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Abstract

This paper considers the consensus problem for a network of nodes with random inter-

actions and sampled-data control actions. We first show that consensus in expectation, in

mean square, and almost surely are equivalent for a general random network model when

the inter-sampling interval and network size satisfy a simple relation. The three types of

consensus are shown to be simultaneously achieved over an independent or a Markovian

random network defined on an underlying graph with a directed spanning tree. For both

independent and Markovian random network models, necessary and sufficient conditions for

mean-square consensus are derived in terms of the spectral radius of the corresponding state

transition matrix. These conditions are then interpreted as the existence of critical value

on the inter-sampling interval, below which global mean-square consensus is achieved and

above which the system diverges in mean-square sense for some initial states. Finally, we

establish an upper bound on the inter-sampling interval below which almost sure consensus

is reached, and a lower bound on the inter-sampling interval above which almost sure diver-

gence is reached. Some numerical simulations are given to validate the theoretical results

and some discussions on the critical value of the inter-sampling intervals for the mean-square

consensus are provided.

Keywords: Consensus; Markov chain; sampled-data; random networks

1 Introduction

In the traditional consensus algorithm, each node exchanges information with a few neighbors,

typically given by their relative states, and then updates its own state according to a weighted

average. It turns out that with suitable (and rather general) connectivity conditions imposed on

the communication graph, all nodes asymptotically reach an agreement in which the nodes’ initial

values are encoded [1,2]. Various consensus algorithms have been proposed in the literature. The

most common continuous-time consensus algorithm is given by an ordinary differential equation
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in terms of the relative states of each agent with respect to its neighboring agents [2, 3]. The

agent state is driven towards the states of its neighbors, so eventually the algorithm ensures

that the whole network reaches an agreement provided that the network is jointly connected.

In [4, 5], the authors developed discrete-time consensus algorithms. In such an algorithm, each

agent updates its states as a convex combination of the state of itself and that of its neighboring

agents. Due to the fact that most algorithms are implemented by a digital device and that

the communication channels are unreliable and often subject to limited transmission capacity,

sampled-data consensus algorithms have also been proposed [6–9]. In a sampled-data setting,

the agent dynamics are continuous and the control input is piecewise continuous. The closed-

loop system is transformed into discrete-time dynamics and conditions on uniform or nonuniform

sample periods are critical to ensure consensus.

Consensus over random networks has drawn much attention since communication networks

are naturally random. In [10, 11], the authors studied distributed average consensus in sen-

sor networks with quantized data and independent, identically distributed (i.i.d.) symmetric

random topologies. The authors of [12] evaluated the mean-square convergence of consensus

algorithms with random asymmetric topologies. Mean-square performance for consensus algo-

rithms over i.i.d. random graphs was studied in [13], and the impact of random packet drops

was investigated in [14]. Recently, the i.i.d. assumption was relaxed in [15,16] to the case where

the communication graph is modeled by a finite-state Markov chain. Probabilistic consensus

has also been investigated in the literature. It was shown in [17] that for a random network

generated by i.i.d. stochastic matrices, almost sure, in probability, and Lp (p ≥ 1) consensus are

equivalent. In [18], the authors showed that almost sure convergence is reached for i.i.d. random

graphs, and Erdős-Rényi random graphs. The analysis was later extended to directed graphs

and more general random graph processes [19,20]. In [21], the authors showed that asymptotic

almost sure consensus over i.i.d. random networks is reached if and only if the graph contains a

directed spanning tree in expectation. Divergence in random consensus networks has also been

considered, as representing asymptotic disagreement in social networks. Almost sure divergence

of consensus algorithms was considered in [22,23].

In this paper, we consider sampled-data consensus problems over random networks. We

analyze the convergence of the consensus algorithm with a sampled-data controller under two

random network models. In the first model, each node independently samples its neighbors

in a random manner over the underlying graph. In the second model, each node samples its
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neighbors by following a Markov chain. The impact of the sampling intervals on consensus

convergence and divergence is studied. We consider consensus in expectation, mean-square,

and almost sure sense. We believe that the models considered in this paper is applicable to

some applications since they incorporate sampling by digital devices, limited node connections,

and random interactions imposed by unreliable networks. The main contributions of this paper

are summarized as follows. For both independent and Markovian random network models,

necessary and sufficient conditions for mean-square consensus are derived in terms of the spectral

radius of the corresponding state transition matrix. These conditions can be interpreted as

critical thresholds on the inter-sampling interval and we show that they can be computed by

a generalized eigenvalue problem, which can be stated as a quasi-convex optimization problem.

For each random network model, we obtain an upper bound on the inter-sampling interval below

which almost sure convergence is reached, and a lower bound on the inter-sampling interval above

which almost sure divergence is reached. To the best of our knowledge, this is the first time

that almost sure consensus convergence and divergence are studied for sampled-data systems,

and also the first time that almost sure divergence is considered for Markovian random graphs.

The remainder of the paper is organized as follows. Section 2 provides the problem formu-

lation, and introduces the probabilistic consensus notions. Their relations are also discussed.

Section 3 focuses on independent random networks. In this section, we present necessary and/or

sufficient conditions for expectation consensus, mean-square consensus, almost sure consensus,

and almost sure divergence. The same problems are addressed under a Markovian network

in Section 4. Compared with random networks, Markovian networks allow each link to be a

channel with “memory”. In Section 5, we illustrate our theoretical results through numerical

simulations. Finally, some concluding remarks are drawn in Section 6.

Notations: N, C, R and R+ are the sets of nonnegative integers, complex numbers, real

numbers and positive real numbers, respectively. For x, y ∈ R, x ∨ y and x ∧ y stand for the

maximum and minimum of x and y respectively. The set of n by n positive semi-definite (positive

definite) matrices over the field C is denoted as Sn+ (Sn++). For a matrix X = [x1 x2 · · · xn] ∈

Rm×n, ‖X‖ represents the spectral norm of X; X∗ and X ′ are the Hermitian conjugate and

the transpose of X respectively. The Kernel of X is defined as Ker(X) = {v ∈ Rn : Xv = 0} .

vec(X) is the vectorization of X, i.e., vec(X) := [x′1, x
′
2, . . . , x

′
n]′ ∈ Rmn. ⊗ denotes a Kronecker

product of two matrices. If m = n, ρ(X) and Tr(X) are the spectral radius and the trace of X

respectively. For vectorization and Kronecker product, the following properties are frequently
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used in this work: i) vec(ABC) = (C ′ ⊗A)vec(B); ii) (A⊗B)(C ⊗D) = (AC)⊗ (BD), where

A, B, C and D are matrices of compatible dimensions. For vectors x, y ∈ Rn, x ⊥ y is a short

hand for 〈x, y〉 = 0, where 〈·, ·〉 denotes Euclidean inner product. The indicator function of a

subset A ⊂ Ω is a function 1A : Ω → {0, 1}, where 1A (ω) = 1 if ω ∈ A , and 1A (ω) = 0 if

ω 6∈ A . The notation σ(·) represents the σ-algebra generated by random variables. Depending

on the argument, | · | stands for the absolute value of a real number, or the cardinality of a set.

2 Problem Formulation

2.1 Sampling and Random Networks

Consider a network of N nodes indexed in the set V = {1, 2, . . . ,N}. Each node i holds a value

xi(t) ∈ R for t ∈ [0,∞). The evolution of xi(t) is described by

ẋi(t) = ui(t), (1)

where ui ∈ R is the control input.

The directed interaction graph G = (V,E) describes underlying information exchange. Here

E ⊆ V×V is an arc set and (j, i) ∈ E means there is a (possibly unreliable) communication link

from node j to node i. The set of neighbors of node i in the underlying graph G is denoted as

Ni := {j : (j, i) ∈ E}. The Laplacian matrix L := [lij ] ∈ RN×N associated with G is defined as

lij =

 −1, if i 6= j and (j, i) ∈ E∑
m 6=i 1{(m,i)∈E}, if i = j.

A directed path from node i1 to node il is a sequence of nodes {i1, . . . , il} such that (ij , ij+1) ∈ E

for j = 1, . . . , l − 1. A directed tree is a directed subgraph of G = (V,E) such that every node

has exactly one parent, except a single root node with no parents. Therefore, there must exist

a directed path from the root to every other node. A directed spanning tree is a directed tree

that contains all the nodes of G.

