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Abstract—Conventional amplify-and-forward (AF) protocol for
half-duplex two-hop multiple-input multiple-output (MIMO) re-
lay systems assumes that the source node transmits signal only
at the first time slot. While making the source node silent at
the second time slot simplifies the system design, it is strictly
suboptimal. To improve the system performance, in this paper,
we consider that the source node transmits signals during both
time slots. We develop two novel iterative algorithms to optimize
the source, relay, and receiver matrices in this new AF MIMO
relay system. Both algorithms are based on the minimum mean-
squared error (MMSE) criterion. In particular, the first algorithm
is applicable for general MIMO relay systems with multiple
concurrent data streams, where the source, relay, and receiver
matrices are optimized in an alternating fashion till convergence.
The second algorithm is developed for MIMO relay systems with
a single data stream, where the source precoding vectors and the
relay precoding matrix are optimized iteratively and the receiver
matrix is obtained after the convergence of the source vectors
and the relay matrix. Simulation results show that compared
with conventional AF MIMO relay systems, the proposed system
provides better bit-error-rate performance for both multiple data
streams and single data stream cases.

Index Terms—Amplify-and-forward, direct link, MIMO relay,
MMSE, two-hop.

I. INTRODUCTION

Cooperative relay communication has attracted much inter-
est in recent years from both academia and industry due to its
potential in increasing the coverage, throughput, and capacity
of wireless communication systems [1]-[4]. Relay nodes in
a cooperative communication system can be nonregenerative
or regenerative [2]. In a nonregenerative relay system, the
relay node simply amplifies (including a linear transformation)
the received signals and forwards the amplified signals to the

Copyright c©2015 IEEE. Personal use of this material is permitted. How-
ever, permission to use this material for any other purposes must be obtained
from the IEEE by sending a request to pubs-permissions@ieee.org.

Manuscript received December 10, 2015; revised May 4, 2016; accepted
June 13, 2016. The associate editor coordinating the review of this paper and
approving it for publication was M. Pesavento.

This work is supported by National High Technology Research and Devel-
opment Program of China (863 Program SS2015AA011303), National Natural
Science Foundation of China (61171099), the Australian Research Council’s
Discovery Projects funding scheme (DP140102131), and the Postgraduate
Innovation Fund of SICE, BUPT, 2015.

Z. He, J. Zhang, and W. Liu are with the Key Laboratory of Universal
Wireless Communication, Ministry of Education, Beijing University of Posts
and Telecommunications, Beijing 100876, China (e-mails: hezq@bupt.edu.cn;
zhangjinnian@bupt.edu.cn; wanninglu@126.com).

Y. Rong is with the Department of Electrical and Computer En-
gineering, Curtin University, Bentley, WA 6102, Australia (e-mail:
y.rong@curtin.edu.au).

destination node. Therefore, the complexity of the amplify-
and-forward (AF) protocol is much lower than that of the
regenerative relay schemes, particularly when multiple-input
multiple-output (MIMO) relay systems are considered.

Capacity bounds of AF MIMO relay systems have been
derived in [5] and [6]. The relay precoding matrix maximizing
the source-destination mutual information (MI) of a two-hop
AF MIMO relay system has been developed in [7] and [8]. In
[9]-[11], the relay precoding matrix that minimizes the mean-
squared error (MSE) of the signal waveform estimation was
proposed. In [12], a unified framework has been established to
optimize the source and relay precoding matrices of linear AF
MIMO relay systems with a broad class of commonly used
objective functions. A recent tutorial on the transceiver design
for AF MIMO relay communication systems can be found in
[13].

In the transceiver design works [9]-[12], the direct link
between the source and destination nodes is not considered.
However, in practical systems, the direct link provides valuable
spatial diversity, and thus, should be properly considered in
the MIMO relay system design. In [7] and [8], suboptimal
structures of the relay precoding matrix have been derived
considering the direct link. The optimal structure of the relay
precoding matrix for AF MIMO relay systems in the presence
of the direct link has been derived in [14]. Joint source and
relay precoding matrices optimization with the direct link
based on the MSE matrix diagonalization has been proposed in
[15] and [16]. Tomlinson-Harashima source precoding matrix
and linear relay precoding matrix design has been studied in
[17]. A closed-form design of the relay precoding matrix has
been proposed in [18]. Recently, a semi-closed form solution
to the source beamformer optimization problem with direct
link has been presented in [19]. Joint source and relay matrices
optimization for multiuser AF MIMO relay networks with
direct links has been investigated in [20]. Taking into account
the mismatch between the true and the estimated channel state
information (CSI), robust transceiver design algorithms for AF
MIMO relay systems with the direct link have been proposed
in [21]-[23].

It is notable that in the conventional AF relay protocol on
half-duplex two-hop MIMO relay systems adopted in [7]-[23],
the source node transmits signal only at the first time slot.
While making the source node silent at the second time slot
simplifies the system design, it is strictly suboptimal [24].
Theoretically, additional diversity gains can be achieved by
exploiting the signals transmitted by the source node through
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the direct link at the second time slot.

