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Abstract—Partial coherence is an important quantity derived
from spectral or precision matrices and is used in seismolgg
meteorology, oceanography, neuroscience and elsewheré.the

number of complex degrees of freedom only slightly exceeds

the dimension of the multivariate stationary time series, pectral
matrices are poorly conditioned and shrinkage techniquesigygest
themselves. When true partial coherencies are quite largehen
for shrinkage estimators of the diagonal weighting kind it is
shown empirically that the minimization of risk using quadratic
loss (QL) leads to oracle partial coherence estimators super

to those derived by minimizing risk using Hilbert-Schmidt (HS)
loss. When true partial coherencies are small the methods bave
similarly. We derive two new QL estimators for spectral matrices,
and new QL and HS estimators for precision matrices. In addi-
tion for the full estimation (non-oracle) case where certai trace
expressions must also be estimated, we examine the behaviadi
three different QL estimators, the precision matrix one seming
particularly robust and reliable. For the empirical study we
carry out exact simulations derived from real EEG data for
two individuals, one having large, and the other small, parial

coherencies. This ensures our study covers cases of realvdo
relevance.

Index Terms—partial coherence, quadratic loss, shrinkage,
precision matrix, spectral matrix.

I. INTRODUCTION

neuroscience _[10]] [19]/[25]| [28]|_[23]. Clearly to calate
the partial coherencies we can estim&egf) as S‘(f), and
invert it, or we can estimat€'(f) directly.

Consider an estimata$(f), of S(f). An estimator may be
computed by a multitaper scheme involvidg tapers (e.g.,
[26]). (Throughout this paper we assuni€¢ > p so that
the spectral matrix is non-singular with probability on€he
spectral matrices will be non-singular but poorly condi#d if
K is only a little larger tham. The derived partial coherencies
will reflect this ill-conditioning. This study was motivate
by exactly this problem in a neuroscience setting. Due to
required low-pass filtering only a small frequency range was
available for analysis and& was necessarily kept small —
see Sectio_[Il.K cannot be simply increased because of
its connection to the implied smoothing bandwidth: Af
is made larger, the required resolution may be lost. (Other
estimators such as periodograms smoothed over frequencies
have analogous properties.)

Can the mean-square errors of the resulting estimatedaparti
coherencies be reduced? Such a reduction would be very
useful: for example, the estimated partial mutual infoiorat
obtained from the estimated partial coherencies are usede-in
termining brain functional connectivity [28] so that inesed

Consider g-vector-valued (or multivariate) stationary timeprecision is scientifically well worthwhile. An obvious ap-

series {X,;} where X; = [X14,..., X7 € RPt €

proach is to use covariance shrinkage methodology, a subjec

Z, and T denotes transposition. Without loss of generalityith a large literature, see e.g.] [8]. [14]. [30]. [2€9]] [95].

we assume{X;} to have a zero mean. Denote the sam- Ledoit and Wolf (LW) [20] derived ideal shrinkage estima-
ple interval by A.. One very important quantity derivedtors which are a combination of the standard covariancexnatr
from vector-valued time series is the partial coherence baad a target matrix proportional to the identity; such dizego
tween different series. LeSS(f) denote the spectral ma-Up-weighting has a long history[1] and we concentrate on
trix of {X,} at frequencyf, assumed to exist and be ofthis estimator class in this paper. LW minimize a risk measur
full rank. With sfdéfcov{XHT,Xt} — B{X.. X7}, we defined in terms of H|Ibert-Sc_hm|dt (HS) or Frobemgs

def o ~i2nfr 5 Denote the(j, k)™ loss — between the true and estlma.teAd covariance ma_trlces.
have S(f)=24¢ 2. 7 ¢ def enote I The ideal parameter value for shrinkirf§( f) is easily esti-
element of the precision matri€'(f)=S~'(f) by Cjx(f). mated. While convenient mathematically, Daniels and Kass [
The partial coherence between seriendk can be expressedp. 1174] noted that use of the HS loss function can result in
as, (e.g., [5])’7?1@.{\]'1@}”) = |Cir(NI?/1C;;(f)Cri(f)], “overshrinkage of the eigenvalues, especially the smaiksdn
and is the frequency domain squared correlation coefficiens we shall see, this warning is well-founded in terms of
between serieg and k after the removal of the linear effectsthe estimation of partial coherencies: the LW estimator for
of the remaining seriesthe remaining series being denote@hrinking S(f) wipes out large partial coherencies. In this
by {\jk}. This characteristic has led to partial coherengsaper we study alternatives to the LW-type estimator based o
being used widely in the physical sciences, e.g., in seiggyol using the quadratic loss (QL) [16] rather than HS loss. QL was
[34], meteorologyl[111], oceanography [18] and extensiiely exploited [17] in shrinkage estimation for large dimensibn
covariance matrices but concentrating on singular estiraat
with quite different estimators to those considered here.

