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Abstract—Harvesting the gain of a large number of antennas in
a mmWave band has mainly been relying on the costly operation
of channel state information (CSI) acquisition and cumbersome
phase shifters. Recent works have started to investigate the
possibility to use receivers based on energy detection (ED), where
a single data stream is decoded based on the channel and
noise energy. The asymptotic features of the massive receiver
array lead to a system where the impact of the noise becomes
predictable due to a noise hardening effect. This in effect
extends the communication range compared to the receiver with
a small number of antennas, as the latter is limited by the
unpredictability of the additive noise. When the channel has a
large number of spatial degrees of freedom, the system becomes
robust to imperfect channel knowledge due to channel hardening.
We propose two detection methods based on the instantaneous
and average channel energy, respectively. Meanwhile, we design
the detection thresholds based on the asymptotic properties of the
received energy. Differently from existing works, we analyze the
scaling law behavior of the symbol-error-rate (SER). When the
instantaneous channel energy is known, the performance of ED
approaches that of the coherent detection in high SNR scenarios.
When the receiver relies on the average channel energy, our
performance analysis is based on the exact SER, rather than an
approximation. It is shown that the logarithm of SER decreases
linearly as a function of the number of antennas. Additionally, a
saturation appears at high SNR for PAM constellations of order
larger than two, due to the uncertainty on the channel energy.
Simulation results show that ED, with a much lower complexity,
achieves promising performance both in Rayleigh fading channels
and in sparse channels.

I. INTRODUCTION

Deploying a large number of antennas at base stations or
user devices can potentially introduce advantages over the
traditional point-to-point MIMO systems, such as improved
energy efficiency, interference suppression and more reliable
transmission [1] [2]. One key requirement towards providing
these benefits is to obtain an accurate channel state information
(CSI) [2]. However, acquiring CSI can be challenging due
to channel aging or pilot contamination [2], [3]. Without a
reliable CSI, especially at low signal-to-noise ratio (SNR)
regimes, coherent detection suffers from inferior decoding
performance.

Energy detection (ED) is a non-coherent method that offers
a sub-optimal, but low complexity and power efficient solution
compared to coherent detection [4]. With ED, the transmitted
symbols are decoded based on the envelope of the received
signals. Therefore, exact value of the channel coefficients
are not necessary. However, since the detection/decoding is

performed based on the signal energy, the system should
use non-negative signal constellations. For example, non-
negative pulse amplitude modulation (PAM) constellations
have been documented for two different wireless standards
for Millimeter-wave (mmWave) short-range communication,
ECMA-387 and IEEE802.15.3c [5], [6], respectively.

For single antenna systems, various aspects of PAM-ED
systems have been extensively investigated in [7], [8], [9], [10],
[11]. In [7], theoretical fundamentals of ED for communication
systems are provided with an emphasis on the analysis of the
receiver characteristics. Simple and efficient ED receivers are
proposed and their performance is analyzed in impulse radio
based systems [8] and multilevel PAM systems [9], [10]. In
order to design the optimal constellation, [10] takes the symbol
error rate (SER) of each constellation as the objective function.
Typically, the SER or receiver operating characteristics are
limited by the presence of noise, since both the signal and
noise energy are collected at the receiver. Thus, applications
of ED with a small number of antennas are attractive to
short-range communications in which high SNR can often
be guaranteed. The multi-stage weighted ED receiver studied
in [11] aims at tackling the issue of noise accumulation. The
proposed method relaxes, to some extent, the requirement for
high SNR; however, it introduces computational complexity
on acquiring the desired parameters, e.g. optimal weights and
channel energy.

Regarding systems with a large number of antennas, ED
was proposed for mmWave communications in [12], which
studies the range extension in the absence of additive noise.
Asymptotic treatments similar to the one described in [12]
have been carried out in [13], [14], [15], [16] and [17].
In [13], [14], [15], non-coherent detection is proposed which
does not require the instantaneous CSI, but rather the channel
statistics. Utilizing an upper bound on the SER, the authors
in [15] optimize the input constellation assuming a fixed size
constellation and different levels of uncertainty on the channel
statistics. The SER performance that results from the proposed
constellation design is quite sensitive to the knowledge of
the channel statistics. Using Gaussian approximations for the
channel and noise energy, a constellation design is proposed
using the average channel and noise energy in [17]. In [18],
the authors propose information-theoretic bounds based on
Gaussian approximations on the channel and noise energy. The
proposed bounds are shown to be tight at both low and high
SNR regions.
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In this work, we describe a PAM-ED transceiver in which
the transmission of a single data stream is processed by a large
number of receive antennas, see Fig. 1. The PAM symbol x is
detected based on the addition of the signal energy |yi|2 from
all the M receive antennas, or equivalently, by calculating the
arithmetic average

∑M
i=1 |yi|

2

M . In the case when the receiver
is based on the average channel energy, one key difference
from the two closest works [15] and [17] is that in this
work we base our optimization on the exact SER, rather than
approximations as in [15] and [17]. In that sense, our work
provide a baseline to which any work based on approximations
should be compared. The other important contribution of this
paper is that we devise two different methods that make use
of the law of large numbers and the central limit theorem
resulting from the presence of a large number of antennas
M . The first method, denoted as I-ED, is based on the
instantaneous channel energy and relies on noise hardening.
The central limit theorem allows a Gaussian approximation of
the instantaneous received signal energy, which results in a
closed-form expression of the detection thresholds. Moreover,
this approximation allows for a performance characterization
and analysis at high SNR regimes. We prove that, for a positive
PAM, the performance of I-ED asymptotically approaches that
of coherent detection. The second method, denoted as A-
ED, is based on the average channel energy and relies on
both channel and noise hardening. A-ED employs solely the
second-order statistics of the channel and hence is robust
to channel knowledge uncertainty or small-scale movements
of the users. However, in some practical scenarios, where
the number of degrees of freedom (DoFs) in the channel is
limited, the performance of A-ED becomes poor, whereas I-
ED maintains promising performance.

