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Abstract—Reconstructing a signal from squared linear (rank-1 approaches are based on alternating optimization in wiieh t
quadratic) measurements is a challenging problem with impe  ynknownx is iteratively estimated by solving a least squares
tant applications in optics and imaging, where it is known as (LS) problem, i.e
phase retrieval. This paper proposes two new phase retrieval algo- o
rithms based on non-convex quadratically constrained quarhtic min ||\/§ Ou-— AHX| |§ )
programming (QCQP) formulations, and a recently proposed xu | ui|=1, Vi
approximation technique dubbedfeasible point pursuit (FPP). The - T - -
first is designed for uniformly distributed bounded measuranent yvherey =[y1 - ym]" isthe dat_a VeCtom\ = [ar - aw]
errors, such as those arising from high-rate quantization B- IS the known measurement matrix,is the phase of/y (an
FPP). The second is designed for Gaussian measurement ersor extra unknown, together witk), || - ||2 is the 2-norm and>
using a least squares criterion (LS-FPP). Their performane is  denotes element-wise multiplication. The main problemhwit
measured against state-of-the-art algorithms and the Crar-  this type of algorithms is that they tend to hit local minima,

Rao bound (CRB), which is also derived here. Simulations sho . L .
that LS-FPP outperforms the existing schemes and operatesose thus requiring careful initialization, and often fail to rferm

to the CRB. Compact CRB expressions, properties, and insigh Satisfactorily even after multiple initializations.

are obtained by explicitly computing the CRB in various spedl Recently, modern convex relaxation techniques were applie
cases — _incl_uding _vvhen the s_ignal _of interest admits a sparseto phase retrievaPhaseLift[9]-[10] employs matrix lifting to
parametrlzatlon, using harmonic retrieval as an example. recast phase retrieval as a semi-definite programming (SDP)

Index Terms—Phase retrieval, quadratically constrained problem. Specifically, the PhaseLift scheme regards the mea

quadratic programming (QCQP), semidefinite programming surements in[{1) as a linear function ¥f= xx® which is a
(SDP), feasible point pursuit (FPP), Crangr-Rao bound (CRB). 5nk-1 Hermitian matrix. i.e.

yi = |al’x> = x"a,al’x = tr(A;X) (3

. INTRODUCTION
. . . . — H H
Phase retrieval is the problem of reconstructing a signghere A: = a;a;" and t(.) denotes the trace of a matrix.
x € CN from measurements of the form Thus, the recovery ok is equivalent to finding a positive
o semidefinite rank-1 matriXX through solving a rank mini-
yi = |’ x|%, ie{l,---, M} (1) mization problem:

where| - | is the magnitude of a complex numbén? is the H%én rank(X)

conjugate transpose arg € CV is a known measurement .

veciog The abgve problem appears in many applications sty =t(A:X), i €{1,---, M} @)

such as crystallographyl[2], diffraction imagingl [3]-[4hd X = 0.

microscopy [5]{[6], where it is often far easier to measure t Since rank minimization is a non-convex problem which

magnitude than the phase. is difficult to solve in a computationally efficient manner,
During the past decades, numerous phase retrieval solvefgseLift relaxed4) via semidefinite relaxation (SDR) e se

have been developed in the literature. Among them, tife]] for a tutorial overview. It has been shown in [9] that

Gerchberg-Saxton (GS)I[7] and Fienup [8] algorithms are tiethe measurement vectors are i.i.d. Gaussian distributed

most well-known and widely used methods in practice. Thegigen PhaseLift can recover with high probability when the
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whereM = diag(y/y)(Ins — A7 (AH)T)diag(,/y) with I, PhaseCut, PhaseLift, WF, and CRB. Finally, conclusions are
being aM x M identity matrix. Formulation {5) resembles thedrawn in Section VI.
classicalMaxCutproblem in networks, enabling fast semidef-

inite relaxation algorithms originally developed for MaxC Il. PROPOSEDALGORITHMS
to be adapted for PhaseCut. This makes PhaseCut faster than ) )
PhaseLift. In this section, we formulate the phase retrieval problem

More recently, a new approach to phase retrieval was pi& Non-convex QCQP in two different ways, and derive two

posed, in what appears to be an instance of a new algorithfi{responding algorithms, B-FPP and LS-FPP, to recaver

genre that relies on smart ‘statistical’ initializationllfaved

by relatively simple descent-type refinement narédinger A. B-FPP Algorithm
Flow (WF)[14]. It has been theoretically shown that when suf-

ficiently many i.i.d. Gaussian measurement vectors are,used
WF will recover the desired solution with high probability. min ||x|[3
However, recovery cannot be guaranteed when the number * I .
of measurements is small, or when the measurement vectors st xTAx=y;, i €{l,-- M},

are not random — mainly because the principal eigenveci@., a minimum norm solution to a system of quadratic equa-
used for initialization is not a good approximation ®fin  tions inx. If the equality constraints are consistent, then using
such cases. This means that for systematic (non-randaf® minimum norm to pick a solution can be motivated from a

measurement designs and/or relatively short sample siees t Bayesian perspective, if we assume a zero-mean uncoxelate

In the absence of noise, phase retrieval can be cast as

()

is considerable room for improvement. complex circularly symmetric Gaussian prioref In practice
In this paper, the focus is on recovering from noisy noise will render the equality constraints @ (7) incoresigt so
measurements, i.e., (@ will not admit any solution. High-resolution uniformalar

ie {1, M} ©6) quantization of otherwise noiseless quadratic measuresmen
o will result in additive quantization noise that is indepent

where n; is additive noise. To this end, in Section Il, twoacross measurements, bounded, and approximately unyformi

novel algorithms are developed. These algorithms buildhupdistributed over the quantization interval. This motigatesing

a method calledeasible point pursuit (FPPjhat we recently interval constraints, as follows:

developed for non-convex quadratically constrained catadr i .

programming (QCQP) problems [15]. The first algorithm (B- lyi —x" Aix| <€, Vi. (8)

FPP) is designed for independent and uniformly distribut : Cil :

bounded measurement errors, such as those arising from h?ggﬁplacmg the constraints i0I(7) 6 (8) yields

rate quantization. The second (LS-FPP) is designed fa. i.i. min ||x|[3 (9a)