We also look at estimating the precision matrix directly,
rather than first inverting the estimated spectral mat/@8]
used QL for precision matrix shrinkage in the context of éarg
dimensional covariance matrices and derived estimatas vi
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random matrix theory. Here, we address this problem witholbi¢éing our recommended approach. Detailed derivations| of al
requiring large dimensionality, and without recourse to-raour new estimators are given in the Appendix.
dom matrix theory. A weighted combination of the estimated
inverse covariance matrix and the identity was considered b
[8], [13], and forms the basis for our approach, using both th
HS and QL losses. A. Multitapering

Our simulations are based on real electroencephalogram
(EEG) time series daté = 10), which in fact motivated this We make use of a set ok’ > p orthonormal tapers
study. Both large and small partial coherencies are preséfit.:},k = 0,..., K — 1. A simple set are the sine tapers
and the data is perfect for demonstrating the behaviour [&7]. The elements of thé'" sinusoidal taper, are given by
the various estimators. The simulations use the exactlaimtu 1/2
embedding methodology for vector-valued time sefies [4]. Py = [Ni- 1] sin [(k + )7t + 1)} L t=0,... N—1.

Il. SPECTRAL MATRIX ESTIMATION

N+1
A. Contributions Fort =0,..., N —1, form the produchy, ; X of thetth com-
Following some background on spectral estimation and tpenent of the:th taper with theth component of the-vector-
EEG data, the contributions of this paper are: valued process, and fér = 0,..., K — 1 compute the vec-

1) We derive two shrinkage estimators, QLa and QLb, faor Fourier transformJy,(f)< A2 SN 1hy, , X, e—i2n/t A

S(f) under QL loss in closed form. One involves justet J(f) be the p x K matrix defined by J(f) =
a single shrinkage parameter, while the other has Mo (f),.... Jx_1(f)]. Then with Sk(f)dzefjk(f)J,f(f)the

parameters. _ _ ‘multitaper estimator of the x p spectral matrixS(f) is
2) The resulting oracle estimates of partial coherencies
are compared to those from the LW scheme in terms . TS 1
of the percentage relative improvement in squared er- S(f) = 52 S(h)= EJ(f)JH(f)- 1)
ror over that of the raw estimator. The LW scheme k=0

shrinks partial coherencies towards zero in a mannerl_etting B denote the bandwidth of the spectral window

that renders it unreliable in practice when any Signiﬁca%rresponding to the tapering, the(f), k = 0 K—1

magnitude partial coherencies are present. The QL'ba%gy be taken to be independently and identically distrithute
approaches perform much more robustly.

. . as p-vector-valued complex Gaussian with mean zero and
3) We next develop two-parameter shrinkage estimaz, . oo matrixS (f) :

tors, HSP and QLP, for the spectral precision matrix
C(f)d:efS*l(f) under both HS and QL loss, respec- T (f) ch{O S(f)} )
tively, both in closed form. The resulting oracle esti- P ’

mates of partial coherencies are compared to each othgr B/2 < |f| < fyx — B/2 for finite N and Gaussian
and to those of the other shrinkage estimators discusgsidcesses, dr < |f| < £\ asymptotically([3]. The bandwidth
above. B for sine tapers is given b = (K +1)/[(N+1)Ay], (e.g.,

4) As a result of 3. above, QLa, QLb and QLP estimato[g1]). The choice ofK is therefore linked to the bandwidth
are further considered in the real-world — non-oracle —chosen for the spectral window. It is assumed to have been
setting where the trace terms have also to be estimatgtbsen narrow enough to ensure the componens(¢j are
and thence renamed QLa-est, QLb-est and QLP-est. ltissentially constant across &(f) in @) is the maximum-
found that QLP-est behaves in a very appealing robufitelihood estimator forS(f), [12].
way for both high and low true coherencies and is Given [2), and withK > p, KS(f) has the complex
recommended as our preferred shrinkage method.  wjishart distribution with meark S(f), written as

Section[1) discusses the background spectral estimation,

while Sectionl) outlines the necessary preprocessingnef t Kg(f) 4 WPC{K, S(f)}. ©)
EEG data and our simulation from it, showing the different

partial coherence profiles for two individuals utilised st Therefore,

work. Sectior TV introduces our two new QL-based shrinkage R )

estimators for the spectral matrix. The standard HS-based  E{S(f)}=S(f) and E{tr{S}}=tr{S},  (4)
shrinkage estimator is contrasted with the new QL-based ) ) )
estimators in SectiofilV in terms of eigenvalue adjustmer¥/0 Simple results which will be made use of. Other propertie
shrinkage parameters and accuracy in estimating the partilowing from (3) will be introduced where appropriate.

coherencies. New QL and HS estimators for precision matrice
are derived in Section VI and the resultant partial cohezenc
estimation is analysed. Since the QL approach has outper-
formed HS for the oracle estimators only the three estinsator We shall illustrate the methodology via data simulated from
QLa, QLb and QLP are examined in Sectlon]VIl where theeal electroencephalogram (EEG) data, (resting condition
full (non-oracle) estimators are examined, leading to @sP- with eyes closed)/[24].

IIl. APPLICATION TOEEGDATA



A. Preprocessing

Real EEG signals were recorded on the scalg(asites,
using a bandpass filter of 0.5—-45Hz and sample interval of
A¢ = 0.01s. The recorded datgX,} is thus ap = 10 vector-
valued process, with Nyquist frequency 50Hz. To fully remov
any influence of the highly dominant and contaminating 10Hz
alpha rhythm, which would otherwise cause severe spectral
leakage, a 4.6Hz low-pass filter was applied, followed by
resampling to a sample interval &; = 0.05s giving a new
Nyquist frequency off,, = 10Hz. After this downsampling 05 05 05 W"“-\H
each channel of data hadl = 1024 time series values. The Mo, M
interesting EEG delta frequency range; < f < 4 Hz [24] = 0 1 3 4 0 1 2 3 a4 0 1 2 3 4
should be reliably represented after this preprocessing. f(Hz) f(H2) f(H2)

p. coherence p. coherence p. coherence

o ¢

o (3]

: %
o ¢

o (53]

o

o (53]

Fig. 1. The first 9 partial coherency plotg £ 1,k = 2 : 10) for individual
B. Simulation Strategy one, found from the known matri$o(f).