In this paper, we consider two-hop AF MIMO relay systems
with the direct source-destination link. Different from the
conventional AF relay protocol [7]-[23], the source node
transmits signals during both time slots. Thus, valuable time
diversity provided by the direct link can be utilized to improve
the system performance. We investigate the joint source, relay,
and receiver matrices design of this system to minimize the
MSE of the signal waveform estimation at the destination
node. Note that this new AF relay protocol was first proposed
in [24] for single-input single-output relay systems. However,
the matrices optimization problem in this paper is more
difficult to solve than the problem with scalar variables in
[24]. Compared with existing works [7]-[23], the transceiver
optimization problem in this paper is more challenging as we
need to optimize the source precoding matrices at two time
slots, rather than only the first time slot. Since the joint source,
relay, and receiver optimization problem is non-convex with
matrix variables, the globally optimal solution is intractable
to obtain. To solve this problem, we present two iterative
algorithms.

The first algorithm is applicable for general AF MIMO relay
systems with multiple concurrent data streams. In this algo-
rithm, the source, relay, and receiver matrices are optimized in
an alternating fashion till convergence. In particular, we show
that with given source and receiver matrices, the optimal relay
precoding matrix has a closed-form solution. While with fixed
relay and receiver matrices, the two source precoding matrices
can be optimized through solving a quadratically constrained
quadratic programming (QCQP) problem.

The second algorithm is developed for AF MIMO relay
systems with a single data stream, where the source precoding
vectors and the relay precoding matrix are optimized itera-
tively and the receiver matrix is obtained after the convergence
of the source vectors and the relay matrix. Interestingly, we
show that in this case, the relay precoding matrix can be
optimized through the semidefinite relaxation (SDR) technique
together with the Charnes-Cooper transformation, and the
two source precoding vectors can be optimized through the
SDR technique. Simulation results show that compared with
conventional AF MIMO relay systems, the proposed system
provides better bit-error-rate (BER) performance for both
multiple data streams and single data stream cases.

The rest of this paper is organized as follows. In Section II,
the model of a general two-hop linear AF MIMO relay system
with the direct link is presented, where the source node
transmits signals at both time slots. The joint source, relay,
and receiver optimization problem is also formulated in this
section. In Section III, we present an iterative transceiver
design algorithm for general AF MIMO relay systems with
multiple concurrent data streams. The transceiver optimization
algorithm for the particular case of a single data stream system
is developed in Section IV. Simulation results are shown in
Section V to verify the benefit of the proposed algorithms.
Finally, conclusions are drawn in Section VI.
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Fig. 1. A two-hop MIMO relay communication system with the direct source-
destination link.

II. SYSTEM MODEL

We consider a three-node two-hop MIMO relay communica-
tion system as shown in Fig. 1, where the source node (node 1)
transmits information to the destination node (node 3) with the
aid of a relay node (node 2). We assume that the three nodes
are equipped with Ni, i = 1, 2, 3 antennas, respectively. With a
practical half-duplex relay node, the data transmission from the
source node to the destination node is completed in two time
slots. At the first time slot, the information-carrying source
symbol vector s = [s1, s2, · · · , sNb

]T is linearly precoded
by a matrix F1 ∈ CN1×Nb and then transmitted to both the
relay node and the destination node, where (·)T stands for the
matrix transpose and Nb denotes the number of independent
data streams transmitted simultaneously at the source node.

The signal vectors received at the relay and destination
nodes can be written respectively as

yr = H1F1s + nr (1)
yd1 = H31F1s + nd1 (2)

where H1 ∈ CN2×N1 and H31 ∈ CN3×N1 are the
MIMO channel matrices of the source-relay link and source-
destination link at the first time slot, respectively, nr ∈ CN2×1

and nd1 ∈ CN3×1 are the additive noise vectors at the relay
node and the destination node at the first time slot, respectively.

During the second time slot, the relay node linearly precodes
yr with a matrix F2 ∈ CN2×N2 and then forwards the
precoded signal vector to the destination node. Meanwhile,
the source node transmits F3s to the destination node, where
F3 ∈ CN1×Nb is the source precoding matrix at the second
time slot. Note that this new AF relay protocol is different to
that used in two-hop AF MIMO relay communication systems
[7]-[23], where the source node is silent at the second time
slot. The signal vector yd2 received at the destination node at
the second time slot is given by

yd2 = H2F2yr + H32F3s + nd2 (3)

where H2 ∈ CN3×N2 and H32 ∈ CN3×N1 are the MIMO
channel matrices of the relay-destination link and the source-
destination link at the second time slot, respectively, and nd2 ∈
CN3×1 is the additive noise vector at the destination node at
the second time slot. We assume that nr, nd1, and nd2 are
independent and identically distributed (i.i.d.) Gaussian noise
vectors with zero-mean and unit variance entries.

From (1)-(3), the signal vector received at the destination
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node over two time slots can be written as

y =

[
yd2
yd1

]
=

[
H2F2H1F1 + H32F3

H31F1

]
s +

[
H2F2nr + nd2

nd1

]
= Gs + v (4)

where G =

[
H2F2H1F1 + H32F3

H31F1

]
is the equiva-

lent source-destination MIMO channel matrix and v =[
H2F2nr + nd2

nd1

]
is the equivalent noise vector at the des-

tination node. It is worth noting that (4) represents the most
general case for a half-duplex three-node two-hop AF MIMO
relay system.