Let G be associated with G and the set containing all subgraphs of G and {Gk = (V,Ek)}k∈N
be a sequence of random graphs, in which by definition each Gk is a random variable taking

values in G . The Laplacian matrix L(k) := [lij(k)] ∈ RN×N associated with Gk is defined as

lij(k) =

 −1, if i 6= j and (j, i) ∈ Ek∑
m6=i 1{(m,i)∈Ek}, if i = j.
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The set of neighbors of node i in denoted as Ni(k) := {j : (j, i) ∈ Ek}. Let the triple (G N,F ,P)

denote the probability space capturing the randomness contained in the random graph sequence,

where F is the set of all subsets of G N. Furthermore, we define a filtration Fk = σ(G0, . . . ,Gk)

for k ∈ N.

We define a sequence of node sampling instants as 0 = t0 < · · · < tk < tk+1 < . . . with

τk = tk+1 − tk representing the inter-sampling interval. The sampled-data consensus scheme

associated with the random graph sequence {Gk}k∈N is given by

ui(t) =
∑

j∈Ni(k)

[
xj(tk)− xi(tk)

]
, t ∈ [tk, tk+1). (2)

The closed-loop system can then be written in the compact form

x(tk+1) =
[
I − τkL(k)

]
x(tk) := W (k)x(tk) (3)

with W (k) := [wij(k)].

Remark 1 In the sampled-data algorithm (3), each node samples its own state at the sampling

instants {tk}∞k=0. If each node has continuous access to its own state for all t ≥ 0, we can

introduce the algorithm

ui(t) =
∑

j∈Ni(tk)

[xj(tk)− xi(t)], t ∈ [tk, tk+1), (4)

as considered in [24]. The corresponding closed-loop system is then

x(tk+1) =
[
I − (1− e−τk)L(k)

]
x(tk). (5)

By replacing τk in (3) with 1− e−τk in (5), all the conclusions in this paper for (3) throughout

the paper can thus be readily translated into those for (4).

2.2 Consensus Metrics

Define xmax(tk) := maxi∈V xi(tk) and xmin(tk) := mini∈V xi(tk) and the agreement measure

X(k) := xmax(tk) − xmin(tk). We have the following definitions for consensus convergence and

divergence.

Definition 1 (i) Algorithm (3) achieves (global) consensus in expectation if for any initial

state x(t0) ∈ RN there holds limk→∞ E[X(k)] = 0.
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(ii) Algorithm (3) achieves (global) consensus in mean square if for any initial state x(t0) ∈ RN

there holds limk→∞ E[X2(k)] = 0.

(iii) Algorithm (3) achieves (global) consensus almost surely if for any initial state x(t0) ∈ RN

there holds P (limk→∞X(k) = 0) = 1.

(iv) Algorithm (3) diverges almost surely if there holds P
(

lim supk→∞X(k) =∞
)

= 1 for any

initial state x(t0) ∈ RN except for x(t0) ⊥ 1.

2.3 Relations of Consensus Notions

The following lemma suggests that if the inter-sampling interval is small enough, the consensus

notations in Definition 1 are equivalent.

Lemma 1 Suppose τk ∈
(
0, (N− 1)−1

]
for all k. Then expectation consensus, mean-square

consensus, and almost sure consensus are all equivalent for Algorithm (3).

Proof. We begin with the observation that W (k) is a row stochastic matrix for all k ∈ N when

τk ∈
(
0, (N− 1)−1

]
, where a row stochastic matrix means a nonnegative square matrix with

each row summing to 1. Therefore,

xmax(tk+1) = max
i∈V

N∑
j=1

wij(k)xj(tk) ≤ max
i∈V

N∑
j=1

wij(k)
(
xj(tk) ∨ xmax(tk)

)
= xmax(tk),

implying that xmax(tk) is non-increasing in k. We show that xmin(tk) is non-decreasing in k

in precisely the same way. The foregoing two observations together suggest that X(k) is non-

increasing in k. Finally, the conclusion follows by showing the following implications:

(i) Expectation consensus =⇒ mean-square consensus. Since X(k) is non-increasing, we have

E[X2(k)] ≤ X(0)E[X(t)]. By the hypothesis, E[X2(k)] ≤ X(0)E[X(k)]→ 0 as k →∞.

(ii) Mean-square consensus =⇒ almost sure consensus. According to Chebyshev’s inequal-

ity [25],

P (|X(k)| < ε) ≤ E[X2(k)]

ε2

holds for any ε > 0. If limk→∞ E[X2(k)] = 0, consequently limk→∞ P (|X(k)| < ε) = 0. As

a result, there exists a subsequence of {X(k)}k∈N that converges to 0 almost surely [26].

Since {X(k)}k∈N is non-increasing, limk→∞X(k) = 0 almost surely.
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(iii) Almost sure consensus =⇒ expectation consensus. Since the sequence {X(k)}k∈N is non-

negative and non-increasing, by the Monotone Convergence Theorem [26], limk→∞ E[X(k)] =

0.

�

Remark 2 In [27], the equivalence of Lp consensus, consensus in probability, and almost sure

consensus was obtained over a random network generated by i.i.d. stochastic matrices. In

Lemma 1, we show that this equivalence holds regardless of the type of random process the row

stochastic matrices are generated by. The equivalence relation follows from the monotonicity of

{X(k)}k∈N.

3 Independent Random Networks

In this section, we investigate sampled-data consensus when the random graph Gk is obtained

by each node independently sampling its neighbors in a random manner over G. Regarding the

connectivity of the underlying graph G, we adopt the following assumption:

(A1) The underlying graph G has a directed spanning tree.

We also impose the following assumption.

(A2) The random variables 1{(j,i)∈Ek}, (j, i) ∈ E, k ∈ N, are i.i.d. Bernoulli with mean q > 0.

The techniques developed in this section also apply when q = q(i) is a function of node index i.

In order to simplify the notation used in the derivation of the results through this section,

we also make the following assumption.

(A3) Let τk = τ∗ for all k with τ∗ > 0.

When each node samples its neighbors as Assumption (A2) describes, {L(k)}k∈N are i.i.d.

random variables, whose randomness originates from the primitive random variables 1{(j,i)∈Ek}’s.

We denote the sample space of L(k) by L := {L(1), L(2), . . . , L(M)} where M = |G | and L(l) :=[
l
(l)
ij

]
∈ RN×N is the Laplacian matrix associated with a subgraph G(l) ∈ G . By counting how

many edges are present in Gk and how many are absent from Gk, respectively, the distribution

of L(k) is computed by

P(L(k) = L(i)) = qTr(L
(i))(1− q)Tr(L−L(i)) := πi, i = 1, . . . ,M. (6)
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When τk = τ∗, W (k) inherits the same distribution as L(k) from Gk. Then, we denote W (l) =:

I − τ∗L(l).

3.1 Conjunction of Various Consensus Metrics

When the inter-sampling interval is small enough (to be precise τ∗ < (N − 1)−1), each node

recursively updates its state as a convex combination of the previous states of its own and its

neighbors. Every update drives nodes’ states closer to each other and can be thought of as

attraction of the nodes’ states. Under the independent random network model, we show in

the following theorem that, as long as G has a directed spanning tree, Algorithm (3) achieves

consensus, simultaneously in expectation, in mean square, and in almost sure sense.

Theorem 1 Let Assumptions (A1), (A2), and (A3) hold. Then expectation consensus, mean-

square consensus, and almost sure consensus are achieved under Algorithm (3) if τ∗ ∈
(
0, (N−

1)−1
)
.

Proof. By Lemma 1, it suffices to show that Algorithm (3) achieves consensus in expectation.

Fix a directed spanning tree GT of graph G and a sampling time tk. Let the root of GT be

i1 ∈ V, and define a set of nodes M1 := {i1}. Denote

η := (τ∗) ∧ (1− (N− 1)τ∗).

Then, there holds η > 0 when τ∗ ∈
(
0, (N − 1)−1

)
. We first assume xi1(tk) ≤ 1/2(xmax(tk) +

xmin(tk)) while the other case for xi1(tk) > 1/2(xmax(tk) + xmin(tk)) will be discussed later.

Choose a node i2 ∈ V such that i2 6∈ M1 and (i1, i2) ∈ GT . Define M2 := M1 ∪ {i2}.