From this 10-channel series the spectral maSiyf) was

estimated as,(f), say, for| f| < f,,. Using the vector-valued g 1 1 1
circulant embedding approach] [4], a large numBérsay, of é 05 05 05
mdepend_ent Gaussian 10-channe| time series were (_:omputed 8 o b A o AL o et
each havingSo(f), |f| < fu, as its true spectral matrix. For < 1 2 3 4 1 2 3 4 1 2 3 4
each of these time series the estimated spectral m&ify S 1 1 1
was computed using multitaper estimation with some spekcifie  § o5 05 05
. . . c
numberK of sine tapers. Thes&/ independent estimates of 8
h . . s O date] () bt 0
So(f) can then be used to deduce various sampling properties 1 2 3 4 2 3 4 1 2 3 4
for quantities derived frons(f). As mentioned in the Intro- g 1 1 1
duction, we will look at cases whel€ just exceedp, so that g o5 05 05
e
- Lo 5
ill-conditioning is present. _ _ _ S 0 hoa M A bt
There arep(p —1)/2 = 45 partial coherencies as a function 1 2 3 4 1 2 3 4 1 2 3 4
of frequency in this case. Fidll 1 shows the first 9 partial f(Hz) f(H2) f(H2)

COherenCy pIOtS](: 1, k =2: 10) for individual 1 CaICUIated. Fig. 2. The first 9 partial coherency plotg € 1,k = 2 : 10) for individual
from So(f). These will be referred to as the true partiadyo, found from the known matrixSo (/)

coherencies (that we are trying to estimate from the siradlat

data). We can see that there is a good range of values from

nearly zero up to around 0.8. We shall also look at true gartia The shrinkage coefficient is set such that it minimizes a
coherencies for individual 2 who has most partial coheesncirisk criterion for some given losg, say, of S*(p) to the true
close to zero (the ‘sparse’ case) — see Elg. 2. The two casestrix S :

are summarized in Fifll 3 which shows that for individual one po = argmin R (5*(p), S). (5)
there are ‘spikes’ of high true partial coherence around@ an p€(0,1)
3.25 Hz. These will be significant for our partial coherence
estimators. B. Hilbert-Schmidt loss
Unless stated otherwise, results apply to individual 1. A common choice is the Hilbert-Schmidt (HS) loss where,
with L= HS
IV. SHRINKING THE SPECTRAL MATRIX R def R
Rus(8*(p).S) = B{r{(S*(p) - S)*}}

A. Conventional Approach

* 2

The conventional approach to ‘covariance matrix’ regu- = E{|IS*(p) - Sll}, (6)
larization which has been extensively studied involves thehere, for A € CP*?, ||A||r denotes the Frobenius norm
forming of a convex combination of the sample covariandeA||r = [tr{AA"}]'/2 tr{-} denotes trace, anl denotes
matrix and some well-conditioned ‘target’ matrix. For amomplex-conjugate (Hermitian) transpose.
estimatedp x p Hermitian spectral matrixS(f) this would Using [B) and [{b) the target matrix was chosen to be of
take the formS*(p(f)) = (1—p(f))S(f)+p(f)T(f), where the formT = (tr{S}/p)I, in [20] (for real-valued covariance
p(f) € (0,1) is known as the shrinkage parameter &1df) matrices) so that
is the target matrix. Providei(f) and7'(f) are both positive R tr{S}
definite, then this convex combination will itself be positi S*(p)=(1—-p)S+p—1I,. @)
definite. p

For notational brevity we shall drop the explicit frequenc¥or the ill-conditioned casep(< K,p ~ K) the estimator
dependence in most of what follows. diagonally loads the initial matri$ and increases the zero or
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C. Quadratic Loss -
. . . . . . -4 -2 0 -4 -2 0
One alternative choice of loss criterion is the quadratis o 10 10 10 10 10 10
function: initial initial

Ror(S*(p), S) = E{tr{(S*(p)S™* —I,)%}}.  (9) Fig. 4. Average eigenvalue adjustment for frequendfes= 0.85Hz (left
column) and3.85Hz (right column). The first row is for the HS method, the
Lemma 1. With S*(p) defined as in[{[7) the form @f, solving second for QLa and the third for QLB = 12 here.

@) and [9) is

0
p2 10

(Kp+p?) — 2 [Kptr{S—1jtr{S} — Etr2{S}tr{S2}] _ - o
(10) 107t _

Proof. This is given in AppendIxC. O

For easy identification we shall call this the QLa method.

shrinkage parameter
=
o

D. Generalization

The shrinkage concept can be extended to shrinkage esti- -4 , , , , , , ,
mators with generalised scaled identity targets, 05 1 15 2 25 3 3.5 4

. . f(H2)
S (n,p) =1 =p)S+pnl,, n>0,pe(0,1) (11)
) . . . Fig. 5. Oracle value op(f) for HS (dashed line) and QLa (thick line) for
with the optimum shrinkagépy) and scaling parameter valuesrequencies 0.55 to 4.05 in steps of 0.1.

