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MAP Support Detection for Greedy Sparse Signal
Recovery Algorithms in Compressive Sensing
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Abstract—A reliable support detection is essential for a
greedy algorithm to reconstruct a sparse signal accurately from
compressed and noisy measurements. This paper proposes a
novel support detection method for greedy algorithms, which is
referred to as “maximum a posteriori (MAP) support detection”.
Unlike existing support detection methods that identify support
indices with the largest correlation value in magnitude per
iteration, the proposed method selects them with the largest
likelihood ratios computed under the true and null support
hypotheses by simultaneously exploiting the distributions of sens-
ing matrix, sparse signal, and noise. Leveraging this technique,
MAP-Matching Pursuit (MAP-MP) is first presented to show the
advantages of exploiting the proposed support detection method,
and a sufficient condition for perfect signal recovery is derived for
the case when the sparse signal is binary. Subsequently, a set of
iterative greedy algorithms, called MAP-generalized Orthogonal
Matching Pursuit (MAP-gOMP), MAP-Compressive Sampling
Matching Pursuit (MAP-CoSaMP), and MAP-Subspace Pursuit
(MAP-SP) are presented to demonstrate the applicability of the
proposed support detection method to existing greedy algorithms.
From empirical results, it is shown that the proposed greedy
algorithms with highly reliable support detection can be better,
faster, and easier to implement than basis pursuit via linear
programming.

I. INTRODUCTION

Compressive sensing (CS) [1], [2] is a technique to re-
construct sparse signals from compressed measurements. CS
has received great attention due to its broad application areas
including imaging, radar, and communication systems [3], [4].
The fundamental theory of CS guarantees to recover a high
dimensional signal vector from linear measurements that are
far fewer in number than the signal’s dimension, provided that
the sparsity of the signal, i.e. number of nonzero elements, is
smaller than a certain fraction of the number of measurements.

Denoting the sparse signal vector and the compressive
sensing matrix as x ∈ RN and Φ ∈ RM×N respectively,
with M < N , the optimal sparse recovery solution can be
theoretically obtained by solving the `0-minimization problem

min ‖x‖0 subject to y = Φx. (1)

In practice, however, solving this problem is NP-hard [5] and
computationally unfeasible for large signal dimension (N ).

Design of computationally efficient sparse signal recovery
algorithms have extensively studied in past works. Basis
Pursuit (BP) [6]–[8] is a representative sparse signal recovery
algorithm leveraging convex optimization. Relaxing the `0-
minimization problem to a `1-minimization problem, it has
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been shown that the sparse signal recovery problem can be
solved with stability and uniform guarantees using linear
programming, but with polynomially bounded computation
complexity. For example, an interior point method that solves
the `1-minimization problem has an associated computational
complexity of O(M2N3) [9].

As a result, greedy algorithms are also popular because
their complexity is lower than that of BP although stability
and guarantees are challenging to prove [10], [15]–[19]. The
underlying idea of greedy algorithms is to estimate the nonzero
elements of a sparse vector iteratively. Orthogonal matching
pursuit (OMP) is a well-known greedy algorithm [10]–[14],
which estimates the coordinate of the non-zero element in
signal x that has the maximum absolute correlation between
the column vector in the sensing matrix and the residual
vector in each iteration. By subtracting the contribution from
the measurement vector y, the algorithm updates the entire
support of x in an iterative manner. Although this algorithm
is simple to implement, it is vulnerable to error propagation
effect [10]–[16]. This is because the OMP algorithm is not
capable of removing incorrectly estimated supports once those
are added to the support set during the iterations, which leads
to significant performance degradation in the signal recovery.

Several other advanced greedy algorithms have been pro-
posed to overcome the error propagation effect, which include
Stagewise Orthogonal Matching Pursuit (StOMP) [15], itera-
tive hard thresholding (IHT) [16], generalized OMP (gOMP)
[17], Compressive Sampling Matching Pursuit (CoSaMP) [18],
and Subspace Pursuit (SP) [19]. The underlying principle of
these advanced greedy algorithms is the selection of mul-
tiple support indices per iteration, leading to a decrease in
the probability of estimating incorrect support elements. For
example, in each iteration, StOMP [15] identifies multiple
support indices such that the correlation value in magnitude
between the current residual vector and the corresponding
column vector of Φ exceeds a predefined threshold. Similarly,
gOMP [17] chooses multiple supports that provide L largest
correlation in magnitude per iteration, where L is a fixed
parameter given in the algorithm. CoSaMP [18] and SP [19]
also identify multiple support indices per iteration, but differ
from StOMP and gOMP in that they perform a two-stage
sparse signal estimation approach that allows to add or remove
new support candidates adaptively. A common shortcoming of
these greedy algorithms [10], [11], [15], [18], [19] is that they
rely on the order statistics of the correlation value in magnitude
for the support estimation.

Depending on statistical distributions of sensing matrix,
sparse signal, and noise, however, the selection of the index
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with the largest correlation value may not be optimal in the
sense of support detection probability. With this motivation,
greedy algorithms called Bayesian matching pursuit were pro-
posed in [23]–[27]. The key idea of Bayesian matching pursuit
is the use of distributions of the sparse signal and noise in the
support detection step. For example, fast Bayesian matching
pursuit (FBMP) [24] performs sparse signal estimation via
model selection, assuming a Gaussian distribution for the
sparse vector. Similarly, in [26], [27] assuming the elements
of a sparse signal are Bernoulli-Gaussian mixed variables, and
a given deterministic sensing matrix, the algorithms jointly
update a support index and the corresponding signal element
at each iteration in order to maximize the increase of a
local likelihood function. Although these approaches show a
better sparse recovery performance compared to conventional
matching pursuit algorithms in the presence of noise, they are
applicable to certain distributions of x like Bernoulli-Gaussian,
and there are no provable performance guarantees.

In this paper, we continue the same spirit of harnessing the
statistical distributions of sparse signal, sensing matrix, and
noise for the support detection in greedy algorithms. Our main
contribution is to propose a novel support detection method
for greedy algorithms, which is referred to as maximum a
posteriori (MAP) support detection. The key difference with
prior work in [23]–[27] is that the proposed method estimates
supports with the largest log-MAP ratio values computed
under the true and null support hypotheses in each iteration by
incorporating the distributions of the sensing matrix, the sparse
signal, and noise jointly. Specifically, assuming the sensing
matrix has elements that are drawn from independent and
identically distributed (IID) Gaussian random variables, and
the sparse signal has non-zero elements that follow an arbitrary
distribution, the proposed method selects the support element
having the maximum log-MAP ratio instead of selecting
indices that exceed a certain threshold as in [24]–[27]. By
leveraging this technique, we first present a novel greedy
algorithm named “MAP-Matching Pursuit (MAP-MP)” for the
binary sparse signal reconstruction. Using this, it is shown that
MAP-MP exactly recovers a K-sparse binary signal within K
number of iterations almost surely, provided that the number
of measurement scales as

M = O((K + σ̃2
w) log(N)), (2)

where σ̃2
w is the normalized noise variance. This condition

extends the existing statistical guarantees proven in [10] by
incorporating a noise effect. Next, we extend our MAP-
MP algorithm for the sparse signal with an arbitrary distri-
bution using a moment matching technique. Subsequently,
applying the proposed MAP support detection method, we
propose a set of iterative greedy algorithms, called MAP-
Orthogonal Matching Pursuit (MAP-OMP), MAP-generalized
OMP (MAP-gOMP), MAP-Compressive Sampling Matching
Pursuit (MAP-CoSaMP), and MAP-Subspace Pursuit (MAP-
SP) to demonstrate the applicability of the proposed support
detection method in improving the recovery performance of
the existing algorithms. From the empirical results, it is shown
that the proposed algorithms provide significant gains in the
perfect recovery performance compared to that of the existing

greedy algorithms as well as a `1-minimization algorithm via
BP.