When A-ED is utilized, assuming that a very large number
of DoF in the channel is available, we obtain expressions of
the SER based on Chi-square cumulative distribution functions
(cdfs). Note that these expressions do not rely on the Gaus-
sian approximation and therefore should be treated as exact
solutions, not approximations. This SER is further used to
optimize the input signal constellation. Based on simulations,
we compare the performance of I-ED and A-ED in sparse
channels with limited number of DoFs. While A-ED exhibits
poor performance, I-ED remains robust in such propagation
environment and should be the method of choice for this case.

In the following, we use (.)H , E(.), and || · ||2 to denote
Hermitian, expectation and the L2 norm operators.

II. SYSTEM AND SIGNAL MODEL

The considered transceiver structure is shown in Fig. 1.
As one of the potential applications is mmWave commu-
nications, the transmitter and receiver are equipped with a
large number of antennas. A single data stream is assumed
to be transmitted and, as a simplification, transmission in the
uplink is performed from a single transmit antenna, see Fig. 1.
Alternatively, the transmission can use multiple antennas but
using a large beam (e.g. based on long term characteristics
of the channel). Indeed, as the single data stream is non-
coherently detected at the receiver, it is natural to assume that

the phases of the channel coefficients are not available at the
transmitter, such that beamforming based on instantaneous CSI
is not possible.

At the receiver’s front end, the signal from each of the
available M receive antennas is filtered, squared, and inte-
grated. The outputs from each antenna are summed up, which
is referred to as energy collection; more details can be found
in [7]. With an integration pefromed over a given time window
T , the corresponding DoFs appear in the communication
channel [7]. Without loss of generality and for the ease of
presentation, we ignore those DoFs. Although they are not
negligible, we are primarily interested in the DoFs brought
by the multiple antennas. Thus, in the simplified scheme, the
integrator is replaced by a sampler which takes a single sample
of the received signal over the time window T .
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Fig. 1. A simplified diagram for ED. Training symbols xp can be used to
estimate the noise variance and channel energy. In data transmission mode,
these estimates are used to compute thresholds based on the MAP/ML decision
rule to decode data symbol x. Note that we use hi for i = 1, . . . ,M , in (2)
to denote the equivalent channel coefficients of h̃i in the analog domain. The
same applies for the additive noise.

Assuming the guard interval is large enough such that inter-
symbol interference is negligible [9], the received signal at a
certain time instant after the energy collector reads [16], [15]

z =
1

M

M∑
i=1

|yi|2 . (1)

The division by M is introduced for normalization and the
received signal at the ith antenna is given by

yi = hix+ ni, (2)

where hi denotes the channel coefficient between the trans-
mitter and the ith receiver antenna in the digital domain and
x is the unknown transmit symbol. We assume that hi, for
i = 1, . . . ,M , has zero mean and variance σ2

h. The additive
noise contribution, ni, for i = 1, . . . ,M , is circular complex
Gaussian with zero mean and variance σ2

n. Since the signal
energy needs to be collected at the receiver, the transmitted
symbol x is selected from the non-negative constellation set

x ∈ {0,
√
ε1,
√
ε2, . . . ,

√
εP−1}, (3)

where E[x2] = 1. The task is to decode the unknown symbol
x based on the observation z resulting from energy collection.
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III. I-ED AND A-ED: ASYMPTOTIC PROPERTIES AND
CHANNEL ASSUMPTIONS

The two ED methods described in this paper are called
Instantaneous channel energy based ED (I-ED) and Average
channel energy based ED (A-ED). In this section we examine
the asymptotic properties that are exploited by I-ED and A-ED
as well as the related channel assumptions. For this purpose,
we reformulate (1) as

z =
1

M
‖h‖22︸ ︷︷ ︸
ςh

x2 +
1

M
‖n‖22︸ ︷︷ ︸
ςn

+ 2
1

M
<(hHn)︸ ︷︷ ︸
w

x. (4)

A. Instantaneous channel energy based ED (I-ED)

I-ED assumes that the instantaneous channel energy ςh is
perfectly known at the receiver. I-ED essentially exploits the
assumption that the noise at the receiver is independent and
identically distributed (i.i.d.) across antennas, resulting in noise
hardening. This assumption is well verified in general if n is
thermal noise, which is the assumption adopted in this paper.
If, instead, n represents interference coming from a single user,
then the DoFs available in the interference channel may be
limited by the propagation properties. However, when multiple
users are present as interfering signals, it is unlikely that they
will occupy the same angular space. Hence, the more users
are interfering, the more DoFs become available in general,
enabling noise hardening.

Under the adopted assumptions, as M → +∞, ςn converges
to the noise variance σ2

n, according to law of large numbers.
Likewise, the third term w becomes arbitrarily close to zero.
Due to the noise hardening effect, in principle, the noise
contribution can be removed from z in (4) provided that
the noise term σ2

n is reliably estimated. ED methods with a
small number of receive antennas suffer from the accumulation
of noise in the energy collection process which restricts the
communication reach. I-ED alleviates this problem and widens
the application of ED beyond short-range communications to
possibly cellular systems.

Furthermore, according to the central limit theorem, the
received signal z in (4) can be approximated as a non-
centered Gaussian random variable (see Section IV-A). This
approximation leads to convenient analysis. It is a notable
advantage over ED with small number of antennas where (4)
is modeled as a non-central Chi-square probability density
function (pdf) for which the determination of the detection
thresholds requires numerical methods.

