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Abstract—Partial coherence is an important quantity derived
from spectral or precision matrices and is used in seismology,
meteorology, oceanography, neuroscience and elsewhere. If the
number of complex degrees of freedom only slightly exceeds
the dimension of the multivariate stationary time series, spectral
matrices are poorly conditioned and shrinkage techniques suggest
themselves. When true partial coherencies are quite large then
for shrinkage estimators of the diagonal weighting kind it is
shown empirically that the minimization of risk using quadratic
loss (QL) leads to oracle partial coherence estimators superior
to those derived by minimizing risk using Hilbert-Schmidt (HS)
loss. When true partial coherencies are small the methods behave
similarly. We derive two new QL estimators for spectral matrices,
and new QL and HS estimators for precision matrices. In addi-
tion for the full estimation (non-oracle) case where certain trace
expressions must also be estimated, we examine the behaviour of
three different QL estimators, the precision matrix one seeming
particularly robust and reliable. For the empirical study w e
carry out exact simulations derived from real EEG data for
two individuals, one having large, and the other small, partial
coherencies. This ensures our study covers cases of real-world
relevance.

Index Terms—partial coherence, quadratic loss, shrinkage,
precision matrix, spectral matrix.

I. I NTRODUCTION

Consider ap-vector-valued (or multivariate) stationary time
series {Xt} where Xt = [X1,t, . . . , Xp,t]

T ∈ Rp, t ∈
Z, and T denotes transposition. Without loss of generality
we assume{Xt} to have a zero mean. Denote the sam-
ple interval by ∆t. One very important quantity derived
from vector-valued time series is the partial coherence be-
tween different series. LetS(f) denote the spectral ma-
trix of {Xt} at frequencyf, assumed to exist and be of

full rank. With sτ
def
= cov{Xt+τ ,Xt} = E{Xt+τX

T
t }, we

have S(f)
def
=∆t

∑∞
τ=−∞ sτ e

−i2πfτ ∆t . Denote the(j, k)th

element of the precision matrixC(f)
def
=S−1(f) by Cjk(f).

The partial coherence between seriesj andk can be expressed
as, (e.g., [6]),γ2

jk•{\jk}(f) = |Cjk(f)|2/[Cjj(f)Ckk(f)],
and is the frequency domain squared correlation coefficient
between seriesj andk after the removal of the linear effects
of the remaining series,the remaining series being denoted
by {\jk}. This characteristic has led to partial coherence
being used widely in the physical sciences, e.g., in seismology
[34], meteorology [11], oceanography [18] and extensivelyin
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neuroscience [10], [19], [25], [28], [23]. Clearly to calculate
the partial coherencies we can estimateS(f) as Ŝ(f), and
invert it, or we can estimateC(f) directly.

Consider an estimator̂S(f), of S(f). An estimator may be
computed by a multitaper scheme involvingK tapers (e.g.,
[26]). (Throughout this paper we assumeK ≥ p so that
the spectral matrix is non-singular with probability one.)The
spectral matrices will be non-singular but poorly conditioned if
K is only a little larger thanp. The derived partial coherencies
will reflect this ill-conditioning. This study was motivated
by exactly this problem in a neuroscience setting. Due to
required low-pass filtering only a small frequency range was
available for analysis andK was necessarily kept small —
see Section III.K cannot be simply increased because of
its connection to the implied smoothing bandwidth: ifK
is made larger, the required resolution may be lost. (Other
estimators such as periodograms smoothed over frequencies
have analogous properties.)

Can the mean-square errors of the resulting estimated partial
coherencies be reduced? Such a reduction would be very
useful: for example, the estimated partial mutual information
obtained from the estimated partial coherencies are used inde-
termining brain functional connectivity [28] so that increased
precision is scientifically well worthwhile. An obvious ap-
proach is to use covariance shrinkage methodology, a subject
with a large literature, see e.g., [8], [14], [30], [29], [9], [5].

Ledoit and Wolf (LW) [20] derived ideal shrinkage estima-
tors which are a combination of the standard covariance matrix
and a target matrix proportional to the identity; such diagonal
up-weighting has a long history [1] and we concentrate on
this estimator class in this paper. LW minimize a risk measure
— defined in terms of Hilbert-Schmidt (HS) or Frobenius
loss — between the true and estimated covariance matrices.
The ideal parameter value for shrinkinĝS(f) is easily esti-
mated. While convenient mathematically, Daniels and Kass [7,
p. 1174] noted that use of the HS loss function can result in
“overshrinkage of the eigenvalues, especially the small ones.”
As we shall see, this warning is well-founded in terms of
the estimation of partial coherencies: the LW estimator for
shrinking Ŝ(f) wipes out large partial coherencies. In this
paper we study alternatives to the LW-type estimator based on
using the quadratic loss (QL) [16] rather than HS loss. QL was
exploited [17] in shrinkage estimation for large dimensional
covariance matrices but concentrating on singular estimators,
with quite different estimators to those considered here.

We also look at estimating the precision matrix directly,
rather than first inverting the estimated spectral matrix. [33]
used QL for precision matrix shrinkage in the context of large
dimensional covariance matrices and derived estimators via
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random matrix theory. Here, we address this problem without
requiring large dimensionality, and without recourse to ran-
dom matrix theory. A weighted combination of the estimated
inverse covariance matrix and the identity was considered by
[8], [13], and forms the basis for our approach, using both the
HS and QL losses.

Our simulations are based on real electroencephalogram
(EEG) time series data(p = 10), which in fact motivated this
study. Both large and small partial coherencies are present
and the data is perfect for demonstrating the behaviour of
the various estimators. The simulations use the exact circulant
embedding methodology for vector-valued time series [4].