II. PROBLEM STATEMENT

We consider a sparse signal detection problem from com-
pressed and noisy measurement. Let us denote a N dimen-
sional input signal vector by x ∈ RN . We assume that the
input vector is K-sparse, i.e., ‖x‖0 = K � N and the
sparsity level K is known a priori. This prior information can
be estimated accurately in some applications using the cross
validation technique in [32]. We denote the true support set
by T ⊂ {1, . . . , N} and |T | = K. The non-zero entries of
x are distributed according to a continuous distribution, i.e.,
p(x) =

∏
k∈T pk(xk). Furthermore, we denote the sensing

matrix consisting of N column vectors by Φ ∈ RM×N ,

Φ = [a1,a2, . . . ,aN ] , (3)

where an denotes the nth dictionary vector whose entries are
drawn from an IID Gaussian random distribution with zero
mean and variance 1

M , i.e., N
(
0, 1

M

)
. Then, the measurement

equation is given by

y = Φx + w, (4)

where y ∈ RM and w ∈ RM are the measurement and noise
vector, respectively. All entries of the noise vector are assumed
to be IID Gaussian random variables with zero mean and
variance σ2

w, N
(
0, σ2

w

)
.

Throughout this paper, the difference between two sets T
and S is denoted by T \ S . We use the subscript notations
x|S and Φ|S to denote that vector x and matrix Φ are being
restricted to only elements or columns in set S.

III. MAP-MATCHING PURSUIT

In this section, we first present MAP-MP, a binary sparse
signal x ∈ {0, 1}N recovery algorithm. Then, we derive a
bound that provides a sufficient condition for perfect signal
recovery to demonstrate provable performance guarantees of
the proposed algorithm.

A. Algorithm

Similar to the other greedy algorithm [10], MAP-MP is a
greedy algorithm that sequentially finds support indices and
estimates the signal representation within a certain number of
iterations. The core difference between the proposed MAP-
MP algorithm and the prior OMP-type algorithms lies in the
selection rule of the support index per iteration. In contrast to
the OMP-type greedy algorithms, MAP-MP chooses the index
based on a maximum likelihood hypothesis test by leveraging
statistical property of the sensing matrix and the sparse signal.

We begin by providing Lemmas that are required for
explaining the MAP-MP algorithm. Lemma 1 provides the
distribution of the inner product between two (atom) dictionary
vectors generated by IID Gaussian random variable. Lemma 2
yields the distribution of the 2-norm of each dictionary vector.
Lemma 3, in turn, provides an asymptotic behavior of the 2-
norm of each dictionary vector when the measurement size M
goes to infinity.
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Lemma 1. Suppose that all the elements of an for n ∈ [1 : N ]
are drawn from IID Gaussian distribution with zero mean and
variance 1

M . Then, the distribution of aTna`
‖an‖2 is Gaussian with

zero mean and variance 1
M , i.e., aTna`

‖an‖2 ∼ N
(
0, 1

M

)
.

Proof: See Appendix A.

Lemma 2. The distribution of the norm ‖an‖2 is

f‖an‖2(x) =
21−M2 M

M
2 xM−1e−

Mx2

2

Γ
(
M
2

) (5)

and E[‖an‖2] =
√

2
M

Γ( 1+M
2 )

Γ(M2 )
.

Proof: See Appendix B.

Lemma 3. The norm ‖an‖2 of each dictionary vector for
n ∈ [1 : N ] concentrates to one asymptotically as M goes to
infinity,

lim
M→∞

P [|‖an‖2 − 1| ≥ ε] = 0 (6)

for some positive ε > 0.

Proof: See Appendix C.
By leveraging these Lemmas, we explain the proposed

algorithm. In the kth iteration, the algorithm produces N corre-
lation values

{
zk1 , z

k
2 , . . . , z

k
N

}
by computing the inner product

between the residual vector rk−1 updated in the (k− 1)th
iteration and the nth column vector an, i.e., zkn =

aTn rk−1

‖an‖2
for n ∈ [1 : N ]. Under the premise that the algorithm has
perfectly found the elements of the true support, i.e., x̂` = 1
for ` ∈ Sk−1, the residual vector is

rk−1 =
∑

`∈T \Sk−1

a`x` + w, (7)

where Sk−1 ⊂ T and |Sk−1| = k−1. Then, the inner product
value zkn =

aTn rk−1

‖an‖2 can be expressed as a linear combination
of the remaining non-zero elements and their corresponding
supports as follows:

zkn =
aTn
‖an‖2

 ∑
`∈T \Sk−1

a`x` + w


= ‖an‖2xn +

∑
`∈T \{Sk−1∪{n}}

aTna`x`
‖an‖2

+
aTnw

‖an‖2
. (8)

Using (8), the proposed MAP-MP algorithm performs the
hypothesis test with two hypotheses corresponding to xn = 0
and xn = 1, respectively, as follows:

H0 : zkn =
∑

`∈T \{Sk−1}

aTna`
‖an‖2

x` +
aTnw

‖an‖2
(9)

H1 : zkn = ‖an‖2xn +
∑

`∈T \{Sk−1∪{n}}

aTna`
‖an‖2

x` +
aTnw

‖an‖2
, (10)

where H0 is the null hypothesis such that the nth column
vector an is not the support, i.e., xn = 0 (n /∈ T ), and H1 is
the alternate hypothesis indicating that the nth column vector
is a non-zero support and the corresponding signal value is 1,

i.e., xn = 1 (n ∈ T ). These two hypotheses in (9) and (10)
involve multiple levels of randomness, namely,

1) The randomness associated with the inner product be-
tween two distinct vectors an

‖an‖2 (unit norm) and a`;
this is distributed as a Gaussian random variable, i.e.,
aTna`
‖an‖2 ∼ N

(
0, 1

M

)
for ` 6= n as shown in Lemma 1

(See Appendix).
2) The randomness associated with the effective noise

aTnw
‖an‖2 ; this is Gaussian with zero mean and variance σ2

w

i.e., aTnw
‖an‖2 ∼ N

(
0, σ2

w

)
, as w is isotropically distributed

in RM .
3) The randomness associated with the sum

of independent Gaussian random variables,
zkn =

∑
`∈T \{Sk−1∪{n}}

aTna`
‖an‖2 +

aTnw
‖an‖2 ; this

is also Gaussian with zero mean and variance
E
[(
zkn
)2]

= K−(k−1)
M +σ2

w as aTna`
‖an‖2 , aTnaj

‖an‖2 , and aTnw
‖an‖2

are mutually independent Gaussian random variables
for ` 6= j.

4) The randomness associated with the norm of the col-
umn vector ‖an‖2; this is a scaled Chi-distribution
with M degrees of freedom, i.e., f‖an‖2(x) =

21−M
2 M

M
2 xM−1e−

Mx2

2

Γ(M2 )
as shown in Lemma 2.

