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Cheng Qian,Student Member, IEEE,Nicholas D. Sidiropoulos,Fellow, IEEE, Kejun Huang,Student Member,
IEEE, Lei Huang,Senior Member, IEEEand H. C. So,Fellow, IEEE

Abstract—Reconstructing a signal from squared linear (rank-1
quadratic) measurements is a challenging problem with impor-
tant applications in optics and imaging, where it is known as
phase retrieval. This paper proposes two new phase retrieval algo-
rithms based on non-convex quadratically constrained quadratic
programming (QCQP) formulations, and a recently proposed
approximation technique dubbedfeasible point pursuit (FPP). The
first is designed for uniformly distributed bounded measurement
errors, such as those arising from high-rate quantization (B-
FPP). The second is designed for Gaussian measurement errors,
using a least squares criterion (LS-FPP). Their performance is
measured against state-of-the-art algorithms and the Craḿer-
Rao bound (CRB), which is also derived here. Simulations show
that LS-FPP outperforms the existing schemes and operates close
to the CRB. Compact CRB expressions, properties, and insights
are obtained by explicitly computing the CRB in various special
cases – including when the signal of interest admits a sparse
parametrization, using harmonic retrieval as an example.

Index Terms—Phase retrieval, quadratically constrained
quadratic programming (QCQP), semidefinite programming
(SDP), feasible point pursuit (FPP), Craḿer-Rao bound (CRB).

I. I NTRODUCTION

Phase retrieval is the problem of reconstructing a signal
x ∈ CN from measurements of the form

yi = |aHi x|2, i ∈ {1, · · · ,M} (1)

where| · | is the magnitude of a complex number,(·)H is the
conjugate transpose andai ∈ CN is a known measurement
vector. The above problem appears in many applications
such as crystallography [2], diffraction imaging [3]-[4] and
microscopy [5]-[6], where it is often far easier to measure the
magnitude than the phase.

During the past decades, numerous phase retrieval solvers
have been developed in the literature. Among them, the
Gerchberg-Saxton (GS) [7] and Fienup [8] algorithms are the
most well-known and widely used methods in practice. These
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approaches are based on alternating optimization in which the
unknownx is iteratively estimated by solving a least squares
(LS) problem, i.e.,

min
x,u | |ui|=1, ∀i

||√y ⊙ u−AHx||22 (2)

wherey = [y1 · · · yM ]T is the data vector,A = [a1 · · · aM ]
is the known measurement matrix,u is the phase of

√
y (an

extra unknown, together withx), || · ||2 is the 2-norm and⊙
denotes element-wise multiplication. The main problem with
this type of algorithms is that they tend to hit local minima,
thus requiring careful initialization, and often fail to perform
satisfactorily even after multiple initializations.

Recently, modern convex relaxation techniques were applied
to phase retrieval.PhaseLift[9]-[10] employs matrix lifting to
recast phase retrieval as a semi-definite programming (SDP)
problem. Specifically, the PhaseLift scheme regards the mea-
surements in (1) as a linear function ofX = xxH which is a
rank-1 Hermitian matrix, i.e.,

yi = |aHi x|2 = xHaia
H
i x = tr(AiX) (3)

whereAi = aia
H
i and tr(·) denotes the trace of a matrix.

Thus, the recovery ofx is equivalent to finding a positive
semidefinite rank-1 matrixX through solving a rank mini-
mization problem:

min
X

rank(X)

s.t. yi = tr(AiX), i ∈ {1, · · · ,M}
X � 0.

(4)

Since rank minimization is a non-convex problem which
is difficult to solve in a computationally efficient manner,
PhaseLift relaxes (4) via semidefinite relaxation (SDR) – see
[11] for a tutorial overview. It has been shown in [9] that
if the measurement vectors are i.i.d. Gaussian distributed,
then PhaseLift can recoverx with high probability when the
number of measurementsM ∼ O(N logN). However, when
the measurements are corrupted by noise, there is no guarantee
that PhaseLift will yield a rank-1 solution [12].