Consider the event E2 := {(i1, i2) ∈ Ek+1}. When E2 happens, xi2(tk+1) evolves as follows:

xi2(tk+1) = wi2i1(k)xi1(tk) +
∑
j 6=i1

wi2j(k)xj(tk)

≤ 1

2
wi2i1(k)(xmin(tk) + xmax(tk)) + (1− wi2i1(k))xmax(tk)

≤ 1

2
ηxmin(tk) + (1− 1

2
η)xmax(tk),

where the last inequality holds because η ≤ wi2i1(k). Since η ≤ wi1i1(k), we show that xi1(tk+1)

is bounded by

xi1(tk+1) ≤
1

2
ηxmin(tk) + (1− 1

2
η)xmax(tk).
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At time tk+2,

xi2(tk+2) = wi2i2(k + 1)xi2(tk+1) +
∑
j 6=i1

wi2j(k + 1)xj(tk+1)

≤ wi2i2(k + 1)

[
1

2
ηxmin(tk) + (1− 1

2
η)xmax(tk)

]
+
(
1− wi2i2(k + 1)

)
xmax(tk+1)

≤ 1

2
η2xmin(tk) + (1− 1

2
η2)xmax(tk),

where the last inequality is due to xmax(tk+1) ≤ xmax(tk) and η ≤ wi2i2(k+ 1). The same is true

of node i1, i.e., xi1(tk+2) ≤ 1
2η

2xmin(tk) + (1− η2)xmax(tk). Recursively, we see that

xi1(tk+n) ≤ 1

2
ηnxmin(tk) + (1− 1

2
ηn)xmax(tk)

and

xi2(tk+n) ≤ 1

2
ηnxmin(tk) + (1− 1

2
ηn)xmax(tk).

holds for n = 1, 2, . . ..

Again, choose a node i3 ∈ V such that i3 6∈ M2 and there exists a node j ∈ M2 satisfying

(j, i3) ∈ GT . Define M3 := M2∪{i3}. Consider the event E3 := {(j, i3) ∈ Ek+2 : (j, i3) ∈ GT , j ∈M2} .

If E3 happens, we obtain a similar result for node i3:

xi3(tk+2) ≤ η (xi1(tk+1) ∨ xi2(tk+1)) + (1− η)xmax(tk+1)

≤ 1

2
η2xmin(tk) + (η − 1

2
η2)xmax(tk) + (1− η)xmax(tk)

=
1

2
η2xmin(tk) + (1− 1

2
η2)xmax(tk).

From the same argument as above,

xi3(tk+n) ≤ 1

2
ηnxmin(tk) + (1− 1

2
ηn)xmax(tk)

holds for n = 2, 3, . . ..

We choose nodes i1, . . . , iN in sequel and accordingly define M1, . . . ,MN and E2, . . . ,EN.

Consider E2, . . . ,EN sequentially happen, then

xim(tk+n) ≤ 1

2
ηnxmin(tk) + (1− 1

2
ηn)xmax(tk)

holds for all 1 ≤ m ≤ N and n ≥ N− 1, which entails

xmax(tk+N−1) = max
i
xi(tk+N−1) ≤

1

2
ηN−1xmin(tk) + (1− 1

2
ηN−1)xmax(tk).
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In this case, the relationship between X(tk+N−1) and X(k) is given by

X(k + N− 1) = xmax(tk+N−1)− xmin(tk+N−1)

≤ 1

2
ηN−1xmin(tk) + (1− 1

2
ηN−1)xmax(tk)− xmin(tk)

=

(
1− 1

2
ηN−1

)
X(k).

If xi1(tk) > 1/2 (xmax(tk) + xmin(tk)) is assumed, a symmetric analysis leads to that, when

E2, . . . ,EN sequentially occur, xmin(tk+N−1) ≥ 1
2η

N−1xmax(tk) + (1 − 1
2η

N−1)xmin(tk). Then

X(k + N− 1) is bounded by

X(k + N− 1) = xmax(tk+N−1)− xmin(tk+N−1)

≤ xmax(tk)−
1

2
ηN−1xmax(tk)− (1− 1

2
ηN−1)xmin(tk)

=

(
1− 1

2
ηN−1

)
X(k),

exactly the same result as when xi1(tk) ≤ 1/2(xmax(tk) + xmin(tk)) is assumed. Therefore, the

above inequality holds irrespective of the state of xi1(tk).

In addition, we know that probability that the events E2, . . . ,EN sequentially occur is

P
(

1∩Ni=2Ei
= 1
)

=
N∏
i=2

P(1Ei
= 1) ≥ qN−1.

Combining all the above analysis,

E[X(k + N− 1)] ≤ qN−1
(

1− 1

2
ηN−1

)
E[X(k)] + (1− qN−1)E[X(k)]

=

(
1− 1

2
(qη)N−1

)
E[X(k)]. (7)

Since 0 < qη < 1, then limk→∞ E[X(k)] = 0, which completes the proof. �

When the inter-sampling interval τ∗ is too large, then W (k) may have negative entries. Con-

sequently, some nodes may repel, so consensus of Algorithm (3) may not be achieved. When

repulsive actions exist, expectation consensus, mean-square consensus, and almost sure consen-

sus are not equivalent in general since the Monotone Convergence Theorem cannot be applied.

Of course, consensus in mean square still implies expectation consensus as consistent with Lp

convergence for a sequence of random variables. In the subsequent two subsections, mean-square

consensus and almost sure consensus/divergence will be separately analyzed.
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3.2 The Mean-square Consensus Threshold

In this part, we focus on mean-square consensus. First of all, we give a necessary and sufficient

mean-square consensus condition in terms of the spectral radius of a matrix that depends on

τ∗, G and q, by studying the spectral property of a linear system. Note that the analysis is

carried out on the spectrum restricted to the smallest invariant subspace containing I − 1
N11′.

The condition is then interpreted as the existence of a critical threshold on the inter-sampling

intervals, below which Algorithm (3) achieves mean-square consensus and above X(k) diverges

in mean-square sense for some initial state x(t0). This translation relies on the relationship

between the stability of a certain matrix and the feasibility of a linear matrix inequality.

Proposition 1 Let Assumptions (A1), (A2), and (A3) hold. Then the following statements are

equivalent:

(i) Algorithm (3) achieves mean-square consensus;

(ii) There holds ρ
(
E[W (0)⊗W (0)](J ⊗ J)

)
< 1, where

J := I − 1

N
11′; (8)

(iii) There exists a matrix S > 0 such that

φ(S) :=
M∑
i=1

πiJW
(i)JSJ(W (i))′J < S, (9)

where πi is defined in (6).

Proof. The proof needs the following lemma.

Lemma 2 (Lemma 2 in [28]) For any G ∈ Cn×n there exist Gi ∈ Sn+, i = 1, 2, 3, 4, such that

G = (G1 −G2) + (G3 −G4)i

where i =
√
−1.

Define the difference between the state x(tk) and its average as

d(k) := x(tk)−
1

N
11′x(tk). (10)

11
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Evidently, d(k) = Jx(tk). Since

X(k) = xmax(k)− 1

N
1′x(tk)−

[
xmin(tk)−

1

N
1′x(tk)

]
≤
∣∣∣∣xmax(tk)−

1

N
1′x(tk)

∣∣∣∣+

∣∣∣∣xmin(tk)−
1

N
1′x(tk)

∣∣∣∣
≤

√√√√2
N∑
i=1

[
xi(tk)−

1

N
1′x(tk)

]2
=
√

2 ‖d(k)‖ (11)

and

X(k) = N−1/2
√
N(xmax(tk)− xmin(tk))2 ≥ N−1/2

√√√√ N∑
i=1

[
xi(tk)−

1

N
1′x(tk)

]2
= N−1/2 ‖d(k)‖,

(12)

limk→∞ E[X2(k)] = 0 is equivalent to limk→∞ E‖d(k)‖2 = 0. From the Cauchy-Schwarz in-

equality, E[di(k)dj(k)] ≤ E[di(k)2]1/2E[dj(k)2]1/2 holds for any 1 ≤ i, j ≤ N, which furthermore

implies the equivalence between limk→∞ E‖d(k)‖2 = 0 and limk→∞ E[d(k)d(k)∗] = 0. Thus, to

study the mean-square consensus, we only need to focus on whether E[d(k)d(k)∗] converges to

a zero matrix.

Observe that

d(k) = JW (k − 1)x(tk−1)

= JW (k − 1)x(tk−1)−
1

N
JW (k − 1)11′x(tk−1)

= JW (k − 1)d(k − 1) (13)

holds for k = 1, 2, . . ., where the second equality is due to JW (k)1 = J1 = 0. It entails

E[d(k)d(k)∗] = E
[
JW (k − 1)d(k − 1)d(k − 1)∗W (k − 1)′J

]
.

Taking vectorization on both sides yields

vec
(
E[d(k)d(k)∗]

)
= E

[
(JW (k − 1))⊗ (JW (k − 1))vec

(
d(k − 1)d(k − 1)∗

)]
= E [(JW (0))⊗ (JW (0))] vec (E[d(k − 1)d(k − 1)∗])

= (J ⊗ J)E[W (0)⊗W (0)] vec (E[d(k − 1)d(k − 1)∗])

=
(

(J ⊗ J)E[W (0)⊗W (0)]
)k

vec (d(0)d(0)∗)

=
(

(J ⊗ J)E[W (0)⊗W (0)]
)k

(J ⊗ J) vec (x(t0)x(t0)
∗)

= (J ⊗ J)
(
E[W (0)⊗W (0)](J ⊗ J)

)k
vec (x(t0)x(t0)

∗) , (14)

12
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where the first equality is based on the property vec(ABC) = (C ′⊗A)vec(B) for matrices A, B

and C of compatible dimensions, and the separation of expectations in the second equality is

due to the independence of the random interconnections.