Using these facts, the conditional distribution of zkn under
the null hypothesis is given by

P
(
zkn|xn = 0

)
=

1

σ0

√
2π

exp

(
−|z

k
n|2

2σ2
0

)
, (11)

where σ0 =
√

K−(k−1)
M + σ2

w. Similarly, under the hypothesis
of xn = 1 and ‖an‖2 = u, the conditional distribution of zkn
is Gaussian with mean u and variance K−(k−1)+1

M + σ2
w, i.e.,

P
(
zkn|xn=1, ‖an‖2 =u

)
=

exp
(
− |z

k
n−u|

2

2σ2
1

)
σ1

√
2π

, (12)

where σ1 =
√

K−(k−1)+1
M + σ2

w. From Lemma 2, by
marginalizing the conditional distribution in (12) with respect
to u, we obtain the conditional distribution under the hypoth-
esis of xn = 1 as

P
(
zkn|xn = 1

)
= E‖an‖2

[
P
(
zkn|xn = 1, ‖an‖

)]
=

∫ ∞
0

e
− |z

k
n−u|

2

2σ2
1

σ1

√
2π

21−M2 M
M
2 uM−1e−

Mu2

2

Γ
(
M
2

) du.

(13)

This conditional distribution is intractable to analyze due to the
integral expression. Applying Jensen’s inequality, we obtain
a lower bound of the conditional distribution function in a
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closed-form as follows:

P
(
zkn|xn=1

)
≥

exp

(
−E[(zkn−‖an‖2)2]

2σ2
1

)
σ1

√
2π

≥
exp

(
− (zkn−E[‖an‖2])2

2σ2
1

)
σ1

√
2π

=

exp

−
(
zkn−
√

2
M

Γ( 1+M
2 )

Γ(M2 )

)2

2σ2
1


σ1

√
2π

. (14)

where the first and the second inequalities follow from the
facts that e−x and (a− x)2 are convex functions with respect
to x for any a, respectively. The last equality is because

E[‖an‖2] =
√

2
M

Γ( 1+M
2 )

Γ(M2 )
as shown in Lemma 2. From

Lemma 3, it is shown that this lower bound becomes tight,
as the distribution of ‖an‖2 converges to its mean value

limM→∞

√
2
M

Γ( 1+M
2 )

Γ(M2 )
= 1 almost surely. As a result, for

large enough M , the conditional distribution under the hy-
pothesis of xn = 1 is simply approximated as

P
(
zkn|xn = 1

)
' 1

σ1

√
2π

exp

(
−|z

k
n − 1|2

2σ2
1

)
. (15)

Leveraging the conditional probability density functions in
(11) and (15), the MAP ratio for a given observation zkn is

Λ
(
zkn
)

= ln

(
P
(
n ∈ T | zkn

)
P (n /∈ T | zkn)

)
(a)
= ln

(
P
(
zkn|n ∈ T

)
P (n ∈ T )

P (zkn|n /∈ T )P (n /∈ T )

)

= ln

 1
σ1

√
2π

exp
(
− |z

k
n−1|2
2σ2

1

)
1

σ0

√
2π

exp
(
− |z

k
n|2

2σ2
0

)
+ ln

(
P (n ∈ T )

P (n /∈ T )

)
(b)
=

(zkn)2

2σ2
0

− (zkn − 1)2

2σ2
1

+ ln

(
σ0

σ1

)
+ ln

(
K

N −K

)
=

(zkn)2

2K−k+1
M + 2σ2

w

− (zkn − 1)2

2K−kM + 2σ2
w

+
1

2
ln

(
(K−k+1)+Mσ2

w

(K−k)+Mσ2
w

)
+ln

(
K

N −K

)
, (16)

where (a) follows from the Bayes’ rule and (b) comes from
the assumption that the K non-zero supports are uniformly
distributed from 1 to N . This log likelihood ratio value carries
reliability information about how the nth column vector in the
sensing matrix is likely to belong to the true support in the
kth iteration. Accordingly, at iteration k ∈ {1, . . . ,K−1}, the
proposed MAP-MP algorithm selects index Jk that maximizes
Λ
(
zkn
)
, namely,

Jk = arg max
n∈[1:N ]

Λ(zkn)

= arg max
n∈[1:N ]

(zkn)2

K−k+1
M + σ2

w

− (zkn − 1)2

K−k
M + σ2

w

. (17)

Once index Jk is selected, MAP-MP estimates the new sparse
representation x̂k using the updated support set Sk = Sk−1 ∪
{Jk}. Since the signal is assumed to be a binary, the new
sparse representation is set to be one, namely,

x̂kSk = 1. (18)

Lastly, to remove the contribution of x̂kSk , we update the new
residual signal such that

rk = y −Φ|Sk x̂
k
Sk . (19)

B. Remarks

To obtain more insight on the proposed support detection
method, it is instructive to consider certain special cases.

Noise-Free Case: Let us consider the case of noise-free
compressive sensing, i.e., σ2

w = 0. The log-MAP ratio boils
down to

Λ(zkn) =
M(zkn)2

2(K − k + 1)
− M(zkn − 1)2

2(K − k)

+
1

2
ln

(
K − k + 1

K − k

)
+ ln

(
K

N −K

)
. (20)

This expression clearly shows that the MAP ratio in the kth
iteration is a function of the relevant system parameters-the
dimension of the measurement vector M and the sparsity
level K. One key property of the proposed algorithm is that
it updates the log-MAP ratio adaptively, since the variances
of the conditional probability density functions decrease under
the premise that the algorithm successively estimates the signal
at each iteration. For the noise-free case, in the last iteration
k = K, we slightly need to modify the computation of the
ratio, as P

(
zKn |n ∈ T

)
= 1. Accordingly, the modified ratio

in the last iteration for the noise-free case is given by

Λ(zKn ) =
M(zKn )2

2
+ ln

(
K

N −K

)
. (21)

High Noise Power Case: Let us consider the high noise
power scenario, i.e., σ2

w � K
M . In this case, the MAP ratio in

(16) is approximated as

Λ(zkn) ' (zkn)2

2σ2
w

− (zkn − 1)2

2σ2
w

=
2zkn − 1

2σ2
w

. (22)

From this, we are able to observe that the selection of the
largest index of the MAP ratio is equivalent to the selection
of the largest index of the correlation value zkn in the high
noise power regime, namely,

arg max
n

Λ(zkn) = arg max
n

zkn. (23)

Therefore, the conventional support detection methods that
select the largest correlation value zkn is the optimal in the
sense of the MAP detection strategy for the high noise power
regime. For the cases of low noise power and noise-free,
however, the selection of the largest absolute value of zkn for
the support detection is not optimal. This fact clearly exhibits
the benefits of the proposed MAP-MP against the conventional
OMP algorithm in [10].
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C. Asymptotic Analysis for Exact Recovery

In this section, we derive a lower bound of the required mea-
surements for the exact support recovery when the proposed
MAP-MP is applied for the binary sparse signal. Unlike the
prior analysis approaches that rely on the Restricted Isometry
Property (RIP) [7], [11], [12] or an information theoretical
analysis tool in [22], we directly compute a lower bound of
the success probability that the proposed algorithm identifies
the K-sparse binary signal within K number of iterations.
Utilizing this, a lower bound of the required measurements
is derived to reconstruct the signal perfectly as the signal
dimension approaches infinity. The following theorem shows
the main analysis result.

Theorem 1. The proposed MAP-MP algorithm perfectly re-
covers a K-sparse binary sparse vector, x ∈ {0, 1}N , with M
noisy measurements within K number of iterations, provided
that the number of measurements scales as

M = O
(
(K + σ̃2

w) ln(N)
)
, (24)

when N and K go to infinity. Here, σ̃2
w denotes a normalized

noise variance defined as σ̃2
w =

σ2
w

M .

