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Robust Hypothesis Testing with α-Divergence
Gökhan Gül, Student Member, IEEE, Abdelhak M. Zoubir, Fellow, IEEE,

Abstract—A robust minimax test for two composite hypotheses,
which are determined by the neighborhoods of two nominal dis-
tributions with respect to a set of distances - called α−divergence
distances, is proposed. Sion’s minimax theorem is adopted to
characterize the saddle value condition. Least favorable distri-
butions, the robust decision rule and the robust likelihood ratio
test are derived. If the nominal probability distributions satisfy
a symmetry condition, the design procedure is shown to be
simplified considerably. The parameters controlling the degree of
robustness are bounded from above and the bounds are shown to
be resulting from a solution of a set of equations. The simulations
performed evaluate and exemplify the theoretical derivations.

Index Terms—Detection, hypothesis testing, robustness, least
favorable distributions, minimax optimization, likelihood ratio
test.

I. INTRODUCTION

Decision theory has been an active field of research ben-
efiting from contributions from several disciplines, such as
economics, engineering, mathematics, or statistics. A decision
maker (or a detector) chooses a course of action from several
possibilities. A detector is said to be optimal or to be giving
the best decision for a particular problem if the decision rule of
interest minimizes (or maximizes) a well defined cost function,
e.g., the error probability (or the probability of detection) [1].
In addition to the fact that decision theory is truly an in-
terdisciplinary subject of research, there are many areas of
engineering, where decision theory finds applications, e.g.,
radar, sonar, seismology, communications and biomedicine.
For some applications, such as image and speech classifi-
cation or pattern recognition, interest is in a statistical test
that performs well on average. However, for safety oriented
applications such as seismology or forest fire detection, as well
as for biomedical applications such as early cancer detection
from magnetic resonance images or X-ray images, interest
is in maximizing the worst case performance because the
consequences of an incorrect decision can be severe [1].
In general, any practical application of decision theory can
be formulated as a hypothesis testing problem. For binary
hypothesis testing, it is assumed that under each hypothesis
Hi, the received data y = (y1, . . . , yn) ∈ Ω follows a par-
ticular distribution Fi corresponding to a density function fi,
i ∈ {0, 1}. A decision rule δ partitions the whole observation
space Ω into non-overlapping regions corresponding to each
hypothesis. The optimality of the decision rule δ depends on
the correctness of the assumption that the data y follows Fi.
However, in many practical applications either F0 and/or F1

are partially known or are affected by some secondary physical
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effects that go unmodeled [2].
Imprecise knowledge of F0 or F1 leads, in general, to per-
formance degradation and a useful approach is to extend the
known model by accepting a set of distributions Fi, under each
hypothesis Hi, that are populated by probability distributions
Gi, which are at the neighborhood of the nominal distribution
Fi based on some distance D [1]. Under some mild conditions
on D, it can be shown that the best (error minimizing) decision
rule δ̂ for the worst case (error maximizing) pair of probability
distributions (Ĝ0, Ĝ1) ∈ F0 × F1 accepts a saddle value.
Therefore, such a test design guarantees a certain level of
detection at all times. This type of optimization is known
as minimax optimization and the corresponding worst case
distributions (Ĝ0, Ĝ1) are called least favorable distributions
(LFD)s [3].
The literature in this field is unfortunately not rich. One of
the earliest and probably the most crucial work goes back
to Huber, who proposed a robust version of the probability
ratio test for the ε−contamination and total variation classes
of distributions [4]. He proved the existence of least favorable
distributions and showed that the corresponding robust test
was a censored version of the nominal likelihood ratio for
both uncertainty classes. In a later work, Huber and Strassen
extended the ε−contamination neighborhood to a larger class,
which includes five different distances as special cases [5].
It was also shown that the robust test resulting from this
new neighborhood was still a censored likelihood ratio test.
Although it was found to be less engineering oriented by Levy
[1], the largest classes for which similar conclusions have been
made was for the 2−alternating capacities proposed by Huber
and Strassen [6].
Another approach for robust hypothesis testing was proposed
by Dabak and Johnson based on the fact that the choice
of measures defining the contamination neighborhoods was
arbitrary [7]. They chose the relative entropy (KL-divergence)
because it is a natural distance between probability measures
and therefore a natural way to define the contamination
neighborhoods. Somewhat surprisingly, the robust test which
minimizes the KL-divergence between the LFDs obtained
from the closed balls with respect to the relative entropy
distance was not a clipped likelihood ratio test, but a nominal
likelihood ratio test with a modified threshold. It was noted
that their approach was not robust for all sample sizes but
when Kullback’s theorem is valid, that is for a large number
of observations [7]. The difference in the robust tests for
ε−contamination and relative entropy neighborhoods lies in
the fact that all the densities in the class of distributions based
on relative entropy are absolutely continuous with respect
to the nominal distributions, but not for the case of the
ε−contamination class.
A question left open by Dabak and Johnson was the design of
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a robust test for a finite number of samples. Levy answered
this question under two assumptions; monotone increasing
nominal likelihood ratio and symmetric nominal density func-
tions (f0(y) = f1(−y)), where y ∈ R. He implied that
a robust test based on the relative entropy would be more
suitable for modeling errors rather than outliers, due to the
smoothness property (absolute continuity). He also showed
that the resulting robust test was neither equivalent to Huber’s
nor to Dabak’s robust test; it was a completely different test
[2].
Although KL-divergence is a smooth and a natural distance be-
tween probability measures, it is not clear why KL divergence
should be considered to build uncertainty sets, especially since
there are many other divergences, which are also smooth and
have nice theoretical properties, e.g. the symmetry property,
which KL-divergence does not have. Besides, theoretically
nice properties do not always lead to preferable engineering
applications, see for example [8, p.7]. In this respect, KL-
divergence can be replaced by the α−divergence because
α−divergence includes uncountably many distances as special
cases, e.g. χ2 distance for α = 2 [9], it reduces to the KL-
divergence as α → 1 and shares similar theoretical proper-
ties with the KL-divergence such as smoothness, convexity
or satisfiability of (generalized) Pythagorean inequality [10].
Moreover, the flexibility provided by the choice of α results in
performance improvements in various signal processing appli-
cations and implies the sub-optimality of the KL-divergence.
For example, in the design of distributed detection networks
with power constraints, α−divergence is considered as the dis-
tance between the probability measures, and error exponents
of both kinds are maximized over all α ∈ (0, 1) [11]. In non-
negative matrix factorization [12], and indexing and retrieval
[13], the optimal value of α (with respect to some objective
function) is found to be 1/2 corresponding to the squared
Hellinger distance. In medical applications; e.g. in medical
image segmentation [14], restoration [15] and registration [16],
the α−divergence is considered and the optimal value of α is
found to be a non-standard value, i.e. a value which does not
correspond to any known distance. There are also theoretical
works which take advantage of the α−divergence in the
design of statistical tests. It is reported for parametric models
[17], [18] as well as for non parametric models [19] that
the use of α−divergence as the distance between probability
measures, again with some non-standard values of α, e.g.
α = 1.6 in [18] and α = 1.3 or α = 1.5 in [19], leads
to promising results. However, non of these aforementioned
works have the property of minimax robustness. Furthermore,
in non of the aforementioned works, it is possible to adjust
the tradeoff between robustness and detection performance.
Additionally, the parametric models have a possibly invalid
assumption that the actual probability distributions can be
represented by a parametric model. This motivates the work in
this paper: a minimax robust design of hypothesis testing with
the α−divergence distance, where the robustness is adjustable
with respect to the detection performance by the choice of two
robustness parameters, ε0 and ε1.
The related literature can be summarized as follows: In [3],
the symmetry constraint that was imposed in [2] was removed,