• If F3 = 0, we have a conventional AF MIMO relay
system with the direct link [14]-[23], where the source
node is silent at the second time slot.

• AF MIMO relay systems where the direct link is ne-
glected [9]-[12] correspond to (4) with H31 = H32 = 0
and nd1 = 0.

• For slow-fading MIMO relay channels, there is H31 =
H32, while for the fast-fading environment, there is
H31 6= H32.

• A suboptimal scheme is to set F1 = F3, i.e., the source
node transmits signals in both time slots using the same
precoding matrix. This may reduce the computational
complexity of transceiver optimization as only F1 and
F2 need to be optimized. However, setting F1 = F3

is strictly suboptimal, because even for slow fading
MIMO relay channels (i.e., H31 = H32), the channels
experienced by the signals sent from the source node are

different over two time slots (
(

H2F2H1

H31

)
and H31 dur-

ing the first and second time slot, respectively). Therefore,
different source precoding matrices should be used over
two time slots to optimize the system performance.

For simplicity, we assume a perfect knowledge of the CSI of
H1, H2, H31, and H32. In practice, the destination node can
obtain the knowledge of H2, H31 and H32 through channel
training. The CSI of H1, which is obtained at the relay node
by channel training, can also be transmitted to the destination
node. Therefore, by using all CSI obtained, the destination
node can perform the transceiver optimization, and then feed
back the optimized F1 and F3 to the source node and F2 to
the relay node. In the presence of mismatch between the true
and the estimated CSI, similar to [21]-[23], robust transceiver
design can be carried out based on the transceiver optimization
approaches using the exact CSI presented in the following
sections.

Due to its simplicity, a linear receiver is used at the
destination node to retrieve the source signal vector. Thus,
the estimated source signal vector can be written as

ŝ = WHy (5)

where W ∈ C2N3×Nb is the weight matrix of the linear
receiver and (·)H stands for the matrix Hermitian transpose.

From (5), the MSE matrix of the signal waveform estimation
is given by

E(W,F1,F2,F3)

=E[(WHy − s)(WHy − s)H ]

= (WHG− INb
)(WHG− INb

)H + WHCvW (6)

where In stands for an n × n identity matrix, E[·] is the
statistical expectation with respect to signal and noise, and

Cv = E[vvH ] =

[
H2F2F

H
2 HH

2 + IN3
0

0 IN3

]
is the noise covariance matrix. Here we assume E[ssH ] = INb

.
From (1), the power of the signal transmitted at the relay

node is given by

tr(E[yry
H
r ]) = tr(F2(H1F1F

H
1 HH

1 + IN2
)FH2 ) (7)

where tr(·) stands for the matrix trace. The total power
consumption at the source node over two time slots is

tr(F1F
H
1 + F3F

H
3 ). (8)

The aim of the transceiver design is to minimize the MSE of
the signal waveform estimation while satisfying the transmis-
sion power constraints at the source and the relay nodes. From
(6)-(8), the source, relay, and receiver matrices optimization
problem can be written as

min
W,F1,F2,F3

tr(E(W,F1,F2,F3)) (9)

s.t. tr(F1F
H
1 + F3F

H
3 ) ≤ Ps (10)

tr(F2(H1F1F
H
1 HH

1 + IN2
)FH2 ) ≤ Pr (11)

where Ps and Pr denote the transmission power available
at the source node and the relay node, respectively. Note
that (10) guarantees that the source node in the new AF
MIMO relay system consumes the same amount of power
as that of the conventional system where the source node is
silent at the second time slot. Compared with existing works
[7]-[23], the introduction of the source precoding matrix F3

at the second time slot makes the problem (9)-(11) much
more challenging to solve. Note that the problem (9)-(11)
is nonconvex with matrix variables, and the globally optimal
solution is intractable to obtain. In the next section, we develop
an iterative algorithm to solve the problem (9)-(11).

III. TRANSCEIVER DESIGN ALGORITHM FOR GENERAL
AF MIMO RELAY SYSTEMS

In this section, we develop a novel algorithm to optimize W
and Fi, i = 1, 2, 3 alternatingly till convergence as follows. As
is well known, for any given precoding matrices Fi, i = 1, 2, 3,
the optimal W minimizing (9) is the Wiener filter [25] given
by

W =
(
GGH + Cv

)−1
G (12)

where (·)−1 denotes matrix inversion.
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To optimize the relay precoding matrix, let us first rewrite
(9) as a function of F2 as

tr(E(F2)) =

tr((WH
1 H2F2H1F1 + WH

1 H32F3 + WH
2 H31F1 − INb

)

