)
S0

]−1

·
[(
HT

0 G
−1
0 GT

1

)
⊙ R̂

(R)
S0

]

+
[

H1 ⊙ R̂
(R)
S0

]

·
[

G0 ⊙ R̂
(R)
S0

]−1

·
[(
HT

0 G
−1
0 H0

)
⊙ R̂

(R)
S0

]

·
[(
G0 −HT

0 G
−1
0 H0

)
⊙ R̂

(R)
S0

]−1

·
[(
HT

0 G
−1
0 GT

1

)
⊙ R̂

(R)
S0

]

−
[

H1 ⊙ R̂
(R)
S0

]

·
[(
G0 −HT

0 G
−1
0 H0

)
⊙ R̂

(R)
S0

]−1

·
[

HT
1 ⊙ R̂

(R)
S0

]}−1

∈ R
Rd×Rd, (15)

where R̂
(R)
S0

= 1R×R ⊗ R̂S0 and the matricesGn and
Hn, n = 0, 1, 2, are defined as

G0 = Re
{
Ψ

∗AHAΨ
}
∈ R

d×d, (16)

H0 = Im
{
Ψ

∗AHAΨ
}
∈ R

d×d, (17)

G1 = Re
{
(IR ⊗Ψ

∗)DHAΨ
}
∈ R

Rd×d, (18)

H1 = Im
{
(IR ⊗Ψ

∗)DHAΨ
}
∈ R

Rd×d, (19)

G2 = Re
{
(IR ⊗Ψ

∗)DHD(IR ⊗Ψ)
}
∈ R

Rd×Rd (20)

andA andD are given by(4) and (10), respectively.

Proof: The proof is given in Appendix A.
It should be highlighted that the assumption of theR-D

array to be separable is not required for the derivation of (15)
in Appendix A. In fact, (15) is valid for arbitrarily formed
R-D arrays3, where the columns ofA andD are represented
accordingly. However, the separability assumption simplifies
the further analysis and helps with the presentation of our
results in the following sections.

In analogy to the 1-D parameter estimation case of the CRB
for arbitrary signals in (13), the deterministic 1-D NC CRB
matrix is stated in the corollary:

Corollary 1. The deterministic 1-D NC CRB is given by(15),
whereR̂(R)

S0
reduces toR̂S0 andG1, H1, andG2 simplify to

G1 = Re
{
Ψ

∗DHAΨ
}
∈ R

d×d, (21)

H1 = Im
{
Ψ

∗DHAΨ
}
∈ R

d×d, (22)

G2 = Re
{
Ψ

∗DHDΨ
}
∈ R

d×d (23)

with A andD being defined in(13) and in (14).

IV. A NALYSIS OF THE DETERMINISTIC R-D NC CRB

In this section, we discuss interesting special cases and
properties of the derivedR-D NC CRB, where theR-D

3These also include non-separable arrays such as cross-arrays and L-shaped
arrays.

array is assumed to be separable and centro-symmetric for
simplicity. Specifically, we investigate the two cases of equal
rotation phases and full coherence for an arbitrary number
of strictly non-circular signals before we focus on the single
source case (d = 1). It is shown that in these special
cases, the deterministicR-D NC CRB reduces to theR-D
CRB. Furthermore, we also analyze the maximum number of
resolvable NC sources.

For our analysis, we first refine the model in (7). Assuming
the R-D array to be centro-symmetric, i.e., it is symmetric
with respect to its centroid, its array steering matricesA(r)

from (4) satisfy [18]

ΠMr
A(r)∗ = A(r)

∆
(r)
c ∀ r, (24)

where∆(r)
c ∈ Cd×d is a unitary diagonal matrix that depends

on the phase reference. If ther-mode array centroid is chosen
as the phase reference [18], we have∆

(r)
c = Id. The phase

referenceδ(r) along ther-th mode can be defined by

δ(r) =
1

Mr

Mr∑

mr=1

kmr
. (25)

Note thatδ(r) is a property of the array and independent of
µ
(r)
i . Using (24) and (25), we can decompose ther-mode array

steering matrixA(r) with an arbitrary phase reference along
the r-th mode as

A(r) = Ā(r)
∆

(r). (26)

The matrix Ā ∈ CMr×d is the array steering matrix whose
phase reference is located at the centroid of ther-th mode such
that forĀ(r), from (24), the identityĀ(r) = ΠMr

Ā(r)∗ holds.
Furthermore, the diagonal matrix∆(r) = diag

{
ejδ

(r)µ
(r)
i

}d

i=1

contains the shifts of the phase reference for eachµ
(r)
i . By

inserting (26) into (24), we can easily establish the relation
∆

(r)
c = ∆

(r)∗
∆

(r)∗ . Thus, if the actual phase reference is
at the array centroid of ther-th mode, we haveδ(r) = 0,
∆

(r) = ∆
(r)
c = Id, and consequentlyA(r) = Ā(r).

Based on (26), we can rewriteA in (4) as

A =
(

Ā(1)
∆

(1)
)

⋄
(

Ā(2)
∆

(2)
)

⋄ · · · ⋄
(

Ā(R)
∆

(R)
)

= Ā∆, (27)

where Ā = Ā(1) ⋄ Ā(2) ⋄ · · · ⋄ Ā(R) ∈ C
M×d and ∆ =

∆
(1) ·∆(2) · . . . ·∆(R) ∈ C

d×d.
Inserting (27) into the expression for strictly non-circular

signals in (7), we obtain

X = Ā∆ΨS0 +N = ĀΦS0 +N , (28)

where we have definedΦ = ∆Ψ = diag
{
ej(ϕi+δi)

}d

i=1
with

δi =
∑R

r=1 δ
(r)µ

(r)
i .