considering the squared Hellinger distance. In [20], the number
of non-linear equations that needs to be solved to be able
to design the robust test was reduced and a formula from
where the maximum robustness parameters could be obtained
was derived. In [21], robust approaches were extended to
distributed detection problems where communication from the
sensors to the fusion center is constrained. In a recent work
[22], based on the KL-divergence, the monotone increasing
likelihood ratio constraint was removed.
In this paper, A minimax robust test for two composite
hypotheses, which are formed by the neighborhoods of two
nominal distributions with respect to the α−divergence, is
designed. It is shown that for any α, the corresponding robust
test is the same and unique. There is no constraint on the
choice of nominal distributions. Therefore, our design general-
izes [2]. Since the α−divergence includes the KL-divergence
or the squared Hellinger distance as a special case, cf. [9],
our work also generalizes the works in [3], [20] and [22].
The advantage of considering the α−divergence for modeling
errors is that it allows the designer to choose a single parameter
that accounts for the distance without carrying out tedious
steps of derivations for the design of a robust test. Additionally,
the a priori probabilities in our work are not required to be
equal, which was assumed in all previous works on model
mismatch. An example is cognitive radio where the primary
user may be idle for most of the time, i.e. P (H0) � P (H1)
[23]. Last but not least, the work in this paper allows vector
valued observations.
The organization of this paper is as follows. In the following
section, some background to the minimax optimization prob-
lem is given and characterization the saddle value condition is
detailed, before the problem definition is stated. Section III is
divided into three parts. In the first part, the minimax optimiza-
tion problem is solved and the least favorable distributions,
the robust decision rule as well as the robust likelihood ratio,
which are later shown to be determined via solving two non-
linear equations, are obtained. The second part shows how
the problem is simplified if the nominal probability density
functions satisfy the symmetry condition. In the third part,
the maximum of the robustness parameters, above which
a minimax robust test cannot be designed, are derived. In
Section IV simulation results that illustrate the validity of
the theoretical derivations are detailed. Finally, the paper is
concluded in Section V.

II. PROBLEM FORMULATION

A. Background

Let (Ω,A ) be a measurable space with the probability
measures F0, F1, G0, G1, and G on it, having the density
functions f0, f1, g0, g1 and g respectively, with respect to
some dominating measure µ, i.e., Fi, Gi, G � µ, i ∈ {0, 1}.
It is assumed that the nominal measures are distinct, i.e. the
condition F0 = F1 µ−almost everywhere is not true. Consider
the binary composite hypothesis testing problem

Hc0 : G = G0

Hc1 : G = G1 (1)
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where the measures Gi are defined whenever their correspond-
ing density functions gi belong to the closed ball

Gi = {gi : D(gi, fi) ≤ εi} i ∈ {0, 1}, (2)

where D is a distance between the density functions. In other
words, every density function gi which is at least εi close to the
nominal density fi is a member of the uncertainty class Gi and
defines Gi, i ∈ {0, 1}. We choose D to be the α−divergence
i.e.,

D(g, f ;α) :=
1

α(1− α)

(
1−

∫
Ω

gαf1−αdµ
)
, α ∈ R\{0, 1}

(3)
since it is a convex distance for every α and it includes various
distances as special cases [9, p.1536].1. Given that y ∈ Ω has
been observed, a randomized decision rule δ : Ω 7→ [0, 1]
maps each y to a real number in the unit interval. Let ∆ be
the set of all decision rules (functions). Then, for any possible
choice of δ ∈ ∆, the following error types are well defined:
first, the false alarm probability

PF (δ, f0) =

∫
Ω

δf0dµ, (4)

second, the miss detection probability

PM (δ, f1) =

∫
Ω

(1− δ)f1dµ, (5)

and third, the overall error probability

PE(δ, f0, f1) = P (H0)PF (δ, f0) + P (H1)PM (δ, f1). (6)

It is well known that PE is minimized if the decision rule is
chosen to be the likelihood ratio test

δ(y) =


0, l(y) < ρ

κ(y), l(y) = ρ

1, l(y) > ρ

, (7)

where ρ = P (H0)/P (H1) is some threshold, l(y) :=
f1/f0(y) is the likelihood ratio at observation y and κ : Ω→
[0, 1].

B. Saddle value specification

In this section, the existence of a saddle value condition
due to the functional topology of the minimax optimization
problem is shown. Minimax theorem, which is attributed to
John von Neumann, gives the necessary conditions such that
the existence of a saddle value is guaranteed [24]. However, it
is applicable if and only if both sets over which the maximiza-
tion and minimization is performed are compact. Note that the
closed balls (G0 and G1) with respect to the α−divergence
distance are not compact, therefore Von Neumann’s minimax
theorem is not applicable in our case. Here, we adopt Sion’s
minimax theorem [25],

sup
(g0,g1)∈G0×G1

min
δ∈∆

PE(δ, g0, g1)

= min
δ∈∆

sup
(g0,g1)∈G0×G1

PE(δ, g0, g1), (8)

1Notice that α−divergence is preferred against the Rényi’s α−divergence
because Rényi’s α−divergence is convex only for α ∈ [0, 1][9, p.1540]

which removes the compactness constraint on the set over
which maximization is performed. In order for (8) to be valid
the following conditions must hold:

• The objective function PE(δ, ·) is real valued, upper semi-
continuous and quasi-concave on G0 × G1 for all δ ∈ ∆

• The objective function PE(·, (g0, g1)) is lower semi-
continuous and quasi-convex on ∆ for all (g0, g1) ∈
G0 × G1

• ∆ is a compact convex subset of a linear topological
space

• G0 × G1 is a convex subset of a linear topological space

The first two conditions hold true because PE is a real valued
continuous function, and linear on all three terms δ, g0, g1,
therefore both convex and concave. The last condition is also
true because, all convex combinations of g0

i ∈ Gi and g1
i ∈ Gi

are in Gi since D is a convex distance and the Cartesian
product of convex sets is again a convex set. Similarly, ∆ is
a convex set because for any t ∈ [0, 1] and for all δ0, δ1 ∈ ∆,
tδ0 +(1− t)δ1 ∈ ∆. Note that any continuous function is also
upper or lower semi-continuous and any convex function is
also quasi-convex. Lastly, ∆, which is equivalent to [0, 1]Ω

in infinite dimensional vector space, is the product of un-
countably many compact sets [0, 1]. According to Tychonoff’s
theorem, ∆ is compact with respect to the product topology
[26], [27]. Note that any finitely supported discretization of
g0 and g1 makes both G0 × G1 and ∆ compact with respect
to the standard topology. This is a straightforward result of
Heine-Borel theorem [28, Theorem 2.41].
Accordingly, based on Sions’s minimax theorem, there exists
a saddle value for the objective function PE , i.e.,

PE(δ, ĝ0, ĝ1) ≥ PE(δ̂, ĝ0, ĝ1) ≥ PE(δ̂, g0, g1). (9)

Since PE is distinct in g0 and g1, we also have

PF (δ̂, g0) ≤ PF (δ̂, ĝ0)

PM (δ̂, g1) ≤ PM (δ̂, ĝ1). (10)

C. Problem definition

Based on (10), the minimax optimization problem (8) can
be solved considering the Karush-Kuhn-Tucker (KKT) multi-
pliers. Hence, the problem formulation can be restated as

Maximization: ĝ0 = arg sup
g0∈G0

PF (δ, g0)

s.t. g0 > 0, Υ(g0) =

∫
R
g0 dµ = 1

ĝ1 = arg sup
g1∈G1

PM (δ, g1)

s.t. g1 > 0, Υ(g1) =

∫
R
g1 dµ = 1

Minimization: δ̂ = arg min
δ∈∆

PE(δ, ĝ0, ĝ1). (11)

In (11), there are two separate maximization problems, which
are coupled with the minimization problem through the deci-
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sion rule δ2

III. ROBUST DETECTION WITH α−DIVERGENCE

The following theorem provides a solution for (11), which is
composed of the least favorable densities ĝ0 and ĝ1, the robust
decision rule δ̂, the robust likelihood ratio function l̂ = ĝ1/ĝ0

in parametric forms, as well as two non-linear equations from
which the parameters can be obtained. Before the statement
of the theorem, let ll and lu be two real numbers with 0 <
ll ≤ 1 ≤ lu <∞. Furthermore, let

k(ll, lu) =

∫
I1(l − ll)f0dµ∫
I3(lu − l)f0dµ

, (12)

z(ll, lu;α, ρ) =

∫
I1
f1dµ+ k(ll, lu)

∫
I3
f1dµ+∫

I2

(
k(ll, lu)α−1(lα−1

l − lα−1
u )

lα−1
l − (k(ll, lu)lu)α−1 + (k(ll, lu)α−1 − 1)(l/ρ)α−1

) 1
α−1

f1dµ,

(13)

where

I1 := {y : l(y) < ρll} ≡ {y : l̂(y) < ρ}
I2 := {y : ρll ≤ l(y) ≤ ρlu} ≡ {y : l̂(y) = ρ}
I3 := {y : l(y) > ρlu} ≡ {y : l̂(y) > ρ} (14)

and

Φ1(l, ll, lu;α, ρ) =

1

z(ll, lu;α, ρ)
·(

k(ll, lu)α−1(lα−1
l − lα−1

u )

lα−1
l − (k(ll, lu)lu)α−1 + (k(ll, lu)α−1 − 1)(l/ρ)α−1

) 1
α−1

with Φ0 = Φ1lρ
−1.

Theorem III.1. The least favorable densities

ĝ0 =


ll

z(ll,lu;α,ρ)f0, l < ρll

Φ0(l, ll, lu;α, ρ)f0, ρll ≤ l ≤ ρlu
k(ll,lu)lu
z(ll,lu;α,ρ)f0, l > ρlu

, (15)

ĝ1 =


1

z(ll,lu;α,ρ)f1, l < ρll

Φ1(l, ll, lu;α, ρ)f1, ρll ≤ l ≤ ρlu
k(ll,lu)

z(ll,lu;α,ρ)f1, l > ρlu

, (16)

and the robust decision rule

δ̂ =


0, l < ρll

lα−1
l (l/ρ)1−α−1

(lα−1
l −(k(ll,lu)lu)α−1)(l/ρ)1−α+k(ll,lu)α−1−1

, ρll ≤ l ≤ ρlu
1, l > ρlu

,

(17)

2In general arg sup may not always be achieved since G0 and G1 are non-
compact sets in the topologies induced by the α-divergence distance. In this
paper, existence of ĝ0 and ĝ1 is due to the KKT solution of the minimax
optimization problem, which is introduced in Section III.

implying the robust likelihood ratio function

l̂ =
ĝ1

ĝ0
=


l−1
l l, l < ρll

ρ, ρll ≤ l ≤ ρlu
l−1
u l, l > ρlu

(18)

provide a unique solution to (11). Furthermore, the parameters
ll and lu can be determined by solving

1

z(ll, lu;α, ρ)α

(
ll
α

∫
I1
f0dµ+

∫
I2

Φ
′

0(ll, lu;α, ρ)αf0dµ

+ (k(ll, lu)lu)α
∫
I3
f0dµ

)
= x(α, ε0) (19)

and

1

z(ll, lu;α, ρ)α

(∫
I1
f1dµ+

∫
I2

Φ
′

1(ll, lu;α, ρ)αf1dµ

+ k(ll, lu)α
∫
I3
f1dµ

)
= x(α, ε1) (20)

where Φ
′

j(ll, lu;α, ρ) = z(ll, lu;α, ρ)Φj , and x(α, ε) = 1 −
α(1− α)ε.