Gaussian measurement errors, thereby using a LS criterion. * e H

Their performance is measured against state-of-art agosi St x"A Xx<yite (9b)

and the general Cramér-Rao bound (CRB) for phase retrieval x"TAx > y; — €, Vi. (9¢c)

from magnitude measurements in additive Gaussian noise .
9 E is clear that due to the non-convex constraints[id (94d), (9

Yi = |aZHX|2 + N,

which is also derived here in terms of phase and amplitu glongs o the class of non-convex QCQP problems which is

of the input signal. Interestingly, only partial CRB result ; B , :
under additional model restrictions and/or different inSNP—hard in general. For= 0 we recover the ‘standard’ phase

measurement models (e.g., for real- and compIex-val:uedremewjll prot_)lem, which is NP-har@ [P1].
[16]-[18], noise added prior to taking the magnitude|[19D2 . To apprommately solvel{9), we fOHO.V.[D‘S.]' Recall tha,
Fourier-based measuremerfts][20]) were previously a\!ailabs of rank one and it has only one positive eigenvalue. For any
despite decades of research in phase retrieval. Simudati&nandx’ we have
show that LS-FPP outperforms the state-of-art and operates (x—z)"A;(x—z) >0. (10)
close to the CRB. Compact CRB expressions, properties, and
insights are obtained by simplifying the CRB in special saseExpanding the left-hand side df(10) yields
ghese can help improve the d¢3|gn of megsurement apparatus, X Aix > MRe{z Ax) — 27 Az (11)
y providing a way to score different designs.
Section 1V presents a special case wheres in the form whereRe {-} takes the real part of its argument. Following
of a linear combination of several Vandermonde vectors, i.¢ne rationale in[[15], we replacE{9c) by
a harmonic mixture, leading to harmonic retrieval from rank
1 quadratic measurements. By predefining an overcomplete 2Re{z" Aix} +s; > 2" Az +y; — € (12)
Z)?qllcj)iggyr:sajlltsiﬁ Siﬂa;?étgiﬁlg d t\t‘;;;en(lu;ng}ll:ggrzﬁg Lg:lp\tf)v%eresi > 0 is a slack variable. The idea here is that linear
forpsparsé phase ?etrieval Furthermore, the CRB for fraquie restriction turns the non-convex problem into a convex one,
NS . L ' but at the risk of infeasibility. The slack variables restor
estimation is derived for this case.
Section V contains numerical simulations designed to il- ISince||x||3 = tr(xx*T), the minimum norm criterion is also reminiscent
lustrate the performance of the proposed algorithms versiiSemidefinite relaxation of rank minimization.



feasibility, but they should be sparingly uséd][15]. Thiads s
to the following formulation: -20¢
’ -1 ,~"
: 2 \’,‘
min ||X||2+AZSi ,x
s.t. xTAx <y +e (13) EE'B’ “/"\
2Re{zTAix} + 5, > 27 Ajz + y; — € = \,~'\,
s; >0, Vi
wheres = [s; --- sp]7 and the regularization parameter = ",»v".
A balances the original cost versus the slack penalty term. T e o’
Starting with an initial (possibly randony, we solve a se- ‘

quence of problems of typE{{13) to obtdixy, s ), and setting ‘ ’ ’ U
Zr11 = Xi. Since the cost function in_(1L.3) is independent of

% and the solution of théth iteration is also feasible for the ™9 1+ MSE versus. (N =16, M = 80)
(k + 1)th iteration, this will always return a non-increasing

cost sequencé [15]. In other words, the optimal value of t
cost function in each iteration step is non-increasingpllofvs
that this sequential process will converge in terms of th& cao

Eltlmctmn. The steps for B-FPP are summarizedhlgorithm recast LS phase retrieval as a non-convex quadratic-aasl
problem, and then approximate it using FPP. As we will show,
Algorithm 1 B-FPP Algorithm for Phase Retrieval our approa_ch gives cc_)nsistently_better approximationlnsg_su
1. function X — B-FPP@A. y, \.c.2) espemally in challenglng scenarios, at the cost of aduftio
R computational complexity.

ril1e(‘)t always work well, as we will show in our simulations
in Section V. This is not surprising, of course, since we are
dealing with an NP-hard problem. Our contribution here is to

i' rep;a(t_ solution of [IB) The LS formulation for phase retrieval is [14]

4: zZ =X

5 until a stopping criterion on the cost function 6f{13) min Z —x"Ax)? (14)

is satisfied
6: end function The first step in our approach is to recasil (14) in the follgwvin
equivalent form

Whereas B-FPP has been motivated from a uniform high- min  ||w||2
resolution quantization point of view (and indeed matcles t X (15)
noise model), the resultant algorithm can also be used for s.t. xMAix+w =y, Vi
Gaussian noise, although the choicecofs less obvious in \\hare

this case. It is instructive to illustrate this by means of an
example. Assume is uncorrelated zero-mean Gaussian with w=[w --- wM]T (16)
lengthN = 16, andM = 80 measurements are used for signal

. T I I i -
recovery. 200 Monte-Carlo trials are employed to calcullage with ()" being the transpose. We rewrite the equality con

mean square error (MSE). In each tria), x ando,, are fixed, straints as
and the noise is generated from a white Gaussian process with xHAx +w; < i (17a)
mean zero and standard deviatiop = 0.4. Fig.[d shows N (170)

the MSE versus. It is observed that whena < 0.4, B-FPP
exhibits a relative small MSE. Otherwise, its performanetsg In a similar manner as we process the non-convex con-
worse as increases. We conclude that B-FPP still works fagtraints in FPP[{17b) can be replaced by

Gaussian noise, provided~ o,.