B. Average channel energy based ED (A-ED)

A-ED also exploits noise hardening and the convergence of
w to zero, hence inheriting the properties of the aforemen-
tioned I-ED. Furthermore, the channel is assumed to have
a Rayleigh distribution, such that h = [h1, . . . , hM ]T ∼
CN (0, σ2

hI). Under this assumption, as M → +∞, the
instantaneous channel energy ςh tends asymptotically to the
average channel energy σ2

h, referring to as channel hardening.
Note that channel hardening also holds for certain correlated
channel models [19] or when the transmitter and receiver

communicate in line-of-sight (LOS) conditions. In A-ED,
detection is performed based solely on the average channel
energy σ2

h and noise energy σ2
n.

The limitation of A-ED resides in the channel hardening
properties which puts strong requirements on the propagation
conditions. For sparse channels, which contain a small number
of propagation paths, or cluster-based models with a small
angular spread of the scattering clusters, channel hardening
is only partial. In such a case, I-ED becomes the method
of choice. Provided channel hardening can be guaranteed,
A-ED finds its prime interest for fast fading channels when
the instantaneous channel energy cannot be tracked at the
receiver. More details on channel energy estimation can be
found in [20].

In the sequel, we assume that the noise energy σ2
n stays

constant and can be perfectly estimated over a long observation
window, e.g. when the system is in the idle mode.

IV. INSTANTANEOUS CHANNEL ENERGY BASED ED (I-ED)
In this section, we assume perfect knowledge of ςh and σ2

n

at the receiver and apply the maximum a posteriori (MAP)
principle to decode the unknown symbol x. We set up the
following hypothesis

Hp : x =
√
εp, for p = 0, . . . , P − 1

with prior distribution p(Hp) = p(x =
√
εp). Accordingly, the

MAP decision rule is written as:

f(z|ςh,Hp)
f(z|ςh,Hp′)

Hp
≷
Hp′

p(Hp′)
p(Hp)

, ∀ p′ 6= p, (5)

where f(z|ςh,Hp) is a non-central Chi-square pdf of z con-
ditioned on ςh and Hp in our problem.

The decision threshold between two neighboring constel-
lation points is denoted as ∆p(ςh), for p = 0, . . . P − 2.
Therefore, we have

x =


ε0 z < ∆0(ςh)

εp ∆p−1(ςh) ≤ z < ∆p(ςh) for 1 ≤ p ≤ P − 2

εP−1 z ≥ ∆P−2(ςh)

.

(6)
Employing the decision rule, the probability of detecting

εp+1 while εp is transmitted is denoted as Pue (ςh, εp) where
the superscript “u” refers to the upper tail of f(z|ςh, εp). In
fact, Pue (ςh, εp) is a Marcum Q-function which is expressed
as

Pue (ςh, εp) =

∫ ∞
∆p(ςh)

f(z|ςh, εp)dz. (7)

Similarly, the probability of detecting εp−1 while εp is trans-
mitted is denoted as P le(ςh, εp) where the superscript “l” refers
to the lower tail of f(z|ςh, εp).

Using (5) and the involved Chi-square pdfs, it is possible to
find the detection thresholds via numerical methods. Further-
more, the SER averaged over the channel can be determined
using (7) and Monte-Carlo simulations. Next, we approximate
f(z|ςh, εp) by a non-centered Gaussian pdf to compute the
detection thresholds and characterize the SER performance at
high SNRs.
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A. Gaussian Approximation of z Conditioned on ςh
Relying on the central limit theorem, z in (4) can be

approximated as a non-centered Gaussian random variable
when M is large, i.e. f(z|ςh, εp) ∼ CN (µz, σ

2
z) with the

same first and second moments as the non-central Chi-square
distributed random variable z [16]:

µz(ςh, εp) = µz,p = ςhεp + σ2
n, (8)

σ2
z(ςh, εp) = σ2

z,p =
σ2
n

M

(
2ςhεp + σ2

n

)
. (9)

The conditional pdfs f(z|ςh, εp) under a Rayleigh fading chan-
nel assumption are depicted in Fig. 2 using a logarithmic scale.
When M is small, there is a noticeable difference between the
exact pdf and its Gaussian approximation. However, when M
is large, the two pdfs become alike. Because the tails of the pdf
are important for determining the SER performance, a good fit
on the tails is observable. In addition, the conditional variance
(9) becomes larger as the energy level εp increases, which can
be observed in the figure.

z (M = 10)

0 2 4

f
(z
|σ

2 h
,x

)
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z (M = 200)

0 2 4
10−10

10−8

10−6

10−4

10−2

100

ChiS
GA

f(z|σ2
h, ǫ3)

f(z|σ2
h, ǫ3)

f(z|σ2
h, ǫ0) f(z|σ2

h, ǫ0)

Fig. 2. Conditional pdfs of z in (1) expressed in logarithmic scale for a given

channel realization with different number of receive antennas: σ
2
h
σ2
n

= 3 dB and

P = 4. The legend “ChiS” symbols the Chi-square pdf f(z|ςh = σ2
h, x =

εp). We use “GA” to indicate the Gaussian pdf with the same first and second
moments.

B. Detection Thresholds

The decision thresholds from (5) are computed based on the
MAP rule using the Gaussian pdfs with moments expressed
in (8) and (9). With simple manipulations, ∆p(ςh) is shown to
be the positive root of the second-order polynomial equation

ϑTx = 0, (10)

where x = [x2 x 1]T and

ϑ =


1/σ2

z,p − 1/σ2
z,p+1

2
(
µz,p/σ

2
z,p − µz,p+1/σ

2
z,p+1

)(
µ2
z,p/σ

2
z,p − µ2

z,p+1/σ
2
z,p+1+

log
(
σ2
z,p+1/σ

2
z,p

)
+ 2 log(

p(εp+1)
p(εp) )

)
 .