The implications from one statement to the next is provided as follows.

(i)⇒ (ii). If ρ
(
E[W (0)⊗W (0)](J⊗J)

)
≥ 1, there exist a number λ with |λ| ≥ 1 and a non-zero

vector v ∈ CN2
corresponding to λ satisfying E[W (0)⊗W (0)](J⊗J)v = λv. Let v1, . . . , vl be all

the eigenvectors corresponding to the eigenvalue 0 of J ⊗J . Since E[W (0)⊗W (0)](J ⊗J)vi = 0

for any i = 1, . . . , l, there holds v 6=
∑l

i=1 aivi for any ai ∈ R and (J ⊗ J)v 6= 0. Therefore

lim
k→∞

(J ⊗ J)
(
E[W (0)⊗W (0)](J ⊗ J)

)k
v = lim

k→∞
λk(J ⊗ J)v 6= 0. (15)

In order to show that mean-square consensus is not achieved for Algorithm (3), it remains to

prove that v can be expressed as a linear combination of different initial states. Note that there

exist G ∈ CN×N and G1, . . . , G4 ∈ SN+ such that v = vec(G) and G = G2 −G4 + (G3 −G1)i by

Lemma 2 (the order of G1, G2, G3 and G4 is immaterial in this lemma). Since each Gi can be

expressed as

Gi =
N∑
j=1

λ
(i)
j u

(i)
j (u

(i)
j )∗,

where Gi = U (i)diag{λ(i)1 , . . . , λ
(i)
N }(U

(i))∗ with λ
(i)
j ∈ σ(Gi) and U (i) =: [u

(i)
1 , . . . , u

(i)
N ] unitary.

Then, we have

v =
4∑
i=1

N∑
j=1

−λ(i)j iivec
(
u
(i)
j (u

(i)
j )∗

)
.

By letting x(t0) = u
(i)
j , i = 1, . . . , 4 and j = 1, . . . ,N, respectively, we see from (15) that

mean-square consensus is not achieved for some x(t0).

(ii)⇒ (iii). Denote R := (J ⊗ J)E[W (0)⊗W (0)](J ⊗ J). From (ii),

ρ(R) = ρ
(
E[W (0)⊗W (0)](J ⊗ J)2

)
= ρ
(
E[W (0)⊗W (0)](J ⊗ J)

)
< 1.

Then, (I−R)−1 exists and is nonsingular, (I−R)−1 =
∑∞

j=0R
j . For any given positive definite

matrix V ∈ RN×N, there corresponds a unique matrix S ∈ RN×N such that

vec(V ) = (I −R) vec(S). (16)

13
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Then,

vec(V ) =
(
I − E[(JW (0)J)⊗ (JW (0)J)]

)
vec(S)

= vec
(
S − φ(S)

)
,

where φ(·) is defined in (9), which implies S−φ(S) > 0 by the one-to-one correspondence of the

vectorization operator. The positive definiteness of S follows from

vec(S) = (I −R)−1 vec(V )

=

∞∑
i=0

Ri vec(V )

= vec

( ∞∑
i=0

φi(V )

)
,

implying S =
∑∞

i=0 φ
i(V ) ≥ V > 0, again by the one-to-one correspondence of the vectorization

operator.

(iii) ⇒ (i). By the hypothesis, there always exists a µ ∈ (0, 1) satisfying φ(S) < µS. Fix

any given X ∈ SN+ and then choose a c > 0 satisfying X ≤ cS. Then, by the linearity and

non-decreasing properties of φ(X) in X over the positive semi-definite cone,

φk(X) ≤ φk(cS) = cφk(S) < cφk−1(µS) = cµφk−1(S) < · · · < cµkS

holds for all k ∈ N. It leads to limk→∞ φ
k(X) = 0, which means

lim
k→∞

Rkvec(X) = 0. (17)

In light of Lemma 2, for any G ∈ Rn×n there exist X1, X2, X3, X4 ∈ Sn+ such that G =

(X1 −X2) + (X3 −X4)i. Then, we see from (17)

lim
k→∞

Rkvec(G)

= lim
k→∞

Rk
(

vec(X1)− vec(X2) + vec(X3)i− vec(X4)i
)

=0.

Since G is arbitrarily chosen, we have ρ
(
E[W (0)⊗W (0)](J ⊗ J)

)
= ρ(R) < 1. Then,

lim
k→∞

vec
(
E[d(k)d(k)∗]

)
= (J ⊗ J) lim

k→∞

(
E[W (0)⊗W (0)](J ⊗ J)

)k
vec(x(t0)x(t0)

∗) = 0

holds for any x(t0) ∈ RN, which means limk→∞ E[d(k)d(k)∗] = 0. �

The following result holds.

14
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Theorem 2 Let Assumptions (A1), (A2), and (A3) hold. Then Algorithm (3) achieves mean-

square consensus if and only if τ∗ ≤ τ†, where τ† is given by the following quasi-convex optimiza-

tion problem:

arg minτ − τ

subject to


JZJ + 11′

√
π1
(
JZ − JL(1)JY

)
. . .

√
πM(JZ − JL(M)JY )

∗ Z . . . 0
...

...
. . .

...

∗ ∗ . . . Z

 > 0,

(18)

Y,Z > 0, (19)

Y − τZ ≥ 0, (20)

with ∗’s standing for entries that are the Hermitian conjugates of entries in the upper triangular

part.

Proof. Necessity: Suppose that mean-square consensus is achievable for Algorithm (3), or

equivalently there exists a matrix S > 0 such that φ(S) < S holds by Proposition 1. First

we shall show
∑M

i=1 πiJW
(i)JSJ(W (i))′J < JSJ + 11′. Without loss of generality, choose for

(v1, . . . , vN) an orthonormal basis of RN with v1 = 1
N1. Then, any vector 0 6= x ∈ Rn can be

expressed as x =
∑N

i=1 aivi with coefficients a1, . . . , aN not all 0. We have

x′φ(S)x =
( N∑
i=2

aivi

)′
φ(S)

( N∑
i=2

aivi

)
and

x′(JSJ + 11′)x =
( N∑
i=2

aivi

)′
S
( N∑
i=2

aivi

)
+ a21.

Since a1, . . . , aN are not all 0 and φ(S) < S, there holds
∑M

i=1 πiJW
(i)JSJ(W (i))′J < JSJ+11′.

Finally, let Z = S and Y = τ∗S. By Schur complement lemma, we see that (18) and (20) hold.

In addition, the optimization is a generalized eigenvalue problem, which is quasiconvex [29].

Sufficiency: For any given τ∗ ≤ τ†, there always exist Y and Z such that (18), (19) and (20)

hold. According to Schur complement lemma, (18) is equivalent to

JZJ + 11′ −
M∑
i=1

πi(JZ − JL(i)JY )Z−1(JZ − JL(i)JY )∗ > 0,

15



Wu et al. Sampled-Data Consensus over Random Networks

which gives

JZJ + 11′ > JZJ +

M∑
i=1

πi

[
JL(i)JY Z−1Y J(L(i))′J − JY J(L(i))′J − JL(i)JY J

]
≥ JZJ +

M∑
i=1

πi

[
τ∗JL

(i)JY J(L(i))′J − JY J(L(i))′J − JL(i)JY J
]

≥ JZJ − τ∗−1JY J + τ∗
−1φ(Y ), (21)

where the second inequality holds by substituting Z−1 with τ∗Y
−1 in accordance with (20).

Therefore, it leads to JY J + τ∗11′ > φ(Y ). Letting S = JY J + τ∗11′, we have

φ(Y ) =

M∑
i=1

πiJW
(i)J(JY J + τ∗11′)J(W (i))′J = φ(S)

and S > φ(S). In addition, the positive definiteness of S can be seen from the following lemma.

Lemma 3 There holds JMJ + ε11′ > 0 for all M > 0 and ε > 0, where J is defined in (8).

Proof. Choose for (v1, . . . , vN) an orthonormal basis with v1 = 1
N1. For any nonzero vector

x =
∑N

i=1 aivi,

x′(JMJ + ε11′)x =
( N∑
i=2

aivi

)′
M
( N∑
i=2

aivi

)
+ εa21.