A. Sources with Equal Phases

An interesting special case of the model (27) occurs when
the phase references in each of theR modes coincide with the
centroid of theR-D array, i.e.,δ(r) = 0 ∀ r such that∆ = Id
andA = Ā, and, at the same time, the rotation phase angles
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for all d sources are the same4, i.e., ϕi = ϕ ∀ i. Hence, we
have

Φ = Ψ = ejϕId. (29)

Under these assumptions, the matricesGn, n = 0, 1, 2, can
be expressed as

G0 = Re
{
e−jϕIdA

HAIde
jϕ
}
= Re

{

AHA
}

= AHA

G1 = Re
{
e−jϕIRdD

HAIde
jϕ
}
= Re

{
DHA

}
= DHA

G2 = Re
{
e−jϕIRdD

HDIRde
jϕ
}
= Re

{
DHD

}
= DHD

while the matricesHn evaluate to zero. The proof that the ma-
tricesAHA ∈ Rd×d, DHA ∈ RRd×d, andDHD ∈ RRd×Rd

are real-valued can be found in Appendix B.
Using these observations, all terms in (15) containingH0

or H1 vanish and theR-D NC CRB matrix simplifies to

C(nc) =
σ2
n

2N
·
{ (

G2 −G1G
−1
0 GT

1

)
⊙ R̂

(R)
S0

}−1

=
σ2
n

2N
·

{
(
DH

Π
⊥
AD

)
⊙ R̂

(R)T

S

}−1

= C, (30)

where we have used the fact thatR̂
(R)
S = R̂

(R)
S0

= R̂
(R)T

S0
for

Ψ = ejϕId. From (30), it is evident that theR-D NC CRB
reduces to theR-D CRB if the phase reference is at theR-
D array centroid and the rotation phase angles of the sources
are equal. This suggests that no gain from strictly non-circular
sources can be achieved in this case.

B. Coherent Sources

In this section, the case of full coherence is discussed, i.e.,
the correlation coefficientŝρi,j between all pairs of sources
are given by|ρ̂i,j | = 1 ∀ i, j. For simplicity, we assume
that all the sources have unit power, i.e.,P̂i = 1 ∀ i. Under
these assumptions, the sample covariance matrix takes the
form R̂S0 = 1d×d such thatR̂(R)

S0
= 1Rd×Rd. Hence, all the

Hadamard products witĥR(R)
S0

in theR-D NC CRB matrix in
(15) can be omitted and the remaining parts are arranged in
the following form

σ2
n

2N
·C(nc)−1

= G2 −G1

[

G−1
0 +G−1

0 H0G̃
−1HT

0 G
−1
0

]

GT
1

+H1G
−1
0 HT

0

[

G−1
0 +G−1

0 H0G̃
−1HT

0 G
−1
0

]

GT
1

+G1G
−1
0 H0G̃

−1HT
1 −H1G̃

−1HT
1 (31)

= G2 −
(

G1 −H1G
−1
0 HT

0

)(

G0 −H0G
−1
0 HT

0

)−1

GT
1

−
(
H1 −G1G

−1
0 H0

)(

G0 −HT
0 G

−1
0 H0

)−1

HT
1 , (32)

where in (31), we have defined̃G = G0 −HT
0 G

−1
0 H0 and

replaced the terms in the square brackets by applying the
converse of the matrix inversion lemma, yielding the matrix

4The same behavior applies to the more general case of equality modulo
π, i.e., ϕi = ϕ + ki · π, ki ∈ Z for i = 1, 2, . . . , d. For simplicity of
presentation, we assume the angles to be equal, this generalization is however
straightforward.

(G0−H0G
−1
0 HT

0 )
−1. Note that (32) can be transformed into

the block matrix form

σ2
n

2N
·C(nc)−1

= G2 −
[
G1 H1

]
[
G0 H0

HT
0 G0

]−1 [
GT

1

HT
1

]

,

which represents a very interesting simplification of the orig-
inal expression.

In the next step, we rewrite theR-D CRB matrix for arbi-
trary signals in (8) for the case of coherent sources in a similar
form. Under the aforementioned assumptions, theR-D sample
covariance matrix is given bŷR(R)

S = 1R×R⊗(Ψ∗
1d×dΨ) =

(IR ⊗Ψ
∗)1Rd×Rd(IR ⊗Ψ). Hence, we simplify the original

form of the CRB in (13) into

σ2
n

2N
·C−1= Re

{(
DH

Π
⊥
AD

)

⊙
(
(IR ⊗Ψ

∗)1Rd×Rd(IR ⊗Ψ)
)}

(33)

= Re
{

(IR ⊗Ψ
∗)DHD(IR ⊗Ψ)− (IR ⊗Ψ

∗)DHAΨ

·
(
Ψ

∗AHAΨ
)−1

Ψ
∗AHD(IR ⊗Ψ)

}

(34)

= Re
{

G2 + jH2 − (G1 + jH1)

· (G0 + jH0)
−1

(GT
1 − jHT

1 )
}

, (35)

where we have introduced additional matricesΨ in (34) by
noting thatΨΨ

∗ = Id. To proceed we require the following
lemma:

Lemma 1. The inverse of a full rank complex-valued matrix
C = A+ jB ∈ Cn×n with the real partA ∈ Rn×n and the
imaginary partB ∈ Rn×n can be split into its real part and
its imaginary part as follows:

C−1 =
(
A+BA−1B

)−1
− jA−1B

(
A+BA−1B

)−1

if A and
(
A+BA−1B

)
are invertible.

Proof: To prove this lemma, it is sufficient to multiplyC
with C−1 and show that the result is the identity matrix.

Applying Lemma 1 to (35), we splitC−1 into its real
and imaginary part. After some elementary operations and
using the fact thatHT

0 = −H0, we obtain equation (32) and
consequently, we haveC(nc) = C. Thus, bothR-D CRBs
become equal if all the sources are coherent. Note that this
result is valid for arbitraryR-D arrays as the assumptions
of separability and centro-symmetry were not used in the
derivation. Analogously to the special case considered in the
previous subsection, our findings suggests that no NC gain can
be achieved for coherent sources.

C. Single Source Case

The expression for the deterministicR-D NC CRB is
formulated in terms of the matricesA, Ψ, D, and the sample
covariance matrixR̂S0 . Consequently, it provides no explicit
insights into the parameters of physical significance, e.g.,
the number of sensorsM , the correlation coefficientρ, the
source separation. Knowing how the CRB scales with these
parameters can facilitate array design decisions on the number
of required sensors to achieve a certain performance under
specific conditions. As establishing a generic formulationfor
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an arbitrary number of sources is very challenging, we can,
however, consider special cases such as the single source case.
Note that this scenario of theR-D NC CRB has been analyzed
in [5] for a uniform R-D array containing a uniform linear
array (ULA) in ther-th mode and we found that no NC gain
can be achieved in this case. Here, we provide a generalization
of the previous results and simplify theR-D NC CRB for non-
uniform centro-symmetric and separableR-D arrays.

So far, we have shown that, from theR-D NC CRB, no
NC gain can be obtained if the sources have the same rotation
phase while the phase reference is at the array centroid or
if the sources are coherent. As the single source case is a
special case of each of these two properties, i.e.,Ψ = ejϕ or
R̂

(R)
S0

= 1R×R, we can directly conclude that theR-D NC
CRB and theR-D CRB must be equal for this case as well,
which is in line with our results in [5].