We remark that the result reported in [16] is a special case of
(10) by setting p(εp) = 1

P , for p = 0, . . . , P − 1.

C. Performance Analysis

We now assume that the detection thresholds are computed
via (10) and characterize the SER performance.

1) Performance Based on Gaussian Approximations: In-
voking the Gaussian approximations, Pue (ςh, εp) is approxi-
mated as:

Pue (ςh, εp) ≈ Q
(√
γu,p

)
, (11)

where the Q function is defined as

Q(y) =
1√
2π

∫ +∞

y

e−
a2

2 da

and

γu,p =

(
∆p(ςh)− µz(ςh, εp)

σz(ςh, εp)

)2

.

Similarly, P le(ςh, εp+1) is approximated as

P le(ςh, εp+1) ≈ Q
(
−√γl,p

)
(12)

and

γl,p =

(
∆p(ςh)− µz(ςh, εp+1)

σz(ςh, εp+1)

)2

.

Note that γu,p and γl,p are important quantities as they can be
interpreted as the post-processing SNR of the communication
system. For systems with a small number of antennas, it is not
possible to define such an SNR. Accordingly, the SER reads

Pe(ςh) ≈
P−2∑
p=0

(
Q(
√
γu,p)p(εp) +Q(−√γl,p)p(εp+1)

)
. (13)

2) Scaling Behavior of SER at High SNR Regimes: We
show that I-ED asymptotically achieves the same performance
as coherent detection (with a positive PAM constellation) and
hence has a diversity order of M .

We define the instantaneous SNR as ρh = ςh/σ
2
n. When ρh

is large, based on (10), we can show that

∆0(ςh) = σ2
n

√
ε1ρh

2

∆p(ςh) = ςh
√
εp
√
εp+1, for p 6= 0.

(14)

Furthermore, the asymptotic moments are

µz(ςh, ε0) = σ2
n; σ2

z(ςh, ε0) =
σ4
n

M
,

µz(ςh, εp) = ςhεp; σ2
z(ςh, εp) = 2

σ2
nςhεp
M

for p 6= 0.

(15)

Employing (14) and (15), we prove that γl,p and γu,p are equal
and can be expressed as:

γl,p = γu,p uMρhκp, κp =

(√
εp+1 −

√
εp√

2

)2

. (16)

As a result, the probability of error Pue (ςh, εp) (and likewise
P le(ςh, εp+1)) reads

Pue (ςh, εp) ≈ Q


√√√√ M∑

i=1

|hi|2
κp
σ2
n

 (17)
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The quantity γl,p =
∑M
i=1 |hi|2

κp
σ2
n

can be interpreted as the
post-processing SNR of a coherent (by matched filtering)
SIMO system with channel coefficients hi, transmit power κp,
and noise variance σ2

n. Assuming a zero-mean complex circu-
lar symmetric Gaussian channel such that h ∼ CN (0, σ2

hI),
the scaling law of the expected value of Pue (ςh, εp) with
respect to the channel is

logEςh (Pue (ςh, εp)) ≈M log
(ρκp

2

)
, (18)

where the average SNR over the channel energy is defined as
ρ =

σ2
h

σ2
n

.
In general, the SER depends on the DoF contained in ςh.

Consider a sparse channel with L < M paths and a simple
case where all the paths have equal energy and are separated
by a directional cosine angle larger than one over the array
aperture length [22], we have ςh u

∑L−1
l=0 |βl|2, where βl is

the complex gain of the lth path. Then, we can prove that

logPue (ςh, εp) ≈ L log

(
ρκpM

2L

)
. (19)

Clearly, compared to (18), when L < M , the performance in
(19) is limited by the reduced DoF L.

3) Comparison with Coherent Detection: For coherent de-
tection, the received signal after matched filtering and normal-
ization is

zc =
√
εp +

hHn

||h||22
. (20)

Detection of √εp is based on the real part of zc as the
imaginary part does not contain any information about √εp.
Based on (20), the detection threshold is ∆p =

√
εp+
√
εp+1

2 .
It is straightforward to determine the corresponding post-
processing SNRs γu,p and γl,p and prove that they are equal
to the expression in (16), see Appendix A. Therefore, the per-
formance of I-ED asymptotically approaches the performance
with coherent receivers.

D. Constellation Design

Inspecting (11), (12) and (13), the performance depends
on the power of the constellation points. Hence, for a given
constellation size, it is possible to design the power distribution
of the constellation points to optimize the SER. Optimizing the
average SER is a sensible approach when the channel holds
a large number of DoFs. Here, we optimize the instantaneous
SER, so that the design also holds for channels with a limited
number of DoFs.

The optimization problem is formulated as:

arg min
ε0,...,εP−1

Pe(ςh) (21)

Subject to
1

P

P−1∑
p=0

εp = 1,

εi < εj when i < j.

In general, this is a NP-hard problem. Similarly to [17],
the convexity properties of the Q function with respect to
the threshold values can be exploited leading to an iterative
algorithm with low complexity.

Employing the threshold values in (14) and the asymp-
totic moments in (15), we can in fact compute the optimal
constellation at high SNR regimes in closed-form. We show
in Appendix A that the optimal constellation, achieving the
lowest SER, is the conventional non-negative PAM. In this
case, √εp+1−

√
εp takes the same value for p = 0, . . . , P −2,

leading to equal γl,p and γu,p at high SNR regimes. Though
no-closed form solution can be obtained at low and medium
SNRs, an alternative design criteria could be to equalize the
post-processing SNRs, which can be formulated as a minimax
problem

arg min
ε0,...,εP−1

max
p
|γl,p − γu,p|2 (22)

Subject to
1

P

P−1∑
p=0

εp = 1.

It can be efficiently be solved by standard optimization tool-
boxes.