Since a1, . . . , aN are not all 0 and M > 0, we have x′(JMJ + ε11′)x > 0. �

By Proposition 1, Algorithm (3) achieves mean-square consensus, which completes the proof. �

3.3 Almost Sure Consensus/Divergence

In this part, we focus on the impact of sampling intervals on almost sure consensus and almost

sure divergence of Algorithm (3). The following theorem gives the relationships between τ∗ and

almost sure consensus/divergence: almost sure divergence is achieved when τ∗ exceeds an upper

bound and almost sure consensus is guaranteed when τ∗ is sufficiently small. Also note these

two boundaries are not equal in general.

Theorem 3 Let Assumptions (A1), (A2), and (A3) hold.

(i) If τ∗ ≤ τ† with τ∗ given in Theorem 2, Algorithm (3) achieves almost sure consensus.
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(ii) If τ∗ > τ\, where τ\ ∈ R+ is given by

τ\ := inf

{
τ : log

2N(τ − 1)

N− 1
>

(1− q) log(2N)

q∗q
, s(τ) ≥ 0

}
with q∗ := min{(1− q)|Ni|+|Nj | : (j, i) ∈ E} and s(τ) := min

{
λmin

(
τ(L(i))′JL(i) − JL(i) −

(L(i))′J
)

: L(i) ∈ L
}

, Algorithm (3) diverges almost surely for any initial state x(t0) ∈ RN

except x(t0) ⊥ 1.

Proof. We start by presenting supporting lemmas.

Lemma 4 (Lemma (5.6.10) in [30]) Let A ∈ Cn×n and ε > 0 be given. There is a matrix

norm ‖ · ‖† such that ρ(A) ≤ ‖A‖† ≤ ρ(A) + ε.

Lemma 5 (Borel-Cantelli Lemma) Let (S ,S, µ) be a probability space. Assume that events

Ai ∈ S for all i ∈ N. If
∞∑
i=0

µ(Ai) < ∞, then µ (Ai i.o.) = 0, where “Ai i.o.” means Ai

occurs infinitely often. In addition, assuming that events Ai, i ∈ N, are independent, then
∞∑
i=0

µ(Ai) =∞ implies µ (Ai i.o.) = 1.

Proof of (i): Note that

E[‖d(k)‖2] = Tr (E[d(k)d(k)∗]) ≤ N1/2
∥∥vec (E[d(k)d(k)∗])

∥∥.
The inequality results from the fact that, for any X := [xij ] ∈ Sn+, ‖vec(X)‖2 =

∑n
i=1

∑n
j=1 x

2
ij ≥∑n

i=1 x
2
ii ≥ 1

n(
∑n

i=1 xii)
2 = 1

n(Tr(X))2. If τ∗ < τ† or equivalently ρ
(
E[W (0)⊗W (0)](J⊗J)

)
< 1

by Theorem 2, there exists a matrix norm ‖ · ‖† such that
∥∥E[W (0) ⊗W (0)](J ⊗ J)

∥∥
†< λ < 1

by Lemma 4. Moreover, by the equivalence of norms on a finite-dimensional vector space, for

the two norms ‖ · ‖ and ‖ · ‖†, there exists a real number c ∈ R+ implying

‖X‖ ≤ c‖X‖†

for all X ∈ Rn×n. From the forgoing observations, (14) and the submultiplicativity of a matrix

norm,

E[‖d(k)‖2]

≤N1/2

∥∥∥∥(J ⊗ J)
(
E[W (0)⊗W (0)](J ⊗ J)

)k
vec (x(t0)x(t0)

∗)

∥∥∥∥
≤N1/2c

∥∥∥∥(E[W (0)⊗W (0)](J ⊗ J)
)k∥∥∥∥

†

∥∥vec (x(t0)x(t0)
∗)
∥∥

≤N1/2c
∥∥∥E[W (0)⊗W (0)](J ⊗ J)

∥∥∥k
†

∥∥vec (x(t0)x(t0)
∗)
∥∥

<cλkN1/2
∥∥vec (x(t0)x(t0)

∗)
∥∥.
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Therefore,
∞∑
k=0

E[‖d(k)‖2] < c(1− λ)−1N1/2
∥∥vec (x(t0)x(t0)

∗)
∥∥ <∞, (22)

together with Markov’s inequality resulting in that,

∞∑
k=0

P
(
‖d(k)‖ > δ

)
≤ (1/δ2)

∞∑
k=0

E[‖d(k)‖2] <∞

holds for any δ > 0. According to Lemma 5, limk→∞ ‖d(k)‖ = 0 almost surely for any initial

state x(t0) ∈ RN. Then, P (limk→∞X(k) = 0) = 1 follows from (11) and (12).

Proof of (ii): The rest of the proof consists of three steps. In the first two steps, we construct

a sequence of i.i.d. random variables and give a lower bound of the averaged rate of divergence

for this sequence. In the third step, the strong law of large numbers is applied to deduce the

divergence result.

Step 1. First of all, observe that for all k ∈ N and ω ∈ G N

‖d(k + 1, ω)‖2 =d(k, ω)∗W (k, ω)′JJW (k, ω)d(k, ω)

≥ min
‖v‖=1,
v⊥1

∥∥∥v∗W (k, ω)′JW (k, ω)v
∥∥∥ ‖d(k, ω)‖2,

where the inequality holds because d(k, ω) ⊥ 1. If λmin

(
W (k, ω)′JW (k, ω) + 1

N11′
)
≥ 1

for any k ∈ N and ω ∈ G N, then min ‖v‖=1,
v⊥1

∥∥∥v∗W (k, ω)′JW (k, ω)v
∥∥∥ ≥ 1, which together

with (11) and (12) implies that

P
(
X2(k) ≥ X2(k − 1)

2N

)
= 1 (23)

holds for all k ∈ N. Therefore, X(k) > 0 for all k ∈ N provided that X(0) > 0. The following

random variables are well defined:

ξ(k) :=
X2(k + 1)

X2(k)
, k ∈ N.

One condition guaranteeing λmin

(
W (k, ω)′JW (k, ω) + 1

N11′
)
≥ 1 is established as follows.

Note that for any L(i) ∈ L ,

λmin

(
W (k, ω)′JW (k, ω) +

1

N
11′
)

(24)

=λmin

(
τ2(L(i))′JL(i) − τJL(i) − τ(L(i))′J + I

)
=τλmin

(
τ(L(i))′JL(i) − JL(i) − (L(i))′J

)
+ 1. (25)
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Introduce

τ] = inf
{
τ : λmin

(
τ(L(i))′JL(i) − JL(i) − (L(i))′J

)
≥ 0, ∀L(i) ∈ L

}
. (26)

A basic but vital observation is that τ] <∞, which makes τ] well defined. To see this, choose a

positive number τi associated with any given L(i) ∈ L . If λmin

(
τ(L(i))′JL(i)−JL(i)−(L(i))′J

)
≥

0 for any L(i), we are done. Otherwise let v ∈ CN with ‖v‖ = 1 be any vector such that

v∗
(
τi(L

(i))′JL(i) − JL(i) − (L(i))′J
)
v < 0. (27)

Using the property Ker((L(i))′JL(i)) = Ker(JL(i)), we deduce from (27) v 6∈ Ker((L(i))′JL(i))

and v∗(L(i))′JL(i)v > 0. Let τi take a new value satisfying

τi >
max‖v‖=1 v

∗(JL(i) + (L(i))′J)v

min‖v‖=1,v 6∈Ker(JL(i)) v
∗(L(i))′JL(i)v

≥ sup
‖v‖=1,v 6∈Ker(JL(i))

v∗(JL(i) + (L(i))′J)v

v∗(L(i))′JL(i)v
.

Then, λmin

(
τi(L

(i))′JL(i) − JL(i) − (L(i))′J
)
≥ 0. Finally, letting τ0 = max1≤i≤n τi, we have

τ] ≤ τ0 <∞. According to Weyl Theorem (Theorem 4.3.1 in [30]), λmin

(
τ(L(i))′JL(i)− JL(i)−

(L(i))′J
)
≥ 0 whenever τ > τ] for each L(i) ∈ L . Recalling that L(k, ω) ∈ L , we see that

τ > τ] guarantees λmin

(
W (k, ω)′JW (k, ω) + 1

N11′
)
≥ 1 for all k ∈ N and ω ∈ G N .

Step 2. First, we propose the following claim.

Claim. There always exist two (random) nodes i, j ∈ V at each time k such that (j, i) ∈ E

and |xi(tk)− xj(tk)| ≥ 1
N−1X(k).