×(WH
1 H2F2H1F1 + WH

1 H32F3 + WH
2 H31F1 − INb

)H

+WH
1 H2F2F

H
2 HH

2 W1 + WHW) (13)

where W1 and W2 contain the first and last N3 rows of W,
respectively, i.e., W =

[
WT

1 ,W
T
2

]T
. It can be seen from

(13) that with given W, F1, and F3, the problem (9)-(11) is
converted to the following problem of optimizing F2

min
F2

tr((H̆2F2H̆1−Π)(H̆2F2H̆1−Π)H+H̆2F2F
H
2 H̆H

2 )(14)

s.t. tr(F2(H̆1H̆
H
1 + IN2

)FH2 ) ≤ Pr (15)

where H̆1 = H1F1, H̆2 = WH
1 H2, Π = INb

−WH
1 H32F3−

WH
2 H31F1. The problem (14)-(15) is convex and can be

solved by the Lagrange multiplier method as shown in Ap-
pendix. The optimal F2 can be expressed as

F2 = (H̆H
2 H̆2 +λIN2

)−1H̆H
2 ΠH̆H

1 (H̆1H̆
H
1 + IN2

)−1. (16)

where λ ≥ 0 is the Lagrange multiplier.
It is clear that λ can be determined through the power

constraint (15) and the following complementary slackness
condition associated with the problem (14)-(15)

λ(tr(F2(H̆1H̆
H
1 + IN2)FH2 )− Pr) = 0. (17)

It can be seen from (17) that if F2 in (16) with
λ = 0 satisfies the constraint (15), then F2 =
(H̆H

2 H̆2)−1H̆H
2 ΠH̆H

1 (H̆1H̆
H
1 + IN2

)−1 is the optimal so-
lution to the problem (14)-(15). Otherwise, there must exist
λ > 0 such that

tr(F2(H̆1H̆
H
1 + IN2

)FH2 ) = Pr. (18)

Let us introduce H̆2 = U2Λ2V
H
2 as the singular value

decomposition (SVD) of H̆2. By substituting (16) into (18),
we obtain

tr(Λ2(Λ2
2 + λINb

)−1Γ(Λ2
2 + λINb

)−1Λ2) = Pr (19)

where Γ = UH
2 ΠH̆H

1 (H̆1H̆
H
1 + IN2

)−1H̆1Π
HU2. By de-

noting µi and γi as the ith diagonal elements of Λ2 and Γ
respectively, (19) can be rewritten as

Nb∑
i=1

µ2
i γi

(µ2
i + λ)2

= Pr. (20)

As the left-hand side (LHS) of (20) is a monotonically
decreasing function of λ, the bisection method [26] can be
applied to solve (20) to obtain λ.

With given W and F2, the MSE function (13) can be
rewritten as the following function of F1 and F3

tr(E(F1,F3)) = tr((DB− INb
)(DB− INb

)H +WHCvW)
(21)

where D =
[
WH

1 H2F2H1 + WH
2 H31,W

H
1 H32

]
, B =

[FT1 ,F
T
3 ]T . Moreover, the LHS of (10) becomes tr(BHB),

while the LHS of (11) becomes tr(BHA0B+F2F
H
2 )), where

TABLE I
PROCEDURE OF THE PROPOSED SOURCE, RELAY, AND RECEIVER

MATRICES OPTIMIZATION ALGORITHM

1) Initialize the algorithm with F
(0)
1 = F

(0)
3 =

√
Ps/2Nb[INb

,0]T and

F
(0)
2 =

√
Pr/tr(H1F

(0)
1 (F

(0)
1 )HHH

1 + IN2 )IN2 , and set n = 0.

2) Update W(n) using F
(n)
1 , F(n)

2 , and F
(n)
3 as (12).

3) Update F
(n+1)
2 using W(n), F(n)

1 , and F
(n)
3 as (16) and (20).

4) Update F
(n+1)
1 and F

(n+1)
3 using W(n) and F

(n+1)
2 by solving the

problem (22)-(24).
5) If (mse

(n)
1 − mse

(n+1)
1 )/mse

(n)
1 ≤ ε, iteration ends; otherwise go

to step (2).

A0 =

[
HH

1 FH2 F2H1 0
0 0

]
. Thus, the problem of optimizing

F1 and F3 can be written as

min
B

tr((DB− INb
)(DB− INb

)H) (22)

s.t. tr(BHB) ≤ Ps (23)
tr(BHA0B) ≤ Pr − tr(F2F

H
2 ). (24)

The problem (22)-(24) is a QCQP problem, which can be
efficiently solved by the disciplined convex programming
toolbox CVX [27]. We would like to note that the conditional
updates of W and Fi, i = 1, 2, 3, may either decrease
or maintain but cannot increase the objective function (9).
Monotonic convergence of W and Fi, i = 1, 2, 3 towards (at
least) a stationary point follows directly from this observation.

The procedure of the proposed iterative algorithm is summa-
rized in Table I, where the superscript (n) denotes variables
at the nth iteration, ε is a small positive number for which
convergence is acceptable, and mse1 is the MSE calculated
from (9). With the decrease of ε, the system MSE performance
improves, whereas the computational complexity increases.

IV. TRANSCEIVER OPTIMIZATION FOR THE SPECIAL CASE
OF A SINGLE DATA STREAM

The source, relay, and receiver matrices optimization algo-
rithm developed in the last section is applicable for the general
case of multiple data streams. In this section, we develop a
novel algorithm for the MSE minimization problem for the
special case of single data stream two-hop AF MIMO relay
systems.