The simplified expression of the deterministicR-D NC CRB
for a single strictly non-circular source is shown in the next
theorem:

Theorem 2. For the case of anM1 × . . .×MR (M -element)
separableR-D array with δ(r) = 0 ∀ r, i.e., the phase
reference of the centro-symmetric array is at the centroid,and
a single strictly non-circular source (d = 1), the deterministic
R-D NC CRB can be simplified to

C(nc) = diag
{[

C(nc)(1), . . . , C(nc)(R)
]}

∈ R
R×R (36)

with

C(nc)(r) =
1

ˆ̺
·
Mr

2M
·

1
∑Mr

mr=1 k
2
mr

∀ r, (37)

where ˆ̺ represents the effective SNR̺̂= NP̂/σ2
n with P̂

being the empirical source power given bŷP = ‖s0‖
2
2 /N

and s0 ∈ RN×1.

Proof: The proof is given in Appendix C.
For the special case of a uniformR-D sampling grid, the

R-D NC CRB expression from Theorem 2 is simplified in the
following corollary:

Corollary 2. For an M -element uniformR-D array with an
Mr-element ULA in ther-th mode and a single strictly non-
circular source (d = 1), the deterministic NC CRB for ther-th
mode in(37) can be explicitly expressed as

C(nc)(r) =
1

ˆ̺
·

6

M(M2
r − 1)

∀ r, (38)

wherekmr
= −(Mr − 1)/2, . . . , (Mr − 1)/2.

The expression (38) is in line with our previous develop-
ments in [5]. Moreover, (38) is equivalent to the result for the
single source case of the deterministicR-D CRB for arbitrary
signals derived in [19]. This fact proves our previous claim
that no improvement in terms of the estimation accuracy can
be achieved for a single strictly non-circular source.

D. Maximum Number of Resolvable Sources

In the case of arbitrary signals, it is well-known from [10]
that the upper limit5 of sources that can be resolved withM

5This limit is not reached with all array geometries. An example for an
array, which can achieve this limit is a ULA.

sensors isd = M−1. However, if the sources are strictly non-
circular, we can estimate the DOAs of even more sources than
sensors available. In this section, we establish the conditions
under which the deterministic NC CRB is valid ford ≥ M .

Firstly, it is not difficult to see that the matricesGn and
Hn, n = 0, 1, 2, can have a rank larger thanM . For example,
the matrixG0 can be rewritten as

G0 = Re
{
Ψ

∗AHAΨ
}
=

[
ARe {Ψ}
A Im {Ψ}

]H [
ARe {Ψ}
A Im {Ψ}

]

︸ ︷︷ ︸

2M×d

.

From this equation, it can be seen that unless the phase matrix
Ψ is equal toΨ = diag{ejϕi}di=1 with ϕi = ϕ+ki ·π, ki ∈ Z,
i.e., all the rotation phases are equal moduloπ, G0 has a rank
larger thanM if d > M . This result complies with the one
from Subsection IV-A. For the matricesG1, G2 as well as
Hn, n = 0, 1, similar forms are easily found.

Secondly, regarding the additional dependence of the NC
CRB on the sample covariance matrix̂RS0 , we have proven
in Subsection IV-B that the NC CRB reduces to the CRB if
the sources are coherent. This suggests that for non-coherent
sources, the NC CRB is valid ford ≥ M .

Consequently, we can infer for a uniform linear array that
if the sources are non-coherent, i.e.,

|ρ̂i,j | < 1 ∀i 6= j in 1, 2, . . . , d, (39)

and the rotation phase angles are different, i.e.,

|ϕi − ϕj | 6= 0 mod π ∀i 6= j in 1, 2, . . . , d, (40)

the Fisher information matrix has full rank and is invertible as
long asd ≤ 2(M − 1). To support our claim, we provide the
numerical evaluation shown in Table I, which suggests that
the conditiond ≤ 2(M − 1) represents an upper limit on the
number of sources that is resolvable. Therefore, up to twice
as many signal sources can be resolved compared to the case
of arbitrary signals.

V. ACHIEVABLE NC GAIN FOR TWO SOURCES

After establishing that according to theR-D NC CRB, no
NC gain can be attained for a single source, the question to
be studied is what is the maximum achievable NC gain if at
least two sources are not fully coherent, their rotation phases
are different, and the phase reference is arbitrary. Although it
is well known that exploiting the properties of strictly non-
circular sources can provide significant gains in reducing the
estimation error, so far, the NC gain could only be quantified
via simulations. In this section, we analytically compute the
maximum achievable NC gain associated with strictly non-
circular sources. As finding an analytical expression for an
arbitrary number of sources is an intricate task, we limit our
analysis to the case of two closely-spaced strictly non-circular
sources. TheR-D CRB for arbitrary source constellations
tends to infinity when the source separation approaches zero.
This is not always true for theR-D NC CRB as under certain
conditions, a finite value is reached. This observation motivates
us to derive simplified expressions of the NC CRB and the
CRB for the two source case, which are subsequently used
to analytically compute the maximum achievable NC gain. To
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obtain generic expressions in terms of the physical parameters,
the derivations are based on the model in (28).

For simplicity, we limit our analysis to the 1-D parameter
estimation case and assume a ULA composed ofM isotropic
sensor elements, which is centro-symmetric. The phase refer-
ence is located at an arbitrary position. For this scenario,the
array steering matrixĀ in model (28) simplifies to

Ā =
[
ā(µ1) · · · ā(µd)

]
∈ C

M×d, (41)

where the steering vectors̄a(µi), i = 1, . . . , d, are defined as

ā(µi) =
[

e−j (M−1)
2 µi · · · ej

(M−1)
2 µi

]

. (42)

After inserting (41) into the expression (27), it is once more
apparent that if the phase reference is at the array centroid, we
haveδ = 0 and consequently∆ = Id. Moreover, if the phase
reference is at the first element, we haveδ = (M − 1)/2.

A. NC CRB for Two Closely-Spaced Sources

The result obtained by simplifying the NC CRB for two
closely-spaced sources can be summarized in the following
theorem:

Theorem 3. For the case of anM -element ULA (1-D) and
two closely-spaced strictly non-circular sources (d = 2), the
deterministic NC Craḿer-Rao bound can be simplified to
expression(43)below. In(43), we have defined∆µ = |µ2−µ1|
and ∆φ = ∆ϕ + δ∆µ with ∆ϕ = |ϕ2 − ϕ1|. Moreover,
ˆ̺i = NP̂i/σ

2
n, i = 1, 2 represents the effective SNR of each

of the two sources.