PhaseCut[13] takes a similar approach as PhaseLift, but
instead of directly aiming forx it tries to findu first. Substi-
tuting the conditional LS estimatêx = (AH)†diag(

√
y)u of

x given u wherediag(·) denotes a diagonal matrix and(·)†
denotes the pseudo-inverse, PhaseCut aims at recoveringu by
solving the non-convex quadratic program

min
u

uHMu

s.t. |ui| = 1, i ∈ {1, · · · ,M}
(5)
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whereM = diag(
√
y)(IM −AH(AH)†)diag(

√
y) with IM

being aM×M identity matrix. Formulation (5) resembles the
classicalMaxCutproblem in networks, enabling fast semidef-
inite relaxation algorithms originally developed for MaxCut
to be adapted for PhaseCut. This makes PhaseCut faster than
PhaseLift.

More recently, a new approach to phase retrieval was pro-
posed, in what appears to be an instance of a new algorithmic
genre that relies on smart ‘statistical’ initialization followed
by relatively simple descent-type refinement namedWirtinger
Flow (WF)[14]. It has been theoretically shown that when suf-
ficiently many i.i.d. Gaussian measurement vectors are used,
WF will recover the desired solution with high probability.
However, recovery cannot be guaranteed when the number
of measurements is small, or when the measurement vectors
are not random – mainly because the principal eigenvector
used for initialization is not a good approximation ofx in
such cases. This means that for systematic (non-random)
measurement designs and/or relatively short sample sizes there
is considerable room for improvement.

In this paper, the focus is on recoveringx from noisy
measurements, i.e.,

yi = |aHi x|2 + ni, i ∈ {1, · · · ,M} (6)

where ni is additive noise. To this end, in Section II, two
novel algorithms are developed. These algorithms build upon
a method calledfeasible point pursuit (FPP)that we recently
developed for non-convex quadratically constrained quadratic
programming (QCQP) problems [15]. The first algorithm (B-
FPP) is designed for independent and uniformly distributed
bounded measurement errors, such as those arising from high-
rate quantization. The second (LS-FPP) is designed for i.i.d.
Gaussian measurement errors, thereby using a LS criterion.
Their performance is measured against state-of-art algorithms
and the general Cramér-Rao bound (CRB) for phase retrieval
from magnitude measurements in additive Gaussian noise,
which is also derived here in terms of phase and amplitude
of the input signal. Interestingly, only partial CRB results
under additional model restrictions and/or different noisy
measurement models (e.g., for real- and complex-valuedx

[16]-[18], noise added prior to taking the magnitude [19], 2-D
Fourier-based measurements [20]) were previously available,
despite decades of research in phase retrieval. Simulations
show that LS-FPP outperforms the state-of-art and operates
close to the CRB. Compact CRB expressions, properties, and
insights are obtained by simplifying the CRB in special cases.
These can help improve the design of measurement apparatus,
by providing a way to score different designs.

Section IV presents a special case wherex is in the form
of a linear combination of several Vandermonde vectors, i.e.,
a harmonic mixture, leading to harmonic retrieval from rank-
1 quadratic measurements. By predefining an overcomplete
frequency basis, sparsity in the frequency domain can be
exploited, resulting in modified versions of B-FPP and LS-FPP
for sparse phase retrieval. Furthermore, the CRB for frequency
estimation is derived for this case.

Section V contains numerical simulations designed to il-
lustrate the performance of the proposed algorithms versus

PhaseCut, PhaseLift, WF, and CRB. Finally, conclusions are
drawn in Section VI.

II. PROPOSEDALGORITHMS

In this section, we formulate the phase retrieval problem
as non-convex QCQP in two different ways, and derive two
corresponding algorithms, B-FPP and LS-FPP, to recoverx.

A. B-FPP Algorithm

In the absence of noise, phase retrieval can be cast as

min
x

||x||22
s.t. xHAix = yi, i ∈ {1, · · · ,M} ,

(7)

i.e., a minimum norm solution to a system of quadratic equa-
tions inx. If the equality constraints are consistent, then using
the minimum norm to pick a solution can be motivated from a
Bayesian perspective, if we assume a zero-mean uncorrelated
complex circularly symmetric Gaussian prior onx.1 In practice
noise will render the equality constraints in (7) inconsistent, so
(7) will not admit any solution. High-resolution uniform scalar
quantization of otherwise noiseless quadratic measurements
will result in additive quantization noise that is independent
across measurements, bounded, and approximately uniformly
distributed over the quantization interval. This motivates using
interval constraints, as follows:

|yi − xHAix| ≤ ǫ, ∀i. (8)

Replacing the constraints in (7) by (8) yields

min
x

||x||22 (9a)

s.t. xHAH
i x ≤ yi + ǫ (9b)

xHAH
i x ≥ yi − ǫ, ∀i. (9c)

It is clear that due to the non-convex constraints in (9c), (9)
belongs to the class of non-convex QCQP problems which is
NP-hard in general. Forǫ = 0 we recover the ‘standard’ phase
retrieval problem, which is NP-hard [21].