2Re{z Aix} +w; + 5 > yi + 2" Az (18)
B. LS-FPP Algorithm to obtain the following convex QCQP:
The B-FPP method requires a user-defined tolerantee
bound the noise perturbation in the constraints, whichffs di inv%ns l[w][3 + A Z S
cult to appropriately determine from the magnitude measure o j
ments without prior knowledge of the noise standard desati s. t. 2Re{zHAix} +w+ 5 >y +zt Az (19)
More to the point, B-FPP is not tailored for Gaussian noise. <" Aix +w; < y;,
In this section we develophS-FPPbased on the LS criterion, 5 > 0.

which is equivalent to maximum likelihood for additive wnit
Gaussian noise. The LS formulation of phase retrieval hasThe steps for LS-FPP are summarizedAiigorithm £1
been recently considered in_|14], but the WF approach doesSome important remarks are in order:



Algorithm 2 LS-FPP Algorithm for Phase Retrieval statistical estimation baseline to assess how well FPP svork

1: function x = LS-FPPA,y, A, z) when applied to phase retrieval.
2: repeat
i: x <—Asolut|on of [19) [1l. CRAMER-RAO BOUND FORPHASE RETRIEVAL
. zZ =X
5 until a stopping criterion on the cost function F{19) In this section, we derive the CRB for phase retrieval for
is satisfied measurements contaminated by additive white Gaussiae nois
6: end function after magnitude squaring.

) A. Previous Work on CRB
e The problems in[(I3) and_{l19) are convex and can be

solved via interior point methods [22]-[23]. The worst-eas Let us summarize.the (surprisingly scant) prior work on the
complexity of solving[IB) and(19) aK@ (N +2M)>?) and CRB for phase retrieval. Balam_[17] has derived the Fisher
(’)((N+3M)3-5), respectively. Moreover, few outer iterationdnformation Matrix (FIM) for the model in[(6) for complex-

of B-FPP or LS-FPP are usually needed, so that the overdiuedx. Realizing that the FIM is singular, and implicitly
approximation is often manageable for moderate attributing this to the lack of global phase identifiabilitye

e In both B-FPP and LS-FPP, the regularizeris chosen suggested using side information abaut(e.g., assuming

according to [[15], where it is suggested to use> 1 to one pa_rticular component ot is_ real-valued) to _reduce the
steer the iterates towards the feasible region. Our emiedlmensmn of the FIM, resultmg in afu_ll-rank matrix. T_hmlse _
is that FPP is not very sensitive to the choicelofUsually, CRB can be computed by taking the inverse of the dimension-

\ = 10 works well for B-FPP and LS-FPP in most scenarioéeduced FIM. Similar results have also been considered in
« Invoking [22, Theorem 1], it follows that Algorithme] 1 [18], where the last row and column of the FIM are deleted.

and2 have a convergent subsequence. If it happens that H¥eVer, these assumptions are impractical and identifiabi
slack variables at the limit point is zero, then from [24, neither implies nor is implied by a nonsingular FIN_[27].
Theorem 1] it follows that thex variable at the limit point NStéad of making additional assumptions:oto force a non-

is also a KKT point of the original probleni](9) Ouls),singular FIM, we can instead use the pseudo-inverse of the fu

respectively. Given the NP-hard nature bf (9) and (15),¢he§!M @s & lower bound: v _

convergence claims may be reassuring; but it is important toClaim 3.1: For x € C%, the CRB matrix for the phase

not lose sight of the following caveat. Whereas numeric5trieval model in (6) is

experiments suggest that if the original problem is feasibl CRB, = Fi (20)

thens is very likely to be zero at the limit point, this is not N

always true — counterexamples have been folnd [15], and thisere the FIM is given by

is consistent with the fact that the feasibility problem iB-N 4

hard. F.= —G.G/ (21)

e Our work was inspired by the FPP-SCA (successive convex T

approximation) algorithm originally proposed for generah-  with

convex QCQPs in[[15]. The ideg behind the algorithm is Re{Adiag{A"x}}

closely related to the well-knowdifference of convex pro- G, = Im{Adiag{A#x}}| " (22)

gramming (DCP) and theconvex-concave procedufE€CP)

in optimization. The difference is these classical procedu Proof: The FIM has been derived in_[17] and [18] (in

assume the availability of a feasible starting point, whigh different but equivalent form). When the FIM is rank defidien

the core challenge in our context. FPP can be interpretiésl pseudo-inverse is a valid lower bound on the MSE of any

as first adding slack variables and a slack penalty to thabiased estimatof [29]( [30], albeit this bound is gengral

original problem to ensure feasibility (thereby circumirenlooser than the usual CRB_[31]. Perhaps surprisingly, this

ing the initialization challenge), followed by applicatiof ‘optimistic’ bound is often attainable in practice and tfere

DCP/CCP to the augmented problem, [15]. The same igeeadictive of optimal estimator performance — [32] amd 0

was independently proposed in a parallel submission whishmulations that follow. Strictly speaking, the pseudweeirse

appeared later in_[25]. An early version of the same bagit a singular FIM is not the usual CRB, and some researchers

idea can be found ir [26], which however neither consideretistinguish the two bounds; but this is a technical detathwi

general QCQPs, nor did it demonstrate that the method woltktle practical consequence, so we will refer to the remilt

well, especially relative to standard semidefinite releaand bound as the CRB. [ ]

randomization baselines. In the case of reak, Balan’s result in[[16] is valid only for
Given the apparent success of FPP in solving challengirepl measurement vectors. The CRB for reatan be easily

QCQP problems, we therefore propose using FPP to solve ttexived from Theorer 3.1. The result is as follows.

phase retrieval problem, where feasibility is the key stlimgo ~ Claim 3.2: For x € R", the CRB matrix for the phase

block. Whereas optimization theory measures success gia thtrieval model in (6) is

optimality gap in terms of the cost function, estimationahe .

naturally focuses on the estimation error. We thereforel rzee CRB, = F, (23)



where(-)~! denotes the inverse and C. Some Useful Properties
The following proposition shows that the FIM ii_{(27) is

F, = %GrGf (24) always singular for nonzers.
" Proposition 3.1:When A is nontrivial and has full row
with rank N, for both real and complex, the FIM F in (217)
is always singular with rank deficit equal to one, and for any
G, = Re{Adiag{A"x}}. (25) nonzeroa, [0%,a1%]7 always lies in the null space &.
Proof: See AppendikB. [