A. Contributions

Following some background on spectral estimation and the
EEG data, the contributions of this paper are:

1) We derive two shrinkage estimators, QLa and QLb, for
Ŝ(f) under QL loss in closed form. One involves just
a single shrinkage parameter, while the other has two
parameters.

2) The resulting oracle estimates of partial coherencies
are compared to those from the LW scheme in terms
of the percentage relative improvement in squared er-
ror over that of the raw estimator. The LW scheme
shrinks partial coherencies towards zero in a manner
that renders it unreliable in practice when any significant
magnitude partial coherencies are present. The QL-based
approaches perform much more robustly.

3) We next develop two-parameter shrinkage estima-
tors, HSP and QLP, for the spectral precision matrix

C(f)
def
=S−1(f) under both HS and QL loss, respec-

tively, both in closed form. The resulting oracle esti-
mates of partial coherencies are compared to each other
and to those of the other shrinkage estimators discussed
above.

4) As a result of 3. above, QLa, QLb and QLP estimators
are further considered in the real-world — non-oracle —
setting where the trace terms have also to be estimated
and thence renamed QLa-est, QLb-est and QLP-est. It is
found that QLP-est behaves in a very appealing robust
way for both high and low true coherencies and is
recommended as our preferred shrinkage method.

Section II discusses the background spectral estimation,
while Section III outlines the necessary preprocessing of the
EEG data and our simulation from it, showing the different
partial coherence profiles for two individuals utilised in this
work. Section IV introduces our two new QL-based shrinkage
estimators for the spectral matrix. The standard HS-based
shrinkage estimator is contrasted with the new QL-based
estimators in Section V in terms of eigenvalue adjustment,
shrinkage parameters and accuracy in estimating the partial
coherencies. New QL and HS estimators for precision matrices
are derived in Section VI and the resultant partial coherence
estimation is analysed. Since the QL approach has outper-
formed HS for the oracle estimators only the three estimators
QLa, QLb and QLP are examined in Section VII where the
full (non-oracle) estimators are examined, leading to QLP-est

being our recommended approach. Detailed derivations of all
our new estimators are given in the Appendix.

II. SPECTRAL MATRIX ESTIMATION

A. Multitapering

We make use of a set ofK ≥ p orthonormal tapers
{hk,t}, k = 0, . . . ,K − 1. A simple set are the sine tapers
[27]. The elements of thekth sinusoidal taper, are given by

hk,t =

[

2

N + 1

]1/2

sin

[

(k + 1)π(t+ 1)

N + 1

]

, t = 0, . . . , N−1.

For t = 0, . . . , N−1, form the producthk,tXt of thetth com-
ponent of thekth taper with thetth component of thep-vector-
valued process, and fork = 0, . . . ,K − 1 compute the vec-

tor Fourier transformJk(f)
def
=∆

1/2
t

∑N−1
t=0 hk,tXt e

−i2πft∆t .
Let J(f) be the p × K matrix defined by J(f) =

[J0(f), . . . ,JK−1(f)]. Then with Ŝk(f)
def
=Jk(f)J

H
k (f)the

multitaper estimator of thep× p spectral matrixS(f) is

Ŝ(f) =
1

K

K−1
∑

k=0

Ŝk(f) =
1

K
J(f)JH(f). (1)

Letting B denote the bandwidth of the spectral window
corresponding to the tapering, thenJk(f), k = 0, . . . ,K − 1,
may be taken to be independently and identically distributed
as p-vector-valued complex Gaussian with mean zero and
covariance matrixS(f) :

Jk(f)
d
= NC

p {0,S(f)}, (2)

for B/2 < |f | < fN − B/2 for finite N and Gaussian
processes, or0 < |f | < fN asymptotically [3]. The bandwidth
B for sine tapers is given byB = (K+1)/[(N+1)∆t], (e.g.,
[31]). The choice ofK is therefore linked to the bandwidth
chosen for the spectral window. It is assumed to have been
chosen narrow enough to ensure the components ofS(f) are
essentially constant across it.̂S(f) in (1) is the maximum-
likelihood estimator forS(f), [12].

Given (2), and withK ≥ p, KŜ(f) has the complex
Wishart distribution with meanKS(f), written as

KŜ(f)
d
= WC

p {K,S(f)}. (3)

Therefore,

E{Ŝ(f)}= S(f) and E{tr{Ŝ}} = tr{S}, (4)

two simple results which will be made use of. Other properties
following from (3) will be introduced where appropriate.

III. A PPLICATION TO EEG DATA

We shall illustrate the methodology via data simulated from
real electroencephalogram (EEG) data, (resting conditions
with eyes closed), [24].
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A. Preprocessing

Real EEG signals were recorded on the scalp at10 sites,
using a bandpass filter of 0.5–45Hz and sample interval of
∆t = 0.01s. The recorded data{Xt} is thus ap = 10 vector-
valued process, with Nyquist frequency 50Hz. To fully remove
any influence of the highly dominant and contaminating 10Hz
alpha rhythm, which would otherwise cause severe spectral
leakage, a 4.6Hz low-pass filter was applied, followed by
resampling to a sample interval of∆t = 0.05s giving a new
Nyquist frequency offN = 10Hz. After this downsampling
each channel of data hadN = 1024 time series values. The
interesting EEG delta frequency range,0.5 < f ≤ 4 Hz [24]
should be reliably represented after this preprocessing.