To prove the claim, fix any time instance k. Without loss of generality, index all the nodes

in the graph such that xmin(tk) = xi1(tk) ≤ xi2(tk) ≤ · · · ≤ xiN(tk) = xmax(tk). Then, there

at least exists a node in ∈ {i2, . . . , iN} satisfying xin(tk) − xin−1(tk) ≥ 1
N−1X(k); otherwise

xiN(tk)−xi1(tk) =
∑N

l=2(xil(tk)−xil−1
(tk)) < X(k), reaching a contradiction. If |xi(tk)−xj(tk)| <

1
N−1X(k) for all (j, i) ∈ E, then neither (i, j) 6∈ E nor (j, i) 6∈ E for any i = i1, . . . , in−1 and

j = in, . . . , iN, since xin(tk) − xin−1(tk) ≥ 1
N−1X(k), contradicting with the hypothesis that G

has a directed spanning tree.

In view of this claim, for each ω ∈ G N, we choose two nodes ik(ω), jk(ω) ∈ V at time

k such that (jk(ω), ik(ω)) ∈ E and |xik(ω)(tk) − xjk(ω)(tk)| ≥
1

N−1X(k, ω). The dependence

of the node selections on a specific sample path gives rise to a challenge in the subsequent

analysis. To get rid of this, we introduce an additional sequence of random variables. Let

{zk}k∈N be a sequence of i.i.d. random variables defined on
(
(0, 1)N, (B(0, 1))N, l

)
, where B(0, 1)

19



Wu et al. Sampled-Data Consensus over Random Networks

denotes the Borel algebra on (0, 1), with zk(ζ) = ζk for all ζ ∈ (0, 1)N and each zk uniformly

distributed in (0, 1). Let z0, z1, . . . and G0,G1, . . . be independent. Formally, we are allowed

to define a product probability space (S ,S, µ) where S = G N × (0, 1)N, S is the σ-algebra

generated by
{
A ×B : A ∈ F ,B ∈ (B(0, 1))N

}
, and µ is the probability measure satisfying

µ(A ×B) = P(A )l (B). Define Sk = σ ((G0, z0), . . . , (Gk, zk)). Introduce a sequence of events

associated with ik(ω), jk(ω) and zk:

D(k) =
{
∪ω∈G N (ω ×Bk(ω)) : Nik(ω)(k, ω) = {jk(ω)},Njk(ω)(k, ω) = ∅

}
with Bk(ω) =

{
ζ ∈ (0, 1)N : zk(ζ) < q∗/(1− q)|Nik(ω)|+|Njk(ω)|

}
. Since ik(ω), jk(ω) ∈ Fk−1, one

can verify D(k) ∈ Sk. If τ∗ > 1, for all (ω, ζ) ∈ D(k) and k ∈ N,

X(k + 1, ω) ≥|xik(ω)(tk+1)− xjk(ω)(tk+1)|

=(τ∗ − 1)|xik(ω)(tk)− xjk(ω)(tk)|

≥τ∗ − 1

N− 1
X(k, ω). (28)

Direct calculation yields

µ((ω, ζ) ∈ D(k)) =
q∗q

1− q
. (29)

Step 3. Now we define random variables

M(k) =

 τ∗−1
N−1 , if (ω, ζ) ∈ D(k),

1
2N , otherwise;

(30)

which together with (28) leads to

µ

(
ξk =

X2(k + 1)

X2(k)
≥M2(k)

)
= 1.

Therefore,

µ

(
t∏

k=0

ξk =
X2(t+ 1)

X2(0)
≥

t∏
k=0

M2(k)

)
= 1,

which gives

µ

(
logX(t+ 1)− logX(0) ≥

t∑
k=0

logM(k)

)
= 1. (31)

Since each node samples the neighbors independently, where the “independence” is in both

spatial and temporal sense (Assumption (A2)), therefore, for any k ∈ N,

µ ((ω, ζ) ∈ D(k) | Sk−1) =
p∗p

1− p
= µ ((ω, ζ) ∈ D(k)) ,
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indicating that M(k)’s are independent random variables for D(0), . . . ,D(k − 1) ∈ Sk−1. By

induction, we eventually have {M(k)}k∈N are i.i.d. with the mean computed as

E[logM(k)] =
q∗q

1− q
log

τ∗ − 1

N− 1
+ (1− q∗q

1− q
) log

1

2N
:= m(τ∗). (32)

Additionally, since M(k)’s have uniformly bounded covariances, Kolmogorov’s strong law of

large numbers [31] shows that

µ

(
lim
t→∞

1

t

t∑
k=0

logM(k) = m(τ∗)

)
= 1, (33)

which together with (31) implies that, when m(τ∗) > 0, P (lim infk→∞X(k) =∞) = 1. Notice

that m(τ∗) is increasing in τ∗. Defining τ[ = inf {τ : m(τ∗) > 0} and choosing τ∗ > τ] ∨ τ[ := τ\,

the conclusion follows. �

4 Markovian Random Networks

In this section, we continue to investigate the sampled-data consensus when each node samples

the neighbors following a Markov chain. The following assumption is imposed.

(A4) Independently among (j, i) ∈ E, the random variables 1{(j,i)∈Ek}, k = 0, 1, . . . , are a bi-

nary Markov chain with the failure rate P
(
1{(j,i)∈Ek+1} = 0 | 1{(j,i)∈Ek} = 1

)
:= p and the

recovery rate P
(
1{(j,i)∈Ek+1} = 1 | 1{(j,i)∈Ek} = 0

)
:= q positive and strictly less than one.

Note that the techniques developed in this section also apply when p(i) and q(i) vary depending

on the node index i.

Under Assumption (A4), {L(k)}k∈N are a sequence of random variables taking values from

L , governed by a finite-state time-homogeneous Markov chain. The transition probability of

{L(k)}k∈N is induced from the transition of edges between the “on” state and the “off” state,

which is

P
(
L(k) = L(j) | L(k − 1) = L(i)

)
= ps1(1− p)s2qs3(1− q)s4 := πij . (34)

where s1 =
∑

(n,m)∈E
1{l(i)mn 6=0,l

(j)
mn=0}, s2 =

∑
(n,m)∈E

1{l(i)mn 6=0,l
(j)
mn 6=0}, s3 =

∑
(n,m)∈E

1{l(i)mn=0,l
(j)
mn 6=0}, and

s4 =
∑

(n,m)∈E
1{l(i)mn=0,l

(j)
mn=0}.

For convenience, we denote Π := [πij ] as the transition probability matrix of L(k). Again,

W (k) inherits the same distribution from L(k). The positiveness of the recovery and failure

rates in Assumption (A4) makes L(k) an ergodic Markov chain and Π a positive matrix.
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4.1 Conjunction of Various Consensus Metrics

In this part, we show that an analog of Theorem 1 holds over a Markovian random network. From

the probabilistic point of view, the difference between independent model and Markovian model

can be interpreted using a finite permutation argument as follows. Let q be a finite permutation

from N onto N such that q(i) 6= i for finitely many i. For any given ω ∈ G N, we define a finite

permutation as (qω)i = ωq(i) for all i ∈ N. In the i.i.d. model, the probability measure is invariant

with respect to a finite permutation of the sample path, i.e., P(ω ∈ F) = P(ω ∈ qF); while in

the Markovian model this property is absent because of the Markov property. Nevertheless, if

τk = τ∗ ∈
(
0, (N − 1)−1

)
for all k, the difference does not play any key role in whether or not

X(k) converges in expectation for Algorithm (3). Moreover, Lemma 1 guarantees mean-square

consensus, and almost sure consensus regardless of the random network model.

Theorem 4 Let Assumptions (A1), (A3), and (A4) hold. Then expectation consensus, mean-

square consensus, and almost sure consensus are achieved for Algorithm (3) if τ∗ ∈
(
0, (N−1)−1

)
.