In the special case of a single data stream, the precoding
matrices F1 and F3 at the source node and the weight matrices
W1 and W2 at the destination node degenerate to vectors,
which are denoted as f1, f3, w1, and w2, respectively. From
(16) we have h̆1 = H1f1, h̆2 = wH

1 H2 (a row vector), and

F2 = η(h̆H2 h̆2 + λIN2
)−1h̆H2 h̆H1 (h̆1h̆

H
1 + IN2

)−1 (25)

= αβηh̆H2 h̆H1 (26)
= bfH1 HH

1 (27)

where α = 1/(λ + h̆2h̆
H
2 ), β = 1/(1 + h̆H1 h̆1), η = 1 −

wH
2 H31f1 −wH

1 H32f3, and b = αβηh̆H2 . From (25) to (26),
we applied the identity that for a vector a, there is

(aaH + λI)−1a =
1

aHa + λ
a (28)
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which can be easily derived using (160) in [28]. It can be seen
from (27) that the optimal F2 has a rank-1 structure.

By substituting (12) back into (6), the MSE of the signal
waveform estimation using an MMSE receiver is given by

tr(E(F1,F2,F3)) = tr((INb
+ GHC−1

v G)−1). (29)

For the single data stream case, using (27), (29) can be
equivalently rewritten as

MSE =
[
1 + fH1 HH

31H31f1 + (H32f3 + H2F2H1f1)H

×(H2F2F
H
2 HH

2 + IN3
)−1(H32f3 + H2F2H1f1)

]−1

=
[
1 + fH1 HH

31H31f1 + (H32f3 + cH2b)H

×(cH2bbHHH
2 + IN3

)−1(H32f3 + cH2b)
]−1

(30)

where c = fH1 HH
1 H1f1. By substituting (27) back into (11),

the power constraint at the relay node can be rewritten as
(c2+c)bHb ≤ Pr. Therefore, with fixed f1 and f3, optimizing
F2 can be converted to the optimization of b, which is given
by the following problem

max
b

(H32f3 + cH2b)H(cH2bbHHH
2 + IN3)−1

×(H32f3 + cH2b) (31)
s.t. bHb ≤ P̄r (32)

where P̄r = Pr/(c
2 + c).

Using the identity (28), it can be shown that

(H32f3 + cH2b)H(cH2bbHHH
2 + IN3)−1(H32f3 + cH2b)

= fH3 HH
32H32f3 + c

(
1− |f

H
3 HH

32H2b− 1|2

1 + cbHHH
2 H2b

)
.

Then, the problem (31)-(32) can be equivalently rewritten as

min
b

|fH3 HH
32H2b− 1|2

1 + cbHHH
2 H2b

(33)

s.t. bHb ≤ P̄r. (34)

The problem (33)-(34) can be solved by the SDR technique
[29] and the Charnes-Cooper transformation [30] as shown
below. By introducing a = HH

2 H32f3, A = cHH
2 H2, |t|2 =

1, and b̃ = bt, (33) and (34) can be equivalently rewritten as

|t|2|fH3 HH
32H2b− 1|2

|t|2(1 + cbHHH
2 H2b)

=
(aH b̃− t)(b̃Ha− t∗)

1 + b̃HAb̃
(35)

|t|2bHb = b̃H b̃. (36)

Using (35) and (36), the problem (33)-(34) can be equivalently
rewritten as

min
b̃,t

(aH b̃− t)(b̃Ha− t∗)

1 + b̃HAb̃
(37)

s.t. b̃H b̃ ≤ P̄r, |t|2 = 1. (38)

By introducing ā = [aT ,−1]T and b̄ = [b̃T , t]T , we have

(aH b̃− t)(b̃Ha− t∗) = āH b̄b̄H ā = tr(A2X) (39)
b̃HAb̃ = b̄HA1b̄ = tr(A1X) (40)

b̃H b̃ = b̄HB1b̄ = tr(B1X) (41)
|t|2 = b̄HB2b̄ = tr(B2X) (42)

where X = b̄b̄H , A2 = āāH , A1 =

[
A 0
0 0

]
, B1 =[

IN2
0

0 0

]
, B2 =

[
0 0
0 1

]
. Using (39)-(42), the problem (37)-

(38) can be equivalently rewritten as

max
X

1 + tr(A1X)

tr(A2X)
(43)

s.t. tr(B1X) ≤ P̄r (44)
tr(B2X) = 1 (45)
rank(X) = 1, X � 0 (46)

where rank(·) denotes the matrix rank and A � 0 means that
matrix A is positive semidefinite (PSD).