To approximately solve (9), we follow [15]. Recall thatAi

is of rank one and it has only one positive eigenvalue. For any
z andx, we have

(x− z)HAi(x− z) ≥ 0. (10)

Expanding the left-hand side of (10) yields

xHAix ≥ 2Re{zHAix} − zHAiz (11)

whereRe {·} takes the real part of its argument. Following
the rationale in [15], we replace (9c) by

2Re{zHAix} + si ≥ zHAiz+ yi − ǫ (12)

wheresi ≥ 0 is a slack variable. The idea here is that linear
restriction turns the non-convex problem into a convex one,
but at the risk of infeasibility. The slack variables restore

1Since||x||2
2
= tr(xxH ), the minimum norm criterion is also reminiscent

of semidefinite relaxation of rank minimization.
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feasibility, but they should be sparingly used [15]. This leads
to the following formulation:

min
x,s

||x||22 + λ

M
∑

i=1

si

s. t. xHAix ≤ yi + ǫ

2Re{zHAix}+ si ≥ zHAiz+ yi − ǫ

si ≥ 0, ∀i

(13)

where s = [s1 · · · sM ]T and the regularization parameter
λ balances the original cost versus the slack penalty term.
Starting with an initial (possibly random)z, we solve a se-
quence of problems of type (13) to obtain(xk, sk), and setting
zk+1 = xk. Since the cost function in (13) is independent of
k and the solution of thekth iteration is also feasible for the
(k + 1)th iteration, this will always return a non-increasing
cost sequence [15]. In other words, the optimal value of the
cost function in each iteration step is non-increasing. It follows
that this sequential process will converge in terms of the cost
function. The steps for B-FPP are summarized inAlgorithm
1.

Algorithm 1 B-FPP Algorithm for Phase Retrieval
1: function x̂ = B-FPP(A,y, λ, ǫ, z)
2: repeat
3: x̂← solution of (13)
4: z = x̂

5: until a stopping criterion on the cost function of (13)
is satisfied

6: end function

Whereas B-FPP has been motivated from a uniform high-
resolution quantization point of view (and indeed matches that
noise model), the resultant algorithm can also be used for
Gaussian noise, although the choice ofǫ is less obvious in
this case. It is instructive to illustrate this by means of an
example. Assumex is uncorrelated zero-mean Gaussian with
lengthN = 16, andM = 80 measurements are used for signal
recovery. 200 Monte-Carlo trials are employed to calculatethe
mean square error (MSE). In each trial,ai, x andσn are fixed,
and the noise is generated from a white Gaussian process with
mean zero and standard deviationσn = 0.4. Fig. 1 shows
the MSE versusǫ. It is observed that whenǫ < 0.4, B-FPP
exhibits a relative small MSE. Otherwise, its performance gets
worse asǫ increases. We conclude that B-FPP still works for
Gaussian noise, providedǫ ∼ σn.

B. LS-FPP Algorithm

The B-FPP method requires a user-defined toleranceǫ to
bound the noise perturbation in the constraints, which is diffi-
cult to appropriately determine from the magnitude measure-
ments without prior knowledge of the noise standard deviation.
More to the point, B-FPP is not tailored for Gaussian noise.
In this section we developLS-FPPbased on the LS criterion,
which is equivalent to maximum likelihood for additive white
Gaussian noise. The LS formulation of phase retrieval has
been recently considered in [14], but the WF approach does
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Fig. 1. MSE versusǫ. (N = 16, M = 80)

not always work well, as we will show in our simulations
in Section V. This is not surprising, of course, since we are
dealing with an NP-hard problem. Our contribution here is to
recast LS phase retrieval as a non-convex quadratic-plus-linear
problem, and then approximate it using FPP. As we will show,
our approach gives consistently better approximation results,
especially in challenging scenarios, at the cost of additional
computational complexity.