Proof: The proof is given in Appendix D.
It is worth highlighting that the analytical expression in

(43) is only an approximate result as the derivation involves
a Taylor series approximation for small∆µ, where the higher
order terms beyondO(∆µ4) have been neglected. Therefore,
(43) becomes accurate if∆µ is small.

Also, note that the behavior of the simplified NC CRB
in (43) is symmetric in∆ϕ as the two sources can be
interchanged. Moreover, as any real-valued data stream can
be multiplied by the factor−1, which represents a phase shift
of π, it is alsoπ-periodic. Combining these two results, only
the interval∆ϕ ∈ [0, π/2] must be considered and the general
behavior of the NC CRB can be extracted from this interval
by mirroring and periodification. Consequently, the maximum
phase separation is given by∆ϕ = π/2.

Based on the result in (43), simplified expressions for
several special cases can be deduced, e.g., for two uncorrelated
(ρ̂ = 0) or coherent (̂ρ = 1) sources as well as for∆φ = 0 or
∆φ = π/2.

Remark 1:One specific case that is worth highlighting is
the casêρ = 0 and∆φ = π/2, where∆ϕ = π/2 andδ = 0.
Under these conditions, the NC CRB for two sources in (43)
simplifies to

Tr
{

C(nc)
}

≈
6

M(M2 − 1)
·
ˆ̺1 + ˆ̺2
ˆ̺1 ˆ̺2

, (44)

which is independent of∆µ. As (44) resembles the expression
for a single source in (36), it is apparent that the individual
NC CRB for each of the two sources represents the NC CRB

for the single source case discussed in the previous section.
Hence, the two sources entirely decouple as if each of them
was present alone.

Remark 2: Another special case occurs when the two
sources approach each other, i.e.,∆µ approaches zero. In the
CRB for arbitrary sources this always implies that the CRB
tends to infinity. This is, however, not always true for the NC
CRB. The limit can be computed as

lim
∆µ→0

Tr
{

C(nc)
}

=
1

1− ρ̂2
·

6

M(M2 − 1)

·
1

sin2(∆φ)
·
ˆ̺1 + ˆ̺2
ˆ̺1 ˆ̺2

. (45)

Thus, for ρ̂ < 1 and∆φ > 0, a finite value is reached. If we
haveρ̂ = 0 and∆φ = π/2, the limit (45) corresponds to (44),
and for ρ̂ = 1 and∆φ = 0, the limit tends to infinity as the
NC CRB matches the CRB.

B. CRB for Two Closely-Spaced Sources

The corresponding expression of the simplified CRB for two
closely-spaced sources is stated as follows:

Theorem 4. For the case of anM -element ULA (1-D) and two
closely-spaced sources (d = 2), the deterministic Craḿer-Rao
bound can be simplified to expression(46) below.

Proof: The proof is given in Appendix E.
In analogy to the result for the NC CRB, (46) becomes exact

for small∆µ and the higher order terms beyondO(∆µ4) of
the Taylor series expansion are negligible.

Again, more simplified expressions for several special cases
can be derived from (46), e.g.,̂ρ = 0, ρ̂ = 1, ∆φ = 0, or
∆φ = π/2.

Remark 3:A very interesting property of the CRB can be
shown for ρ̂ = 1 and ∆φ = π/2 with δ = 0. For these
parameters, we can reduce the CRB in (46) to

Tr {C} ≈
1

∆µ2
·

360

M(M − 1)(M − 2)(M + 2)(M + 1)

·
ˆ̺1 + ˆ̺2
ˆ̺1 ˆ̺2

, (47)

which corresponds to the expression of the CRB forρ̂ = 0
and arbitrary∆φ. This implies that a rotation phase separation
of π/2 decorrelates two coherent sources.

Remark 4:In contrast to the NC CRB, the limit for the CRB
is given by

lim
∆µ→0

Tr {C} = ∞ ∀ ρ̂, ∀ ∆φ. (48)

Therefore, the NC CRB for strictly non-circular sources ex-
hibits substantial benefits compared to the CRB if the sources
are closely-spaced, incoherent, and have a non-vanishing phase
discrimination∆φ.

C. Analytical NC Gain for Two Closely-Spaced Sources

Based on the simplified expressions for the two-source case
of the NC CRB in (43) and the CRB in (46), we can explicitly
compute the NC gain for two sources as given in (49) below.
As the derivation of (49) is based on (43) and (46), it becomes
accurate for small source separations∆µ as well. We can now
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analyze the properties of the NC gain expression for different
values ofρ̂, ∆ϕ, andδ.

Remark 5:As already established earlier for an arbitrary
number of sources, the NC CRB becomes equal to the CRB
if either ρ̂ = 1 or if ∆φ = 0, where∆ϕ = 0 andδ = 0. This
behavior also reflects in the NC gain computed for two strictly
non-circular sources as it can easily be verified that for these
parameter values, the expression (49) evaluates toη(nc) = 1.
Hence, no NC gain is obtained in these cases. Note, however,
that if δ 6= 0, i.e., the phase reference is not at the array
centroid, there may be an NC gain even if∆ϕ = 0.

Remark 6: By analyzing the NC CRB for two closely-
spaced sources, we have found that forρ̂ = 0 and∆φ = π/2
with δ = 0, the two sources entirely decouple. Evaluating the
NC gain expression for these parameters leads to

η(nc) ≈
1

∆µ2
·

60

(M − 2)(M + 2)
. (50)

Thus, this case represents the largest achievable gain for two
closely-spaced strictly non-circular sources. It is apparent that
the NC gain in (50) decays in proportion toM−2 but increases
as∆µ decreases.

Remark 7:The limit of the NC gain for∆µ approaching
zero is given by

lim
∆µ→0

η(nc) = ∞ ∀ ρ̂, ∀ ∆φ. (51)

Therefore, the NC gain can theoretically approach infinity if
the source separation tends to zero.

D. Two Groups of Equal Phases

This subsection represents a generalization of the case of
two uncorrelated strictly non-circular sources to two groups of
equal phases. Letd mutually uncorrelated sources with unit
power, i.e.,R̂S0 = Id, have the phase angles

ϕi = ϕ[1] + ki · π or ϕi = ϕ[2] + ki · π, i = 1, . . . , d,

where ki ∈ Z, i.e., moduloπ there are only two different
phase angles:ϕ[1] andϕ[2]. Without loss of generality, we can
reorder the sources such that thed1 sources with phaseϕ[1]

are the sources1, 2, . . . , d1 and the remainingd− d1 sources
d1 + 1, d1 + 2, . . . , d have phaseϕ[2]. Thus, the sources fall
into two groups, where the NC gain depends on the phase
separation|ϕ[2] − ϕ[1]| of the groups.