B. Simulation Strategy

From this 10-channel series the spectral matrixS(f) was
estimated asS0(f), say, for|f | ≤ fN . Using the vector-valued
circulant embedding approach, [4], a large number,M say, of
independent Gaussian 10-channel time series were computed,
each havingS0(f), |f | ≤ fN , as its true spectral matrix. For
each of these time series the estimated spectral matrixŜ(f)
was computed using multitaper estimation with some specified
numberK of sine tapers. TheseM independent estimates of
S0(f) can then be used to deduce various sampling properties
for quantities derived from̂S(f). As mentioned in the Intro-
duction, we will look at cases whereK just exceedsp, so that
ill-conditioning is present.

There arep(p−1)/2 = 45 partial coherencies as a function
of frequency in this case. Fig. 1 shows the first 9 partial
coherency plots (j = 1, k = 2 : 10) for individual 1 calculated
from S0(f). These will be referred to as the true partial
coherencies (that we are trying to estimate from the simulated
data). We can see that there is a good range of values from
nearly zero up to around 0.8. We shall also look at true partial
coherencies for individual 2 who has most partial coherencies
close to zero (the ‘sparse’ case) — see Fig. 2. The two cases
are summarized in Fig. 3 which shows that for individual one
there are ‘spikes’ of high true partial coherence around 2 and
3.25 Hz. These will be significant for our partial coherence
estimators.

Unless stated otherwise, results apply to individual 1.

IV. SHRINKING THE SPECTRAL MATRIX

A. Conventional Approach

The conventional approach to ‘covariance matrix’ regu-
larization which has been extensively studied involves the
forming of a convex combination of the sample covariance
matrix and some well-conditioned ‘target’ matrix. For an
estimatedp × p Hermitian spectral matrixŜ(f) this would
take the formS⋆(ρ(f)) = (1−ρ(f))Ŝ(f)+ρ(f)T (f), where
ρ(f) ∈ (0, 1) is known as the shrinkage parameter andT̂ (f)
is the target matrix. Provided̂S(f) andT̂ (f) are both positive
definite, then this convex combination will itself be positive
definite.

For notational brevity we shall drop the explicit frequency
dependence in most of what follows.
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Fig. 1. The first 9 partial coherency plots (j = 1, k = 2 : 10) for individual
one, found from the known matrixS0(f).
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Fig. 2. The first 9 partial coherency plots (j = 1, k = 2 : 10) for individual
two, found from the known matrixS0(f).

The shrinkage coefficientρ is set such that it minimizes a
risk criterion for some given lossL, say, ofŜ⋆(ρ) to the true
matrix S :

ρ0 = argmin
ρ∈(0,1)

RL(Ŝ
⋆(ρ),S). (5)

B. Hilbert-Schmidt loss

A common choice is the Hilbert-Schmidt (HS) loss where,
with L = HS

RHS(Ŝ
⋆(ρ),S)

def
= E{tr{(Ŝ⋆(ρ)− S)2}}
= E{||S⋆(ρ)− S||2F}, (6)

where, forA ∈ Cp×p, ||A||F denotes the Frobenius norm
||A||F = [tr{AAH}]1/2, tr{·} denotes trace, andH denotes
complex-conjugate (Hermitian) transpose.

Using (5) and (6) the target matrix was chosen to be of
the formT = (tr{S}/p)Ip in [20] (for real-valued covariance
matrices) so that

S
⋆(ρ) = (1− ρ)Ŝ + ρ

tr{S}
p

Ip. (7)

For the ill-conditioned case (p < K, p ≃ K) the estimator
diagonally loads the initial matrix̂S and increases the zero or
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Fig. 3. Averaged true partial coherencies for (a) individual one, and (b)
individual two, (averaging over all pairs(j, k), 1 ≤ j < k ≤ p).

near-zero eigenvalues. For this choice the solution to (5) and
(6) is (e.g. [32, eq. 9]),

ρ0 =

[

1− K

p
+K

tr{S2}
tr2{S}

]−1

. (8)

C. Quadratic Loss

One alternative choice of loss criterion is the quadratic loss
function:

RQL(Ŝ
⋆(ρ),S) = E{tr{(Ŝ⋆(ρ)S−1 − Ip)

2}}. (9)

Lemma 1. WithS⋆(ρ) defined as in (7) the form ofρ0 solving
(5) and (9) is

p2

(Kp+ p2)− 2
p2

[

Kp tr{S−1}tr{S} − K
2 tr2{S}tr{S−2}

] .

(10)

Proof. This is given in AppendixC.

For easy identification we shall call this the QLa method.

D. Generalization

The shrinkage concept can be extended to shrinkage esti-
mators with generalised scaled identity targets,

Ŝ
⋆(η, ρ) = (1− ρ)Ŝ + ρ η Ip, η > 0, ρ ∈ (0, 1) (11)

with the optimum shrinkage(ρ0) and scaling parameter values
(η0) given by

(η0, ρ0) = argmin
η>0, ρ∈(0,1)

RL(Ŝ
⋆(η, ρ),S), (12)

for any convex loss criterionL.
Lemma 2. The solutions of (12) for both the HS and QL
losses are

(η0, ρ0)HS =

(

tr{S}
p

,

[

1− K

p
+K

tr{S2}
tr2{S}

]−1
)

, (13)

(η0, ρ0)QL =

(

tr{S−1}
tr{S−2} ,

[

1 +
K

p
− Ktr2{S−1}

p2tr{S−2}

]−1
)

. (14)

Proof. This is given in Appendix D.

Remark 1. We see that the choice of targetT = (tr{S}/p)Ip
is identical to η0 under the HS loss, i.e., the scaling factor
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Fig. 4. Average eigenvalue adjustment for frequenciesf = 0.85Hz (left
column) and3.85Hz (right column). The first row is for the HS method, the
second for QLa and the third for QLb.K = 12 here.
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Fig. 5. Oracle value ofρ(f) for HS (dashed line) and QLa (thick line) for
frequencies 0.55 to 4.05 in steps of 0.1.