Balan also derived [19] the FIM for complex white Gaussian As we have pointed out in Section IlI-A, for complexthe
noise addedrior to taking the magnitude square, i.g;,= FIM in Z1) is always singular. For real, the FIM in (23) is
lafx+mn;|?, which is different from our model ifi{1). We alsononsingular. Related observations have been notéd in[IB}]-
note [20], where the CRB has been derived for a 2-D phalsat without any proof. We provide precise claims and proofs
retrieval model with 2-D Fourier measurements. in the following.
Proposition 3.2:When A is nontrivial and has full row
rank V, for complex-valuec, F. is always singular with rank

B. CRB on Phase and Amplitude xof deficit equal to one, and the direction- Tm{x}” Re{x}7]"
The phase of a complex signal is often more informas aways n its null space.
tive than its amplitude — se€ [12] for a striking illustratio Proof: See AppendiX L. u

This is particularly true when one is interested in meagurin Proposition 3.3:When A is nontrivial and has full row
frequency- or phase-modulated signals, where the amplitd@nk IV, for real-valued, F. is always nonsingular.

carries little (if any) information. This motivates using ex- Proof: See AppendixD. u

plicit amplitude-phase parametrization of the unknowrtegc ~ We intuitively expect a reduced bound when more mea-
and computing the associated CRB. This is the subject of {pigements are added. The following theorem shows that this

next theorem. We also note that many other (non-Gaussié%Lndeed true.

noise probability density functions possessing everywher PrOposition 3.4:For givenx and fixeds,, the CRB in The- _
continuous first and second derivatives can be easily hdrdle®f€M3.1 decreases as more measurements are made available:

as the corresponding CRB only differs by a noise distributio CRB(A(;,1: M +1)) < CRB(A(:,1: M)), (33)
specific shape factor [28]. _ o _
Theorem 3.1:The CRB for the phase retrieval model [ (6)VhereA(:, ¢ : r) is (Matlab notation for) the submatrix o&

on the phase and amplitude ®fis comprising columng to r inclusive.
Proof: To prove [(3B), we first rewrit& as
CRB = F' (26) G Re {diag(e 79)[A1x --- Anx]}
| Im{diag(x*)[A1x --- Apx|}

where the FIM is given by
= (g1 - 8M] (34)
4
F = ;GGT (27) where
" _ [Re{diag(e 7%)A;x}
with &= | m {diag(x*)A;x} |’

_ [Re {diag(e7?)Adiag(Afx)} DefineF (M) andF (M +1) as the FIMs forM and (M +1)

(35)

G= Im {diag(x*)Adiag(A7x)} (28) measurements, respectively. Then, we have
In particular, the CRB for phase and amplitude have closed- F(M+1)=F(M) + i?gMHgLH. (36)
form expressions as In
It is seen that the second term [N](36) is positive semidefinit
CRBy = (Fog — FoFy, Fig)' (29) By taking the pseudo-inverse of (36, 133) is established
CRB, = (Fy, — FyoF ) Fop)' (30) straightforwardly. [

whereFyy, Fy,, Fg, andF, are defined in[(7A1):(74), respec-1V. HARMONIC RETRIEVAL FROM RANK-ONE QUADRATIC
tively. Moreover, the variance on phase and amplitude of any MEASUREMENTS
unbiased phase retrieval estimators designed for mbHes (6)a. Signal Model

bounded below by In this section, we consider a special case of (6) wkéas

a linear combination of. Vandermonde vectors where each

~ 2
E U 66| ‘2} 2 trace(CRBy) B Vector contains a single frequency, i.e.,

E||

Proof: See AppendiXA. [

|x| — |X|H2 > trace(CRBy) (32) L
2} X = Z Yev(we) (37)
=1



Here, w, and v, stand for the/th unknown frequency and whereB, = b;b/ ¢ C"*? % ¢ C¥ andz € C”. For sparse

complex amplitude, respectively, and LS-FPP, we likewise have
_ ) T M
v(wr) = [ee o Nt (38)  min (Wl Ml A2 D s
The main problem here is to estimate the frequencies ¢ 2Re{zHBi5c}+wi+;i1>zHBiz+yi (44)
{w1 -+ wr} from y. Classical line spectra estimators such Ho - B
as MUSIC and ESPRIT assume thatis sampled directly XTBiX +wi < yi,
and there is no phase noise. What if we obseggreralized si > 0, Vi.

samplesi.e., linear combinations of the elements xaf and Remark 4.1:Similar to Algorithm [ and Algorithm £ for

. - . o
these are subject to p_hasg noise, pe= diaglu)A " x, where ‘olain’ phase retrieval [{43) an{#4) can be solved reqtigate
s _models pha_se noise in theh measurement|¢;| = 1_)' using the previously obtaine®l to obtain a new supporting
which could arise, e.g., due to phase offsets when differefitin; , Also note that sparse B-FPP and sparse LS-FPP are
measurements are collected by different sensors in a NetWRE+ [imited to harmonic retrieval — they are directly appbt

sensing scenario. In this case, the phasepofs clearly 5 giher cases where admits a sparse representation in a
uninformative, and we might as well get rid of it by working,n dictionary.

with |p| - see also[[34]. This yields a phase retrieval problem

where the unknowrx possesses harmonic structure. Can we ] ] ]
adapt our algorithms and bounds to account for this straguiC: CRB for Harmonic Retrieval from Quadratic Measure-

ments
Whenx is modeled as a sum of a few harmonics, the CRB
B. Sparse B-FPP and LS-FPP is associated to the unknown frequencies and complex

. amplitudes~, rather thanx. The corresponding CRB is
We propose to adapt B-FPP and LS-FPP using Sparpﬁ%vided in the following theorem.

regression with an overcomplete Vandermonde dictionaey. L Theorem 4.1:If x € CV is a superposition of. Vander-
V € CV*" be a known overcomplete basis parametrized by 4o\ o torc ao i{B7), the CRB is

{&, --- @p}. More specifically,V can be expressed as
CRB, = F! (45)
V=[v@) --- v(@p)]. 39
[v(@1) v(@p)] (39) L here
Note thatP should be much larger than the number of active F. — iG ar (46)
frequenciesL. Assuming a sufficiently dense grig, can be g2 Y
approximated as with
X A V)N( (40) Re{XHAlx} s Re{XHAMx}
G, = |Re{VFAx} --- Re{VIAyx} (47)
wherex € C” is L-sparse. Substituting {#0) intbl(6) yields Im{V7A;x} - Im{V7Ayx}
yi ~ [bI%[2 + ny, Vi (41) X=[nfz - wh) (48)
o ; V=[viw) - viws)] (49)
where % = [jejw e jNe-jN“”f}T ) (50)
-y Owy
b; = Va,. (42) Proof: See AppendikXE. u

Note thatF', is singular, and its rank deficit is equal to one.