V. AVERAGE CHANNEL ENERGY BASED ED (A-ED)

In this section, ED is performed based on the knowledge
of the average channel energy σ2

h and the noise energy σ2
n

which are assumed to be perfectly known. A-ED is suited
for fast fading channels where the receiver cannot track the
instantaneous channel energy, but also for channels holding a
large number of DoFs.

Next, we determine the detection thresholds for A-ED based
on two methods. The first method relies on a Gaussian approx-
imation of the received signal after energy collection while the
second approach uses a Bayesian approach. Then, we analyze
the average SER which is expressed simply as a function of
Chi-square cdfs. This allows for a simple formulation of input
constellation optimization based on the average SER.

A. Decision Thresholds

1) Gaussian Approximation: In slow or time-invariant fad-
ing channels, using training symbols to estimate the instanta-
neous channel energy ςh justifies the application of (8) and (9).
However, in fast fading channels in which σ2

h stays constant,
ED based on an estimate of ςh provides inferior performance
due to the fact that the instantaneous channel energy in the
training and data transmission phases may be different. Thus a
larger estimation variance is obtained compared to employing
average channel energy. In this case, we can directly reuse the
results in Section IV-A by approximating ςh with σ2

h.
2) Bayesian Energy Detection Using a Priori Knowledge of

Channel Distribution: We now exploit the prior distribution of
h which is h ∼ CN (0, σ2

h). Inspecting (4) and employing the
assumption on h, z follows a centered Chi-square distribution
with pdf

fb(z|σ2
h, εp) =

(
M

σ2
h εp+σ2

n

)M
e
− M

σ2
h
εp+σ2n

z
zM−1

(M−1)! for z > 0.

(23)
Note that we use the subscript “b” to indicate the conditional
pdf of z is obtained via a Bayesian approach.



6

Applying (23) to (5), we find that the detection thresholds
have a closed-form expression:

∆p =

[
log

(
ρεp+1 + 1

ρεp + 1

)
+

1

M
log

(
p(εp)

p(εp+1)

)]
· (ρεp+1 + 1)(ρεp + 1)

ρ(εp+1 − εp)
. (24)

If M is sufficiently large and the transmit symbols are equi-
probable, (24) simplifies to the results given in [16]:

∆p = log

[
(ρεp+1 + 1)

(ρεp + 1)

]
(ρεp+1 + 1)(ρεp + 1)

ρ(εp+1 − εp)
. (25)

Remarkably, for a large number of antennas M , the threshold
value does not depend on M but only on the SNR.

B. Performance Analysis

Employing the decision thresholds, we now determine the
expected value of the SER with respect to the channel distri-
bution. Our main assumption is that ∆p is computed in the
training phase using the average channel energy and thus does
not depend on the channel h in the data transmission phase.
In a fast fading channel, this assumption is verified when the
channel in the training phase is independent from that of the
data transmission phase. If the training in the current time slot
is incorporated, the estimate of σ2

h depends on the channel
in the current time slot. To remove this dependency, we can
simply ignore the training in this slot. Alternatively, if the
number of training slots is sufficient such that the correlation
of the estimate with the channel in the current time slot is
negligible, our results in the following still hold.

Focusing on Pue (ςh, εp) defined in (7), we have

Eςh [Pue (ςh, εp)] =

∫
ςh

∫ ∞
z=∆p

f(z|ςh, εp)dzf(ςh)dςh. (26)

Based on the independence assumption between ∆p and ςh in
the data transmission phase, we swap the integrals in (26)
to compute the average SER. Then, we use the fact that∫
ςh
f(z|ςh, εp)f(ςh)dςh = f(z|εp) which is a Chi-square pdf

with known asymptotic properties. Accordingly, we obtain the
result:

Eςh [Pue (ςh, εp)] =

∫ ∞
∆p

f(z|εp)dz = 1− Fz(∆p|εp), (27)

which can be completely characterized by a Chi-square cdf.
Similarly, the probability of decoding εp−1 while εp is trans-
mitted reads

Eςh [P le(ςh, εp)] = Fz(∆p−1|εp). (28)

Using (27) and (28), we obtain closed-form expressions for
the SER of εp:

Pe(εp) =

1− Fz(∆p|εp), p = 0
Fz(∆p−1|εp) + 1−Fz(∆p|εp), 0 < p < P−1
Fz(∆p−1|εp), p = P−1.

(29)
Note that the SER is fully characterized by Chi-square cdfs
with 2M DoFs. This is distinguishable with the results pre-
sented in [16], where the average SER needs to be obtained

via Monte Carlo simulations. Thus, the average SER over the
transmit symbols is given by

Pe =

P−1∑
p=0

Pe(εp)p(εp). (30)

C. High SNR Analysis

To provide the scaling law behavior of Pe, we use the Cher-
noff bounds to approximate the tails of a Chi-square cdf [23].
It gives a better approximation of the tails of the distribution
than the known first or second moment based tail bounds such
as Markov’s inequality or Chebyshev inequality [23]. To apply
this bound, for the problem at hand, we define

δup =
∆p

σ2
h εp + σ2

n

for p = 0, . . . , P − 2 (31)

δlp =
∆p−1

σ2
h εp + σ2

n

for p = 1, . . . , P − 1. (32)

Therefore, an approximation of (27) reads

Pue (σ2
h, εp) ≈

[
δup e

1−δup
]M

. (33)

Likewise, the approximation of the lower tail of the Chi-square
distribution in (28) has the form

P le(σ
2
h, εp) ≈

[
δlpe

1−δlp
]M

. (34)

Having (33) and (34), the approximate SER can be readily
obtained. The application of this bound sheds some light on
the performance of the adopted constellation schemes.