(tr{S}/p) is an optimal choice under the HS loss for shrink-
age model (11). Since the targets are then the same the form
of ρ0 was already known from (8).

We shall call the method defined by (13) the HS method.
We also call the method defined by (14) the QLb method.

In deriving the optimal forms ofη0 andρ0 (AppendixD), we
note that the form ofη0 for both losses arises independently
of ρ0. This leads to the following result.

Lemma 3. If we reparameterize the shrinkage model in (11)
to Ŝ

⋆(α, β) = α Ŝ+β Ip, α, β > 0, it follows that(α0, β0)
defined by(α0, β0) = argmin

α,β>0
RL(Ŝ

⋆(α, β),S), are given by

(α0, β0)HS or QL = ((1 − ρ0), ρ0η0)HS or QL.

Proof. See Appendix E.
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V. EXAMPLE ORACLE BEHAVIOUR

The above oracle solutions require exact knowledge of the
true spectral matrix. Before looking at estimation methods, we
examine some aspects of the oracle solutions.

A. Transformation of Eigenvalues

Minimizing the HS and QL risks effectively transforms the
raw eigenvalues of̂S. Fig. 4 shows the transformation of the
p = 10 eigenvalues for HS, QLa and QLb at frequencies
0.8Hz and 3.85Hz. Both the initial and adjusted eigenvalues
shown are averages, following sorting, over theM = 500
simulations of Ŝ. The main feature, which is persistent at
other frequencies and data sets, is that the HS method leads
to a large increase in the small eigenvalues and a very small
decrease in the larger eigenvalues. The QLa method increases
only the smallest eigenvalues by a small amount, and barely
changes the large ones. The QLb method increases the small
eigenvalues more than QLa but much less so than HS and
decreaseses the larger eigenvalues by a larger amount than HS.
Such behaviour will have a significant effect in the estimation
of partial coherencies.

B. Shrinkage Parameters

For methods HS and QLa the shrinkage parameterρ may
be compared directly as the model is the same in both
cases. Fig. 5 shows the the oracle shrinkage parameters. From
Fig. 4(a),(b) and (c),(d) we are not surprised to see that the
shrinkage parameter is orders of magnitude larger for HS than
for QLa. For QLa it varies between around10−3 to 10−2 while
for HS it is around 0.25.

C. Partial coherence

The 45 partial coherencies at each frequency can be
quite variable in size from near zero to near unity. Let
γ̂2
jk•{\jk}(m; fl) denote the estimate – by any method – of

the partial coherence at frequencyfl and replication numberm
wherem = 1, . . . ,M. To measure the quality of the estimates
of partial coherencies we firstly calculated the sum of squared
errors over all pairs(j, k), 1 ≤ j < k ≤ p :

E(m; fl) =
∑

j,k

[

γ̂2
jk•{\jk}(m; fl)− γ2

jk•{\jk}(fl)
]2

.

We then averaged these over replications to getĒ(fl) =
(1/M)

∑M
m=1 E(m; fl). Finally a percentage relative improve-

ment in squared error (PRISE) was computed as

PRISE(fl) = 100

[ ĒB(fl)− ĒM (fl)

ĒB(fl)

]

%,

where ĒB(f) denotes the average summed squared errors of
the raw or basic estimate, and̄EM (f) denotes the same for
any of the HS, QLa or QLb shrinkage methods.

We are thus able to determine the improvement in
using any of the three shrinkage methods over using
just the raw estimates. Results are shown in Fig. 6
with results at frequencies0.55 to 4.05 in steps of
0.1. These are oracle results: the known quantities
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Fig. 6. Oracle PRISE with partial coherencies derived from spectral matrices.
HS (dash-dot line), QLa (thick line) and QLb (thin line) forK = 12 (top
left), K = 14 (top right), K = 16 (bottom left), all for individual one, and
K = 12 (bottom right) for individual two.

method individual one individual two
K = 12 K = 14 K = 16 K = 12

HS 31 -17 -66 87
QLa 41 27 20 89
QLb 68 51 37 91

HSP 27 7 -7 82
QLP 52 32 23 85

QLa-est 26 18 13 66
QLb-est 65 49 34 87
QLP-est 52 34 25 84

TABLE I
AVERAGE PRISE(%) OVER FREQUENCIES.

tr{S0(f)}, tr{S2
0(f)}, tr{S−1

0 (f)}, tr{S−2
0 (f)} have been

used in the various estimators.
We also averaged the PRISEs over the frequencies to obtain

Table I. Looking at the top three rows for individual one, we
see that the HS method does very poorly, being worse than
using the raw estimates. QLb generally does well but is very
variable (Fig. 6) and rather unpredictable with frequency.QLa
seems to behave very nicely giving a fairly frequency-constant
improvement over using the raw estimates. In the sparse non-
null partial coherence case of patient two, all methods do well.

VI. SHRINKING THE PRECISION MATRIX

Since the partial coherence is derived from the precision
matrix C(f) = S−1(f) we can also consider shrinkage for
this matrix. A possible approach is to take

Ĉ
⋆(α, β) = α Ŝ

−1 + β Ip, α, β > 0. (15)

Such a model appears in [8] and [13] with the slight modifi-
cation that the right side takes the form

α Ŝ
−1 + β/tr{Ŝ}Ip. (16)
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Lemma 4. Under the model (15), the HS risk
RHS(Ĉ

⋆(α, β),C) = E{tr{(Ĉ⋆(α, β) − S−1)2}} is
minimized, forK > p+ 1, by

α0 =
1

D

[

p
tr{S−2}
tr2{S−1} − 1

]

(17)

β0 =
c3 tr{S−1}

D

[

tr{S−2}
tr2{S−1} + (K − p)

]

,

where

c3 =
K

(K − p)3 − (K − p)

D =

[

c3p(K − p)2
tr{S−2}
tr2{S−1} + c3p(K − p)− K

(K − p)

]

.