Now, in the special case|ϕ[2] − ϕ[1]| = π/2, i.e., the
phase separation between the two groups is maximum, it is
straightforward to see that the matricesG0, G1, andG2 are
block diagonal, i.e., they are zero except for the upper left
d1 × d1 block matrix and the lower right(d− d1)× (d− d1)
block. Combining these matrices and using the fact that the
correlation coefficients are zero, we can show from the joint
CRB that the two groups decouple, that is, the firstd1 sources
are completely decoupled from the remaining(d−d1) sources.
This case can provide a significant gain compared to the CRB
for arbitrary sources if there are closely-spaced sources that
belong to different groups.

VI. SIMULATION RESULTS

In this section, we provide simulation results to evaluate
the behavior of theR-D NC CRB and illustrate our analytical
results.

A. Behavior of the DeterministicR-D NC CRB

In this subsection, we compare the root mean squared error
(RMSE) of the derived deterministicR-D NC CRB (Det NC
CRB) to the deterministicR-D CRB (Det CRB) and the
existing stochasticR-D NC CRB (Sto NC CRB) for weak-
sense non-circular signals from [12]. Moreover, we include
theR-D NC Standard ESPRIT (NC SE) andR-D NC Unitary
ESPRIT (NC UE) algorithms [5] as well as their non-NC
counterpartsR-D Standard ESPRIT (SE) andR-D Unitary
ESPRIT (UE) [18] into the comparison. It is assumed that
a known number of signals with unit power and real-valued
symbols drawn from a Gaussian distribution impinge on the
array.

Fig. 1 illustrates the RMSE over all sources versus the SNR
for the centro-symmetric 2-D array (R = 2) in Fig. 2 with
M = 12, whereN = 20 available snapshots ofd = 3 sources
with the spatial frequenciesµ(1)

1 = 0.25, µ(1)
2 = 0.25, µ(2)

1 =

0.5, µ(2)
2 = 0.5, µ(3)

1 = 0.75, andµ
(3)
2 = 0.75, and a real-

valued pair-wise correlation ofρ = 0.9. The rotation phases
contained inΨ are given byϕ1 = 0, ϕ2 = π/4, andϕ3 =
π/2. It is apparent from Fig. 1 that the NC SE and NC UE
algorithms perform close to the derived Det NC CRB and that
all of these outperform the Sto NC CRB from [12].

In Table I, we analyze the Det 1-D CRB and the Det 1-
D NC CRB for a varying number of sourcesd in case of a
ULA with M = 4, N = 20, andSNR = 10 dB. The spatial

Tr
{

C(nc)
}

≈ 50400 ·

(

ρ̂2∆µ2M(M − 1)(M − 2)(M + 2)(M + 1)
(

∆µ2(M − 3)(M + 3) · cos2(∆φ) + 140 · sin2(∆φ)
)

+
(
1− ρ̂2

)
M(M − 1)(M + 1)

(

140 ·∆µ2(M − 2)(M + 2) · cos2(∆φ) + 8400 · sin2(∆φ)
))−1

·
ˆ̺1 + ˆ̺2
ˆ̺1 ˆ̺2

. (43)

Tr {C} ≈ 50400 ·

(

ρ̂2∆µ2M(M − 1)(M − 2)(M + 2)(M + 1)
(

∆µ2(M − 3)(M + 3) · cos2(∆φ) + 140 · sin2(∆φ)
)

+ 140 ·
(
1− ρ̂2

)
∆µ2M(M − 1)(M − 2)(M + 2)(M + 1)

)−1

·
ˆ̺1 + ˆ̺2
ˆ̺1 ˆ̺2

. (46)
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Fig. 1. Analytical and empirical RMSEs versus SNR for the 12-element 2-D
array (R = 2) from Fig. 2, andN = 20, d = 3 correlated sources (ρ = 0.9)
at µ(1)

1 = 0.25, µ
(1)
2 = 0.25, µ

(2)
1 = 0.5, µ

(2)
2 = 0.5, µ

(3)
1 = 0.75,

µ
(3)
2 = 0.75 with rotation phasesϕ1 = 0, ϕ2 = π/4, andϕ3 = π/2.
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J
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1

J
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2

Fig. 2. 2-D shift invariance for the depicted centro-symmetric 4×3 sampling
grid, left: subarrays for the first (horizontal) dimension,right: subarrays for
the second (vertical) dimension.

frequenciesµi, ∀i are distributed equally in the interval[−2, 2]
and the rotation phasesϕi, ∀i are drawn randomly. It can be
seen thatdmax = M − 1 for the CRB andd(nc)max = 2(M − 1)
for the NC CRB are the largest numbers ofd that lead to an
invertible Fisher matrix, otherwise, the problem is ill-posed.
Therefore, twice as many sources can be resolved from the
strictly non-circular data model.

B. Analytical Results

In this subsection, we compare the analytical results “ana”
in (43) and (46) to the empirical ones “emp” in (13) and
Corollary 1 obtained by averaging over 1000 Monte-Carlo
trials. We haved = 2 sources that impinge on a ULA (1-
D) with the powersP1 = 0.5 andP2 = 1.5. The symbolsS0

are randomly drawn from a real-valued Gaussian distribution.
In Fig. 3, we display the RMSE of the Det 1-D NC CRB

and the Det 1-D CRB ford = 2 sources as a function of the
number of sensorsM , where the square root of the analytical

10 20 30 40 50
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S
E

 (
ra

d)
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Fig. 3. Analytical and empirical RMSEs versus the number of sensorsM for
d = 2 correlated sources withN = 10, ∆µ = 0.1 rad,ρ = 0.8, ∆ϕ = π/3,
δ = (M − 1)/2, P1 = 1.5, P2 = 0.5, andσ2

n = 0.032.

TABLE I
RMSEFOR A VARYING NUMBER OF SOURCES WITHM = 4

RMSE d = 1 d = 2 d = 3 d = 4 d = 5 d = 6 d = 7

CRB 0.02 0.13 0.80 ∞ ∞ ∞ ∞

NC CRB 0.02 0.11 0.12 0.14 0.35 2.93 ∞

expressions is taken. The source separation is∆µ = 0.1 rad
with µ1 = 0 and µ2 = 0.1, however, the actual positions
are irrelevant and have no impact on the performance. The
remaining parameters are given byN = 10, ∆ϕ = π/3, δ =
(M−1)/2, i.e., the phase reference is located at the first sensor
element, andσ2

n = 0.032. Moreover, the correlation coefficient
ρ is set toρ = 0.8. It is evident that the analytical results agree
well with the empirical estimation errors and that both CRBs
perform similarly for largeM .