Proof: Without loss of generality, we assume that the first
K columns are the true supports, i.e., xn = 1 for n ∈ [1 : K],
i.e., T = {1, 2, . . . ,K} and the remaining N − K columns
are the zero supports. Furthermore, we denote Eks to be the
success recovery probability event in the kth iteration. Then,
the success recovery probability of the K-sparse signal within
K number of iterations is given by

Ps = P
(
∩Kk=1E

k
s

)
= P(E1

s )P(E2
s |E1

s )× · · · × P(EKs |EK−1
s , . . . , E1

s ), (25)

where the equality comes from the probability chain rule. To
prove that Ps approaches one asymptotically as N → ∞,
it suffices to check that the algorithm correctly identifies the
column of the true support in the kth iteration conditioned that
all the prior iterations recover the true supports successfully,
i.e., P(Eks |Ek−1

s , . . . , E1
s ) = 1 − o

(
1
K

)
as N → ∞ for any

k ∈ [1 : K].
To detect the support correctly in the kth iteration of the

proposed algorithm, the maximum of Λ(zk` ) for ` ∈ T \ Sk
should be larger than the maximum of Λ(zkn) for n ∈ T c =
{K + 1, . . . , N}, which is

P(Eks |Ek−1
s , . . . , E1

s ) =P
[

max
`∈T \Sk

Λ
(
zk`
)
≥max
n∈T c

Λ
(
zkn
)]
.

By selecting an arbitrary element of ` ∈ T \Sk, a lower bound
of the success probability in the kth iteration is given by

P(Eks |Ek−1
s , . . . , E1

s )≥ P
[
Λ
(
zk`
)
≥ max
n∈T c

Λ
(
zkn
)]

=

N−K∏
n=1

P
[
Λ(zk` ) ≥ Λ(zkn)

]
=
(
1−P

[
Λ(zk` ) < Λ(zkN )

])N−K
, (26)

where the first equality follows from the fact that
{Λ(zkK+1), . . . ,Λ(zkN )} are mutually independent as

{zkK+1, . . . , z
k
N} are IID Gaussian random variables with zero

mean and variance σ2
0 . To this end, we need to compute the

probability that Λ(zk` ) is less than Λ(zkN ) as follows:

P
[
Λ(zkN ) > Λ(zk` )

]
= P

[
(zkN )2

2σ2
0

− (zkN − 1)2

2σ2
1

>
(zk` )2

2σ2
0

− (zk` − 1)2

2σ2
1

]

= P

e−λ
(

(zkN)
2

2σ2
0
− (zkN−1)

2

2σ2
1

)
< e
−λ
(

(zk` )
2

2σ2
0
− (zk`−1)

2

2σ2
1

)
≤ min

λ≥0
E

eλ
(

(zkN)
2

2σ2
0
− (zkN−1)

2

2σ2
1

)E

e−λ
(

(zk` )
2

2σ2
0
− (zk`−1)

2

2σ2
1

)
(27)

where the last inequality follows from Markov’s inequality and
the independence of zk` and zkN . Since zkN given xN = 0 is
distributed as in (11), the first term in (27) is calculated as

E

eλ
(

(zkN)
2

2σ2
0
− (zkN−1)

2

2σ2
1

) =

∫ ∞
−∞

e
− t2

2σ2
0 e
λ

(
t2

2σ2
0
− (t−1)2

2σ2
1

)
√

2πσ0

dt

=
e

−λ(1−λ)

2λ(σ2
0−σ

2
1)+2σ2

1

σ0

√
1−λ
σ2

0
+ λ

σ2
1

. (28)

Similarly, using the distribution of zk` given x` = 1 in (12),
the second term in (27) is computed as

E

e−λ
(

(zk` )
2

2σ2
0
− (zk`−1)

2

2σ2
1

) =

∫ ∞
−∞

e
− (t−1)2

2σ2
1 e
−λ
(

t2

2σ2
0
− (t−1)2

2σ2
1

)
√

2πσ1

dt

=
e

λ(1−λ)

2λ(σ2
0−σ

2
1)−2σ2

0

σ1

√
λ
σ2

0
+ 1−λ

σ2
1

. (29)

Plugging λ = 1
2 > 0, the probability that the MAP ratio under

the zero support is greater than that under the non-zero support
is upper bounded by

P
[
Λ(zkN ) > Λ(zk` )

]
≤ e

−1

2(σ2
0+σ2

1)

1
2 (σ1

σ0
+ σ0

σ1
)
. (30)

Since σ2
0 =

K−k+1+σ̃2
w

M and σ2
1 =

K−k+σ̃2
w

M in the kth
iteration, this error upper bound is further simplified as

P
[
Λ(zkN ) > Λ(zk` )

]
≤ e

−M
2(2K−2k+2σ̃2

w+1)

1
2 (

K−k+σ̃2
w

K−k+1+σ̃2
w

+
K−k+1+σ̃2

w

K−k+σ̃2
w

)

≤ e
−M

2(2K−2k+2σ̃2
w+1) . (31)

Plugging (31) into (26), we have a lower bound as follows:

P(Eks |Ek−1
s , . . . , E1

s ) ≥
(

1− e
−M

2(2K−2k+2σ̃2
w+1)

)N−K
. (32)

From (32), we observe that the success probability in the first
iteration is lower than that of any other remaining iterations,
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i.e., P(E1
s ) ≤ P(Eks |Ek−1

s , . . . , E1
s ) for ∀k. It follows that the

lower bound of the exact recovery probability is

Ps = P(E1
s )P(E2

s |E1
s )× · · · × P(EKs |EK−1

s , . . . , E1
s )

≥
(

1− e
−M

2(2K−1+2σ̃2
w)

)K(N−K)

. (33)

Assuming M = (1 + ε)2(2K − 1 + 2σ̃2
w) ln(K(N −K)), the

lower bound is rewritten as

ln (Ps) ≥ K(N−K)ln

(
1− 1

{K(N−K)}1+ε

)
.

Let K = δN for a positive δ > 0. Then, as N goes to infinity,
we have

lim
N→∞

ln (Ps) ≥ lim
N→∞

N2δ(1−δ)ln

(
1− 1

{N2δ(1−δ)}1+ε

)

= lim
N→∞

4(1 + ε)δ(1−δ)
{N2δ(1−δ)}1+ε − 1

= 0, (34)

where the second equality follows from L’Hospital’s rule. Con-
sequently, we conclude that limN→∞ Ps = 1. From the facts
that N > M > 2K (the condition for a unique sparse solution)
and ln(K(N−K)) = ln(N−K)+ln(K) ≤ 2 ln(N−K), it is
possible that the K-sparse binary signal is perfectly recovered
within K number of iterations, if the number of measurements
scales as, at least, M ≥ (1+ε)2(4K−2+4σ̃2

w) ln(N−K) for
some ε > 0. Therefore, the scaling law of the required number
of measurements becomes M = O

(
(K + σ̃2

w) ln(N)
)
, which

completes the proof.
Theorem 1 shows the statistical guarantee of the proposed

MAP-MP algorithm for the binary signal. The guarantee is that
the proposed MAP-MP algorithm recovers the K-sparse bi-
nary signal perfectly with K number of iterations, if the num-
ber of (noisy) measurements scales as O

(
(K + σ̃2

w) ln(N)
)
.

This measurement scaling law clearly exhibits that the required
measurements should increase with the sparsity level K and
the normalized noise variance σ̃2

w. This result backs the
intuition that the measurements should increase the sparsity
level and noise variance linearly. Meanwhile, the requirement
measurements increase with N logarithmically. This condition
extends the existing statistical guarantee for OMP proven in
[10] by incorporating noise effects.