(no) given by

(10, po) = argmin R (8*(n,p), S), (12) (tr{S}/p) is an optimal choice under the HS loss for shrink-
1>0,p€(0,1) age model[(T]1). Since the targets are then the same the form
for any convex loss criterioi. of py was already known froni.(8).
Lemma 2. The solutions of[{12) for both the HS and QL We shall call the method defined by {13) the HS method.
losses are We also call the method defined dy114) the QLb method.

9y -1 In deriving the optimal forms ofiy andp, (AppendixD), we
(10, po)s = tr{5}7 [1 _ E + Ktr{S }} , (13) note that the form of), for both losses arises independently
p tr2{S} of pp. This leads to the following result.

( Yor, = tr{S—1} K Ktr2{S~1} -1 (14) Lemma 3. If we reparameterize the shrinkage model[inl(11)

0, PO)QL = | frrg-21 p p{S-2} ' t0 8*(a, ) = aS+81I, > 0,itfollows that(a, 5)
defined b , = inR.(S*(a, 5),S), are given b

Proof. This is given in AppendixD. O Xao, o) argmén £(5%(@,8),8) g y

o,>
Qg, =((1- , .
Remark 1. We see that the choice of targBt= (tr{S}/p)I, (@0, fo)ns or ou = (1 = Po). porio s or

is identical ton, under the HS loss, i.e., the scaling factoProof. See AppendiXE. O



V. EXAMPLE ORACLE BEHAVIOUR 100

The above oracle solutions require exact knowledge of the ~
true spectral matrix. Before looking at estimation methods . %0 AP —
examine some aspects of the oracle solutions. E’E [ [ E’E
Y of----- W VERRS \/ Y
_ _ g | g
A. Transformation of Eigenvalues -50 \'
Minimizing the HS and QL risks effectively transforms the |
raw eigenvalues of. Fig.[d shows the transformation of the ~ 7° 5, 70— .
p = 10 eigenvalues for HS, QLa and QLb at frequencies f (Hz) f (Hz)
0.8Hz and 3.85Hz. Both the initial and adjusted eigenvalues 100
shown are averages, following sorting, over the = 500 MW
simulations of S. The main feature, which is persistent at 50
other frequencies and data sets, is that the HS method lead& S
to a large increase in the small eigenvalues and a very smal B Of
decrease in the larger eigenvalues. The QLa method inarease & &
only the smallest eigenvalues by a small amount, and barely 50
changes the large ones. The QLb method increases the sma

-100

eigenvalues more than QLa but much less so than HS anc

decreaseses the larger eigenvalues by a larger amount $han H f(Hz) f(Hz)
Such behaviour will have a significant effect in the estiomti rig 6. oracle PRISE with partial coherencies derived frgectral matrices.
of partial coherencies. HS (dash-dot line), QLa (thick line) and QLb (thin line) fé¢ = 12 (top

left), K = 14 (top right), K = 16 (bottom left), all for individual one, and
] K = 12 (bottom right) for individual two.
B. Shrinkage Parameters

. thod individual individual twi

For methods HS and QLa the shrinkage paramgtaray memo K =12 'T }\Q:uaMoTeK — 16 " '}Q:ualz ©
be compared directly as the model is the same in both HS 31 17 66 37
cases. Fid.l5 shows the the oracle shrinkage parameters. Fro QLa 41 27 20 89
Fig. @(a),(b) and (c),(d) we are not surprised to see that the L_QLP 68 o1 37 91
shrinkage parameter is orders of magnitude larger for H8 tha gfg g; 372 22 gg

. ) 5 To
for QLa_. Eor QLa it varies between arouh@* to 10~ while Olaest T 8 3 5
for HS it is around 0.25. QLb-est 65 29 34 87
QLP-est| 52 34 25 84
C. Partial coherence TABLE |

. . AVERAGE PRISE (%) OVER FREQUENCIES
The 45 partial coherencies at each frequency can be ’

quite variable in size from near zero to near unity. Let
&fk_{\jk} (m; fi) denote the estimate — by any method — of ) . .
the partial coherence at frequentyand replication numben  t{So(f)},tr{S5(/)} tr{ Sy (/)},tr{S;(f)} have been
wherem = 1,..., M. To measure the quality of the estimate§/Sed in the various estimators. . _
of partial coherencies we firstly calculated the sum of sediar e also averaged the PRISEs over the frequencies to obtain
errors over all pair§j,k),1 <j <k <p: Table[l. Looking at the top three rows for individual one, we
) see that the HS method does very poorly, being worse than
E(m; f)) = Z h?k.{\jk} (m; f1) — 7]2k.{\jk}(fl) . using the raw estimates. QLb generally does well but is very
ik ' variable (Fig[6) and rather unpredictable with frequeilya

— - seems to behave very nicely giving a fairly frequency-canist
We then averaged these over replications to gefi) = improvement over using the raw estimates. In the sparse non-

M . - A |
(1/M). 2m=1£(m: f1). Finally a percentage relative improve null partial coherence case of patient two, all methods did we
ment in squared error (PRISE) was computed as

Ep(fi) — S_M(fl):| %,

gB(fl) V1. SHRINKING THE PRECISION MATRIX

5 fSince the partial coherence is derived from the precision
where&g(f) denotes the average summed squared errors of . Y . .
: : = matrix C(f) = S~*(f) we can also consider shrinkage for
the raw or basic estimate, arfd,(f) denotes the same forth.S matrix. A possible approach is to take
any of the HS, QLa or QLb shrinkage methods. ! 'X'A poss! f)p !