A proof of Theorem III.1 is given in three stages. In the
maximization stage, the Karush-Kuhn-Tucker (KKT) multipli-
ers are used to determine the parametric forms of the LFDs,
ĝ0 and ĝ1, and the robust likelihood ratio function l̂. In the
minimization stage, the LFDs and the robust decision rule
δ̂ are made explicit. Finally, in the optimization stage, four
parameters that are needed to design the test are reduced to
two parameters without loss of generality.

Proof:

A. Derivation of LFDs and the robust decision rule
1) Maximization step: Consider the Lagrangian function

L(g0, λ0, µ0) = PF (δ, g0)+λ0(ε0−D(g0, f0;α))+µ0(1−Υ(g0))),
(21)

where µ0 and λ0 ≥ 0 are the KKT multipliers. It can be seen
that L is a strictly concave functional of g0, as ∂2L/∂g2

0 < 0
for every λ0 > 0. Therefore, there exists a unique solution
to (21), in case all KKT conditions are met [29, Chapter 5].
More explicitly the Lagrangian can be stated as

L(g0, λ0, µ0) =

∫
R
δg0 − µ0g0 +

λ0

α(1− α)

(
(1− α)f0

+ αg0 −
(
g0

f0

)α
f0

)
+ λ0ε0 + µ0dµ. (22)

Note that similar to [2], the positivity constraint g0 ≥ 0 (or
g1 ≥ 0) is not imposed, because for some α, this constraint is
satisfied automatically, while for others each solution of La-
grangian optimization must be checked for positivity. To find
the maximum of (22), the directional (Gâteaux’s) derivative
of the Lagrangian L with respect to g0 in the direction of a
function ψ is taken:∫

Ω

[
δ − µ0 +

λ0

1− α

((
g0

f0

)α−1

− 1

)]
ψdµ. (23)
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Since ψ is arbitrary, L is maximized whenever

δ − µ0 +
λ0

1− α

((
g0

f0

)α−1

− 1

)
= 0. (24)

Solving (24) the density function of the LFD Ĝ0,

ĝ0 =

(
1− α
λ0

(µ0 − δ) + 1

) 1
α−1

f0 (25)

is obtained. Writing the Lagrangian for PM , in a similar way,
with the KKT multipliers µ0 := µ1 and λ0 := λ1 it follows
that

ĝ1 =

(
1− α
λ1

(µ1 − 1 + δ) + 1

) 1
α−1

f1. (26)

Accordingly, the robust likelihood ratio function can be ob-
tained as

l̂ =
ĝ1

ĝ0
=

[
1−α
λ1

(µ1 − 1 + δ) + 1
1−α
λ0

(µ0 − δ) + 1

] 1
α−1

l. (27)

2) Minimization step: The minimizing decision function is
known to be of type (7) with l to be replaced by l̂ and κ to be
determined from (27) via solving l̂ = ρ for δ := δ̂. For every
ρ, this results in

δ̂ =


0, l̂ < ρ
λ0(−1+α+λ1+µ1−αµ1)
(−1+α)(λ0+λ1(l/ρ)1−α) −

λ1(λ0+µ0−αµ0)(l/ρ)1−α

(−1+α)(λ0+λ1(l/ρ)1−α) , l̂ = ρ.

1, l̂ > ρ
(28)

Inserting (28) in (25) and (26), the least favorable density
functions can be obtained as

ĝ0 =


c1f0, l̂ < ρ

Φ0f0, l̂ = ρ

c2f0, l̂ > ρ

, ĝ1 =


c3f1, l̂ < ρ

Φ1f1, l̂ = ρ

c4f1, l̂ > ρ

, (29)

where

c1 =

(
(1− α)µ0 + λ0

λ0

) 1
α−1

, c2 =

(
(1− α)(µ0 − 1) + λ0

λ0

) 1
α−1

,

c3 =

(
(1− α)(µ1 − 1) + λ1

λ1

) 1
α−1

, c4 =

(
(1− α)µ1 + λ1

λ1

) 1
α−1

and

Φ0 =

(
−1 + λ0 + λ1 + µ0 + µ1 − α(−1 + µ0 + µ1)

λ0 + λ1(l/ρ)1−α

) 1
α−1

,

(30)

Φ1 =

(
−1 + λ0 + λ1 + µ0 + µ1 − α(−1 + µ0 + µ1)

λ1 + λ0(l/ρ)α−1

) 1
α−1

.

(31)

In order to determine the unknown parameters, the constraints
in the Lagrangian definition, i.e., D(ĝi, fi, α) = εi and

Υ(ĝi) = 1, i ∈ {0, 1} are imposed. This leads to four non-
linear equations:

c1

∫
l̂<ρ

f0dµ+

∫
l̂=ρ

Φ0f0dµ+ c2

∫
l̂>ρ

f0dµ = 1,

c3

∫
l̂<ρ

f1dµ+

∫
l̂=ρ

Φ1f1dµ+ c4

∫
l̂>ρ

f1dµ = 1,

cα1

∫
l̂<ρ

f0dµ+

∫
l̂=ρ

Φα0 f0dµ+ cα2

∫
l̂>ρ

f0dµ = x(α, ε0),

cα3

∫
l̂<ρ

f1dµ+

∫
l̂=ρ

Φα1 f1dµ+ cα4

∫
l̂>ρ

f1dµ = x(α, ε1),

(32)

in four parameters, where x(α, ε) = 1− α(1− α)ε.
3) Optimization Step: In this section, the number of equa-

tions as well as the number of parameters are reduced. This
allows the re-definition of l̂, δ̂, ĝ0 and ĝ1 in a more compact
form. Let ll = c1/c3 and lu = c2/c4, then l̂ = ĝ1/ĝ0 from
(29) indicates the equivalence of integration domains, I1, I2

and I3 as defined by (14). Applying the following steps in
(32):
• Consider new domains I1, I2, I3