IV. MAP-OMP

In the previous section, we have proposed a new sparse
signal recovery algorithm, assuming a binary sparse signal. In
some applications, however, the component of the non-zero
support can be an arbitrary value drawn from a continuous
probability distribution fxn(u). In this section, we present a
modified MAP-MP algorithm for the sparse signal whose non-
zero element is distributed according to a distribution fxn(u),
which is referred to as MAP-OMP. In contrast to the MAP-MP
algorithm, MAP-OMP uses an orthogonal projection method
when the unknown elements are estimated, which causes
estimation errors. Therefore, it is essential for characterizing
statistical properties of the estimation errors in each iteration in

order to apply a hypotheses test. The following lemma shows
the statistical properties of the estimation errors.

Lemma 4. Let x̂|Sk =
(
ΦT
|SkΦ|Sk

)−1

ΦT
|Sky be the estimate

of x|Sk . Then, the mean vector and the covariance matrix of
estimation error, ex = x̂|Sk − x|Sk , are

E[ex] = 0 and E
[
exe

T
x

]
=
σ2
x(K − k) + σ̃2

w

M − k − 2
I. (35)

Proof: See Appendix D.
Using this lemma, we explain the MAP-OMP algorithm.

Let x̂i be the estimate of xi in the (k−1)th iteration where
i ∈ Sk−1. Then, the residual vector is

rk−1 = y −ΦSk−1 x̂Sk−1

=
∑

`∈T \Sk−1

a`x` +
∑

i∈Sk−1

aiei + w, (36)

where ei = x̂i−xi denotes the estimation error by the orthog-
onal projection. To identify the support element, the MAP-
OMP algorithm performs hypothesis testing by computing the
correlation value zkn =

aTn rk−1

‖an‖2 as

H0 : zkn =
∑

`∈T \Sk−1

aTna`
‖an‖2

x` +
∑

i∈Sk−1

aTnai
‖an‖2

ei +
aTnw

‖an‖2

H1 : zkn =‖an‖2xn +
∑

`∈T \{Sk−1∪{n}}

aTna`
‖an‖2

x`

+
∑

i∈Sk−1

aTnai
‖an‖2

ei +
aTnw

‖an‖2
, (37)

where xn is distributed as fxn(u). The exact characterization
of the distribution for zkn under the null hypothesis is chal-
lenging, as it highly depends on the signal distribution fxn(u).
To facilitate simplified calculations, the distribution of zkn is
approximated using Gaussian distribution with the first and
the second order moments matching. From Lemma 1, recall
that aTna`

‖an‖2 and aTnw
‖an‖2 are distributed as N (0, K−(k−1)

M ) and
N (0, σ2

w). Furthermore, since E[x`] = µ and E[x2
` ] = σ2

x for
` ∈ T , the first and second moments of zkn are

E
[
zkn | xn = 0

]
=

∑
`∈T \Sk−1

E
[

aTna`
‖an‖2

]
E[x`]

+
∑

i∈Sk−1

E
[

aTnai
‖an‖2

]
E[ei] + E

[
aTnw

‖an‖2

]
= 0 (38)

and

E
[
(zkn)2 | xn = 0

]
=

∑
`∈T\Sk−1

E

[(
aTna`
‖an‖2

)2
]
E
[
x2
`

]
+
∑
i∈Sk−1

E

[(
aTnai
‖an‖2

)2
]
E[e2

i ]+E

[(
aTnw

‖an‖2

)2
]

=
(K−k+1)σ2

x

M
+

(k−1)

M

σ2
x(K − k + 1) + σ̃2

w

M − k − 1
+
σ̃2
w

M

=
(K−k+1)σ2

x + σ̃2
w

M

(
1 +

k−1

M − k − 1

)
, (39)
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where E[e2
i ] =

σ2
x(K−k+1)+σ̃2

w

M−k−1 from Lemma 4. Accordingly,
the approximated distribution of zkn is given by

P
(
zkn|xn = 0

)
' 1

σ̃0

√
2π

exp

(
−|z

k
n|2

2σ̃2
0

)
, (40)

where σ̃0 =

√
(K−k+1)σ2

x+σ̃2
w

M

(
1 + k−1

M−k−1

)
. Similarly, con-

ditioning the hypothesis of xn = u, the approximated distri-
bution of zkn is given by

P
(
zkn|xn = u

)
' 1

σ̃1

√
2π

exp

(
−|z

k
n − u|2

2σ̃2
1

)
, (41)

where σ̃1 =
√

(K−k)σ2
x+σ̃2

w

M + (k−1)
M

σ2
x(K−k+1)+σ̃2

w

M−k−1 . Utilizing
the approximated distributions in (40) and (41), the log-
MAP ratio is obtained by marginalizing with respect to the
distribution fxn(u), namely,

Λ
(
zkn
)
' ln

(∫∞
−∞ P

(
zkn|xn = u

)
fxn(u)du

P (zkn|xn = 0)

)
+ln

(
K

N−K

)
.

(42)

Therefore, the proposed MAP support detection for the non-
binary signal is to select the support index such that

arg max
n∈[1:N ]

Λ
(
zkn
)

' arg max
n∈[1:N ]

ln

(∫∞
−∞ P

(
zkn|xn = u

)
fxn(u)du

P (zkn|xn = 0)

)
. (43)

To provide a more transparent interpretation of the
expression in (43), we consider the following three cases of
interest.

Example 1 (Uniformly Distributed Signal): One basic case
is the scenario where the elements of the transmit signal are
drawn from a uniform distribution between 0 and 1, i.e.,
fxn(u) = 1 for 0 ≤ u ≤ 1. Then, the MAP ratio expression
in (43) becomes

ΛU
(
zkn
)
' ln

 σ̃1
√
π

2 Erf
[(

1−zkn
σ̃1

)
+Erf

(
zkn
σ̃1

)]
1√

2πσ̃0
exp

(
− (zkn)2

2σ̃2
0

)
 , (44)

where Erf(x) = 2√
π

∫ x
0
e−t

2

dt.
Example 2 (Sparse Signal with Finite Alphabet): Another

popular case of interest is one where the non-zero entry of
x is uniformly selected from the elements of a finite set
of alphabet C = {c1, . . . , cQ} as considered in [28], [29].
For example, each pixel of a bitmap image file is capable
of storing 8 different colors when the 3-bit per pixel (8bpp)
format is used. In this application, the finite set can be given
as C = {0, 1, . . . , 7}. In this case, the log-MAP is computed
as follows:

ΛC
(
zkn
)
' ln

(∑|C|
i=1 P

(
zkn|xn = ci

)
P[xn = ci]

P (zkn|xn = 0)

)

= ln

 1
|C|
∑|C|
i=1

1√
2πσ̃1

exp
(
−(zkn−ci)

2

2σ̃2
1

)
1√

2πσ̃0
exp

(
− (zkn)2

2σ̃2
0

)
 . (45)

TABLE I
MAP-OMP ALGORITHM

1) Initialization:
k := 0, x̂0 = 0
r0 := y (the current residual)
S0 := {∅}.

2) Repeat until a stopping criterion is met
i) k := k + 1.
ii) Compute the current proxy:

zkn =
aTn rk−1

‖an‖2
for n ∈ [1 : N ].

iii) Select the largest index of MAP ratio:
Jk =: arg maxn

{
Λd(zkn)

}
for d ∈ {U,C,G}.

iv) Merge the support set:
Sk = Sk−1 ∪ Jk .

v) Update sparse signal:
x̂k
|Sk := arg minx ‖Φ|Skx− y‖2.

vi) Update the residual for next round:
rk := y −Φ|Sk x̂k

|Sk .

It is worth noting that when |C| = 1, this MAP ratio
approximation in (45) recovers the exact MAP ratio for the
binary signal case given in (16).