Fig. 4 illustrates the asymptotic NC gain in (49) ford = 2
sources as a function of∆µ. The number of sensors is fixed
to M = 15 and we haveρ = 0, ∆ϕ = π/2 as well asδ = 0.
For comparison purposes, we have also included the curves
for the analytical NC gain of NC SE from [9] for this specific
scenario. It can be seen that the NC gain expression becomes
accurate for small∆µ and that it is largest when∆µ goes
to zero. Furthermore, the NC gain of NC SE is close to the
maximum achievable NC gain computed from the NC CRB.

VII. C ONCLUSION

In this paper, we have presented a closed-form expression
of the deterministicR-D NC Cramér-Rao bound for multi-
dimensional strictly non-circular (rectilinear) signals. This

η(nc) =
Tr {C}

Tr
{
C(nc)

} ≈ 1 +

(

140 · (1 − ρ̂2)M(M − 1)(M + 1) · sin2(∆φ)
(

60−∆µ2(M − 2)(M + 2)
))/

(

∆µ2M(M − 1)(M − 2)(M + 2)(M + 1)
(

∆µ2ρ̂2(M − 3)(M + 3) · cos2(∆φ) + 140 · (1 − ρ̂2 cos2(∆φ))
))

(49)
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Fig. 4. Analytical and empirical NC gain versus the source separation∆µ
for d = 2 uncorrelated sources withM = 15, N = 10, ∆ϕ = π/2, δ = 0,
P1 = 1.5, P2 = 0.5, andσ2

n = 0.032.

bound serves as a benchmark for the recently developed
algorithms, e.g.,R-D NC Standard ESPRIT andR-D NC
Unitary ESPRIT, that exploit the NC structure of such strictly
non-circular signals and thus outperform the traditional meth-
ods for arbitrary signals. Based on the resultingR-D NC
CRB expression and assuming theR-D array to be separable
and centro-symmetric, we have shown that in the special
cases of equal phases and full coherence of the strictly non-
circular signals as well as for a single strictly non-circular
source, the deterministicR-D NC CRB reduces to the existing
deterministicR-D CRB for arbitrary signals. This suggests
that no NC gain can be achieved in these specific cases.
Furthermore, we have simplified the derived NC CRB and
the existing CRB for the special case of two closely-spaced
strictly non-circular signals captured by a uniform lineararray
(ULA). With these simplified CRB expressions, we have then
analytically computed the maximum achievable asymptotic
NC gain for this scenario. The resulting expression only
depends on the various physical parameters, e.g., the number
of sensors, the signal correlation, etc. Additionally, we have
analyzed the dependence of the NC gain on these parameters
to find that the largest NC gain is obtained if the two sources
are closely-spaced, incoherent, and have a non-vanishing phase
discrimination.

APPENDIX A
PROOF OFTHEOREM 1

For convenience, we start our derivation by vectorizing
the R-D NC data model in (7) by using the property
vec{AXB} = (BT ⊗ A) · vec{X} for arbitrary matrices
A, B, andX of appropriate sizes. We obtain

x = vec {X} = (IN ⊗AΨ) s0 + n ∈ C
MN×1, (52)

where s0 = vec {S0} = [sT0 (1), . . . , s
T
0 (N)]T ∈ RNd×1

with s0(t), t = 1, . . . , N , being the t-th column of S0,
andn = vec {N} ∈ CMN×1. To suit the deterministic data

assumption, the signal vectors0 is assumed to be determin-
istic and unknown to the receiver, while the sensor noisen

is zero-mean circularly symmetric white complex Gaussian
distributed, i.e.,E{nnT} = 0. Hence, the observationsx
satisfy the model

x ∼ CN (ν,Σ), (53)

whereν = (IN ⊗AΨ) s0 andΣ = σ2
nIMN are the mean

and the covariance of the array output vectorx.
Let us now define the real-valued vector of unknown

parameters as

ξ =
[
µT sT0 ϕT σ2

n

]T
∈ R

[(R+N+1)d+1]×1. (54)

Here, µ = [µ(1)T , . . . ,µ(R)T ]T ∈ RRd×1 is the principal
parameter vector of interest ands0 ∈ RNd×1, ϕ ∈ Rd×1, and
σ2
n are the nuisance parameters. As the CRB matrix is usually

computed by taking the inverse of the Fisher information
matrix (FIM) J , we first need to calculateJ . Due to (53),
i.e., x is Gaussian distributed, the Slepian-Bangs formulation
[15] of the FIM is still valid for the strictly non-circular data
model in (52). Hence, the Slepian-Bangs formulation ofJ for
the parameter vectorξ is given by [15]

Jp,q = Tr

{

Σ
−1 ∂Σ

∂ξp
Σ

−1 ∂Σ

∂ξq

}

+ 2 ·Re

{(
∂ν

∂ξp

)H

Σ
−1 ∂ν

∂ξq

}

,

(55)

p, q = 1, . . . , (R+N + 1)d+ 1.

Note that we are only interested in the CRB forµ, denoted
as C(nc). Therefore, it is sufficient to compute the upper
left block of J−1. In order to findJ from (55), the partial
derivatives ofν with respect to the parameters ofξ can be
calculated straightforwardly. We have

∂ν

∂µT
= (IN ⊗ (D(IR ⊗Ψ))) S̃

(R)
0 ∈ C

MN×Rd, (56)

whereD is given in (10) and̃S(R)
0 = [(IR⊗S̃0(1)), . . . , (IR⊗

S̃0(N))]T ∈ RNRd×Rd with S̃0(t) = diag {s0(t)} ∈ Rd×d.
For the remaining parameters, we get

∂ν

∂sT0
= (IN ⊗AΨ) ∈ C

MN×Nd,

∂ν

∂ϕT
= j (IN ⊗AΨ) S̃0 ∈ C

MN×d,
∂ν

∂σ2
n

= 0 ∈ R
MN×1,

where S̃0 = [S̃0(1), . . . , S̃0(N)]T ∈ RNd×d. Next, these
results are combined to obtain

dν

dξT
=
[

(IN ⊗ (D(IR ⊗Ψ))) S̃
(R)
0 (IN ⊗AΨ) ,

j (IN ⊗AΨ) S̃0 0
]
∈ C

MN×[(R+N+1)d+1], (57)