Proof. See Appendix F.

We shall call this the HSP method.

Lemma 5. Under the model (15), the QL risk
RQL(Ĉ

⋆(α, β),C) = E{tr{(Ĉ⋆(α, β)S − Ip)
2}} is

minimized, forK > p+ 1, by

α0 =
1

D

[

p
tr{S2}
tr2{S} − 1

]

; β0 =
p

D tr{S}

[

c0 −
K

K − p

]

(18)
where

c0 =
K2

(K − p)2 − 1
; D =

[

c0p
tr{S2}
tr2{S} − K

K − p

]

. (19)

Proof. See Appendix G.

We shall call this the QLP method.

Remark 2. We note that the numerator ofα0 in (17) is
essentially theU -statistic for testing for sphericity ofC and
in (18) for testing for sphericity ofS.

Repeating the simulations in Section V-C using the oracle
estimatesĈ⋆(α0, β0) for the precision matrices, and hence the
partial coherencies, gave the results in Fig. 7 and lines 4 and 5
of Table I. We see that HSP and HS are comparable for patient
one forK = 12 but forK = 14 and16, HSP does better. For
individual two HSP is slightly worse than HS whenK = 12.
QLP performs much better than HSP, and for individual one
performs intermediate to QLa and QLb.

VII. F ULL (NON-ORACLE) ESTIMATION

Each of the estimators we have derived involve the traces
of some subset ofS,S2,S−1,S−2. For the oracle estimators
these were taken as known, but now we turn to the real-
world case where these must also be estimated. Since the
QL approach has performed uniformly better than HS for the
oracle estimators we now only examine the three estimators
QLa, QLb and QLP.

Now QLP involves only tr{S} and tr{S2} whereas QLa and
QLb involve tr{S−1} and tr{S−2}, which we would expect
to be more problematic to estimate.

We recall that Ŝ is the maximum likelihood estimator
(MLE) for S. By the invariance property of MLEs [2, p. 294]
it follows that the MLE of tr{S} is tr{Ŝ}, of tr{S2} is tr{Ŝ2},
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Fig. 7. Oracle PRISE with partial coherencies derived from precision
matrices. HSP (dash-dot line) and QLP (line with bold dots) for K = 12
(top left), K = 14 (top right),K = 16 (bottom left), all for individual one,
andK = 12 (bottom right) for individual two.
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Fig. 8. PRISE with partial coherencies derived from fully estimated spectral
or precision matrices. QLa-est (thick line), QLb-est (thinline) and QLP-est
(line with bold dots) forK = 12 (top left), K = 14 (top right), K = 16
(bottom left), all for individual one, andK = 12 (bottom right) for individual
two.

of tr{S−1} is tr{Ŝ−1} and of tr{S−2} is tr{Ŝ−2}. The MLE
is a strongly consistent estimator [35, p. 129].

• To estimate tr{S} we use tr{Ŝ} which by (4) is exactly
unbiased.

• Our estimator for tr{S2} is tr{Ŝ2}−(1/K)tr2{Ŝ}. Using
(21) and (22) we see that

E

{

tr{Ŝ2} − 1

K
tr2{Ŝ}

}

=

[

1− 1

K2

]

tr{S2},
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so the estimator is asymptotically unbiased for tr{S2}.
• To estimate tr{S−1} we use

[

1− p
K

]

tr{Ŝ−1}. Result
(23) shows this estimator is exactly unbiased (under the
assumptionK > p).

• Results (24) and (25) together show that

[

1− p

K

]2

tr{Ŝ−2} − 1

K

[

1− p

K

]

tr2{Ŝ−1} (20)

is unbiased for tr{S−2} with K > p + 1. However this
estimator was found by simulation to have a very high
variance, with occasional negative values. Better results
were obtained by estimating tr{S−2} using just the first
term of (20), namely

[

1− p
K

]2
tr{Ŝ−2}, which is only

asymptotically unbiased.

These estimators of the trace terms were used in the three
estimators, now called QLa-est, QLb-est and QLP-est for
this full estimation situation. Repeating the simulationsin
Section V-C for just the three estimators gave the results
in Fig. 8 and lines 6 to 8 of Table I. For individual one
QLb-est performs best but at frequencies where the true
partial coherence is high (2 and 3.25 Hz) it does poorly. It
is generally quite variable. QLP-est seems to deliver very
significant improvements over the raw estimates, and whilst
generally slightly inferior to QLb-est, is relatively frequency
invariant and behaves better for high partial coherencies.For
individual two QLb-est slightly outperforms QLP-est, but both
do very well in this sparse case. QLa-est is generally inferior
to the other two but appears relatively unaffected by spikesof
high true partial coherence.

In closing, we note that (18) and (19) involve onlyS and
S2 which are more accurately estimated than their inverses
which appear in QLa-est and QLb-est; this undoubtedly adds
greatly to the reliability and robustness of QLP-est. We also
note that withβ0 in the form given in (18) that there is a
tr{S} in the denominator which is playing the role of tr{Ŝ}
in the previously accepted formulation of (16). Hence we
recommend QLP-est as our estimator of choice.

VIII. C ONCLUDING DISCUSSION

We have considered how to improve estimation of partial
coherencies from poorly-conditioned matrices. Our study car-
ried out exact simulations derived from real EEG data for
two individuals, one having large, and the other small, partial
coherencies. When true partial coherencies are quite largethen
for shrinkage estimators of the diagonal weighting kind — for
spectral matrices or precision matrices — minimization of risk
using QL leads to oracle partial coherence estimators superior
to HS equivalents. When true partial coherencies are small the
methods behave similarly. For the full estimation (non-oracle)
case, QLP-est seems particularly robust and reliable and based
on the results here is our recommended approach.