1) OOK Constellation: In this case, the energy constella-
tions are denoted as ε0 = 0 and ε1 = 2 such that the average
power is unity. To analyze the SER performance, we define
ρ′1 = ε1ρ. The detection thresholds are determined using (10)
as well as (8) and (9). When ρ→ +∞, the detection thresholds
are approximated as

∆0 = σn

√
σ2
h ε1
2

= σ2
n

√
ρ′1
2
. (35)

Applying (31) and (32), the parameters controlling the upper
tail of p(z|σ2

h, ε0) and the lower tail of p(z|σ2
h, ε1) are given

by

δu0 =

√
σ2
h ε1

2σ2
n

=

√
ρ′1
2

and δl1 =
σn√
2σ2

h ε1
=

1√
2ρ′1

.

(36)
Inserting these two terms in (33) and (34), it can be shown that
Pe(ε1)� Pe(ε0): see Appendix B. Thus, the average SER is
dominated by Pe(ε1). Taking the logarithm of the SER, we
obtain

logPe ≈ logPe(ε1) ≈M log δl1 = −M
2

log 2ρ′1. (37)

It is found that using OOK, the ED achieves diversity order
of M/2. Although lower than the diversity order achieved
by coherent detection, equal to M , the proposed receiver
obtains a diversity order that linearly scales with the number
of antennas. The loss in diversity is due to the absence of
knowledge of the instantaneous energy and the fact that the
receiver relies on the average energy.
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2) Higher-order PAM Constellation: For a general PAM
constellation, when ρ → +∞, using (10), (8), and (9), the
detection thresholds are approximated as

∆0 = σ2
n

√
ρ′1
2

∆p = σ2
h
√
εp
√
εp+1, for p 6= 0.

(38)

Inserting (38) to (31) and (32), the parameter controlling the
lower and upper tails are given by

δu0 =

√
σ2
h ε1

2σ2
n

=

√
ρ′0
2

(39)

δup =

√
εp+1
√
εp

(
ρ′p

ρ′p + 1

)
for p = 1, . . . , P − 2 (40)

δlp =

√
εp−1
√
εp

(
ρ′p

ρ′p + 1

)
for p = 1, . . . , P − 1, (41)

where ρ′p = εpρ. Applying these three terms in (33) and (34),
it can be shown that the SER is given by

Pe ≈
P−2∑
p=1

((
ηpe

(1−ηp)
)M

+

(
1

ηp
e

(1− 1
ηp

)
)M)

p(εp), (42)

where ηp =
√

εp+1

εp
. We immediately observe that (42) de-

pends only on the number of receiver antennas and the power
ratio between the constellation points. Thus, for fixed M , the
SER in (42) tends to a constant, leading to an error floor,
which depends on the energy level of the signal constellation.

For the conventional non-negative PAM, the values of the
first and second term in the summand in (42) are more and
more similar as the constellation order P increases. When P
is small, e.g. P = 4 with an uniform distributed constellation,
it can be shown that the SER is dominated by the term p = 2
in (42):

Pe ≈
(
η2e

(1−η2)
)M

+

(
1

η2
e(1− 1

η2
)

)M
. (43)

in which the second term is more significant. Thus, we obtain

logPe ≈ −
M

2
log
(
η2

2 + constant
)
. (44)

Therefore, the logarithm of the SER decreases linearly with
the number of antennas and it is beneficial to employ more
antennas since it leads to a reduced probability of error.

D. Constellation Design

Based on the average channel energy, we can optimize the
constellation. The optimization problem can be formulated in
a similar way as (21) but with the SER expression in (30). To
compute the solution, the iterative optimization algorithm in
[17] can be employed for our proposed optimization problem.
The Chi-square cdf in (29) has convexity properties with
respect to the corresponding threshold values, similarly to the
Q function in [17]. Thus, the method can be straightforwardly
applied to our problem with only a few iterations required to
obtain a sub-optimal solution.

VI. PERFORMANCE ASSESSMENT AND SIMULATIONS

We report the performance of the proposed ED methods
using OOK and 4-PAM. In fast fading channels, the estimated
channel energy in the training phase may be largely different
from that of the data transmission phase. If this occurs,
the use of instantaneous channel energy leads to an inferior
performance when I-ED or coherent receiver is utilized: see the
performance evaluation in [16]. In slow fading channels, the
instantaneous channel energy stays the same in the training and
data transmission phase, which allows a meaningful compari-
son between coherent and non-coherent methods. We thus only
report the results in slow fading channels. In addition, for 4-
PAM constellations, we compare the performance of ED using
the conventional 4-PAM constellation and the optimized PAM
constellation. To compare with the methods in the literature,
i.e. [17], we assume that the energy levels have an uniform
probability mass function. Defining the term SNR as ρ =

σ2
h

σ2
n

in this section, we compare the SER obtained for the following
cases:
• “Coherent”: Coherent detection with known CSI at the

receiver. The SER is computed by averaging over Monte
Carlo trials of the channel.

• “I-ED: ChiS”: ED based on instantaneous channel energy
1
M

∑M
i=1 |hi|2 and σ2

n. The SER is computed using the
upper tail (7) and the corresponding lower tail based on
the exact (Chi-square) pdf of the received signal energy.

• “I-ED: Gaus”: ED based on instantaneous channel energy
1
M

∑M
i=1 |hi|2 and σ2

n. The SER is computed using (11)
and (12) based on the Gaussian approximation of the
received energy in Section IV-A and IV-C.

• “A-ED-Gaus”: ED based on average channel energy
σ2
h, σ2

n and the Gaussian approximation of the received
energy in Section V-A1. The analytical SER is obtained
from (29).

• “A-ED-Bayesian”: ED based on σ2
n and the prior knowl-

edge of the channel in Section V-A2 to compute the
thresholds. The analytical SER is obtained from (29).

• “I(A)-ED: Opt-PAM”: ED using the optimized constella-
tion based on the method “I(A)-ED: Gaus”.