• Use the substitutions c1 := c3ll and c2 := c4lu
• Divide both sides of the first two equations by c3
• Equate the resulting equations to each other via 1/c3

leads to c4 = k(ll, lu)c3, where k(ll, lu) is as defined by
(12). Next, the goal is to find a functional f s.t. Φ1 =
c3f(l, ll, lu, α). Since Φ0f0ρ = Φ1f1, it follows that Φ0 =
c3f(l, ll, lu, α)lρ−1, therefore it suffices to evaluate only Φ1.
A step by step derivation of the functional f is given in
Appendix A. Accordingly, Φ0 is also fully specified in terms
of the desired parameters and functions. Inserting Φ1 (which is
now a functional of c3, l, ll, lu, α), c.f., (51), into the second
equation in (32) and noticing that c4 = k(ll, lu)c3 leads to
c3 = 1/z(ll, lu;α, ρ), where z(ll, lu;α, ρ) is as defined by
(13). Applying a similar procedure, which can be found in
Appendix B, to δ̂, c.f., (28), for the case l̂ = ρ leads to the
robust decision rule δ̂ as given by Theorem III.1. The least
favorable densities, ĝ0 and ĝ1, and the robust likelihood ratio
function l̂ are obtained similarly, by exploiting the connection
between the parameters c1, c2, c3, c4 and ll, lu. The same
simplifications eventually let the four equations given by (32)
to be rewritten as the two equations stated by Theorem III.1.
As it was mentioned earlier, both ĝ0 and ĝ1 are obtained
uniquely from the Lagrangian L. Hence, l̂ = ĝ1/ĝ0, and as
a result, δ̂ are also unique. It follows that the solution found
for (11) by the KKT multipliers approach is unique as claimed.

Theorem III.1 can be summarized as illustrated in Figure 1.
In other words, for any choice of pair of nominal density
functions f0 and f1, the robustness parameters ε0 and ε1, the
Bayesian threshold ρ and the distance parameter α, the robust
design outputs the least favorable density functions ĝ0 and ĝ1

and the robust decision rule δ̂. Notice that ĝ0 and ĝ1 are the
scaled versions (with different scaling factors) of the nominal
distributions on l < ρll and l > ρlu, and in between, they
are a composition of both nominals, since Φ0 and Φ1 are both
functionals of f0 and f1. Interpretation of the decision rule δ̂ is
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Fig. 1. Summary of the robust hypothesis testing scheme given by
Theorem III.1.
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Fig. 2. Nonlinearity relating the nominal likelihood ratios to the robust
likelihood ratios.

similar, i.e. in the same two regions the robust decision rule is
almost surely zero or one, and in between it is a randomized
decision rule. The robust version of the nominal likelihood
ratio test is a non-linearly transformed version of the nominal
likelihood ratios as illustrated by Figure 2. It is somewhat
surprising that the resulting robust likelihood ratio test is the
same for the whole family of distances that are parameterized
by α. In other words, the robust version of the likelihood ratio
test, which is given by (18) is not explicitly a function of α.
Theorem III.1 is a generalization of [22] in the sense that
as α → 1 and ρ = 1, the least favorable densities ĝ0 and
ĝ1 as well as the robust decision rule δ̂ reduce to the ones
found in [22]. The flexibility afforded by the generality of
considering a set of distances, called the α−divergence, over
[22] is twofold. First, the designer does not need to search for
a suitable distance for modeling errors, and each time test for
the applicability to the engineering problem at hand, following
tedious steps of derivations. Instead, only the parameter α is
required to be determined, which can be done over a training
data set via using a suitable search algorithm. Second, the a
priori probabilities are not necessarily to be chosen equal. The
proposed design with the α−divergence covers both cases, in
addition to the fact that the choice of the nominal probability
distributions also does not require any assumption. Additional
constraints on the choice of nominal distributions as well as
on the robustness parameters simplify the design as introduced
in the next section.

B. Simplified model with additional constraints

In some cases, evidence that the following assumption holds
may be available:

Assumption III.2. The nominal likelihood ratio l is monotone
and the nominal density functions are symmetric, i.e., f1(y) =
f0(−y)∀y

If, additionally, the robustness parameters are set to be
equal, ε = ε0 = ε1, or in other words x(α, ε) = x(α, ε0) =
x(α, ε1), it follows that

δ(y) = 1− δ(−y)

⇑{
lu = 1/ll

yu = −yl

}
⇐⇒

{
c2

c1

= c3

= c4

}
⇐⇒

{
λ0 = λ1

µ0 = µ1

}
m

g1(y) = g0(−y) (33)

where yl = l−1(ll) and yu = l−1(lu). These relationships are
straightforward and therefore the proofs are omitted. Notice
that, due to monotonicity of l, the limits of integrals I1, I2

and I3 should be re-arranged e.g.,

I1 : = {y : l(y) < ρll}
≡ {y : y < l−1(ρl(yl))} ≡ {y : y < l−1(ρl(−yu))}.

The symmetry assumption implies:

x(α, ε) =

∫
R

(
g1(y)

f1(y)

)α
f1(y)dy =

∫
R

(
g1(y)

f0(−y)

)α
f0(−y)dy

=

∫
R

(
g0(y)

f0(y)

)α
f0(y)dy =

∫
R

(
g0(−y)

f0(−y)

)α
f0(−y)dy

=

∫
R

(
g0(−y)

f1(y)

)α
f1(y)dy (34)

for all α and ε and, it also implies l(y) = 1/l(−y) and as a
result l̂(y) = 1/l̂(−y) for all y. Hence, g1(y) = g0(−y)∀y
is a solution and all the simplifications in (33) follow. This
reduces the four equations given by (32) to two:

c4 =

(
l(yu)

∫ y∗l

−∞
f1(y)dy

+

∫ y∗u

y∗l

(
1 + l(yu)α−1

1 + (l(y)/ρ)α−1

) 1
α−1

f1(y)dy

+

∫ ∞
y∗u

f1(y)dy

)−1

(35)

and

c4
α

(
l(yu)α

∫ y∗l

−∞
f1(y)dy

+

∫ y∗u

y∗l

(
1 + l(yu)α−1

1 + (l(y)/ρ)α−1

) α
α−1

f1(y)dy

+

∫ ∞
y∗u

f1(y)dy

)
= x(α, ε), (36)
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where y∗l (yu) = l−1(ρl(−yu)) and y∗u(yu) = l−1(ρl(yu)).
These two equations can then be combined into a single
equation

l(yu)α
∫ y∗l

−∞
f1(y)dy +

∫ y∗u

y∗l

(
1 + l(yu)α−1

1 + (l(y)/ρ)α−1

) α
α−1

f1(y)dy

+

∫ ∞
y∗u

f1(y)dy − x(α, ε)

(
l(yu)

∫ y∗l

−∞
f1(y)dy

+

∫ y∗u

y∗l

(
1 + l(yu)α−1

1 + (l(y)/ρ)α−1

) 1
α−1

f1(y)dy +

∫ ∞
y∗u

f1(y)dy

)α
= 0,

(37)

from where the parameter yu can easily be determined. Obvi-
ously, the computational complexity is reduced considerably
with the aforementioned assumptions, i.e., when (37) is com-
pared to (19) and (20). Note that when ρ = 1, we have
y∗l = −yu and y∗u = yu and if additionally α → 1, (37)
reduces to [2], cf. [9].