APPENDIX

To simplify notation we drop explicit frequency dependence.

A. Useful Expectations

The first three of the following results are given in [22].
The third and fourth can be deduced from [21, p. 308]. Let
A,B be arbitrary complex-valued matrices. Under (3),

E{tr{AŜBŜ}} = tr{ASBS}
+ 1

K tr{AS}tr{BS} (21)

E{tr2{Ŝ}} = tr2{S}+ 1
K tr{S2} (22)

E{tr{Ŝ−1}} = K
K−p tr{S−1} (23)

E{tr{AŜ
−1

BŜ
−1}} = c1

[

(K − p)tr{AS
−1

BS
−1}

+ tr{AS
−1}tr{BS

−1}] (24)

E{tr2{Ŝ−1}} = c1
[

(K − p)tr2{S−1}
+ tr{S−2}]. (25)

Here (21) and (22) hold forK > p− 1, (23) holds forK > p
and (24) and (25) hold forK > p+ 1. c1 is given by

c1 =
K2

(K − p)3 − (K − p)
.

B. Derivative of trace of squared matrix

If x is a scalar,F (x) is anm × n matrix andG(x) is an
n× q matrix, then [15, p. 301]∂(FG)/∂x = F (∂G/∂x) +
(∂F /∂x)G. Also, [15, p. 304]∂ tr{F }/∂x = tr {∂F /∂x} .
So,

∂ tr{FG}
∂x

= tr

{

F
∂G

∂x
+

∂F

∂x
G

}

= tr

{

F
∂G

∂x

}

+ tr

{

G
∂F

∂x

}

= tr

{

∂G

∂x
F

}

+ tr

{

∂F

∂x
G

}

,

so if F = G,

∂ tr{F 2}
∂x

= 2 tr

{

∂F

∂x
F

}

= 2 tr

{

F
∂F

∂x

}

. (26)

C. Proof of Lemma 1

From (9) the quadratic loss isRQL(Ŝ
⋆(ρ),S) =

E{tr{(Ŝ⋆S−1 − Ip)
2}}. So

∂

∂ρ
RQL(Ŝ

⋆(ρ),S) = E

{

∂

∂ρ
tr{(Ŝ⋆

S
−1 − Ip)

2}
}

.

We now use (26) to find the derivative by setting

F = Ŝ
⋆
S

−1 − Ip = [(1− ρ)Ŝ +
ρ

p
tr{S}Ip]S−1 − Ip.

Then,

∂F

∂ρ
F =

(

−ŜS
−1 +

1

p
tr{S}S−1

)

×
(

[(1− ρ)Ŝ +
ρ

p
tr{S}Ip]S−1 − Ip

)

= −(1− ρ)ŜS−1
ŜS

−1 − ρ

p
tr{S}ŜS−2 + ŜS

−1

+
(1 − ρ)

p
tr{S}S−1

ŜS
−1 +

ρ

p2
tr2{S}S−2

− 1

p
tr{S}S−1.
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Using (21),

E{tr{S−1
ŜS

−1
Ŝ}} = [tr{S−1

SS
−1

S}+ 1

K
tr2{S−1

S}]

=

[

p+
p2

K

]

. (27)

Using (27) we obtain

∂

∂ρ
RQL(Ŝ

⋆(ρ),S) = E

{

2 tr

{

∂F

∂ρ
F

}}

= [−2 + 2ρ]

[

p+
p2

K

]

− 4ρ

p
tr{S}tr{S−1}

+2
ρ

p2
tr2{S}tr{S−2}+ 2p.

setting the result to zero and tidying gives

ρ

([

p+
p2

K

]

− 2

p
tr{S−1}tr{S}+ 1

p2
tr2{S}tr{S−2}

)

=
p2

K

which gives the expression (10) forρ.
The second derivative is given by

∂2

∂ρ2
RQL(Ŝ

⋆(ρ),S) = 2

[

p+
p2

K

]

− 4

p
tr{S}tr{S−1}

+
2

p2
tr2{S}tr{S−2}.

We now write this as a quadratic in tr{S}, i.e., asa tr2{S}−
b tr{S}+ c, where

a =
2

p2
tr{S−2}; b =

4

p
tr{S−1}; c = 2

[

p+
p2

K

]

.

Next complete the square to obtain(
√
a tr{S} − b/[2

√
a])

2 −
b2/(4a) + c. This will be positive if c − (b2/4a) is positive;
i.e.,

2

[

p+
p2

K

]

− 2
tr2{S−1}
tr{S−2} > 0.

By Chebyshev’s inequality we havep
∑p

j=1 λ
−2
j ≥

(

∑p
j=1 λ

−1
j

)2

, where theλj ’s are eigenvalues ofS. So

p ≥ tr2{S−1}/tr{S−2}, and so

2

[

p+
p2

K

]

− 2
tr2{S−1}
tr{S−2} ≥ 2

p2

K
> 0,

which proves that the turning point is a minimum.