• “A-ED: (Opt-PAM) Gaus-[17]”: Analytical SER obtained
from using (optimized constellation design) conventional
PAM in [17] based on Gaussian approximations.

• “I-ED: SparseCh: EqualPow”: I-ED for a sparse channel
with equal power path gain.

• “I-ED: SparseCh: UnEqualPow”: I-ED for a sparse chan-
nel with exponential decay power delay spectrum.

A. OOK Constellation

Fig. 3 shows the SER performance using the OOK con-
stellation. We observe that the performance gap between
coherent detection and the proposed ED methods becomes
smaller and smaller as the SNR increases. In fact, when I-
ED is employed, its performance asymptotically approaches
that of coherent detection: see Section IV-C3. As the number
of antenna increases, the SER decreases, which shows the
benefits of employing a large number of antennas in the ED
system. As an example, inspecting the red curves, to achieve



8

Number of antennas

48 16 32 50 100 150 200

S
E
R

10−8

10−7

10−6

10−5

10−4

10−3

10−2

10−1

100

Coherent
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SNR = −3 dB
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Fig. 3. OOK: SER versus the number of antennas.

M
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10−1

100
A-ED-Gaus Approx
A-ED-Gaus
A-ED: Gaus-[17]
A-ED-Gaus (Simulations)

SNR = 3 dB

SNR = 9 dB

Fig. 4. Conventional 4-PAM: Comparison of the proposed analytical SER
expression in (29), the approximation using (33) and (34), denoted as “A-ED-
Gaus Approx”, and the solution in [17].

SER = 10−3, employing M = 100 antennas leads to around
9 dB gain compared to using M = 8, corresponding to a reach
extension of roughly 2.8 km1. In addition, no error floor is
observed as the SNR increases, which is analyzed in Section
V-C1.

B. 4-PAM

Assuming conventional PAM is adopted at the transmitter,
Fig. 4 compares the proposed SER expression using the exact
Chi-square pdfs to the Gaussian approximation based-solution
in [17]. The proposed solution (29) fits the Monte Carlo
simulation rather well at both low and high SNR regimes
while a noticeable difference between the two approaches
is observed at high SNRs, which is caused by the adopted
Gaussian approximations in [17]. In addition, we also observe
that the approximations (33) and (34) can be used to predict

1The standard path loss model reads: PathLoss [dB] = 20 log10(d), where
d is the reach extension with unit km. Note that for indoor applications, the
distance d has unit in meter.

SNR

0 3 6 9 12

S
E
R

10−8

10−7

10−6

10−5

10−4

10−3

10−2

10−1

100

I-ED: ChiS

A-ED-Gaus

I-ED: Gaus

M = 100

M = 8

M = 200

Fig. 5. Conventional 4-PAM: SER versus SNR for different No. of antennas.

the slope of the SER, which justifies its application to analyze
the behavior of the SER, especially at high SNR regimes where
the error floor appears, see Fig. 5. This error floor is caused by
the fact that the SER performance is limited by the uncertainty
in the channel energy. As it is analyzed in Section V-C2, we
can see that increasing the number of antennas reduces the
error floor, but does not remove it. When the instantaneous
channel energy is known, as the number of antenna increases,
we observe a diminishing performance gap resulting from the
Gaussian approximation of the pdfs to compute the SER as
described in Section IV-A compared to the exact SER based
on the Chi-square pdfs.

In Fig. 6, we compare I-ED and A-ED when the input
constellation is optimized using the methods described in
Section IV-D and V-D, respectively. For A-ED and as the SNR
increases, the energy of the symbol with the highest energy
becomes larger and larger, while the distance between the other
three gets smaller and smaller. This coincides with the analysis
in (42) where the SER is mainly dominated by the energy
ratio between the two largest energy constellations. For I-ED,
as the SNR increases, the optimal constellation converges to
the conventional PAM. This verifies our analysis in Section
IV-C2 which shows that the performance of I-ED approaches
the performance of the coherent receiver as the SNR increases.
Since conventional PAM is optimal in terms of achieving the
lowest SER for a coherent receiver, it becomes the optimal
constellation for I-ED at high SNR regimes.

Fig. 7 reports the performance of A-ED with optimized
PAM for a 4-level constellation. The results show that using
an optimized energy constellation can significantly improve
the SER in the considered SNR regions. In addition, the error
floor is not observed and appears at very high SNR. Thus,
A-ED together with an optimized PAM constellation brings
appealing performance provided that the channel holds a very
large number of DoF.

C. Performance Evaluation in Sparse Channels

In Rayleigh fading channels, A-ED delivers promising per-
formance as it is reported in the previous sections. However,
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Fig. 6. 4-PAM energy constellation optimization: M = 100. The dashed line
shows the energy level of the conventional PAM.
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Fig. 7. Constellation optimization: SER versus the no. of antennas.

the performance of A-ED significantly degrades when the
number of DoF becomes small, e.g. in sparse channels.