We are thus able to determine the improvement in C*(a,8)=aS ' +81I, a,B>0. (15)
using any of the three shrinkage methods over usi
just the raw estimates. Results are shown in Hig.
with results at frequencie®.55 to 4.05 in steps of R R
0.1. These are oracle results: the known quantities a8 4 B/tr{S}I,. (16)

PRISE(f;) = 100 {

ch a model appears inl [8] arid [13] with the slight modifi-
cation that the right side takes the form



Lemma 4. Under the model [(15), the HS risk 100 100

Rus(C*(a,),C) = E{tr{(C*(a,f) — §71)}} is
minimized, forK > p+ 1, by - qeend/ T s0) \
L[ tr{S?} o Pt g .
_ = . L ot - /,\ L 0\/'/1[
o D [p r2{S—11 1} an : \ 1'/ z KA
c3tr{S~1} [tr{S2} —50 [ -50 I
= K — .
Po b |wsy FE-P) ! i
0 1 2 3 4 10 1 2 3 4
where f (Hz) f(Hz)
cg = K 100 100
(K —p)* = (K —p) N V]
tr{S—2} K 50 50
D = K-—p2=t=—1L K-p)—— S ™ g
CBp( p) trg{sfl} +C3p( p) (K—p) IS l . a3
% 0\\/\' % [/ B R I
Proof. See AppendiXF. O x v ) _\/' './'\_/ x
. - A -
We shall call this the HSP method. %0 ‘_l- %0
Lemma 5. Under the model [(15), the QL risk  ~100— ; s . O
RoL(C*(a,8),C) = E{tr{(C*(e,3)S — I,)’}} is f(H2) t(H2)
minimized, fork > p + 1, by Fig. 7. Oracle PRISE with partial coherencies derived fronecision
1 tr{SQ} P K matrices. HSP (dash-dot line) and QLP (line with bold dots) K = 12
g = — [p— — 1] ; Bo = [CO — (top left), K = 14 (top right), K = 16 (bottom left), all for individual one,
D ["tr2{S} Dtr{S} K-p 18) and K = 12 (bottom right) for individual two.
where 100 100
K? tr{S?} K
— - D= —— ———1. (19
o= G P s w49 “ﬁ@_ﬁ‘ _
S &3
Proof. See AppendiX G. O Wooof i
4 x
We shall call this the QLP method. g S 5
Remark 2. We note that the numerator af, in ({@7) is
essentially the/-statistic for testing for sphericity of and A, O,
in (I8) for testing for sphericity of. f(Hz) f (Hz)
Repeating the simulations in Sectibn V-C using the oracle 100 100 AV..W
estimatesC* («y, Bp) for the precision matrices, and hence the N/
partial coherencies, gave the results in Elg. 7 and lines¥4san = 0 = 20
of Table[l. We see that HSP and HS are comparable for patier 3/ 5 ol
one for K = 12 but for K = 14 and 16, HSP does better. For & 2
individual two HSP is slightly worse than HS whéfi=12. % _g S
QLP performs much better than HSP, and for individual one
performs intermediate to QLa and QLb. -100 - ” " " -100 - . . "

f (Hz) f(Hz)

VIl Fuu (NON_ORACLE) ESTIMATION Fig. 8. PRISE with partial coherencies derived from fullyirested spectral
Each of the estimators we have derived involve the tracesprecision matrices. QLa-est (thick line), QLb-est (tkime) and QLP-est
of some subset af. 57, 5!, 52, For the oracle estimators 11 ¥ ol 19 fork = 12 (op et 6 b (op tht, 1 o
these were taken as known, but now we turn to the realp.
world case where these must also be estimated. Since the
QL approach has performed uniformly better than HS for the i - oy -
oracle estimators we now only examine the three estimat@st {5~} is tr{S™'} and of t{S™*} is tr{S—"}. The MLE

OLa, QLb and QLP. is a strongly consistent estimatér [35, p. 129].

Now QLP involves only t S} and t{ $2} whereas QLaand e« To estimate tS} we use t{S} which by [4) is exactly
QLb involve t{S—!} and t{S~2}, which we would expect unbiased. o ) _
to be more problematic to estimate. « Our estimator for tfS%} is tr{S?} —(1/K)tr*{S}. Using

We recall thatS is the maximum likelihood estimator  (21) and [2R) we see that
(MLE) for S. By the invariance property of MLES[[2, p. 294] . 1 . 1
it follows that the MLE of t{ S} is tr{ S}, of tr{ 2} is tr{ 2}, E {tr{SQ} - EUQ{S}} = [1 - ﬁ] w{s*},



so the estimator is asymptotically unbiased fqiSttl.  A. Useful Expectations
« To estimate S~} we use [l — £]tr{S~'}. Result  The first three of the following results are given [ [22].