By applying the SDR technique, we drop the rank-1 con-
straint in (46), then we have the following relaxed problem

max
X

1 + tr(A1X)

tr(A2X)
(47)

s.t. tr(B1X) ≤ P̄r (48)
tr(B2X) = 1 (49)
X � 0. (50)

The problem (47)-(50) is a linear fraction programming
problem, which can be solved through the Charnes-Cooper
transformation [30]. Let X = Z/δ with δ > 0. The problem
(47)-(50) can be equivalently rewritten as

max
Z,δ

tr(A1Z) + δ (51)

s.t. tr(A2Z) = 1 (52)
tr(B1Z) ≤ δP̄r (53)
tr(B2Z) = δ (54)
Z � 0, δ > 0. (55)

The problem (51)-(55) is a semidefinite programming (SDP)
problem and can be efficiently solved by the disciplined
convex programming toolbox CVX [27]. After getting Z and
δ, we obtain X = Z/δ. Then we can apply Theorem 2.3 in
[31] to find the optimal b̄ such that

tr(AiX) = b̄HAib̄, tr(BiX) = b̄HBib̄, i = 1, 2.
(56)

We would like to note that the construction of b̄ from X using
(56) does not lose any optimality [31], i.e., the SDR from (43)-
(46) to (47)-(50) is in fact tight. In the next step, we extract b
from b̄ as b = b̄1:N2

/b̄N2+1, where b̄1:N2
stands for the first

N2 elements of b̄. Finally, we obtain F2 from (27).
With fixed F2, the problem of optimizing f1 and f3 is given

by

max
f1,f3

fH1 HH
31H31f1 + (H32f3 + H2F2H1f1)H

×(H2F2F
H
2 HH

2 + IN3
)−1(H32f3 + H2F2H1f1)(57)

s.t. fH1 HH
1 FH2 F2H1f1 ≤ Pr − tr(F2F

H
2 ) (58)

fH1 f1 + fH3 f3 ≤ Ps. (59)
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Let us introduce P̃r = Pr − tr(F2F
H
2 ), f = [fT1 , f

T
3 ]T , and

D1 =

[
(H2F2H1)H

HH
32

]
(H2F2F

H
2 HH

2 + IN3
)−1

×[H2F2H1 H32 ] +

[
HH

31H31 0
0 0

]
D2 =

[
HH

1 FH2 F2H1 0
0 0

]
.

The problem (57)-(59) can be rewritten as

min
f
−fHD1f (60)

s.t. fHD2f ≤ P̃r (61)
fHf ≤ Ps. (62)

By introducing Q = f fH , the problem (60)-(62) can rewritten
as

min
Q
−tr(D1Q) (63)

s.t. tr(D2Q) ≤ P̃r (64)
tr(Q) ≤ Ps, rank(Q) = 1, Q � 0. (65)

Using the SDR technique to drop the rank-1 constraint in (65),
the relaxed problem can be written as

min
Q
−tr(D1Q) (66)

s.t. tr(D2Q) ≤ P̃r (67)
tr(Q) ≤ Ps, Q � 0. (68)

The problem (66)-(68) is an SDP problem which can be solved
by CVX. After obtaining Q, we can get the optimal f from
Q by using the randomization procedure in [29] such that the
SDR from (63)-(65) to (66)-(68) is tight.

We are ready to develop an iterative transceiver optimization
algorithm for AF MIMO relay systems with a single data
stream. In each iteration, with fixed f1 and f3, we update
F2 following the steps in (51)-(56). Then with given F2, we
optimize f1 and f3 by solving the problem (66)-(68). Note
that the conditional updates of F2, f1, and f3 may either
decrease or maintain but cannot increase the objective function
(30). Monotonic convergence of F2, f1, and f3 towards (at
least) a stationary point follows directly from this observation.
After the convergence of the iterations, W is obtained as
an MMSE receiver in (12). Table II illustrates the procedure
of the proposed iterative algorithm, where mse2 is the MSE
calculated by (30).

V. NUMERICAL EXAMPLES

In this section, we study the performance of two proposed
source, relay, and receiver matrices optimization algorithms
through numerical simulations. In the simulations, a two-hop
AF MIMO relay system with 4 antennas at each node (i.e.,
N1 = N2 = N3 = 4) is considered. The channel matrices H1,
H2, H31, and H32 have i.i.d. complex Gaussian entries with
zero mean and variances of σ2

1 , σ2
2 , σ2

3 , and σ2
3 , respectively.

Note that we assume the same statistics for H31 and H32, as
usually it remains unchanged over two consecutive time slots.

TABLE II
PROCEDURE OF THE TRANSCEIVER OPTIMIZATION ALGORITHM FOR AF

MIMO RELAY SYSTEMS WITH A SINGLE DATA STREAM

1) Initialize the algorithm with f
(0)
1 = f

(0)
3 =

√
Ps/2Nb[1,0]T and

F
(0)
2 =

√
Pr/tr(H1f

(0)
1 (f

(0)
1 )HHH

1 + IN2
)IN2

, and set n = 0.

2) Update F
(n+1)
2 using f

(n)
1 and f

(n)
3 as (51)-(56).

3) Update f
(n+1)
1 and f

(n+1)
3 using F

(n+1)
2 by solving the problem

(66)-(68).
4) If (mse

(n)
2 − mse

(n+1)
2 )/mse

(n)
2 ≤ ε, iteration ends; otherwise go

to step (2).
5) Obtain W using (12).