As for the derivative ofΣ with respect toξ, the only non-zero
term is

dΣ

dσ2
n

= IMN , (58)

such that
dΣ

dξT
=
[
0 0 0 IMN

]
∈ C

MN×[(R+N+1)d+MN ]. (59)
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Inserting (57) and (59) into (55) and bearing in mind that we
are interested in theµ-block of J , only the second term of
(55) is of concern. Therefore, we only consider the non-zero
block J̃ of J , which is given by

J̃ =





Jµ,µ Jµ,s0 Jµ,ϕ

Js0,µ Js0,s0 Js0,ϕ

Jϕ,µ Jϕ,s0 Jϕ,ϕ



 =
2

σ2
n

· Re
{
GHG

}
, (60)

where

G =
[

(IN ⊗ (D(IR ⊗Ψ))) S̃
(R)
0 (IN ⊗AΨ) ,

j (IN ⊗AΨ) S̃0

]
∈ C

MN×(R+N+1)d. (61)

It is easy to see that̃J = J̃T. Consequently, only the block
matrices on and above the diagonal ofJ̃ need to be computed.
For the block matrixJµ,µ, we obtain

Jµ,µ =
2

σ2
n

·
N∑

t=1

Re
{

(IR ⊗ S̃0(t))(IR ⊗Ψ
∗)DH

·D(IR ⊗Ψ)(IR ⊗ S̃0(t))
}

(62)

=
2

σ2
n

·Re

{

(
(IR ⊗Ψ

∗)DHD(IR ⊗Ψ)
)

⊙
N∑

t=1

(1R ⊗ s0(t))(1R ⊗ s0(t))
T

}

(63)

=
2

σ2
n

·Re

{

(
(IR ⊗Ψ

∗)DHD(IR ⊗Ψ)
)

⊙

(

1R×R ⊗
N∑

t=1

s0(t)s
T
0 (t)

)}

(64)

=
2N

σ2
n

·Re

{

(
(IR ⊗Ψ

∗)DHD(IR ⊗Ψ)
)

⊙

(

1R×R ⊗
1

N
S0S

T
0

)}

(65)

=
2N

σ2
n

·G2 ⊙ R̂
(R)
S0

∈ R
Rd×Rd, (66)

where G2 is defined according to (20) and we have used
the fact thatdiag {a}C diag {b} = C ⊙ (abT) for arbitrary
vectorsa ∈ CM , b ∈ CN , and a matrixC ∈ CM×N . In a
similar manner, the other blocks of̃J can be computed. The
results are given by

Js0,s0 =
2

σ2
n

· IN ⊗G0 ∈ R
Nd×Nd (67)

Jϕ,ϕ =
2N

σ2
n

·G0 ⊙ R̂S0 ∈ R
d×d (68)

Jµ,s0 =
2

σ2
n

· S̃
(R)T

0 (IN ⊗G1) ∈ R
Rd×Nd (69)

Js0,ϕ = −
2

σ2
n

· (IN ⊗H0) S̃0 ∈ R
Nd×d (70)

Jµ,ϕ = −
2N

σ2
n

·H1 ⊙ (1R ⊗ R̂S0) ∈ R
Rd×d, (71)

where the matricesGn andHn, n = 0, 1, 2 are given in (16)-
(19). Note that we have the symmetriesG0 = GT

0 , G2 = GT
2 ,

andH0 = −HT
0 .

In the next step, we need to extract the upper left block of
J̃−1. To this end, we make use of the following lemma:

Lemma 2. For matricesA ∈ Cp×p, B ∈ Cp×q, C ∈ Cp×r,
D ∈ Cq×p, E ∈ Cq×q, F ∈ Cq×r, G ∈ Cr×p, H ∈ Cr×q,
andJ ∈ Cr×r the upper leftp× p block of the matrix

K =





A B C

D E F

G H J





−1

(72)

is given by

K1:p,1:p =
(

A−BE−1D −BE−1FS−1
E HE−1D

+BE−1FS−1
E ·G+CJ−1HE−1D

+CJ−1HE−1 · FS−1
E HE−1D −CS−1

E G
)−1

,

whereSE = J −HE−1F .

Proof: The proof of Lemma 2 can easily be constructed
by applying the inversion formula for a2×2 block-partitioned
matrix [20] to the3× 3 block matrix in (72) twice.

Applying Lemma 2 to compute the upper left block ofJ̃−1,
it is straightforward to obtain the expression in (15), where we
have

SE =
2N

σ2
n

·
(

G0 −HT
0 G

−1
0 H0

)

⊙ R̂
(R)
S0

BE−1D =
2N

σ2
n

·
(

G1G
−1
0 GT

1

)

⊙ R̂
(R)
S0

BE−1F = −
2N

σ2
n

·
(
G1G

−1
0 H0

)
⊙ R̂

(R)
S0

HE−1D = −
2N

σ2
n

·
(

HT
0 G

−1
0 GT

1

)

⊙ R̂
(R)
S0

HE−1F =
2N

σ2
n

·
(

HT
0 G

−1
0 H0

)

⊙ R̂
(R)
S0

.

This concludes the proof.

APPENDIX B

In this section, we prove that forδ(r) = 0 ∀ r and subse-
quentlyA = Ā, the matricesAHA ∈ Rd×d, DHA ∈ RRd×d,
andDHD ∈ RRd×Rd are real-valued. To this end, we make
use of the following lemma:

Lemma 3. For two arbitrary non-singular leftΠ-real matri-
cesX ∈ CM×N andY ∈ CM×N satisfyingΠX∗ = X and
ΠY ∗ = Y , respectively, the following identity holds:

Y HX = (ΠY ∗)HΠX∗ = Y T
ΠΠX∗

= (Y HX)∗ ∈ R
N×N . (73)

Therefore, to prove that the aforementioned matrices are
real-valued, we simply show that the matricesA andD are
left Π-real. It is straightforward to see that due toδ(r) = 0 ∀ r,
this is the case forA (cf. Equation (24)). As for the matrix
D, we utilize the linearity of the differentiation operator and
obtain

ΠD∗ = Π

(
∂A

∂µ

)∗

=
∂ΠA∗

∂µ
=

∂A

∂µ
= D, (74)

which also rendersD left Π-real and concludes the proof.
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APPENDIX C
PROOF OFTHEOREM 2