Example 3 (Gaussian Signal): Assuming fxn(u) =

1
σx
√

2π
e
− (u−µ)2

2σ2
x , the log-MAP ratio simplifies to

ΛG
(
zkn
)
' ln

∫∞−∞ P
(
zkn|xn = u

)
1

σx
√

2π
e
− (u−µ)2

2σ2
x du

P (zkn|xn = 0)


= ln

 1

2π
√
σ2
x+σ̃2

1

exp
(
−(zkn−µ)2

2(σ2
x+σ̃2

1)

)
1√

2πσ̃0
exp

(
− (zkn)2

2σ̃2
0

)


=
(zkn)2

2σ̃2
0

− (zkn − µ)2

2(σ2
x+σ̃2

1)
+ ln

(
σ̃0√

2π(σ2
x+σ̃2

1)

)
. (46)

In the case in which the signal is distributed as zero-mean
Gaussian, i.e., E[x`] = 0, the algorithm selects the index
that maximizes ΛG

(
zkn
)

= (zkn)2
(

1
2σ̃2

0
− 1

2(σ2
x+σ̃

2
1)

)
, which is

the same selection criterion used in the conventional OMP
algorithm; thereby, there is no benefits of using the proposed
method compared to the OMP algorithm. Whereas, when the
Gaussian signal has a non-zero mean value, i.e., E[x`] 6= 0,
the proposed algorithm provides a better support detection
probability than that of the conventional OMP algorithm.

Using theses approximated log-MAP ratio functions in the
examples, we provide the MAP-OMP algorithm, which is
summarized in Table I. The key difference with the MAP-MP
algorithm for the binary signal is that MAP-OMP computes
the MAP ratio differently depending on the sparse signal
distribution. Furthermore, the algorithm estimates the sparse
signal using a least square solution in each iteration similar to
the conventional OMP algorithm.

V. EXTENSION TO THE OTHER GREEDY ALGORITHMS

One advantage of the proposed MAP support detection
method is, indeed, directly applicable to many other greedy
sparse signal recovery algorithms. In this section, we provide
a set of greedy sparse signal recovery algorithms that exploit
the proposed support detection method.
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TABLE II
MAP-GOMP ALGORITHM

1) Initialization:
k := 0, x̂0 = 0
r0 := y (the current residual)
S0 := {∅} and Ω0 := {∅}

2) Repeat until a stopping criterion is met
i) k := k + 1.
ii) Compute the current proxy:

zkn =
aTn rk−1

‖an‖2
for n ∈ [1 : N ].

iii) Select the L(≤ M
K

) largest indices of MAP ratio:
Ωk =: arg max|Ωk|=L

{
Λd(zkn)

}
for d ∈ {U,C,G}.

iv) Merge the support set:
Sk = Sk−1 ∪ Ωk .

v) Perform a least-squares signal estimation:
x̂k
|Sk := arg minx ‖Φ|Skx− y‖2.

vi) Update the residual for next round:
rk := y −Φ|Sk x̂k

|Sk .

A. MAP-gOMP

gOMP [17] is a simple yet effective algorithm that im-
proves the performance of OMP. The key idea of gOMP
is the selection of multiple support indices with the largest
correlation in magnitude at each iteration; thereby, it re-
duces the mis-detection probability compared to that of OMP.
Similar to the gOMP algorithm, MAP-gOMP is a greedy
algorithm that sequentially finds multiple support indices and
estimates the signal representation within a certain number
of iterations. The core difference lies in the selection rule
of the support indices per iteration. Unlike the gOMP al-
gorithm, MAP-gOMP chooses L support indices with the
largest log-MAP ratio values instead of the largest correlation
in magnitude. Therefore, in the kth iteration, we update the
variances of two conditional distributions in (40) and (41)
as σ̃2

0 =
(K−L(k−1))σ2

x+σ̃2
w

M

(
1 + L(k−1)

M−L(k−1)−2

)
and σ̃2

1 =

(K−Lk)σ2
x+σ̃2

w

M +L(k−1)
M

σ2
x(K−L(k−1))+σ̃2

w

M−L(k−1)−2 . The proposed MAP-
gOMP is summarized in Table II.

B. MAP-CoSaMP

CoSaMP is an effective iterative sparse signal recovery
algorithm [18]. It was shown to yield the same sparse signal
recovery performance guarantees as `1-norm minimization
even with less computational complexity. The main idea of
CoSaMP is that, in the first step, it estimates a large support
set with L largest correlation values in magnitude and obtains
a least square solution based on it, where L is typically chosen
between K ≤ L ≤ 2K. In the next step, the algorithm reduces
the cardinality of the support set back to the desired sparsity
level of K using pruning, and acquires a sparse solution again
based on the reduced support.

We modify this algorithm by incorporating the proposed
support detection technique. Unlike the conventional CoSaMP
algorithm, MAP-CoSaMP adds 2K support candidates with
2K largest MAP ratio values to the support set Sk per
iteration. Once the least square solution is obtained based on
the corresponding support set x̂|Sk = Φ†|Sky, an approxi-
mation to the signal is updated by selecting the K largest
coordinates using pruning. Finally, the residual is updated
using the approximated signal estimate. The algorithm is
described in Table III. The computational complexity order

TABLE III
MAP-COSAMP ALGORITHM

1) Initialization:
k := 0, x̂0 = 0
r0 := y (the current residual)
S0 := {∅} and Ω0 := {∅}

2) Repeat until a stopping criterion is met
i) Compute the current proxy:

zkn =
aTn rk−1

‖an‖2
for n ∈ [1 : N ].

iii) Select the 2K largest indices of MAP ratio:
Ωk =: arg max|Ωk|=2K

{
Λd(zkn)

}
for d ∈ {U,C,G}.

iv) Merge the support set:
Sk = Sk−1 ∪ Ωk .

iv) Perform a least-squares signal estimation:
x̂|Sk =: arg minx ‖Φ|Skx− y‖2, x̂|Skc = 0.

v) Prune x̂k:
G =: arg max|G|=K

{
|x̂k|

}
,

vi) Update the residual for next round:
rk = y −Φ|G x̂k

|G .

TABLE IV
MAP-SP ALGORITHM

1) Initialization:
k := 0, x̂0 = 0
r0 := y (the current residual)
S0 := {∅} and Ω0 := {∅}

2) Repeat until a stopping criterion is met
i) Compute the current proxy:

zkn =
aTn rk−1

‖an‖2
for n ∈ [1 : N ].

iii) Select the K largest indices of MAP ratio:
Ωk =: arg max|Ωk|=K

{
Λd(zkn)

}
for d ∈ {U,C,G}.

iv) Merge the support set:
Sk = Sk−1 ∪ Ωk .

iv) Perform a least-squares signal estimation:
bk := arg minb ‖Φ|Skb− y‖2

v) Select the K largest index in x̂k:
G =: arg max|G|=K

{
|bk|

}
vi) Perform a least-squares signal estimation using the updated G:

x̂k
|G := arg minx ‖Φ|Gx− y‖2.

vii) Update the residual for next round:
rk = y −Φ|G x̂k

|G .

of the proposed MAP-CoSaMP is the same with that of the
original CoSaMP algorithm [18]. We refer [18], [31] for the
reader who are interested in the computational complexity
analysis of CoSaMP.