D. Proof of Lemma 2

For the HS loss we have that(∂/∂η)RHS(Ŝ
⋆(η, ρ),S) is

given by (∂/∂η)E{tr{[(1− ρ)Ŝ + ηρIp − S]2}} which is

E{tr{2ρIp[(1− ρ)Ŝ + ηρIp − S]}} = 2ρ tr{ηρIp − ρS}
= 2ρ2(ηp− tr{S}),

where we have used (26) in Appendix B andE{Ŝ} = S.
Then setting to zero gives

η0 = tr{S}/p. (28)

Next,(∂/∂ρ)RHS(Ŝ
⋆(η, ρ),S) is given by(∂/∂ρ)E{tr{[(1−

ρ)Ŝ + ηρIp − S]2}} which is

E{tr{2(ηIp − Ŝ)[(1− ρ)Ŝ + ηρIp − S]}}
= E{tr{2(ηIp − Ŝ)[ρ(ηIp − Ŝ) + Ŝ − S]}}

⇒ ρ0
def
= ρ0(η0) =

E{tr{(η0Ip − Ŝ)(S − Ŝ)}}
E{tr{(η0Ip − Ŝ)2}}

. (29)

The optimal shrinkage coefficient is dependent on the form of
the target matrix, namelyηIp. Look first at the numerator,a
say, of (29). Expanding gives

a = E{tr{η0S − η0Ŝ − ŜS + Ŝ
2}}.

Now KŜ has the complex Wishart distribution with mean
KS. SinceE{Ŝ} = S the first two terms cancel. Using (22)
we get

a = −tr{S2}+ tr{S2}+ 1

K
tr2{S} =

1

K
tr2{S}.

Expanding the denominator,b say, of (29) gives, withη0 =
tr{S}/p,

b = E{tr{η20Ip − 2η0Ŝ + Ŝ
2}}

=
1

p
tr2{S} − 2

p
tr2{S}+ tr{S2}+ 1

K
tr2{S}

=

[

1

K
− 1

p

]

tr2{S}+ tr{S2}.

The ratioa/b then has the form (8) or (13).
For the QL loss, we have that(∂/∂η)RQL(Ŝ

⋆(η, ρ),S) is
given by(∂/∂η)E{tr{[(1− ρ)Ŝ + ηρIp]S

−1 − Ip)
2}} which

is

E{tr{2ρS−1([(1− ρ)Ŝ + ηρIp]S
−1 − Ip)}}

= −2ρ2tr{S−1}+ 2ρ2 η tr{S−2},
⇒ η0 = tr{S−1}/tr{S−2}. (30)

Here we have again used (26) in Appendix B andE{Ŝ} = S.
This is very different in form to the scaling parameter (28)
under HS loss. Then(∂/∂ρ)RQL(Ŝ

⋆(η, ρ),S) is given by
(∂/∂ρ)E{tr{[(1− ρ)Ŝ + ηρIp]S

−1 − Ip)
2}} which is

E{tr{2(ηIp − Ŝ)S−1([(1− ρ)Ŝ + ηρIp]S
−1 − Ip)}}

= 2E{tr{ρ(ηIp − Ŝ)S−1(ηIp − Ŝ)S−1

+(ηIp − Ŝ)S−1(Ŝ − S)S−1}},
where we have again used (26) in Appendix B. Setting to zero
gives

ρ0
def
= ρ0(η0) =

E{tr{(η0Ip − Ŝ)S−1(S − Ŝ)S−1}}
E{tr{(η0Ip − Ŝ)S−1(η0Ip − Ŝ)S−1}}

.

(31)
Look first at the numerator,a say, of (31). Expanding gives

a = E{tr{η0S−1 − η0S
−1

ŜS
−1 − ŜS

−1 + ŜS
−1

ŜS
−1}}.

Again, we use thatKŜ has the complex Wishart distribution
with meanKS. SinceE{Ŝ} = S the first two terms cancel.
ThenE{tr{ŜS−1}} = tr{Ip} = p.

From (27) we know thatE{tr{ŜS−1
ŜS

−1}} = (p +
(p2/K)). So a = −p+ (p+ (p2/K)) = p2/K.
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Expanding the denominator,b say, of (31) gives

b = E{tr{η20S−2−η0S
−1

ŜS
−1−η0ŜS

−2+ ŜS
−1

ŜS
−1}}.

(32)
Then

b =
tr2{S−1}
tr2{S−2} tr{S−2} − 2

tr2{S−1}
tr{S−2} + (p+ (p2/K))

= − tr2{S−1}
tr{S−2} + (p+ (p2/K)).

On tidying up the ratioa/b is of the form (14). Thatη0, ρ0
thus defined correspond to a minimum point is more easily
shown via the proof of Lemma 3.

E. Proof of Lemma 3

Proceeding as before, and using (22), for the HS loss

(∂/∂α)RHS(Ŝ
⋆(α, β),S) = 2[αC + βtr{S} − tr{S2}]

(∂/∂β)RHS(Ŝ
⋆(α, β),S) = 2[αtr{S}+ βp− tr{S}],

whereC = tr{S2}+(1/K)tr2{S}. Setting to zero and solving
for β gives

β0 =
tr3{S}

Kp tr{S2}+ [p−K]tr2{S} = ρ0η0.

Similarly, for α,

α0 =
p tr{S2} − tr2{S}

p[tr{S2}+ 1
K tr2{S}]− tr2{S} = 1− ρ0.

For the determinant of the Hessian matrix we have

4

∣

∣

∣

∣

C tr{S}
tr{S} p

∣

∣

∣

∣

α0,β0

= 4p tr{S2} − 4[1− p

K
]tr2{S}.