To evaluate the ED methods, we adopt the sparse channel
model from [24]:

h = β0v(θ0)︸ ︷︷ ︸
LOS component

+

L−1∑
l=1

βlv(θl)︸ ︷︷ ︸
Non−LOS(NLOS) component

, (45)

where L is the number of paths, βl ∼ CN (0, σ2
βl

) and θl, for
l = 1, . . . , L− 1, are the complex amplitude and the arriving
angle of the lth path. For simplicity, we set β0 to a positive
constant for LOS channels and β0 = 0 for NLOS propagation
environment. In mmWave systems, L is typically small [25].
The LOS component arrives at the receiver array from the
direction θ0 if it exists. Without loss of generality, we assume
that the channel power is normalized. The steering vector is
defined as v(θl) = [1, . . . , e−jπ(M−1) cos(θl)] assuming a half
wavelength spacing between the antenna elements and j =√
−1. To simplify, we assume that the paths have fixed angle

M

16 32 50 100 150 200

S
E
R

10−4

10−3

10−2

10−1

A-ED: Conv.-PAM
A-ED: Opt-PAM-Gaus-[17]
A-ED: Opt-PAM
I-ED: Opt-PAM

Fig. 8. Sparse LOS channels: SER comparison of optimized PAM and
conventional (conv.) PAM with SNR = 4 dB, L = 9.

of arrivals with uniform spacing in [0, 2π], so that the inner
product of the steering vectors tends to zero as the number of
antennas tends to infinity. When L ≤ M , each path occupies
a separable beam and the DoF is limited by L. When L > M ,
the maximum DoF is determined by M , which means that
some paths become unresolvable given the array aperture. We
conduct Monte-Carlo simulations to report the performance
of the ED methods under the channel model (45) using error
expressions such as (7).

In LOS channels with a Rician factor, defined as β2
0∑L−1

l=1 σ2
βl

,

set to be 9 dB, we compare the performance of the Opt-
PAM and Conv.-PAM assuming that the NLOS paths have
equal power. We observe that the optimized constellations
result in noticeable performance improvement, especially the
design based on instantaneous channel energy. Meanwhile, our
proposed designs outperform that from [17].

In NLOS channels, Fig. 9 reports the impact of the limited
number of DoF on A-ED. We observe that when the channel
gains are equal, the performance is better than that of the
case where the channel gains have an exponential decay
power delay spectrum. The DoF of the channel is the limiting
factor for the SER. The larger the DoF (2L), the better the
performance until it reaches the maximum DoF (2M ) that is
determined by the number of antennas. When L = M , we can
see that the performance coincides with that of Rayleigh fading
channels. When L ≤M , we observe an error floor: increasing
the number of antennas beyond L does not bring any benefits.
We draw the conclusion that A-ED performs poorly when the
number of paths L is small.

As expected, I-ED significantly outperforms A-ED: see Fig.
10. When L is small, the performance still improves when the
number of receiver antenna increases. I-ED leads to a SER
around 1 × 10−4 at M = 100 and L = 9. Thus this method
potentially can be employed in slow fading channels with a
few number of path components.

VII. SUMMARY AND CONCLUSIONS

We propose two ED methods for a single stream trans-
mission and reception by a very large number of antennas.
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Fig. 9. SER versus the no. of antennas for different numbers of path
components in NLOS sparse channels: Conventional PAM, SNR = 10 dB
and using average channel energy in Section V-A2 to compute the threshold
values.
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Fig. 10. SER versus the no. of antennas for different number of path
components in NLOS sparse channels: Conventional PAM, SNR = 10 dB
and assuming instantaneous channel energy is known.

The first method I-ED is based on the instantaneous channel
energy and exploits noise hardening. Based on the proposed
decision thresholds, we show that the performance of I-
ED asymptotically approaches the performance of coherent
detection in high SNR regimes. The second method A-ED
is based on the average channel energy and exploits both
channel and noise hardening. For this method, an error floor is
observed when PAM of order higher than two is employed due
to channel energy uncertainties. While A-ED gives satisfactory
performance when the number of DoFs available in the chan-
nel is sufficiently high, its performance significantly degrades
when the number of DoF becomes limited, such as in sparse
channels. But the performance of I-ED is still promising in
channels with large or limited number of DoFs, which can be
of high relevance for practical applications.
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APPENDIX A
PROOF: CONVENTIONAL PAM IS OPTIMAL AT HIGH SNR

REGIME WHEN I-ED IS EMPLOYED

We now prove that, at high SNR, conventional non-negative
PAM is optimal in terms of minimizing the SER when I-ED
is employed. Meanwhile, the optimal constellation also leads
to an equalized γu,p and γl,p for p = 0, . . . , P − 2.

When the SNR ρh is sufficiently high, we have γu,p u γl,p
in Section IV-C2. Thus, computing the optimal constellation
in (21) is equivalent to solving

arg min√
ε0,...,

√
εP−1

P−2∑
p=0

Q(
√
γu,p) (46)

Subject to
1

P

P−1∑
p=0

εp = 1,

√
εi <

√
εj when i < j.

Invoking the Lagrange method and utilizing the fact that

∂Q(γu,p)

∂
√
εp

= − 1

2π
e−

γu,p
2
∂
√
γu,p

∂
√
εp

,

we obtain that the conventional PAM is optimal. Inserting the
conventional PAM into (16), we readily obtain equalized γu,p
and γl,p for p = 0, . . . , P − 2.

APPENDIX B
OOK: DOMINANCE OF THE SER CAUSED BY ε1

Since δu0 =

√
ρ′1
2 and δl1 = 1√

2ρ′1
, plugging these two terms

in (33) and (34), we obtain

Pue (σ2
h, ε0) ≈

[√
ρ′1
2
e

(
1−
√
ρ′1
2

)]M
(47)

P le(σ
2
h, ε1) ≈

 1√
2ρ′1

e

(
1− 1√

2ρ′1

)
M

. (48)

When ρ′1 � 1,
√

ρ′1
2 e

(
1−
√
ρ′1
2

)
≈

√
ρ′1
2 e
−
√
ρ′1
2 and

1√
2ρ′1

e

(
1− 1√

2ρ′1

)
≈ 1√

2ρ′1
e. As a result, the error probability

for ε0 and ε1 diminishes as ρ → +∞. Meanwhile, the SER
for ε0 decays at a much faster scale due to the fact that the
ratio between the inner arguments of (47) and (48) are much
smaller than 1: √

ρ′1
2 e
−
√
ρ′1
2

1√
2ρ′1

e
≈ ρ′1e−

√
ρ′1
2

when ρ is sufficiently large.
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