C. MAP-SP Algorithm

SP is a two-step iterative algorithm for sparse recovery [19].
Similar to CoSaMP, the SP algorithm identifies the current
estimate of support set by greedily adding multiple indices
with the largest correlation in magnitude.The main difference
between CoSaMP and SP lies in the second step. While
CoSaMP applies a pruning technique using the estimated
sparse signal in the first stage to maintain the required sparsity
level without performing the second least-square estimation.
Whereas, the SP algorithm updates the sparse solution by
solving a least square problem based on the reduced support
in the second stage.

Applying the proposed MAP support detection method, we
modify this algorithm by changing the support set identifi-
cation stage. The proposed MAP-SP algorithm selects 2K
support indices with the largest MAP ratio values in each
iteration. The modified algorithm is summarized in Table IV.
Since the log-MAP ratio computation does not increase the
computational complexity order, the proposed algorithm can
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Fig. 1. Performance comparison of perfect reconstruction probability for the
binary signal with noise-free measurements.

be implemented with O(MNK), which is comparable to that
of the SP algorithm in [19].

VI. NUMERICAL RESULTS

We provide empirical recovery performance of the proposed
algorithms by means of simulations. We evaluate the empirical
frequency (cumulative density function) of exact reconstruc-
tion for the proposed algorithms in both noise and noiseless
cases and compare them with the conventional algorithms. In
our simulation, we generate M×N (M = 128 and N = 256)
sensing matrix whose elements are drawn from IID Gaussian
distribution N (0, 1

M ). Furthermore, we consider K-sparse
vector x whose support is uniformly distributed. Each non-
zero element of x is one for the binary signal and is randomly
selected from [0, 1] for the uniform signal. To obtain the
empirical frequency of exact reconstruction, we perform 1,000
independent trials for each algorithm. For each trial, we per-
form iterations until the stopping criterion ‖x− x̂‖22 ≤ 10−12

is satisfied except for gOMP and MAP-gOMP. For gOMP and
MAP-gOMP, we perform min

(
K,
⌊
M
L

⌋)
number of iterations

in each trial, where L = 2. To obtain the performance of BP,
we use the CVX tool that can be executed in MATLAB [30].

Fig. 1 illustrates the reconstruction probability performance
of a binary sparse signal with noise-free measurements as a
function of the sparsity level K of the signal. The simulation
results reveal that the proposed algorithms improve the re-
construction probability performance significantly compared
to those of the existing algorithms. For example, the proposed
MAP-gOMP recovers the binary sparse signal with more than
90 % probability up to a sparsity level of 42. Whereas, the
conventional gOMP is able to reconstruct the signal only up
to a sparsity level 31 under the same reconstruction probability
constraint. Furthermore, the proposed MAP-gOMP, MAP-
CoSaMP, and MAP-SP algorithms outperform BP, i.e., a linear
programing technique, for the binary signal reconstruction. A
non-negative BP algorithm that solves the `1-minimization
problem with an additional non-negative constraint in x,
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Fig. 2. Performance comparison of perfect reconstruction probability for the
signal whose non-zero element is uniformly distributed between 0 and 1, i.e.,
xi ∼ Uni[0, 1] with noise-free measurements.

however, provides a better performance than the proposed
algorithms at the expense of a more computational complexity.

Fig. 2 shows the reconstruction probability of a sparse
signal whose non-zero element is uniformly distributed be-
tween 0 and 1, i.e., xi ∼ Uni[0, 1]. We use the MAP ratio
function in (44) for the simulations. Similar to the binary
signal case, it is no wonder that the proposed MAP-gOMP,
MAP-CoSaMP, and MAP-SP algorithms outperform than the
existing sparse recovery algorithms by considerably reducing
the mis-detection probability of supports. In particular, MAP-
gOMP and MAP-SP are able to recover the signal with more
than 95 % probability up to a sparsity level of 60, which
is close to the maximum sparsity level (M2 = 64) that can
be recovered with a unique solution guarantee. In particular,
MAP-SP outperforms than the non-negative BP algorithm.

We consider now a binary sparse image recovery example.
As illustrated in Fig. 3 (the left-top figure), a binary sparse
image with 37×37-pixel size is considered for the experiment.
Applying linear random projection matrix Φ ∈ R685×1369

whose elements are drawn from N (0, 1
685 ), we compress

the binary image. As shown in Fig. 3, when the noise-free
measurements are used for image (supports) reconstruction,
we observe that the proposed MAP-gOMP and MAP-SP
algorithms for the support recovery outperform than the other
existing algorithms, which agrees with the result shown in
Fig. 1. We add Gaussian noise with zero mean and variance
σ2
w = 0.005. In this case, as depicted in Fig. 4, the proposed

MAP-SP method is able to recover the image almost perfectly
even in the presence of noise. Whereas, the image reconstruc-
tion performance of the proposed MAP-gOMP algorithm is
degraded compared to the case of noise-free, which exhibits
the noise sensitivity of the algorithm.

As can be seen in Table V, the proposed algorithms achieve
significant speedup compared to the existing algorithms in
both the noise-free and noisy measurements cases. These
speedup gains are mainly due to the fact that the proposed
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Fig. 3. Support recovery performance comparison of the sparse binary image
reconstruction with the compressed and noise-free measurements, i.e., σ2

w =
0. All different algorithms use the same random linear projection matrix for
image reconstruction.

algorithms identify the true support set with small number of
iterations, leading to the faster convergence rates than those of
the existing algorithms. In particular, the runtimes of MAP-SP
(' 0.21 sec) under the noise-free measurements speed up 157
times than that of BP (' 33.22 sec).

To provide the insight on how the performance of the
proposed algorithm decreases as the noise variance increases
for given K, M , and N , we plot normalized mean squared
error (NMSE) of the proposed algorithms as a function of
signal-to-noise ratio SNR =

‖Φx‖22
σ2
w

, which is defined as

NMSE = 10 log10

(
1

T

T∑
i=1

‖x̂i − xi‖22
‖xi‖22

)
, (47)

where T is the number of trails and the subscript i represents
the trial number. In each random trial, a random gaussian
matrix Φ ∈ R128×256 is generated, and the non-zero elements
in x are generated as Gaussian random variables with mean
one and variance 1

M2 = 1
1282 . We assume that sparsity level

K = 40. For this noise case, we slightly modify the least-
square signal estimator used in each algorithm such that

x̂kSk =
(
ΦT
|SkΦ|Sk + 1

SNRI
)−1

Φ|Sky.
As illustrated in Fig. 5, the algorithms using the proposed

MAP support detection method outperform the conventional
sparse recovery algorithms. This reveals that the proposed
algorithms are robust to measurement noise. Interestingly, the
proposed algorithms including MAP-gOMP (L = 2) and
MAP-SP exhibit a better NMSE performance compared to that
of FBMP in [24].

VII. CONCLUSION

We have presented a new support detection technique
based on a MAP criterion for greedy sparse signal recovery
algorithms. Using this method, we have proposed a set of
greedy sparse signal recovery algorithms and established a
theoretical signal recovery guarantee for a particular case. One
major implication is that the joint use the distributions of
sensing matrix, sparse signal, and noise in support identifica-
tion offers a tremendous recovery performance improvement
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Fig. 4. Support recovery performance comparison of the sparse binary image
reconstruction with the compressed and noisy measurements, where σ2

w =
0.005, equivalently σ̃2

w = Mσ2
w = 3.425.

TABLE V
ALGORITHM RUNTIMESRuntimes (Sec) Speedup Runtimes Speedup

Algorithms σ2
w = 0 σ2

w = 0 σ2
w = 0.005 σ2

w = 0.005

gOMP 5.03 6.6x 5.03 7.1x
MAP-gOMP 2.26 14.6x 4.81 7.4x

SP 12.97 2.3x 14.5 2.5x
MAP-SP 0.21 157.8x 15.1 2.4x

BP 33.22 baseline 35.73 baseline

over previous support detection approaches that ignore such
statistical information. Our numerical results demonstrate that
the greedy algorithms with highly reliable support detection
provide significantly better sparse recovery performance than
the linear programming approach.