The problem of frequency estimation has been converted ) 2 _ .
sparse spectrunk] estimation. An ideal description of spar-ﬁge gﬁg‘;? f‘(’)errz;'vnil':/ar to those in Appendidel B 4d C. so

sity is the¢yp-norm||x||o, i.e., the number of nonzero entried
in x. However, this yields a ‘doubly NP-hard’ problem. In
recent years, numerous approximations have been developed V. SIMULATION RESULTS

such asf; and ¢, (p < 1) relaxations [[3b]{[36], to replace We present simulations of the two proposed methods and
the ¢o-norm. For sparse B-FPP, we can ugerelaxation as compare them with WH [14], GS]|[7], PhaseLl[ft [9] and Phase-

follows Cut [13] in this section. The signat = exp (70.167t),t =
" 1,---, N, is deterministic and fixed throughout all Monte-
. - Carlo trials. Furthermore, the SNR is defined as
min %]+ A > s
N = SNR— Zizt Al 51
s. t. 2Re{zHBi>~c} +s;, > 2B,z + Yi — € (43) - Mao2 (51)
x"Bx <yi+e We consider two different types of measurements: 1) Gaussia

8; >0, Vi measurements which are generated from a complex Gaussian



distribution, i.e., the real and imaginary parts of eachryent
in a; are generated from the normal distribution; 2) masked

Fourier measurements of the following form

AT =

FD;,

FDg

(52)

where K = M/N, F is a N x N Fourier matrix and
D; is a N x N diagonal masking matrix with its diagonal
entries independently generated ®y-, whereb,; andb, are
independent and distributed as|[14]

CRB on amplitude (dB)

—10k

~15k

—20k

_o5k

30k

108~

5k

I
10

I
15

I
20

I
25

I
30

1 with prob. 0.25 ° ° S (@9)
—1 with prob. 0.25 (a) Amplitude
by = o (53)
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and /s T e |
2/2  with prob. 0.8 op T T 1
by | VE2 VP ) W N ,
V3 with prob. 0.2 g
The noise is assumed to be white Gaussian with mean zero | |
and variances2. The stopping criterion for B-FPP, LS-FPP, er 1
WF and GS is the relative improvement in the cost function 2or i
value dropping below0~7, i.e., -2sp ST

—30F : e 4

by — AT PIE -~ lly = AT PIB e g
2 = I I I I I I I ~.
||y - |AHX]£71|2||2 0 5 10 15 25 30 35 40
or a limit on the maximum number of iterations being reached.

This limit is set to 100, 100, 2000 and 2000, iterations for B-
FPP. LS-FPP. WF and GS respectively. Fig. 2. CRB versus SNR for different/ with Gaussian measurements.

20
SNR (dB)

(b) Phase

and SNR= 25 dB. We consider two different initialization
_ _ _ ~ methods to start B-FPP, LS-FPP, WF and GS:

As a first sanity check, Fig. 2 plots the CRB as a functlonl) Spectrum initialization - picking the leading eigenwect
of SNR for M = 2N,4N,and8N for the complex-valued of ZM yiazall as an initial guess of;

. . . i=1 Y1ty 1
S|gnal (top) r?nd the re:_l—va(ljuid S'?‘nal bottom), f’r_b 16. q 2) Gaussian random initialization - each element of the ini-
Itis seen that as pre icted by T eoréml 3.1, the bound on tial point is randomly generated from a complex Gaussian
the standard deviation of the estimateddecreases as SNR distribution with zero mean and unit variance
increases. As expected, we also find that the CRB assocmte%t '

A. CRB versus SNR

a largerM produces a smaller bound on the standard deviati gs. 3 and 4 plot the histogram bar chart of 500 independent

which validates our analytical results i {33). SE samples where MSE is defined as
MSE = 101og,, (||% — x][3) - (56)

B. MSE Performance Comparison It is seen that for masked Fourier measurements, BS-FPP,
We now compare the performance of B-FPP and LS-FRIS.Fpp, WF and GS perform very similarly and they out-
with PhaseLift, PhasedjtWF [14] and GS. For PhaseLift, perform the PhaseLift and PhaseCut algorithms, since the

PhaseCut, and WF, we use publicly available Bodiie use |atter frequently fail to find a rank-1 matrix. In the Gaussia
the LS version of PhaselLift that is appropriate for additivgyeasurement case, since both real and imaginary parts of
Gaussian noise. For B-FPP,is set equal to the standardeach measurement vector are drawn from a standard normal
deviation of the noise, for all our experiments. distribution, E(a;a’) = 2I. Therefore, the expected value of
To begin, let us illustrate the recovery performance of EPFP% Z%l y;a;al’ is 2(I1+xx'T), and the top two eigenvectors
and LS-FPP by means of example. We 8et= 16, M =64  of (I + xx”) might be mixed together and the leading

2phaseCut works with /y; y can have negative elements at low SNR,(:ngnV(_:‘Ctor will no Ionger be a gOOd guesmwnh a finite

so we useRe{,/y} for PhaseCut. Also note that, due to the nonlineaPUmber of measurements. Due to this, we can see in Fig.
transformation, noise will no longer be additive Gauss@mnFhaseCut, which 3(b) that the WF method (which is sensitive to the starting