C. Limiting Robustness Parameters
The existence of a minimax robust test strictly depends on

the pre-condition that the uncertainty sets Gi are distinct. To
satisfy this condition, Huber suggested εi to be chosen small,
see [4, p.3]. Dabak [7] does not mention how to choose the
parameters, whereas Levy gives an implicit bound as the rela-
tive entropy between the half way density f1/2 = f

1/2
0 f

1/2
1 /z

and the nominal density f0, i.e., ε < D(f1/2, f0), where z is a
normalizing constant. In the sequel, we show explicitly which
pairs of parameters (ε0, ε1) are valid to design a minimax
robust test for the α−divergence distance.
The limiting condition for the uncertainty sets to be disjoint
is Ĝ0 = Ĝ1 µ-a.e. It is clear from the saddle value condition
(30) that for any possible choice of (ε0, ε1), which results in
Ĝ0 = Ĝ1, it is true that PE ≤ 1/2 for all (g0×g1) ∈ G0×G1.
Since infinitesimally smaller parameters guarantee the strict
inequality PE < 1/2, it is sufficient to determine all pos-
sible pairs which result in Ĝ0 = Ĝ1. A careful inspection
suggests that the LFDs are identical whenever ll → inf l
and lu → sup l. For this choice I1 and I3 are empty sets
and the density functions under each hypothesis are defined
only on I2. Without loss of generality, assume that α < 1,
inf l = 0 and sup l = ∞. For this choice ll → 0 implies
µ1 = λ1/(α−1)+1 and lu →∞ implies µ0 = λ0/(α−1)+1.
Inserting these into one of the first two equations in (32), gives∫

Ω

(
λ0f0(y)1−α + λ1ρ

α−1f1(y)1−α) 1
1−α dy = (1− α)

1
1−α .

(38)
Similarly, from the third and fourth equations it follows that∫

R

(
λ0f0(y)

1−α
α + λ1ρ

α−1f1(y)1−αf0(y)
(α−1)2

α

) α
1−α

dy

= (1− α)
α

1−α x(α, ε0) (39)

and∫
R

(
λ1f1(y)

1−α
α + λ0ρ

1−αf0(y)1−αf1(y)
(α−1)2

α

) α
1−α

dy

= (1− α)
α

1−α x(α, ε1). (40)

Given ρ and α, (38), (39), and (40) can jointly be solved
to determine the space of maximum robustness parameters.
As an example, consider Ω = R, ρ = 1 and α = 1/2. This
choice of α corresponds to the squared Hellinger distance with
an additional scaling factor of 1/α(1 − α) = 4. Let a =∫∞
−∞

√
f0(y)f1(y)dy. Then, the Equations (38)-(40) reduce

to the polynomials in the Lagrangian multipliers λ0 and λ1,

λ2
0 + λ2

1 + 2λ0λ1a−
1

4
= 0, (41)

4− 8λ0 − 8λ1a− ε0 = 0, (42)

4− 8λ1 − 8λ0a− ε1 = 0, (43)

respectively. Solving (42) and (43) for λ0 and λ1, respectively,
and inserting the results into Equation (41) we get

2ε1(a(ε0 − 4) + 4)− (4a+ ε0 − 4)2 − ε21 = 0. (44)

Equation (44) is quadratic in a and has two roots. One of the
roots results in a = 1 for all ε0 = ε1, which is not plausible.
Therefore, the correct root is,

a =
1

16

(
16− 4ε1 + ε0(ε1 − 4)−

√
(ε0 − 8)ε0(ε1 − 8)ε1

)
.

(45)
Notice that (45) is symmetric in ε0 and ε1, i.e., a(ε0, ε1) =
a(ε1, ε0) for all (ε0, ε1), as expected. Since 0 ≤ a ≤ 1 is
known a priori, given a choice of εi, the corresponding ε1−i
can be determined from (45) easily, c.f., Section IV. A special
case occurs whenever ε = ε0 = ε1, which simplifies (45) to

εmax = 4− 2
√

2(1 + a). (46)

Maximum robustness parameters given by (45) and (46) are
in agreement with the ones found in [20]. The case α > 1,
which implies µ0 = λ0/(α− 1) and µ1 = λ1/(α− 1), can be
examined similarly.

IV. SIMULATIONS

In this section, some simulations are performed to illustrate
the theoretical derivations. Consider a simple hypothesis test-
ing problem

Hs0 : Y = W

Hs1 : Y = W +A (47)

where A > 0 is a known DC signal, W is a random variable
which follows a symmetric Gaussian mixture distribution

W ∼ 1

2

(
N (−µ, σ2) +N (µ, σ2)

)
, (48)

where N (µ, σ2) is a Gaussian distribution with mean µ and
variance σ2 and Y is a random variable on Ω = R, which is
consistent with the data sample y. To account for uncertainties
on Y under both hypotheses, let

F0(y) :=P (Y < y|Hs0) ∀y
F1(y) :=P (Y < y|Hs1) ∀y (49)

be the nominal distributions, having the density functions f0

and f1 for the binary composite hypothesis testing problem
given by (1) and (2). Note that the symmetry condition,
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f1(y) = f0(−y) for all y, does not hold, and l = f1/f0 is
not monotone. Assume µ = 2, σ = 1 and A = 1 and let the
robustness parameters be ε0 = 0.02 and ε1 = 0.03 for the
(α = 4)−divergence distance. This example demonstrates an
extreme case, for which no straightforward simplification to
the equations (19) and (20) exists, both in terms of reducing
the number of equations as well as for the domain of integrals.
Figure 3 illustrates the nominal density functions f0 and
f1 along with the density functions of the corresponding
least favorable densities (LFD)s g0 and g1, for an equal a
priori probability ρ = 1. It can be observed that LFDs
intersect in three distinct intervals, each at the neighborhood
of y = −1.5 + j for j ∈ {0, 2, 4}. In Fig. 4, the same
simulation is repeated for ρ = 1.2. In Fig. 5 the nominal
and least favorable likelihood ratios for the same example are
shown. As it was given by (18), robustification of the simple
hypothesis test corresponds to a non-linear transformation of
the nominal likelihood ratios.
In the next simulation, all the parameters are fixed as before,
except for α. We are especially interested in the change in
the lower and upper thresholds, ll and lu, for varying α.
Figure 6 illustrates the outcome of this simulation for ρ = 1.
We can see that ll and lu tend to 1 for α → ∞. It is not
straightforward to derive this from (19) and (20) for any f0

and f1. However, if there exists a solution, which is true and
unique by the KKT multipliers approach, it should satisfy
D(f, g;α) = εi for any α > 0 and for all allowable εi, cf.
Section III-C. Assume that g is fixed and it does not depend
on α. Then, the integral