(23) shows this estimator is exactly unbiased (under thye third and fourth can be deduced froml[21, p. 308]. Let

assumption’ > p). A, B be arbitrary complex-valued matrices. Undér (3),
o Results[[24) and{25) together show that A
E{tt{ASBS}} = tr{ASBS}
2 “ N
[1 - %] r{§—21 - % [1 - % {81} (20) A +5tr{AS}tr{BS} (21)
E{tr’{S}} = tr*{S}+ Ltr{S?} (22)

. . oy . .
is gnblased for S~} Wlth K >p+ 1. However '[hIS. B{r{S§1}} = KL,Z)U{S_l} (23)
estimator was found by simulation to have a very high Al el
variance, with occasional negative values. Better resufidl{AS™'BS™'}} = ¢ [(K —pr{AS~'BS™'}
were obtained by estimatinggtﬁ‘z} using just the first +tr{AS ' Wr{BS'}] (24)
term of (20), namely[1 — £]” tr{S~2}, which is only B{r*{S™1}} = o [(K —ptr*{s~1}
asymptotically unbiased. +tr{S2)] (25)

These estimators of the trace terms were used in the thiggre [21) and{22) hold fok > p — 1, 3) holds forkK > p
estimators, now called QLa-est, QLb-est and QLP-est fgnq [22) and[(25) hold foK > p + 1. ¢; is given by
this full estimation situation. Repeating the simulatians K

Section[V-C for just the three estimators gave the results = )
in Fig. [@ and lines 6 to 8 of TablE I. For individual one (K =p)*— (K —p)
QLb-est performs best but at frequencies where the tr
partial coherence is high (2 and 3.25 Hz) it does poorly. _ _ ) )
is generally quite variable. QLP-est seems to deliver very!f # IS a_scalar,F(:c_) is anm x n matrix andG(z) is an
significant improvements over the raw estimates, and whilét< ¢ matrix, then [15, p. 301P(FG)/dx = F(0G/0x) +
generally slightly inferior to QLb-est, is relatively fragncy (OF/02)G. Also, [15, p. 304]0tr{F}/0x = tr{0F /dx}.
invariant and behaves better for high partial coherenéies. So,

ﬁ? Derivative of trace of squared matrix

individual two QLb-est slightly outperforms QLP-est, buith Ot{FG} ir {Fa_G n 6_FG}

do very well in this sparse case. QLa-est is generally ioferi ox o or  Ox

to the other two but appears relatively unaffected by spikes G OF

high true partial coherence. = {F%} +tr {G—x}
In closing, we note thaf(18) anf {19) involve onyand FYe P

S?% which are more accurately estimated than their inverses = tr{—F} +tr{—G},

which appear in QLa-est and QLb-est; this undoubtedly adds v *

greatly to the reliability and robustness of QLP-est. We al$0 if F = G,

note that with3, in the form given in [(IB) that there is a Otr{F?} OF OF

tr{S} in the denominator which is playing the role of &} o 2”{%1’} = 2”{F%}' (26)

in the previously accepted formulation df {16). Hence we

recommend QLP-est as our estimator of choice. C. Proof of Lemmé&]1l

From [@) the quadratic loss isRg.(S*(p),S) =

Sx Q—1 2
VIIl. CONCLUDING DISCUSSION E{tr{(§*S™" —1,)*}}. So

0 . 0 N
We have considered how to improve estimation of partial %RQL(S (p),S) = E{a—ptr{(s S - Ip)z}}-
coherencies from poorly-conditioned matrices. Our stualy c i - .
ried out exact simulations derived from real EEG data fo'® "OW use[(26) to find the derivative by setting
two individuals, one having large, and the other small,ighrt p — §*g-1 _— I,=[1- p)g + Btr{S}Ip]S” — I,
coherencies. When true partial coherencies are quite thege p
for shrinkage estimators of the diagonal weighting kind - foThen,

spectral matrices or precision matrices — minimizationisf r 5p ey 1 o

using QL leads to oracle partial coherence estimators impera—pF = <—SS + ];tr{S}S >

to HS equivalents. When true partial coherencies are simall t

methods behave similarly. For the full estimation (noneterp X <[(1 —-p)S+ Btr{S}Ip]S*1 — Ip)

case, QLP-est seems particularly robust and reliable aseiba p

on the results here is our recommended approach. = —(1-p)8S~1887 ! — ]ﬁitr{S}S‘S‘2 + 88571

(1-p) “1&g-1, P2 -2
—tr{S}SSS —tr{S1S
APPENDIX + P {5} +p2 {5}

1 —1
To simplify notation we drop explicit frequency dependence - ]—?tr{S}S :



Using [21), Next, (9/0p)Rus(S*(n, p), S) is given by(d/dp) E{tr{[(1—
p)S + npI, — S)*}} which is

A N 1
E{tr{S7'887'S}} = [tr{S7'SS'S}+ —tr*{S7'S - A
" o= WS SSESh RS S piean, - $)0 - )8 + ot - 1)
_ [p + %] | @7) — B{tr{2(1I, - §)[p(nI, - §) + S - S|}}
o o) = POl = SIS = 9)}} 5q)

Using [2T) we obtain po = Polo) = E{t{(nI, — 8)2}}
0 - _ oF The optimal shrinkage coefficient is dependent on the form of
a_pRQL(S (0),5) = E {2tr{ dp F}} the target matrix, namelyI,. Look first at the numerator,

say, of [29). Expanding gives

e alfpe 2] - Lusyus
= 2—|—2p][p+K} ptr{S}tr{S } a = B{tr{nS — 108 — S5 + §2}}.