Proof. The proof is similar to that of Theorem 1. Here we only provide a sketch. Fix a

directed spanning tree GT of graph G and a sampling time tk. We choose i1, . . . , iN and define

M1, . . . ,MN in sequel by the following iterated algorithm: 1) Set i1 as the root node of GT ,

M1 := {i1} and l = 2; 2) Choose a node il ∈ V such that there exists a node j ∈ Ml−1

satisfying (j, il) ∈ GT and il 6∈ Ml−1; 3) Update Ml := Ml−1 ∪ {il}; 4) If l ≤ N, set l =

l + 1 and go to step 2 ); otherwise stop. Consider a sequence of events E2, . . . ,EN where El :={
L(k + l − 1) ∈ {L(j) ∈ L : l

(j)
ilil−1

6= 0}
}

for l = 2, 3, . . . ,N. If E2, . . . ,EN sequentially occur,

similar to the proof of Theorem 1, we see that

X(k + N− 1) ≤
(

1− 1

2
ηN−1

)
X(k) (35)

where η := (τ∗) ∧ (1 − (N − 1)τ∗) > 0. Then, we estimate the probability of the sequential

occurrence of E2, . . . ,E3 by

P
(

1∩Ni=2Ei
= 1 | L(k − 1) ∈ L

)
=P (1EN

= 1 | 1EN−1 = 1) · · ·P (1E2 = 1 | L(k − 1) ∈ L )

≥πN−1,
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where π := min1≤i,j≤M πij > 0. Therefore,

E[X(k + N− 1)]

=
∑
γ=0,1

E
[
P
(
1∩Ni=2Ei

= γ | L(k − 1)
)
E
[
X(k + N− 1) | 1∩Ni=2Ei

= γ, L(k − 1)
]]

≤(1− πN−1)E
[
E[X(k) | L(k − 1)]

]
+πN−1

(
1− 1

2
ηN−1

)
E
[
E[X(k) | L(k − 1)]

]
=

(
1− 1

2
(πη)N−1

)
E[X(k)],

which implies limk→∞ E[X(k)] = 0 and therefore consensus in expectation is achieved. Finally,

the conclusion follows from Lemma 1. �

Remark 3 The assumption of a uniform inter-sampling interval τk simplifies the notations

used in Theorems 1 and 4. It should be emphasized that the techniques used in the proof of

Theorems 1 and 4 also apply to the non-uniform inter-sampling interval case. To make the

conclusion hold, we require limk→∞ log
(
E[X

(
k(N−1)

)
]/E[X(0)]

)
= −∞, which can be guaranteed

by
∑∞

k=0

∏N−2
j=0 ηk+j =∞ with ηk = (τk)∧(1−(N−1)τk) for k ∈ N. This is seen from (7) and the

fact that, for a sequence {ak}k∈N with ak ∈ [0, 1),
∑∞

k=1 ak = ∞ if and only if
∏∞
k=1(1− ak) =

0 [32].

4.2 The Mean-square Consensus Threshold

Now, we are interested in establishing a necessary and sufficient condition on τ∗ for mean-square

consensus of Algorithm (3). We first present an implicit condition in terms of the spectral radius

of a certain matrix. Then, this stability condition is translated to a threshold on τ∗. The analysis

in this section is based on the techniques using in the proof of Proposition 1 as well as the tools

from the theory of Markov jump linear systems.

Proposition 2 Let Assumptions (A1), (A3), and (A4) hold and, for each (j, i) ∈ E, 1{(j,i)∈E0}

starts at any initial distribution. Then the following statements are equivalent:

(i) Algorithm (3) achieves mean-square consensus;

(ii) There holds ρ(ΓΘ) < 1, where

Γ := diag
(
W (1) ⊗W (1), . . . ,W (M) ⊗W (M)

)
(36)
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and

Θ := Π′ ⊗ (J ⊗ J) (37)

with J defined in (8) and Π defined in (34);

(iii) There exist matrices S1, . . . , SM > 0 such that

ϕj(S) :=
M∑
i=1

πijJW
(j)JSiJ(W (j))′J < Sj (38)

holds for all 1 ≤ j ≤ M, where S := (S1, . . . , SM).

Proof. Recall d(k) from (10). Obviously, (11) to (13) still hold. In what follows, we consider a

linear space over the complex field C: HM :=
{

(M1, . . . ,MM) : Mi ∈ CN×N, i = 1, . . . ,M
}

and a

convex cone in HM: HM
+ :=

{
(G1, . . . , GM) : Gi ∈ S+N , i = 1, . . . ,M

}
. Define

H(k) :=
(
d(k)d(k)∗1{L(k)=L(1)}, . . . , d(k)d(k)∗1{L(k)=L(M)}

)
∈ HM

+ .

Since

E[d(k)d(k)∗] = E[H(k)]
[
IN, . . . , IN︸ ︷︷ ︸
M times

]′
,

it follows from (11) and (12) that limk→∞ E[X2(k)] = 0 is equivalent to limk→∞ E[H(k)] = 0.

Taking vectorization on both side of E[H(k)] gives

vec
(
E[H(k)]

)
=


π11 · · · πM1

...
. . .

...

π1M · · · πMM

⊗


(JW (1))⊗ (JW (1))

. . .

(JW (M))⊗ (JW (M))



·


vec(E[d(k − 1)d(k − 1)∗1{L(k−1)=L(1)}])

...

vec(E[d(k − 1)d(k − 1)∗1{L(k−1)=L(M)}])


=
(

(Π′ ⊗ IN2)
(
IM ⊗ (J ⊗ J)

)
Γ
)

vec
(
E[H(k − 1)]

)
=
(

(Π′ ⊗ IN2)
(
IM ⊗ (J ⊗ J)

)
Γ
)k

vec (E[H(0)])

=
((
IM ⊗ (J ⊗ J)

)
(Π′ ⊗ IN2)Γ

)k(
IM ⊗ (J ⊗ J)

)
vec
(
E
[
h
(
x(t0), L(0)

)] )
=
(
IM ⊗ (J ⊗ J)

)(
(Π′ ⊗ IN2)Γ

(
IM ⊗ (J ⊗ J)

))k
vec
(
E
[
h
(
x(t0), L(0)

)] )
,

where h
(
x(t0), L(0)

)
:=
(
x(t0)x(t0)

∗1{L(0)=L(1)}, . . . , x(t0)x(t0)
∗1{L(0)=L(M)}

)
∈ HM

+ . The fourth

equality holds because (A⊗B)(C⊗D) = (AC)⊗(BD) for matrices A, B, C and D of compatible

dimensions. In addition, ρ
(

(P ′ ⊗ IN2)Γ
(
IM ⊗ (J ⊗ J)

))
= ρ(ΓΘ).
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It follows from Lemma 2 that for any H ∈ HM, there exist H1, . . . ,H4 ∈ HM
+ such that

H = (H1 −H2) + (H3 −H4)i. Moreover, for each Hi = (G
(i)
1 , . . . , G

(i)
M ),

Hi =

M∑
m=1

N∑
n=1

λ(i)m,nh(u(i)m,n, L
(m))

with U
(i)
m =: [u

(i)
m,1, . . . , u

(i)
m,N] unitary and G

(i)
m = U

(i)
m diag{λ(i)m,1, . . . , λ

(i)
m,N}(U

(i)
m )∗ for m =

1, . . . ,M, which means that, for any H ∈ HM, vec(H) can be expressed as a linear combination

of different initial states.

The rest of the proof follows from the arguments used in the proof of Theorem 1 and the

theory of Markov jump linear systems [33]. �

The following theorem holds based on Theorem 2 and the theory of Markov jump linear

systems, so the proof is omitted.

Theorem 5 Let Assumptions (A1), (A3), and (A4) hold. Then Algorithm (3) achieves mean-

square consensus if and only if τ∗ ≤ τ̃†, where τ̃† is given by the following quasi-convex optimiza-

tion problem:

arg minτ − τ

subject to


JZjJ + 11′

√
π1j
(
JZ1 − JL(j)JY1

)
. . .

√
πMj(JZM − JL(j)JYM)

∗ Z1 . . . 0
...

...
. . .

...

∗ ∗ . . . ZM

 > 0,

Yj , Zj > 0,

Yj − τZj ≥ 0, j = 1, . . . ,M.

4.3 Almost Sure Consensus/Divergence

In this part, we explore the almost sure consensus/divergence condition for Algorithm (3) over

Markovian random networks. The following theorem exhibits a correlation between τ∗ and the

asymptotic behavior of every sample path, that is, a small τ∗ guarantees almost sure consensus

while a large τ∗ tends to result in almost sure divergence. In the following theorem, the almost

sure divergence analysis is restricted to complete graphs. The assumption of complete graph

simplifies the analysis. However, we believe that the techniques used in developing almost sure
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divergence results in Theorems 3 and 6 can also deal with general directed graphs. We plan to

remove this restriction and consider more general graphs in future work.

Theorem 6 Let Assumptions (A1), (A3), and (A4) hold and, for each (j, i) ∈ E, 1{(j,i)∈E0}

starts at any initial distribution.

(i) If τ∗ ≤ τ̃†, then Algorithm (3) achieves almost sure consensus.

(ii) If G is a complete graph and τ∗ > τ̃\, where τ̃\ is given by

τ̃\ := inf

{
τ : q̃∗ log

2N(τ − 1)

N− 1
+ log

1

2N
> 0, s(τ) ≥ 0

}
,

with q̃∗ := (1− p) ∧ q and s(τ) := min
{
λmin(τ(L(i))′JL(i) − JL(i) − (L(i))′J) : L(i) ∈ L

}
,

then Algorithm (3) diverges almost surely for any initial state x(t0) ∈ RN except x(t0) ⊥ 1.