∫
R g

αf1−αdµ is 1 at α = 0 and
α = 1, convex in α, and it is positive for all α > 0, f and g.
Hence, limα→∞

∫
R g

αf1−αdµ = ∞ and limα→∞D(f, g;α)
is indeterminate. Using L’Hospital’s rule twice we obtain

K = lim
α→∞

D(g, f ;α) = lim
α→∞

∫
R log2(g/f)(g/f)αfdµ

2
. (50)

The integral
∫
R log2(g/f)(g/f)αfdµ is also positive and

convex in α. This implies K →∞ for α→∞. Now, assume
that g depends on α and tends to a limiting distribution g∗ for
||g∗ − f || > 0, when α→∞. Then, our conclusion does not
change, i.e., K → ∞ for α → ∞. Since D(f, g;α) is finite,
we require that α→∞ =⇒ g∗ → f . Consequently, from (15)
and (16), ĝi → fi whenever ll → 1 and lu → 1 explains the
asymptotic of Figure 6 for any pair (f0, f1).
Based on simulation results the following are conjectured:
• For a fixed ε0 and ε1, increasing α leads to a monotone

decrease in lu and monotone increase in ll on R+\{0, 1}.
• For a fixed α, increasing ε0, ε1 or both introduces a non-

decrease in lu, non-increase in ll, or both, given that
ε0 and ε1 are less than their allowable maximum, cf.
Section III-C.

The proof of these conjectures is an open problem.
From (19) and (20), it is clear that given a pair (ε0, ε1),
a slight change in α changes the equations completely and
in general ll and lu are functions of α. In Figure 7, the
robust decision rule δ̂ for various α values is plotted, without
considering the dependency of ll and lu on α. To do this,
ll ≈ 0.605 and lu ≈ 1.618, that are found for ρ = 1, α = 4,
ε0 = 0.02 and ε0 = 0.03, are fixed constants in (17). Then,

for α = {0.01, 10, 100}, (17) is plotted. The decision rule δ̂
tends to a step like function for an increasing α, whereas for a
smaller α, i.e., α = 0.01, the decision rule is almost linear at
the domain of the likelihood ratio for which l̂ = 1. This result
is also in agreement with the previous findings; δ̂ tends to a
non-randomized likelihood ratio test for α → ∞, for which
we obtained ĝi → fi and for (f0, f1) optimum decision rule
is known to be a non-randomized likelihood ratio test.
In the following simulation, the simplified model (f0(y) =
f1(−y)) is tested for mean shifted Gaussian distributions;
F0 ∼ N (µ0, σ

2) and F1 ∼ N (µ1, σ
2) with means µ0 = −1,

µ1 = 1 and variance σ2 = 1. The parameters of the composite
test are chosen to be ρ = 1, ε0 = 0.1 and ε1 = 0.1. Here,
our main interest is to observe the change in overlapping
regions of least favorable density pairs for various α. Figure 8
illustrates the outcome of this simulation. It can be seen that
the overlapping region is convex for a negative α, (α = −10)
almost constant for α = 0.01 and concave for a positive α,
(α = 10). For the sake of clarity only three examples of α are
plotted.
In Figure 9, the false alarm and miss detection probabilities
of the likelihood ratio test δ for (f0, f1) are graphed and
compared with the robust test δ̂ for (ĝ0, ĝ1). Two different
robust parameter pairs and various signal to noise ratios
(SNR)s, i.e., SNR = 20 log(A/σ) are considered. It can be
seen that increasing the robustness parameters increases the
false alarm and miss detection probabilities for all SNRs,
as expected. The difference between false alarm and miss
detection probabilities for the same robust test is small and
it is more pronounced for low SNRs. For high SNRs the
performance of two robust tests are close to each other. The
reason is that for high SNRs maximum allowable robustness
parameters become relatively high compared to the parameters
of both robust settings. Although the nominal test has the
lowest error rates, its performance can degrade considerably
under uncertainties in the nominal model. The robust tests, on
the other hand, have slightly higher error rates, but guaranteed
power of the test, which indicates the trade-off between
performance and robustness. Finally, in the last simulation, the
3D boundary surface of the maximum robustness parameters
is determined for α = 0.5 (45) and is shown in Figure 10.
This surface has a cropped rotated cone like shape, which is
symmetric about its main diagonal, i.e., with respect to the
plane ε0 = ε1 on the space (ε0, ε1, a). Notice that except
for the points on the cone like shape that intersect with the
(ε0, ε1, a = 0) plane, all other points on (ε0, ε1, a = 0) that are
plotted in blue color are un-defined (rather than being valid
points with a = 0), implying that for those points no minimax
robust test exists.

V. CONCLUSION

A robust version of the likelihood ratio test considering
α−divergence as the distance to characterize the uncertainty
sets has been proposed. The existence of a saddle value to the
minimax optimization problem was shown by adopting Sion’s
minimax theorem. The least favorable distributions, the robust
decision rule as well as the robust version of the likelihood
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Fig. 3. Nominal densities and the corresponding least favorable densities for
ρ = 1, α = 4, ε0 = 0.02 and ε1 = 0.03.

f0

f1

g
`

0

g
`

1

-6 -4 -2 0 2 4 6
y

0.05

0.10

0.15

0.20

8 fi, g
`

i<

Fig. 4. Nominal densities and the corresponding least favorable densities for
ρ = 1.2, α = 4, ε0 = 0.02 and ε1 = 0.03.

ratio test were derived in two parameters and in three distinct
regions on the co-domain of the nominal likelihood ratio.
Two equations from where the parameters can be determined
were also derived. It was found that the robust likelihood
ratio doesn’t depend on the parameter α that characterizes the
distance between the probability measures. When the nominal
density functions satisfy a symmetry constraint, the two non-
linear equations were combined into a single equation. Finally,
the upper bounds on the parameters that control the degree
of robustness were derived. Open problems include proving
the monotonicity of the parameters ll and lu for increasing
(ε0, ε1), or α. It was shown that simulation results illustrate
the theoretical results.