P 2 -2 .
+2]§tr {S}r{S™7} + 2p. Now K S has the complex Wishart distribution with mean

KS. SinceE{S} = § the first two terms cancel. Using {22
setting the result to zero and tidying gives (s} 0f22)

we get
p <[p + ﬁ] - 2tlr{S’l}tr{S} + itrQ{S}tr{SQ}) _ a = —tr{S*} +tr{S?} + ltrz{S} = itrz{S}
K] p P? K - K K ‘
which gives the expressioh{10) for Expanding the denominatah, say, of [29) gives, withy, =
The second derivative is given by tr{S}/p,
0? p*] 4 ) b = E{tr{njI, — 2008 + S*}}
——Raor(8*(p),S) =2 |p+—=|— ~tr{SHr{S~
a7 oL (50, 8) {p K] P SIS = LS} - 2028} + (%) + tP(S)
2 p p
+StrP{Sr{S*}.
p? (SIS = {% - %] tr’{S} +tr{S?}.

We now write this as a quadratic in{t§}, i.e., asatr*{S} —

btr{S} + ¢, where The ratioa/b then has the forn{8) of (13).

For the QL loss, we have thaﬁ/an)RQL(S' (n,p),S) Is

2 _ 4 _ p? given by (9/0n)E{tr{[(1 — p)S + npI,]S~* — which
a:ﬁtr{s 2}; b:]—?tr{S 1}; C_Q[IH_E} i (0/0m) EX{tr{[( ) p] )}}
—1 Q —1
Next complete the square to obtdig/a tr{S} — b/[2\/a])” — E{tr{2pS™([(1 = p)S +npL,]S™" — 1)} }
b?/(4a) + c. This will be positive ifc — (b%/4a) is positive; = =20°tr{S7'} +2p? ntr{S7?},
i.e., = = tr{S7'}/tr{S?}. (30)
P2 tr2{S-1} . . A
2lpt 3|~ QW > 0. Here we have again usdd {26) in Apperldix B dnfiS} = S
This is very different in form to the scaling parameter|(28)
By Chebyshev's inequality we havep ZJ 1 J > under HS loss. Thertd/dp)Rqr(S*(n,p).S) is given by
2 _ -1 _ 2 i H
o )\j_l) ., where the);’s are eigenvalues ofS. So (0/0p)EA{[(1 = p)S +npL, ]S I,)°}} which is
p>tr2{S— 1 /tr{S—?}, and so B{tr{2(nI, — S)S™([(1 — p)S +npL,)S™" — I,)}}
2 27 g—1 = 2B{tr{p(n1, — 5)5_1(n1p - S)S_l
o lpa | oS o $5-1(§ 1
PTER] T " w{s 2 =K 7 +(nl, — 8)S7H(S — 5)S7'}},
which proves that the turning point is a minimum. where we have again uséd[26) in Apperldix B. Setting to zero
gives
D. Proof of Lemma&l2 po = po(mo) = E{tr{ (o1 _AS)SA(S - S)Asil}} ,
~ _ —1 _ -1
For the HS loss we have th&d/dn)Rus(S*(n, p), S) is E{r{ (T, = $)S~ (1, = 5)S }%31)

given by (9/0m) E{tr{[(1 — p)S + npI, — S|*}} which is | ook first at the numerator, say, of [31). Expanding gives
B{tr{2pI,[(1 — p)S +npI, — S} = 2ptr{npl, — pS}  a=E{tr{neS ' — 1S 165! — S5~ + §S-1§S1}}.

_ 902 X
= 2p"(np — r{S}), Again, we use thaf’S has the complex Wishart distribution

where we have used(26) in Appendix B af{S} = S. with meanlgS._SinceE{S‘} = S the first two terms cancel.
Then setting to zero gives ThenE{tr{SS~'}} =tr{L,} =p.
From [27) we know thatE{tr{SS~'SS~'}} = (p +
1o = tr{S}/p. (28) (p*/K)). Soa=—p+(p+ (p*/K)) =p*/K.



Expanding the denominatdr,say, of [31) gives F. Proof of Lemmal4
b= B{tr{nS 2 — oS 88 ' —ne§S 2+ 851651y, With C*(a, B) defined in [Ib) andR s (C*(a, B), C) we

(32) take
Then F=C*'S-S'=a8'S+8585-85".
tr2{S—1} L, tr2{S—1} 9 . , A
b = —————=tr{S°}-2———=+(p+ (p°/K)) Using [23) and[{24) we find tha®/0a)Rus(C*(a, 8), C)
tr2{S52} {52} is given by
_w{sTh 2
= e T E/K) 2 [acl[(K — p)r{S72} + tr2{S 1]
On tidying up the ratioa/b is of the form [1#). Thaty, po + pE{s 1 - KLtr{S—Q}}_ (33)
thus defined correspond to a minimum point is more easily P P
shown via the proof of Lemmid 3. Using [23) we find(9/98)Rus(C*(«, B),C) is given by
K g1 _ -1
E. Proof of Lemma&l3 2 [QK—Ptr{S b+ Bp —tr{S }} ’ (34)

Proceeding as before, and usingl(22), for the HS loss  Setting [3B) and[(34) to zero and solving the simultaneous
- ) equations givesay and 3y as stated in the lemma. The
(0/00)Rus(S* (o, B),8) = 2[aC + ptr{S} — tr{S?}]