An interesting direction for future study would be to explore
the statistical guarantees of the proposed MAP-gOMP, MAP-
CoSaMP, and MAP-SP. Another possible research direction is
to investigate the greedy algorithms when different statistical
distributions of the sensing matrix are used. Furthermore, it
would be interesting to apply the proposed support detection
principle to improve the sparse signal reconstruction method
in [34].

APPENDIX

A. Proof of Lemma 1
Note that the distribution of each atom vector an is ro-

tationally invariant. This implies that for any unitary matrix
U ∈ RM×M , the distributions of Uan and an are identical.
By selecting a unitary matrix U so that Uan = [1, 0, . . . , 0]T ,
we can compute the cumulative distribution function of aTna`

‖an‖2
as

P
[

aTna`
‖an‖2

≤ x
]

= P
[

aTn
‖an‖2

UTa` ≤ x
]

= P [a`(1) ≤ x] (48)

where a`(1) denotes the first component of a`. As a result,
aTna`
‖an‖2 is IID Gaussian with zero mean and variance 1

M .

B. Proof of Lemma 2
Recall that all elements of an are Gaussian random variables

with zero mean and variance 1
M , and they are mutually
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Fig. 5. The NMSE performance comparison among different sparse signal
recovery algorithms when T = 1000. For FBMP, we use D = 20, which is
the maximum number of allowable repeated greedy searches.

independent. Thus,

P [‖an‖2 ≤ x] = P


√√√√ M∑
m=1

(an(m))
2 ≤ x


= P


√√√√ M∑
m=1

(an(m))
2

1
M

≤
√
Mx


(a)
=

γ
(
M
2 ,

Mx2

2

)
Γ
(
M
2

) , (49)

where (a) follows from the fact that
√∑M

m=1
(an(m))2

1/M is

Chi-distributed with M degrees of freedom, since (an(m))2

1/M
is a normal Gaussian with zero mean and unit variance, and
γ(s, x) =

∫ x
0
ts−1e−tdt denotes the lower incomplete gamma

function. By taking the derivative with respect to x, we obtain
the distribution of ‖an‖2 as

f‖an‖2(x) =
1

dx

γ
(
M
2 ,

Mx2

2

)
Γ
(
M
2

)
=

21−M2 M
M
2 xM−1e−

Mx2

2

Γ
(
M
2

) . (50)

Accordingly, the mean of the norm is

E [‖an‖2] =

∫ ∞
0

21−M2 M
M
2 xMe−

Mx2

2

Γ
(
M
2

) dx

=

√
2

M

Γ
(

1+M
2

)
Γ
(
M
2

) , (51)

which completes the proof.

C. Proof of Lemma 3
We commence by computing the probability that the abso-

lute difference between the norm and its average is greater

than or equal to a small value ε, which is

P [|‖an‖2 − E [‖an‖2]| ≥ ε]

= P

∣∣∣∣∣∣
√√√√ M∑
m=1

(an(m))
2 −

√
2

M

Γ
(

1+M
2

)
Γ
(
M
2

)
∣∣∣∣∣∣ ≥ ε



≤
E
[∑M

m=1 (an(m))
2
]
− 2

M

(
Γ( 1+M

2 )
Γ(M2 )

)2

ε

≤

∑M
m=1 E

[
(an(m))

2
]
− 2

M

(
Γ( 1+M

2 )
Γ(M2 )

)2

ε

=

1− 2
M

(
Γ( 1+M

2 )
Γ(M2 )

)2

ε
, (52)

where the inequality follows from Chebyshev’s inequality.

Since 2
M

(
Γ( 1+M

2 )
Γ(M2 )

)2

converges to one as M goes to infinity,

we conclude that

lim
M→∞

P [|‖an‖2 − E [‖an‖2]| ≥ ε] = 0 (53)

for some ε > 0. As a result, the norm of each column
vector concentrates to the average E [‖an‖2] =

√
2
M

Γ( 1+M
2 )

Γ(M2 )
and it also converges to one for a large enough M because

limM→∞

√
2
M

Γ( 1+M
2 )

Γ(M2 )
= 1. This completes the proof.

D. Proof of Lemma 4

Let P|Sk =
(
ΦT
|SkΦ|Sk

)−1

ΦT
|Sk be a projection matrix to

estimate x|Sk in the kth iteration. Using this, the correspond-
ing non-zero elements are obtained as

x̂|Sk = P|Sky

= x|Sk + P|Sk
(
Φ|T \Skx|T \Sk + w

)
. (54)

Then, the mean of the estimation error is

E
[
x̂|Sk − x|Sk

]
= E

[
P|SkΦ|T \Skx|T \Sk

]
+ E

[
P|Skw

]
= 0, (55)

where the last equality follows from that all elements in
P|Sk , Φ|T \Sk , x|T \Sk , and w are mutually independent and
E[Φ|T \Sk ] = 0 and E[w] = 0. Next we compute the error
covariance matrix. Conditioned that the sub-matrix Φ|Sk is
fixed, the error covariance matrix is

E
[(
x|Sk − x̂|Sk

)(
x|Sk − x̂|Sk

)T | Φ|Sk] (56)

=P|SkΦ|T\SkE
[
x|T \Skx

T
|T \Sk

]
ΦT
|T\SkP

T
|Sk+P|SkE[wwT ]PT

|Sk

(a)
= σ2

xP|SkE
[
Φ|T \SkΦ

T
|T \Sk

]
PT
|Sk+σ2

wP|SkP
T
|Sk

(b)
=

(
σ2
x(K − k)

M
+ σ2

w

)(
ΦT
|SkΦ|Sk

)−1

where (a) is due to E[wwT ] = σ2
wI and E

[
x|T \Skx

T
|T \Sk

]
=

σ2
xI and (b) follows from E

[
Φ|T \SkΦ

T
|T \Sk

]
= K−k

M I and
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P|SkP
T
|Sk =

(
ΦT
|SkΦ|Sk

)−1

. Let bi and Φ|Ski be the ith column
vector in Φ|Sk and a submatrix obtained by eliminating
bi in Φ|Sk where i ∈ Sk. The ith diagonal element of(
ΦT
|SkΦ|Sk

)−1

is given by[(
ΦT
|SkΦ|Sk

)−1
]
i,i

=
1

bTi P⊥Φ|Sk
i

bi
(57)

where P⊥Φ|Sk
i

= I − Φ|Ski

(
ΦT
|Ski

Φ|Ski

)−1

ΦT
|Ski

stands for the
orthogonal projection onto the null space of Φ|Ski . Since all
elements in bi and Φ|Ski are assumed to be IID Gaussian
random variables N

(
0, 1

M

)
, MbTi P⊥Φ|Sk

i

bi is distributed as a

Chi-squared random variable with degrees of freedom M −k,
i.e., MbTi P⊥Φ|Sk

i

bi ∼ χ2
(M−k). As a result, by marginalizing

with respect to the Chi-squared distribution, we have the
variance of the ith estimation error as

E[(x̂i − xi)2] =

(
σ2
x(K − k)

M
+
σ̃2
w

M

)
E

 1

bTi P⊥Φ|Sk
i

bi


=

(
σ2
x(K − k)

M
+
σ̃2
w

M

)
M

M − k − 2

=
σ2
x(K − k) + σ̃2

w

M − k − 2
, (58)

which completes the proof.
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