APPENDIX A
SIMPLIFICATION OF Φ1

From (31) consider the following steps for

Φ1 =

(
−1 + λ0 + λ1 + µ0 + µ1 − α(−1 + µ0 + µ1)

λ1 + λ0(l/ρ)α−1

) 1
α−1

• Dividing the numerator and the denominator by λ0 and
replacing the term 1 + µ0/λ0 − αµ0/λ0 by cα−1

1 results

f1
f0
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g
`

1
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Fig. 5. Nominal and least favorable likelihood ratios (ĝ1/ĝ0 for ρ = 1 and
ĝ∗1/ĝ

∗
0 for ρ = 1.2) for α = 4, ε0 = 0.02 and ε1 = 0.03.
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Fig. 6. Lower and upper thresholds, ll and lu, for a variable α, ρ = 1,
ε0 = 0.02 and ε1 = 0.03.

in

Φ1 =

(
c1
α−1 + (λ1 − 1 + µ1 + α− αµ1)/λ0

(λ1/λ0) + (l/ρ)α−1

) 1
α−1

.

• Multiplying the numerator and the denominator of the
result of the previous step by λ0/λ1, replacing the term
1− 1/λ1 + µ1/λ1 + α/λ1 − αµ1/λ1 by cα−1

3 and again
multiplying both the numerator and the denominator by
λ1 gives

Φ1 =

(
λ0c1

α−1 + λ1c3
α−1

λ1 + λ0(l/ρ)α−1

) 1
α−1

.

• The result of the previous step is free of parameters µ0

and µ1, but still parameterized by λ0 and λ1. To eliminate
them, using the identities λ0 = (1 − α)/(cα−1

1 − cα−1
2 )

and λ1 = (1− α)/(cα−1
4 − cα−1

3 ) leads to

Φ1 =

(
(c1c4)

α−1
+ (c2c3)

α−1

c1α−1 − c2α−1 + (c4α−1 − c3α−1)(l/ρ)α−1

) 1
α−1

.
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Fig. 7. The decision rule δ̂ for α = {0.01, 10, 100}, ρ = 1, ε0 = 0.02 and
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Fig. 8. Nominal densities and the corresponding least favorable densities for
ρ = 1, ε0 = 0.1 and ε1 = 0.1.

• The result from the previous step depends only on c1, c2,
c3, c4 and α. Using the substitutions c1 = c3ll, c2 = c4lu

Nominal HPF L
Nominal HPM L
HΕ0=0.02, Ε1=0.03L, HPF L
HΕ0=0.02, Ε1=0.03L, HPM L
HΕ0=0.3, Ε1=0.2L, HPF L
HΕ0=0.3, Ε1=0.2L, HPM L
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Fig. 9. False alarm and miss detection probabilities of δ, (2), (ρ = 1) for
(f0, f1) compared to that of the robust decision rule δ̂ for (ĝ0, ĝ1) when
SNR is varied.
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Fig. 10. All allowable pairs of maximum robustness parameters, (ε0, ε1),
w.r.t. all distances a ∈ [0, 1] for α = 0.5.

and c4 = k(ll, lu)c3 yields

Φ1(l, ll, lu, c3;α, ρ) =

c3

(
k(ll, lu)α−1(lα−1

l − lα−1
u )

lα−1
l − (k(ll, lu)lu)α−1 + (k(ll, lu)α−1 − 1)(l/ρ)α−1

) 1
α−1

.

(51)

APPENDIX B
SIMPLIFICATION OF δ̂

Since the equivalence of integration domains are given by
(14), only

δ̂ =
λ0(−1 + α+ λ1 + µ1 − αµ1)

(−1 + α)(λ0 + λ1(l/ρ)1−α)
−λ1(λ0 + µ0 − αµ0)(l/ρ)1−α

(−1 + α)(λ0 + λ1(l/ρ)1−α)
, l̂ = ρ

is required to be simplified. In the following, the simplification
is performed in three steps and the domain term l̂ = ρ is
omitted for the sake of simplicity:
• Dividing the numerator and the denominator of the first

term by λ1 and the second term by λ0, and replacing the
related terms by cα−1

1 and cα−1
3 results in

δ̂ =
λ0

−1 + α
· cα−1

3
λ0

λ1
+ (l/ρ)1−α

− λ1

−1 + α
· c

α−1
1 (l/ρ)1−α

1 + λ1

λ0
(l/ρ)1−α

=
cα−1
3 − cα−1

1 (l/ρ)1−α

(−1 + α)
(

1
λ1

+ 1
λ0

(l/ρ)1−α
) .

• The result of the previous step is free of parameters µ0

and µ1, but still parameterized by λ0 and λ1. To eliminate
them, using the identities λ0 = (1 − α)/(cα−1

1 − cα−1
2 )

and λ1 = (1− α)/(cα−1
4 − cα−1

3 ) leads to

δ̂ =
(l/ρ)1−αcα−1

1 − cα−1
3

cα−1
4 − cα−1

3 + (cα−1
1 − cα−1

2 )(l/ρ)1−α
.

• The result from the previous step depends only on c1, c2,
c3, c4 and α. Using the substitutions c1 = c3ll, c2 = c4lu
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and c4 = k(ll, lu)c3 yields

δ̂ =
lα−1
l (l/ρ)1−α − 1

(lα−1
l − (k(ll, lu)lu)α−1)(l/ρ)1−α + k(ll, lu)α−1 − 1

,

as wanted.
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[29] D. Bertsekas, A. Nedić, and A. Ozdaglar, Convex Analysis and Op-
timization, ser. Athena Scientific optimization and computation series.
Athena Scientific, 2003.

http://www.cocoon.tu-darmstadt.de
http://www.cocoon.tu-darmstadt.de

	I Introduction
	II Problem Formulation
	II-A Background
	II-B Saddle value specification
	II-C Problem definition

	III Robust detection with -divergence
	III-A Derivation of LFDs and the robust decision rule
	III-A1 Maximization step
	III-A2 Minimization step
	III-A3 Optimization Step

	III-B Simplified model with additional constraints
	III-C Limiting Robustness Parameters

	IV Simulations
	V Conclusion
	Appendix A: Simplification of 1
	Appendix B: Simplification of 
	References