> determinant of the Hessian (divided by 4) is
(0/08)Rus(8* (0, 5),8) = 2latr{S}+ Bp - tr{S}], (K = (S} + 0218 tr(S-1)

whereC' = tr{S§?}+(1/K)tr*{S}. Setting to zero and solving o= L {51} P ;
for 3 gives b 0,80
tr3(S} which is
Bo = = Po’o- 2
07 Kpt{S?} + [p— KJi2{s} " §=c1p[(K — p)tr{S™2} +tr*{S~1}] — [K%p} tr2{S—11.
Similarly, for o,
imilarly, for o Now ptr{S—2} > tr’{S~!}, so
o — ptr{S*} —tr*{S} -1 2
O (S} + L2 {sy —u{sy ™ 5> ci(K —ptr’{S™'} + eiptr’ {71} - [Ki_p} tr2{S§~1}
. : . 5
For the(;jeternzl‘;z}mt of the Hessian matrix we have _ (clK _ [%} ) r2{s—1}
tr p
4 = 4ptr{S?} —4[1 — —]tr*{S}.
tr{S} @o,B0 P { } [ K] { } = ( pKQ(K _p) + K? ) trQ{S_l} >0
(K —p)t = (K —p)? ’

This is positive if ptr{S?} > [1 — Z]r*{S}, ie,p > . » _ _
[1- %]trz{S}/tr{SQ}, since t{.S2} > 0. But by Chebyshev’s sinceK > p+1. Combining the positive determinant with the
inequality we know thap > tr2{ S} /tr{$2}, and so we know fact that(9?/95*)Rus(C*(a, 8),C) = 2p > 0 we see that
thatp > [1 — £]tr*{S}/tr{S?}, as required. Furthermore, the turning point is indeed a minimum.

(82/0B*)Rus(S*(a, B), S) e 2p >0, G. Proof of Lemma&ls
and so we can conclude that the solution is a minimum. Ft%rll/gith C*(a, §) defined in [(15) andRor (C*(a, §), C) we

theQLIOSS, ) 1 F:é*S—Ip:aS_IS+ﬁS—Ip.

(0/00)Rer(S* (. B),S) = 2[aD + Btr{S~ '} —p| _ _ .
. P d bef find that/0a)Ror (C* (o, B), C
(0/08)Rqr(8*(a, B),S) = 2[atr{S™'} + ptr{S~%} is“;‘i;e:n '&? s fefore we find tHg0e)Rqz (C*(,), €)

2tr{S—1}], . . R .
{ H 2[aE{tr{S‘1SS‘ls}}JrBE{tr{S‘lS?}}—E{tr{S‘ls}}].
whereD = p[1 K)]. For the determinant of the Hessian
matrix PlL+ (/)] SettingA = B = S in (24),
2
D tr{S~'} _ -2 27 q-1 E{tr{S~'S§7'S}} = K pE _ K ¢,
Hrgs—1y wis—2 aobo ST — ST " i K-p(K-p?-1 K-p

wherec = pK?2/[(K — p)? — 1]. Next we use the result that

e TR 2rq—1 -2 ; -2 |
This is positive if D > tr?{S—'}/tr{ S}, since t{S—2} > E{§-1} = (K/(K — p))S-!, which means that

0. We know from Chebyshev's inequality thap >
tr2{S—1}/tr{S72}, sop[l + (p/K)] > tr*{S—1}/tr{S2}.
Also we note that K—»p

(82/8a2)RQL(S’*(a,B), S) —2D >0, Putting results together we see that

ag,fBo
) . K
and so we can conclude that the solution is a minimum. %RQL(C (o, 8),C) = 25 [ac + Btr{S} —p].

Kp
K—-p

E{tr{57'8%}} = tr{S} andE{tr{$~S}} =




Next, (3/9B8)RqL(C*(a, B),C) is given by
2AaE{tr{SS™18}} + BE{tr{S?}} — E{tr{S}}]
tr{S} + Btr{S*} — tr{S}].

[12]

22
= «
K—p
Setting both partial derivatives to zero and removing camist
multipliers gives the simultaneous equations
ac+ ptr{S} —p

tr{S} + ptr{S?*} — tr{S}

[14]
[15]

(35)
(36)

[16]

0
aK > = 0
Multiply (BB) by Ktr{S}/(K — p) and [38) byc. Subtracting,
with ¢ = cop, gives 3 in (@8) and [(IP). Multiply [3b) by
tr{S?} and [36) by tfS}. Subtracting, givesy, in (I8) and
19).

The determinant of the Hessian (divided by 4) is

[17]

(18]

K K { } [19]
Ko’ RIS =K 1r{82} — K _tr2{Q}].
Aulsy w{s?) RS - g5SH

@0,050

The term in the square bracket on the right-side can be
rewritten as [21]

__ K e K

K- 1tr{S } e _ptr {S}
We know thatptr{ S} > tr2{S}, so [37) will be positive if [23]
K?/[(K —p)*>—1]—K/(K —p) > 0. This term can be written
as[Kp(K —p) + K]/[(K —p)® — (K — p)] > 0 since we are [24]
assumingk’ > p+1. Combining the positive determinant with
the fact that(9®/08%)Rqr(C*(a, B), C) = 2tr{S?} > 0 we [,
see that the turning point is indeed a minimum.

@7
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