H H . . .
matches a different measurement model, namely- |a, x|. _ point), suffers from performance degradation. Furtheemar
Downloaded from http://www-bcf.usc.edusoltanol/PhaseRetrievaCDP.zip,

http://www.cmap.polytechnique.fr/scattering/codegérecovery.zip, and is Observed.from Fig. 4 that by USing random initial_izati_on*
http://www-bcf.usc.edu/ soltanol/WFcode.html, respectively. all the algorithms have more outages than the case in Fig. 3,


http://www-bcf.usc.edu/~soltanol/PhaseRetrieval_CDP.zip
http://www.cmap.polytechnique.fr/scattering/code/phaserecovery.zip
http://www-bcf.usc.edu/~soltanol/WFcode.html

B-FPP LS-FPP

and FPP-based methods are better than the others. Quemtitat i
MSE results summarized in Tadle |, from which we can see 20
that LS-FPP achieves the smallest variance in all the sicenar 10
Although it is seen from Figs. 3 and 4 that GS has as few e
outages as B- and LS-FPP, its MSE is still much larger than the 25
latter methods. Note that the MSEs reported have been com- »
puted after removing outageswvhere we have defined MSE .
larger than 0 dB as an outage. The CRB is an averaged result .+ B
over 500 Monte-Carlo tests and is computed via Thedrein 3.1. MSE (68)
Furthermore, it is seen in Table Il that for masked Fourier
measurements the outage percentage of LS-FPP is slightly
larger than that of WF; while for Gaussian measurements,
FPP-based methods are much better than WF and GS. It is A e O ° S s °
interesting that, although the MSEs of PhaseLift and PhaseC

are not as good, the two relaxation-based methods still do ve

well in terms of avoiding outages. %

Remark:These results suggest using the principal eigenvector
of SDR to initialize FPP, and indeed this further reduces the

.

0
-15 -10 -5 0

0
MSE (dB)
PhaseLift

MSE (dB)
PhaseCut

>

(a) Masked Fourier measurements

B-FPP Ls-FPP
4

[T

o o5 o
2N oW

o S

number of outages, as well as the number of outer iterations Y P Y P e 77
in B-FPP and LS-FPP. The drawback is that as the size o =

of N = lengthx) becomes larger, SDR quickly becomes 10

the complexity bottleneck, since it lifts the problem to a 5

much higher-dimensiona(N?) space. Still, using SDR for 10
initialization is well worth the effort for smallefV, as the

overall complexity is still of the same order as that of FPP 1: 20
per se This is never the case for WF and GS, which are s 1
relatively lightweight algorithms whose computationasts o

0
0 10 -15 -10
always dominated by SDR. HSE ()
(b) Gaussian measurements

0

-5
MSE (dB)
WF

>

) 10
MSE (dB)

Next, we compare the MSE performance as a function of
SNR, usingN = 16, M = 128, and 200 Monte-Carlo trials. Fig. 3. Signal recovery performance comparison with spetinitialization.

) 1o ) C. Performance Comparison for Harmonic Retrieval from
MSE on amplitude= 101logy, { o7 S IR = x5 Rank-one Quadratic Measurements
i=1

We consider a scenario whese has the form of a 1-

M
1 ; .
MSE on phase- 10log, <200 Z | £(%)i — £(x) ||§> D har_modm_c m_odel. Assume that there are two frequencies
p contained inx, i.e.,

x = v(wy) + v(wa).
where /() takes the phase of its argument. The CRB iw

Theoreni 31 is also included as a benchmark. Fig. 5 depic S study the CRB in[(d5) as a function of SNR. In this

éxample, we assume thaf = 8 and M = 40. Fig.[? plots

the MSE results for masked Fourier measurements, fr m0 CRB curves corresponding to widelv-spaced frequencies
which we observe that LS-FPP and WF followed by B-FP P 9 y-sP q
w; = —0.157 andw, = 0.157) and closely-spaced frequen-

achieve the best performance and all of them outperform’ - -

PhaseLift, PhaseCut and GS when SNR is higher than 10 or'sclgéel_ -;0£c5e7:j i?ed Lffen_ci%g ?;T )Ié'rA\Sere 3[(rrl)gr::ttehdf;ltt:‘1Oer EerBe

In Fig. 6, GS and WF exhibit relative high MSE in the high y-spaced Ireq g -
aced ones. Fidll 8 plots the pseudo power spectraxi.e.,

. . . . . S
SNR regime, which is mainly caused by occasional outagep . .
(we noted that GS and WF produce three or four outagol§talned by sparse B-FPP and sparse LS-FPP. In this example,

: : e parameters are; = —0.16m, ws — 0.16m, N = 8
during the 200 Monte-Carlo trials, at SNR 30 dB). When = 705 "l o 130 dB. The ;jictQionar s of lenath 51
SNR < 5 dB, there is no MSE value reported for WF because . _. - ' Y g ’

WEF frequently returns NaNnpt a numbe). The reason is that Obtained by uniformly sampling the-/2, /2] frequency

. ) . . sector. It is observed from Fif] 8 that sparse LS-FPP has two
the noise variance is commensurate to the useful signalpoweé

and the eigenvalues F " a;a” are of the same order, thugdistinct peaks around the true, while sparse B-FPP has a
; ) = i — .. ““small bias on the estimate akb.
the leading eigenvector is no longer useful as initialaati
Note that WF, LS PhaselLift, and LS-FPP actually attempt to
solve the same problem formulation here, however only LS- VI. CONCLUSIONS
FPP is insensitive to initialization and competitive innter of The problem of phase retrieval has been revisited from a
statistical efficiency in this scenario. non-convex QCQP point of view. Building upon recent work



TABLE |
AVERAGED MSE AND CRB (BOTH IN DB) AFTER REMOVING OUTAGES
Setting CRB B-FPP | LS-FPP | Phaselift | PhaseCut WF GS

Spec. Init. | -11.4268 | -9.6536 | -11.4208 | -4.8509 -5.8273 | -11.4137 | -7.9174
Rand. Init. | -11.4268 | -9.5166 | -11.2285| -4.8509 -5.8273 | -11.2711 | -7.6803
Spec. Init. | -11.0616 | -9.3672 | -11.0596 | -4.6289 -5.5361 -6.1576 | -7.5980
Rand. Init. | -11.0616 | -9.3588 | -10.5681 | -4.6289 -5.5361 -6.0553 | -7.5412