Proof. To show (i), note that

E[‖d(k)‖2] = Tr

(
E[H(k)]

[
IN, . . . , IN︸ ︷︷ ︸
M times

]′) ≤ (MN)1/2
∥∥vec

(
E[H(k)]

)∥∥.
When ρ(ΓΘ) < 1, by using the same argument as in (22), we know that

∑∞
k=0 E[‖d(k)‖2] <∞

holds for any initial state x(t0) ∈ RN and any initial distribution of 1{(j,i)∈E0} for each (j, i) ∈ E.

By Markov’s inequality and Lemma 5, limk→∞ ‖d(k)‖ = 0 almost surely.

Next, we shall prove (ii). Similar to the proof of Theorem 3, the analysis is divided into

three steps.

Step 1. Suppose τ > τ], where τ] ∈ R+ is defined in (26). Adopting the analysis used in the

proof of Theorem 3, we define

ξ(k) :=
X2(k + 1)

X2(k)
,

and conclude that

P
(
X2(k + 1) ≥ X2(k)

2N

)
= 1 (39)

holds for all k ∈ N.

Step 2. In the first place, for each ω ∈ G N, we choose two (random) nodes ik(ω), jk(ω) ∈ V

at time k such that |xik(ω)(tk) − xjk(ω)(tk)| = X(k, ω). Let {zk}k∈N be a sequence of i.i.d.

random variables defined on
(
(0, 1)N, (B(0, 1))N, l

)
with zk(ζ) = ζk for all ζ ∈ (0, 1)N and each

zk uniformly distributed in (0, 1), and let z0, z1, . . . and G0,G1, . . . be independent. Formally,

we are allowed to define a product probability space (S ,S, µ) with µ the product probability
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measure satisfying µ(A ×B) = P(A )l (B) for any A ∈ F and B ∈ (B(0, 1))N. Define Sk =

σ ((G0, z0), . . . , (Gk, zk)). Introduce a sequence of events associated with ik(ω), jk(ω) and zk:

D(k) =
{
∪ω∈G N (ω ×Bk(ω)) : (jk(ω), ik(ω)) ∈ Ek

}
with Bk(ω) given by

Bk(ω) =


{
ζ ∈ (0, 1)N : zk(ζ) < ((1− p) ∧ q)/(1− p)

}
, if (jk(ω), ik(ω)) ∈ Ek−1(ω);{

ζ ∈ (0, 1)N : zk(ζ) < ((1− p) ∧ q)/q
}
, if (jk(ω), ik(ω)) 6∈ Ek−1(ω).

We have the following claim due to a complete underlying graph G.

Claim. Suppose τ∗ > 1. There holds X(k + 1, ω) ≥ (τ∗ − 1)X(k, ω) for all (ω, ζ) ∈ D(k) and

k ∈ N.

Step 3. We define random variables

M(k) =

 τ∗−1
N−1 , if (ω, ζ) ∈ D(k);

1
2N , otherwise.

(40)

Similar to the proof of Theorem 3, for any t ∈ N,

µ

(
logX(t+ 1)− logX(0) ≥

t∑
k=0

logM(k)

)
= 1. (41)

Since each node independently samples among its neighbors, for any k ∈ N,

µ ((ω, ζ) ∈ D(k) | Sk−1) = (1− p) ∧ q = µ ((ω, ζ) ∈ D(k)) := q̃∗,

indicating that M(k)’s are independent random variables for D(0), . . . ,D(k − 1) ∈ Sk−1. By

induction, we eventually have {M(k)}k∈N are i.i.d. with the mean computed as

E[logM(k)] ≥ q̃∗ log
τ∗ − 1

N− 1
+ (1− q̃∗) log

1

2N
:= m̃(τ∗) (42)

In addition, since M(k)’s have uniformly bounded covariances, again by Kolmogorov strong law

of large numbers [31],

µ

(
lim
t→∞

1

t

t∑
k=0

logM(k) = E[logM(k)]

)
= 1, (43)

together with (31) implying that, when m̃(τ∗) > 0, P (lim infk→∞X(k) =∞) = 1. Notice that

m̃(τ∗) is increasing in τ∗. The proof is completed by defining τ̃[ = inf {τ : m̃(τ∗) > 0} and choosing

τ∗ > τ] ∨ τ̃[ := τ̃\. �
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𝑣1 𝑣2 

𝑣3 𝑣4 

Figure 1: A underlying graph G consisting of four nodes.

5 Numerical Examples

In this section, we provide numerical examples to validate the theoretical results. We first

illustrate the existence of the threshold on τ∗, which decides the mean-square convergence or

divergence (see Theorems 2 and 5). We then discuss and illustrate how this threshold depends

on the number of nodes with cyclic underlying graphs, for i.i.d. and Markovian network models,

respectively.

5.1 Mean-square Convergence vs. Divergence

We consider a network consisting of N = 4 nodes indexed by V = {v1, v2, v3, v4}. Let E ={
(v1, v2), (v2, v3), (v3, v2), (v3, v4)

}
. The underlying graph G = (V,E) is illustrated in Figure 1.

Evidently, G has a directed spanning tree. The random variables 1{(j,i)∈Ek}, (j, i) ∈ E and

k ∈ N, are i.i.d. Bernoulli ones with P
(
(j, i) ∈ Ek

)
= 0.5. We choose a uniform inter-sampling

interval, i.e., τk = τ∗ for all k. Then Algorithm (3) is given by

x(tk+1) =
[
I − τ∗L(k)

]
x(tk). (44)

According to Theorem 2, we compute that system (44) achieves consensus in mean square if and

only if τ∗ ≤ 1.07. We next illustrate this conclusion using simulations. Choose x(t0) = [5 2 1 1]′,

run 106 Monte Carlo simulations, and then use the average as an approximation of E[X2(k)].

Figure 2 illustrates that E[X2(k)] converges to 0 as k becomes large when τ∗ = 1 and diverges

as k increases when τ∗ = 1.14, validating the conclusion of Theorem 2.
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Figure 2: The evolutions of E[X2(k)] for different sample periods over an independent random

network with q = 0.5. In the upper figure, X2(k)] converges to 0 as k →∞ when τ∗ = 1. In the

bottom figure, X2(k)] diverges as k →∞ when τ∗ = 1.14.

2 

1 3 

N 

Figure 3: An illustration of a directed cycle graph.

5.2 Independent and Markovian Random Graphs

Consider a network of N nodes connected by a directed cycle graph as the underlying graph, see

Figure 3. We choose q = 0.6 for the i.i.d. model. The relationship between the number of nodes

N and the critical sampling interval τ† is plotted in Figure 4. As for the Markovian model, we
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choose p = 0.4 and q = 0.7. The relationship between N and τ† is plotted in Figure 5. Note

that each 1{(j,i)∈Ek} has a stationary distribution identical to the distribution of 1{(j,i)∈Ek} in

the independent model.
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E[X2(k)]

E[X2(k)]

2 3 4 5 6 7
0.8

1

1.2

1.4

N

τ ∗

Figure 4: The relationship between N and τ† over cycle graphs over independent random net-

works (q = 0.6). For N = 3, two sample periods, τ∗ = 1.1 (the red rectangle) and τ∗ = 1.2

(the blue circle), are chosen to illustrate the divergence and convergence behaviors of E[X2(k)]

respectively.

6 Conclusions

In this paper, we have considered sampled-data consensus problem over random networks. We

first defined three types of random consensus notions and established the equivalence of these

consensus notions provided a sufficient condition in terms of the inter-sampling interval and the

size of the network. Under this condition, three types of consensus were shown to be simultane-

ously achieved if the underlying graph contains a directed spanning tree. Both independent and

Markovian random networks are then considered. In either network model, necessary and suffi-

cient conditions for mean-square consensus were derived in terms of the inter-sampling interval.

Sufficient conditions for almost sure convergence/divergence were also provided, respectively, in
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Figure 5: The relationship between N and τ† over cycle graphs over Markovian random networks

(p = 0.6, q = 0.9). For N = 3, two sample periods, τ∗ = 1.0 (the red rectangle) and τ∗ = 1.1

(the blue circle), are chosen to illustrate the divergence and convergence behaviors of E[X2(k)]

respectively.

terms of the size of the inter-sampling interval. The results for the independent and Markovian

random networks are summarized in the following table. It is quite surprising that the phase

transition phenomenon of mean-square consensus exists for both types of random networks.
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