Based on the assumption that the noise has unit power, we
define SNR1 = σ2

1Ps/N2, SNR2 = σ2
2Pr/N3, and SNR3 =

σ2
3Ps/N3 as the signal-to-noise ratio (SNR) for the source-

relay, relay-destination, and source-destination links respec-
tively. Following [23], we choose SNR3 = SNR1−∆SNR(dB),
where ∆SNR stands for the attenuation of the direct link
relative to the first-hop channel. In the first two numerical
examples, we set SNR1 = SNR2 = SNR and in the last
four simulation examples, the SNRs are set as SNR1 = 0dB
and SNR2 = SNR. Quadrature phase-shift keying (QPSK)
constellations are used to modulate the source symbols. All
simulation results are averaged over 1000 independent channel
realizations.

We compare the proposed algorithms with the algorithm
in [16] and the Tri-step and Bi-step algorithms developed in
[23] using the exact CSI. We set ε = 0.001 for the proposed
schemes and both algorithms in [23]. For the proposed AF
MIMO relay system, we consider two cases. In Case 1, H32 =
H31, i.e., the exact CSI of the direct link remains unchanged
during two transmission slots, corresponding to a slow-fading
environment. While in Case 2, we set H32 6= H31, which
simulates a fast-fading environment.

In the first numerical example, we consider the case where
Nb = 4 independent data streams are simultaneously trans-
mitted and set ∆SNR = 20dB. The procedure in Table I
is carried out for the proposed algorithm. Fig. 2 shows the
system BER versus SNR of the four algorithms tested. It
can be seen from Fig. 2 that the proposed algorithm has a
better BER performance than those in [16] and [23], which
confirms that additional gain can be achieved by making the
source node transmit signals at the second time slot. The poor
performance of the algorithm in [16] is caused by the channel
diagonalization constraint, which is strictly suboptimal when
Nb > 1. We would like to note that for the algorithms in [16]
and [23], as the source node is silent at the second time slot,
the BER of these three algorithms does not depend on H32.

In the second example, we simulate a MIMO relay system
with Nb = 4 and ∆SNR = 10dB. The system BER and
MSE yielded by four algorithms tested are shown in Figs. 3
and 4, respectively. Similar to Fig. 2, it can be observed
from Figs. 3 and 4 that the proposed algorithm yields a
lower BER and MSE than the algorithms in [16] and [23].
Moreover, it can be seen from Figs. 2 and 3 that in a fast-fading
channel environment, the BER performance of the proposed
AF protocol is further improved due to the valuable time
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Fig. 2. Example 1. BER versus SNR, Nb = 4, ∆SNR = 20dB.
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Fig. 3. Example 2. BER versus SNR, Nb = 4, ∆SNR = 10dB.

diversity as the proposed algorithm jointly optimizes F1 and
F3 considering both H31 and H32. It is worth noting that the
gap between the BER of the proposed algorithm and that of
the algorithms in [16] and [23] increases with the SNR, and
such performance gap increases as the gain of the direct link
is increased from ∆SNR = 20dB to ∆SNR = 10dB. This is
expected as explained below. When SNR1 = SNR2 = SNR is
low (and/or the direct link is weak), the benefit of distributing
the transmission power at the source node over two time slots
is less noticeable as the effective power for the direct link is
limited. As the SNR increases (and/or the direct link becomes
stronger), more effective power is available at the source node
so that it can allocate the power more flexibly over two time
slots to reduce the system BER.

In the third simulation example, an AF MIMO relay system
with Nb = 1, ∆SNR = 20dB, and H32 = H31 is simulated.
We applied both the algorithms in Table I and Table II for
the proposed AF protocol. The BER performance of four
algorithms is shown in Fig. 5. It can be seen that similar to
the general case of multiple data streams, for the case of a
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Fig. 4. Example 2. MSE versus SNR, Nb = 4, ∆SNR = 10dB.
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Fig. 5. Example 3. BER versus SNR, Nb = 1, ∆SNR = 20dB, H32 = H31.

single data stream, the system BER is reduced by letting the
source node transmit signals at both time slots. Moreover, we
can also observe from Fig. 5 that at high SNR, the algorithm
in Table II has a better BER performance than the algorithm
in Table I.

We simulate in the next example a MIMO relay system
with Nb = 1, ∆SNR = 20dB, and H32 6= H31. It can be
seen from Fig. 6 that the proposed algorithms yield smaller
system BER than the algorithms in [23]. Comparing Fig. 6
with Fig. 5, we observe that the time diversity in a fast-fading
channel environment helps to reduce the system BER.

In the last two examples, we simulate an AF MIMO relay
system with Nb = 1 and ∆SNR = 10dB. Fig. 7 shows the
system BER versus SNR of all five algorithms tested when
H32 = H31, while Figs. 8 and 9 demonstrate the system
BER and MSE performance, respectively, when H32 6= H31.
Compared with Figs. 5 and 6, it can be seen from Figs. 7
and 8 that as the gain of the direct link increases (∆SNR

from 20 dB to 10dB), the BER performance of all algorithms
improves. Interestingly, it can be seen from Figs. 7-9 that the
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Fig. 8. Example 6. BER versus SNR, Nb = 1, ∆SNR = 10dB, H32 6= H31.
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Fig. 9. Example 6. MSE versus SNR, Nb = 1, ∆SNR = 10dB, H32 6= H31.

gap between the BERs yielded by the proposed algorithms and
the approaches in [16] and [23] decreases with the increase
of SNR, which is expected as explained below. Remember
that in Figs. 7-9, we set SNR1 = 0dB, SNR3 = −10dB, and
SNR2 = SNR. At low SNRs, as the gain of the direct link is
larger than that of the relay-destination link, the source node
allocates more power to the second time slot to exploit H32.
Thus, the proposed algorithms have a better performance than
the other three approaches at low SNRs. As SNR increases,
the relay-destination link becomes stronger. The source node
tends to allocate more power to the first time slot. When the
SNR is sufficiently large, almost all power of the source node
is allocated at the first time slot. As a result, the proposed
algorithms have a similar performance to the other three
algorithms at high SNRs.