Evaluating theR-D NC CRB in (15) for the special case
d = 1, the array steering matrixA reduces toa(µ), D =
[d(1), . . . ,d(R)] ∈ CM×R, Ψ = ejϕ, andR̂S0 = sT0 s0/N =
P̂ , wheres0 ∈ RN×1. Moreover, we chooseδ(r) = 0 ∀ r
for simplicity. Then, dropping the dependence ofa on µ and
utilizing the definitions in (3) and (11), respectively, we have

aHa =

R∏

r=1

a(r)Ha(r) =

R∏

r=1

Mr = M, (75)

d(r)Ha =

R∏

p=1
p6=r

a(p)Ha(p) · d̃(r)Ha(r)

=
R∏

p=1
p6=r

a(p)Ha(p) ·

(

−j

Mr∑

mr=1

kmr

)

= 0 ∀ r, (76)

d(r)Hd(r) =

R∏

p=1
p6=r

a(p)Ha(p) · d̃(r)Hd̃(r)

=

R∏

p=1
p6=r

a(p)Ha(p) ·

(
Mr∑

mr=1

k2mr

)

=
M

Mr

Mr∑

mr=1

k2mr
= Γ(r) ∀ r. (77)

Using the results in (75)-(77), the matricesGn andHn, n =
0, 1, 2, simplify to

G0 = M, G1 = H0 = H1 = 0, (78)

G2 = DHD = diag
{[

Γ(1), . . . ,Γ(R)
]}

, (79)

where inG2, the termsd(r1)
H

d(r2) for r1 6= r2 evaluate to
zero due to (76). Inserting these expressions into (15), the
remaining part of theR-D NC CRB matrix is given by

C(nc) =
σ2
n

2NP̂
·
{

diag
{[

Γ(1), . . . ,Γ(R)
]}}−1

(80)

= diag
{[

C(nc)(1), . . . , C(nc)(R)
]}

∈ R
R×R, (81)

where

C(nc)(r) =
σ2
n

2NP̂
·
Mr

M
·

1
∑Mr

mr=1 k
2
mr

∀ r, (82)

which is the desired result.

APPENDIX D
PROOF OFTHEOREM 3

Based on the model in (28) after inserting (41), we start the
proof by assuming without loss of generality that the phase
reference is at the array centroid, i.e.,∆ = Id such thatA =
Ā andΦ = Ψ. Using the results from Appendix B, we can
write the real-valued matricesAHA, DHA, andDHD as

AHA =

[
M α
α M

]

, DHA =

[
0 β
−β 0

]

, DHD =

[
Γ γ
γ Γ

]

,

where we have definedα = aH
1 a2 = aH

2 a1, β = dH
1 a2 =

−dH
2 a1, andγ = dH

1 d2 = dH
2 d1. Then, the matricesG0 and

H0 can be written as

G0 = Re
{
Ψ

∗AHAΨ
}
=

[
M α · cos(∆ϕ)

α · cos(∆ϕ) M

]

H0 = Im
{
Ψ

∗AHAΨ
}
=

[
0 α · sin(∆ϕ)

−α · sin(∆ϕ) 0

]

.

The matricesG1, H1, andG2 can be expressed in a similar
manner. In order to obtain an expression of the 1-D NC CRB
that only depends on the physical parameters, e.g,M , ρ, ∆ϕ,
etc., we approximate the scalarsα, β, andγ using a Taylor
series expansion for small source separations∆µ = |µ2−µ1|.
Hence, these approximations become accurate for a small∆µ.
Therefore, forα, we have

α =

(M−1)
2∑

m=−
(M−1)

2

ejm∆µ ≈ M + j∆µ ·

(M−1)
2∑

m=−
(M−1)

2

m

−
∆µ2

2
·

(M−1)
2∑

m=−
(M−1)

2

m2 − · · ·

≈ M −
M

24
∆µ2(M2 − 1) +O(∆µ4).

Note that the terms containing odd powers ofm evaluate to
zero. Similarly, in case of a small∆µ, we get forβ andγ the
expressions

β = −j ·

(M−1)
2∑

m=−
(M−1)

2

m · ejm∆µ

≈ −j ·

(M−1)
2∑

m=−
(M−1)

2

m ·

(

1 + jm∆µ−
∆µ2

2
m2 − · · ·

)

≈
M

12
∆µ(M2 − 1)−

M

1440
∆µ3(3M4 − 10M2 + 7) +O(∆µ5),

γ =

(M−1)
2∑

m=−
(M−1)

2

m2 · ejm∆µ

≈ −j ·

(M−1)
2∑

m=−
(M−1)

2

m2 · (1 + jm∆µ−
∆µ2

2
m2 − · · · )

≈
M

12
(M2 − 1)−

M

480
∆µ2(3M4 − 10M2 + 7) +O(∆µ4).

Finally, with the sample covariance matrix

R̂S0 =

[

P̂1 ρ̂
√

P̂1P̂2

ρ̂
√

P̂1P̂2 P̂2

]

(83)

and the help of the Taylor approximation terms above, we
can evaluate the 1-D NC CRB expression in Corollary 1 for
two closely-spaced strictly non-circular sources. Due to the
cancellation of relevant terms when using only approximation
terms of lower order, we also need to consider higher-order
Taylor approximation terms6 for α, β, and γ. After some

6Here, we used Taylor approximation terms up to the 6th order.
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tedious calculations, we obtain

Tr
{

C(nc)
}

=
σ2
n

2N
· z ·

P̂1 + P̂2

P̂1P̂2

, (84)

where

z =
x0 + x1∆µ2 + x2∆µ4 + · · ·

y1∆µ2 + y2∆µ4 + y3∆µ6 + · · ·
. (85)

It is apparent that the first term in the numerator and the first
two terms in the denominator of (84) are dominant. Neglecting
the non-relevant higher-order terms in the numerator and de-
nominator of (84) and applying some algebraic manipulations,
an expression in the form of (43) can be deduced. Finally,
to make the result more general, we consider an arbitrary
phase reference and substitute∆ϕ by ∆φ to obtain (43). This
concludes the proof.

APPENDIX E
PROOF OFTHEOREM 4

The proof of Theorem 4 follows the same steps as the proof
in Appendix D. Under the same assumptions, we compute the
matricesAHA, DHA, andDHD in the same way. The dif-
ference is, however, that we evaluate the 1-D CRB expression
given in (8). Using the same Taylor series approximations
as before, we obtain a similar expression as (84). Finally,
neglecting the non-dominant terms in the numerator and the
denominator, and substituting∆φ for ∆ϕ, we arrive at the
expression in (46) to prove this theorem.
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