Masked Fourier

Gaussian Meas

TABLE I
OUTAGE PERCENTAGES
Setting B-FPP | LS-FPP | Phaselift | PhaseCut| WF GS
. Spec. Init. | 2.6% 2.2% 2.8% 1% 1.8% 4.6%
Masked Fourier -
Rand. Init. | 22.2% 24% 2.8% 1% 23.2% | 28.6%
. Spec. Init. | 4.8% 4.4% 3.8% 1.2% 17.8% | 7.4%
Gaussian Meas -
Rand. Init. | 26% 16.8% 3.8% 1.2% 31.4% | 27.8%
B-FPP LS-FPP
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Fig. 4. Signal recovery performance comparison with randitialization. ~ Fig- 5. Performance comparison with masked Fourier measamts.

mission noise. For the latter model, the Cramér-Rao bound
on feasible point pursuit for non-convex QCQP problems, twwas also derived and studied. Simulations suggest that B-
novel algorithms were developed for phase retrieval fromsyno FPP and LS-FPP attain state-of-art performance, and LS-FPP
measurements: B-FPP and LS-FPP. B-FPP is designed datperforms all earlier methods and comes very close to the
uniform additive noise, such as quantization noise intoedu CRB under certain conditions (depending on the SNR, and
by high-resolution uniform quantization. LS-FPP is matttee the type and number of measurements relative to the signal
white Gaussian noise that is added after taking the magmitudimension). It was also shown that what apparently hurts the
squared of the linear measurements, such as analog traaverage performance of some of the most competitive algo-
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down this complexity are currently under investigation.

APPENDIXA
PROOF OFTHEOREM[3.]]

The CRB states that the variance of any unbiased estimator
is at least as high as the inverse of the FIM. To determine
the CRB, we should first calculate the FIM and then take
its inverse. The likelihood function for the data model for

1
————=€Xp

complexx is
— . 57
\/2mo2 { } ®7)

M H 2
v — x7TAX
p(yix) =] (=X Asx)
Hence, the log-likelihood function can be written as

202
i=1 n

Fig. 6. Performance comparison with Gaussian measurements o
. _ M 2 1 : . H A \2
i v e lnp(Y7 X) ) 1n(2770'n) ) ;(yz - X AZX) .
(58)
The vector of unknown parameters for compiexs
T B=1[b1 - by,01 - On]" (59)
g‘w’ whereb; and6; are the amplitude and phaseof i.e.,
-sor \~\ xT; = biejei. (60)
50| : Thus, the FIM can be expressed as
Fpy Fpe
-70 1 F = 61
| | | | | |:F9b Fee] (61)
’ * “ S\R ® ? ” where the(m, n) entry of the FIM is given by
Fig. 7. CRB versus SNR for harmonic retrieval from quadratEasurements. [F] ) 9%1In p(y; %) (62)
mr 98,08,
rithms is outages, even when they are rare. LS-FPP exhitsifzd
the best outage performance among all algorithms considere (0% Inp(y;x)]
including WF, which seems to be quite sensitive to outages, [Fovlmn = —E 0byy, Oby, 5
especially for systematic (as opposed to i.i.d. Gaussiag-m :82 In p(y; X)i
surement vectors, which throw off its initialization. Vations [Foolmn= —E W (64)
of B-FPP and LS-FPP (and the corresponding CRB) for g
harmonic retrieval from rank-1 quadratic measurementswer [Foplmn = —E 0" Inp(y;x) (65)
also developed and illustrated in simulations. The drakbac " | 00,0b, |
of B-FPP and LS-FPP is their relatively high computational F _ _E (02 Inp(y;x)] (66)
complexity, especially compared to WF. Ways of bringing Evolmn = — 0b,,00,, |-




The second-order derivative bf p(y; x) is

Plnply;x) 1 M o 0?xH A;x
98,08, ~ 72 ((yz_x A% 05,08,
HA HA
_8x A;x OxH Ax (67)
9B, 9B,

Taking the expectation of both sides bf{67) produces that

2 . M oxHA. HA.
E 0 lnp(y; x) _ _izax Ax Ox7Aix (68)
9B 0B, 2 2" oB, 98,
whereE[y; — x A;x] = 0. Now,
HA .
% = —jai, A(m,)x + jr,xTA(;,m)
= 2Re{—jz;, A(m,)x} (69)
H A . . .
L((%Alx = e_'79mA(m, x4 e-79mxHA(:, m)
= 2Re{e 7% A(m,:)x} (70)

where(-)* is the conjugate, and (i,:) and A(:,:) stand for
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APPENDIXB
RANK-1 DEFICIENCY OFF

To show thafF' is rank-1 deficient, it suffices to find a non-
zero vectorv such thatFv = 0.
Denotev € R?Y as[ vl vI |7, then

GTv = Re{diag(e %) Adiag A" x)}Tv,
+ Im{diag(x*)Adiag A7 x)} v,
= Re{diag(x*)Adiag A"x)}T+v,

+ Im{diag(x*)Adiag A7 x)} v, (79)

wherev; = diag(|x|)~'v;. Now letu = vo + jvy, then

GTv =Im { (diag(x*) Adiag A x)) " u} (80)
=Im {(A"x)* © (A" diag(x)u) } . (81)

Letu = aly € RY, for any « # 0; then
GTVZIm{a\AHX]Q} —o0. (82)

This means that the direction= o[ 0% 1% 17, which is non-
zero, lies in the null space @&k, thus also in the null space of
F. Moreover, suppose the vect&r’’x does not contain any
zero elements, which is true almost surely. To find anothér nu

the ith row and column ofA, respectively. Thus, by substitut-space ofG would require the vectoA " diag(x)u to be the
ing (69) and [[7D) into[{@8), after some matrix manipulation@ll zero vector. Such a vectar does not exist almost surely,

we obtain the matrix form of the sub-FIMs as

Fu = %Re{diag(e‘jg)AHdiag(Ax)}

ane{diag(e*je)AHdiag(Ax)}T (71)
Foop = — %Re{diag(x*)AHdiag(Ax)}

X RZ{diag(x*)AHdiag(Ax)}T (72)
Fo, = — %Re{jdiag(x*)AHdiag(Ax)}

X RZ{diag(e’ja)AHdiag(Ax)}T (73)
Fpp = %ng (74)

n

where 6 = [0, ---
produces the whole FIM

for example ifA is a random Gaussian matrix. This medhs
is rank-1 deficient almost surely.