Finally, we compare the computational complexity of the
five algorithms tested. For the sake of notational simplicity,
we assume Ni = N, i = 1, 2, 3 and Nb = N for the general
case. As the algorithm in [16] involves matrix inversion and
matrix SVD, it has a complexity order of O(N3) [16]. It is
shown in [23] that the per iteration complexity of the Bi-step
and Tri-step algorithms is O(N7) and O(N6), respectively.
For the proposed algorithm in the general case, it can be seen
from Table I that most of computations are spent on solving the
QCQP problem (22)-(24). Thus, the per iteration complexity
of the proposed algorithm is in the order of O(N6) [32], which
is comparable to that of the Tri-step algorithm.

For the special case of a single data stream, we assume
Ni = N, i = 1, 2, 3 and Nb = 1. The complexity order of the
algorithm in [16] and the Bi-step algorithm remains the same
as in the general case, while the per iteration complexity of
the Tri-step algorithm and the proposed algorithm in Table I is
reduced to O(N3) [32]. For the proposed algorithm in Table II,
we need to solve two SDP problems in each iteration, which
has a complexity order of O(N7). From the above analysis,
the algorithm in Table II has a higher per iteration complexity
than that in Table I.

The overall computational complexity of the four iterative
algorithms tested (except for the approach in [16]) depends
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TABLE III
AVERAGE NUMBER OF ITERATIONS REQUIRED BY FOUR ITERATIVE

ALGORITHMS TILL CONVERGENCE FOR GENERAL SYSTEMS

SNR (dB) 0 4 8 12 16
Tri-step Algorithm 8 10 15 27 49
Bi-step Algorithm 4 4 5 5 5

Algorithm in Table I (H32 = H31) 14 21 31 42 59
Algorithm in Table I (H32 6= H31) 13 19 27 37 -

TABLE IV
AVERAGE NUMBER OF ITERATIONS REQUIRED BY FOUR ITERATIVE

ALGORITHMS TILL CONVERGENCE FOR SINGLE DATA STREAM SYSTEMS

SNR (dB) -15 -11 -7 -3 1 5
Tri-step Algorithm 8 8 7 5 4 4
Bi-step Algorithm 4 4 6 5 3 3

Algorithm in Table I 9 7 6 5 4 4
Algorithm in Table II 3 3 3 3 3 3

also on the number of iterations. Tables III and IV show the
average number of iterations required by the four iterative
algorithms till convergence in the examples corresponding to
Figs. 3 and 8, respectively. It can be seen that for general
systems, the number of iterations required by the proposed
algorithm in Table I increases with the SNR, and is larger
than the other two algorithms. Interestingly, for single data
stream systems, it can be seen from Table IV that the number
of iterations required by the proposed algorithm in Table II is
smaller than the other three algorithms and does not change
with the SNR.

VI. CONCLUSIONS

We have studied a new AF relay protocol where the
source node transmits signals at both time slots in half-duplex
MIMO relay systems with the direct link. Two novel iterative
algorithms have been developed to optimize the source, relay,
and receiver matrices in this new AF MIMO relay system.
Simulation results show that the proposed algorithms have
better BER performance compared with conventional AF
MIMO relay systems, and more gains can be achieved with
the improvement of the direct-link channel quality. When
the optimal receiver W in (12) is substituted into (9), the
objective function becomes a very complicated function of
three precoding matrices F1, F2, and F3. How to solve this
optimization problem efficiently for general AF MIMO relay
systems is an interesting future topic.

APPENDIX
PROOF OF (16)

The Lagrangian function associated with the problem (14)-
(15) is given by

L = f(F2) + λ g(F2)

where f(F2) = tr((H̆2F2H̆1 − Π)(H̆2F2H̆1 − Π)H +
H̆2F2F

H
2 H̆H

2 ), and g(F2) = tr(F2(H̆1H̆
H
1 + IN2

)FH2 )−Pr.
At the optimal F2, there is [26]

∂L
∂F2

=
∂f(F2)

∂F2
+ λ

∂g(F2)

∂F2
= 0. (69)

Using the derivatives of matrices in [28], we have

∂f(F2)

∂F2
= H̆T

2 [H̆1(H̆2F2H̆1 −Π)H ]T + H̆T
2 (FH2 H̆H

2 )T(70)

∂g(F2)

∂F2
= [(H̆1H̆

H
1 + IN2)FH2 ]T . (71)

By substituting (70) and (71) back into (69) and solving for
F2, we obtain (16).
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