This is positive if p tr{S2} > [1 − p
K ]tr2{S}, i.e., p >

[1− p
K ]tr2{S}/tr{S2}, since tr{S2} > 0. But by Chebyshev’s

inequality we know thatp ≥ tr2{S}/tr{S2}, and so we know
that p > [1− p

K ]tr2{S}/tr{S2}, as required. Furthermore,

(∂2/∂β2)RHS(Ŝ
⋆(α, β),S)

∣

∣

∣

α0,β0

= 2p > 0,

and so we can conclude that the solution is a minimum. For
the QL loss,

(∂/∂α)RQL(Ŝ
⋆(α, β),S) = 2[αD + βtr{S−1} − p]

(∂/∂β)RQL(Ŝ
⋆(α, β),S) = 2[αtr{S−1}+ βtr{S−2}

− 2tr{S−1}],
whereD = p[1+ (p/K)]. For the determinant of the Hessian
matrix,

4

∣

∣

∣

∣

D tr{S−1}
tr{S−1} tr{S−2}

∣

∣

∣

∣

α0,β0

= 4D tr{S−2} − 4tr2{S−1}.

This is positive ifD > tr2{S−1}/tr{S−2}, since tr{S−2} >
0. We know from Chebyshev’s inequality thatp ≥
tr2{S−1}/tr{S−2}, so p[1 + (p/K)] > tr2{S−1}/tr{S−2}.
Also we note that

(∂2/∂α2)RQL(Ŝ
⋆(α, β),S)

∣

∣

∣

α0,β0

= 2D > 0,

and so we can conclude that the solution is a minimum.

F. Proof of Lemma 4

With Ĉ⋆(α, β) defined in (15) andRHS(Ĉ
⋆(α, β),C) we

take

F = Ĉ
⋆
S − S

−1 = α Ŝ
−1

S + β S − S
−1.

Using (23) and (24) we find that(∂/∂α)RHS(Ĉ
⋆(α, β),C)

is given by

2
[

αc1[(K − p)tr{S−2}+ tr2{S−1}]

+ β K
K−p tr{S−1} − K

K−p tr{S−2}
]

. (33)

Using (23) we find(∂/∂β)RHS(Ĉ
⋆(α, β),C) is given by

2
[

α K
K−p tr{S−1}+ βp− tr{S−1}

]

. (34)

Setting (33) and (34) to zero and solving the simultaneous
equations givesα0 and β0 as stated in the lemma. The
determinant of the Hessian (divided by 4) is

δ =

∣

∣

∣

∣

∣

c1[(K − p)tr{S−2}+ tr2{S−1}] K
K−p tr{S−1}

K
K−p tr{S−1} p

∣

∣

∣

∣

∣

α0,β0

,

which is

δ = c1p[(K − p)tr{S−2}+ tr2{S−1}]−
[

K
K−p

]2

tr2{S−1}.

Now p tr{S−2} ≥ tr2{S−1}, so

δ ≥ c1(K − p)tr2{S−1}+ c1ptr2{S−1}−
[

K
K−p

]2

tr2{S−1}

=

(

c1K −
[

K
K−p

]2
)

tr2{S−1}

=

(

pK2(K − p) +K2

(K − p)4 − (K − p)2

)

tr2{S−1} > 0,

sinceK > p+1. Combining the positive determinant with the
fact that(∂2/∂β2)RHS(Ĉ

⋆(α, β),C) = 2p > 0 we see that
the turning point is indeed a minimum.

G. Proof of Lemma 5

With Ĉ
⋆(α, β) defined in (15) andRQL(Ĉ

⋆(α, β),C) we
take

F = Ĉ
⋆
S − Ip = α Ŝ

−1
S + β S − Ip.

Proceeding as before we find that(∂/∂α)RQL(Ĉ
⋆(α, β),C)

is given by

2[αE{tr{Ŝ−1
SŜ

−1
S}}+βE{tr{Ŝ−1

S
2}}−E{tr{Ŝ−1

S}}].
SettingA = B = S in (24),

E{tr{Ŝ−1
SŜ

−1
S}} =

K

K − p

pK2

(K − p)2 − 1
=

K

K − p
c,

wherec = pK2/[(K − p)2 − 1]. Next we use the result that
E{Ŝ−1} = (K/(K − p))S−1, which means that

E{tr{Ŝ−1
S

2}}= K

K − p
tr{S} andE{tr{Ŝ−1

S}}= Kp

K − p
.

Putting results together we see that

∂

∂α
RQL(Ĉ

⋆(α, β),C) = 2
K

K − p
[αc+ βtr{S} − p] .
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Next, (∂/∂β)RQL(Ĉ
⋆(α, β),C) is given by

2[αE{tr{SŜ−1
S}}+ βE{tr{S2}} − E{tr{S}}]

= 2[α
K

K − p
tr{S}+ βtr{S2} − tr{S}].

Setting both partial derivatives to zero and removing constant
multipliers gives the simultaneous equations

αc+ βtr{S} − p = 0 (35)

α
K

K − p
tr{S}+ βtr{S2} − tr{S} = 0 (36)

Multiply (35) by Ktr{S}/(K−p) and (36) byc. Subtracting,
with c = c0p, gives β0 in (18) and (19). Multiply (35) by
tr{S2} and (36) by tr{S}. Subtracting, givesα0 in (18) and
(19).

The determinant of the Hessian (divided by 4) is
∣

∣

∣

∣

∣

K
K−pc

K
K−p tr{S}

K
K−p tr{S} tr{S2}

∣

∣

∣

∣

∣

α0,β0

= K
K−p [ctr{S2}− K

K−p tr2{S}].

The term in the square bracket on the right-side can be
rewritten as

pK2

(K − p)2 − 1
tr{S2} − K

K − p
tr2{S} (37)

We know thatptr{S2} ≥ tr2{S}, so (37) will be positive if
K2/[(K−p)2−1]−K/(K−p) > 0. This term can be written
as [Kp(K − p) +K]/[(K − p)3 − (K − p)] > 0 since we are
assumingK > p+1. Combining the positive determinant with
the fact that(∂2/∂β2)RQL(Ĉ

⋆(α, β),C) = 2tr{S2} > 0 we
see that the turning point is indeed a minimum.
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