APPENDIXC
RANK-1 DEFICIENCY OFF,

Denotev € R?Y as|[ vl vI |7 then
GIv = Re{Adiag A x)}"v; + Im{Adiag A" x)}"v,.
Now letu = vy + jvo, then
GI'v =Re { (AdiagAHx))H u}
=Re {(A"x)* © (A" u)}

0n]7. Inserting [71) to [[74) into[(82) Let u = jx, we have

GI'v =Re {j ‘AHX|2} =0.

4 T
F= a_gGG (75) " This means the direction — [ —Im{x}” Re{x}" ]”, which
is non-zero, lies in the null space €&, thus also in the null
where space ofF...

Moreover, suppose the vectdx does not contain any
zero elements, which is true almost surely. To find another
null space ofG. would require the vectoA”u to be the
Using block matrix inverse formula, the CRB associated 3! Z€ro vector. Such a vectar does not exist almost surely,
the phase and amplitude can be expressed as for _example |fA_|§ a random Gaussuan_ matrlx._ This means

F. is rank-1 deficient almost surely. It is also interesting to
77) observe that for the Fisher information matrix with respect

an arbitrary complex signat, the directionjx is always in
(78) its null space.

_ [Re {diag(e7?)Adiag(AFx)}

G= Im {diag(x*)Adiag(Ax)}

(76)

CRB) = Fyy — Fo,F},' Fip
CRBb_l =Fy — FbGF‘];gFOb-
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APPENDIXD To obtain [91), we consider two cases to calculate the value
PrOOF OFFULL RANK OF F.,. of Lx"Aix f #n,

OwWyn Own,
Similarly, to show thafF,. is full rank, it suffices to show o I
that there does not exist a non-zero veator R" such that Fx"Aix _ 9Re {%’;ﬂn (av_m> Ai%} . (92)

F,v = 0, or equivalentlyGZv = 0. Again we have that OwmOwn O, Ouwn,
Glv=Re{(A"x)" ® (Afv)}. If m =n,
However, we are not allowed to choose= jx to make this PxTAix 2y 2 (‘9"_m>H Ovm
product zero, because can only be real. AssumAx does Bomdn T B " O
not contain any zero elements, which is true almost surely, 2v. \H
we must find av such thatA”v = 0, which cannot happen + 2Re {7,*” ( m};”) AZX} (93)
almost surely. Thereford, is full rank almost surely. m
where
APPENDIXE 92v . . .
PROOF OFTHEOREMMZ_1 —— = — [edom ... NZedNem T (94)

2
ow?,

The likelihood function forx equal to a sum—of—harmon|csil;§‘é(ing the expectation of both sides BFY91) yields

as in [3T) has the same expression [ad (57). However,

parameter vector contains the unknown frequencies and a4 M v\
the real and imaginary parts of the unknown complex [Fowlmn = T)ZRQ {%*n (8—m) Aix}
amplitudes{~; --- y}: Tn = Wm
v\
a=[w - wrRe{n} - Refyr}.Im{n} - Infy)]" x Re{ (5) Aix} NS
(83) “n
The FIM associated tex is expressed as We next computeF g.(,}. Here, we point out that,,
corresponds to frequencies whilg, corresponds to the real
Fuw FuRe(y} Fotm{y} parts of the amplitudes.
Fu = |Fre(r}o Fre(yiRe(y})  FRefy)im{r} (84) o
Finyye Frngirety Frngrymiy) gﬁﬁ — v Ax +x7Av, = 2Re{vA,x}.  (96)
where e{rm}
LT Since the expected value @f; —x" A;x) is zero, we directly
Frefypo = F;Re{v} 85 Jbtain
FIm{'y}w = FwIm{v} (86) H
T OV
Fre(y}m{r} = Fim{1}Re{r}- (87) [Furefr}lmn = ) ZRQ{ ( ) Aix}
';Pgrefore, we only need to calculate the upper triangular pa « Re {Vn Aix} . 97)
In a similar manner,
Olnp(y;x) 1 & i ox A;x
noi=1 MT{%} = 2Im{v,, A;x} (98)

Let us first compute

which results in the following formula foF 1, (+}

OxH A,x . <8vm)HA n Hp, OV, .
S = Tm |7 X+ YmX A
Owp, Own, Y O [Fotm{y}lm Z Re { <3vm > Az‘X}
= 2Re {Fym (6wm) Aix} (89) X Im {vn Aix} . (99)
where At this point, the expressions for the (m,n)th element of
‘ . Frefv1Ref~t aNdFr camme~1 Can be easily derived
OV = [jeiom - jNeJN“ﬂT ' (90) {73Re{~} {7}Hm{~}
Ownm, M
In the sequel, we compute [FrRe{iRe(v}) ynn = =3 Z Re {v]Aix} Re {v} A;x}
n =1
9’ Inp(y;x B Z X Ax) O*xH A,x (100)
8wm8wn a cr}l Oy O, g M

9xH A x 8XHA-X> [Flm{.y}lm{,yﬂ mn = 52 Z Im {V,I;(LAZ-X} Im {vaix} .
- : ). (91) "=l

(101)



Substituting [(9b),[(97),[(99)[(ID0) and (101) infol(84)eaf

some matrix manipulations, we have
4

F, = —G,G] (102)
Un
where
Re{X A;x} Re{X A /x}
G, = |Re{VHA;x} Re{VHA yx} (103)
Im{V#7A;x} Im{VHAx}
X=[nge - ol (104)
V = [v(wy) -+ v(wg)]. (105)

Note that using a similar proof as for the rank-1 deficiency

property of the FIM in[(2l7), it can be easily shown tHat

is also rank-1 deficient. As a result, the CRB for sum-of-

harmonicsx is computed using the pseudo-inverselqf
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