The LS formulation for phase retrieval is [14]

min
x

M
∑

i=1

(yi − xHAix)
2 (14)

The first step in our approach is to recast (14) in the following
equivalent form

min
w,x

||w||22
s. t. xHAix+ wi = yi, ∀i

(15)

where

w = [w1 · · · wM ]T (16)

with (·)T being the transpose. We rewrite the equality con-
straints as

xHAix+ wi ≤ yi (17a)

xHAix+ wi ≥ yi. (17b)

In a similar manner as we process the non-convex con-
straints in FPP, (17b) can be replaced by

2Re{zHAix}+ wi + si ≥ yi + zHAiz (18)

to obtain the following convex QCQP:

min
x,w,s

||w||22 + λ

M
∑

i=1

si

s. t. 2Re{zHAix}+ wi + si ≥ yi + zHAiz

xHAix+ wi ≤ yi,

si ≥ 0, ∀i.

(19)

The steps for LS-FPP are summarized inAlgorithm 2 .
Some important remarks are in order:



4

Algorithm 2 LS-FPP Algorithm for Phase Retrieval
1: function x̂ = LS-FPP(A,y, λ, z)
2: repeat
3: x̂← solution of (19)
4: z = x̂

5: until a stopping criterion on the cost function of (19)
is satisfied

6: end function

• The problems in (13) and (19) are convex and can be
solved via interior point methods [22]-[23]. The worst-case
complexity of solving (13) and (19) areO

(

(N+2M)3.5
)

and
O
(

(N +3M)3.5
)

, respectively. Moreover, few outer iterations
of B-FPP or LS-FPP are usually needed, so that the overall
approximation is often manageable for moderateN .
• In both B-FPP and LS-FPP, the regularizerλ is chosen
according to [15], where it is suggested to useλ ≫ 1 to
steer the iterates towards the feasible region. Our experience
is that FPP is not very sensitive to the choice ofλ. Usually,
λ = 10 works well for B-FPP and LS-FPP in most scenarios.
• Invoking [24, Theorem 1], it follows that Algorithms 1
and 2 have a convergent subsequence. If it happens that the
slack variables at the limit point is zero, then from [24,
Theorem 1] it follows that thex variable at the limit point
is also a KKT point of the original problem (9) or (15),
respectively. Given the NP-hard nature of (9) and (15), these
convergence claims may be reassuring; but it is important to
not lose sight of the following caveat. Whereas numerical
experiments suggest that if the original problem is feasible
then s is very likely to be zero at the limit point, this is not
always true – counterexamples have been found [15], and this
is consistent with the fact that the feasibility problem is NP-
hard.
• Our work was inspired by the FPP-SCA (successive convex
approximation) algorithm originally proposed for generalnon-
convex QCQPs in [15]. The idea behind the algorithm is
closely related to the well-knowndifference of convex pro-
gramming (DCP) and theconvex-concave procedure(CCP)
in optimization. The difference is these classical procedures
assume the availability of a feasible starting point, whichis
the core challenge in our context. FPP can be interpreted
as first adding slack variables and a slack penalty to the
original problem to ensure feasibility (thereby circumvent-
ing the initialization challenge), followed by application of
DCP/CCP to the augmented problem, see [15]. The same idea
was independently proposed in a parallel submission which
appeared later in [25]. An early version of the same basic
idea can be found in [26], which however neither considered
general QCQPs, nor did it demonstrate that the method works
well, especially relative to standard semidefinite relaxation and
randomization baselines.

Given the apparent success of FPP in solving challenging
QCQP problems, we therefore propose using FPP to solve the
phase retrieval problem, where feasibility is the key stumbling
block. Whereas optimization theory measures success via the
optimality gap in terms of the cost function, estimation theory
naturally focuses on the estimation error. We therefore need a

statistical estimation baseline to assess how well FPP works
when applied to phase retrieval.

III. C RAMÉR-RAO BOUND FORPHASE RETRIEVAL

In this section, we derive the CRB for phase retrieval for
measurements contaminated by additive white Gaussian noise
after magnitude squaring.

A. Previous Work on CRB

Let us summarize the (surprisingly scant) prior work on the
CRB for phase retrieval. Balan [17] has derived the Fisher
Information Matrix (FIM) for the model in (6) for complex-
valuedx. Realizing that the FIM is singular, and implicitly
attributing this to the lack of global phase identifiability, he
suggested using side information aboutx (e.g., assuming
one particular component ofx is real-valued) to reduce the
dimension of the FIM, resulting in a full-rank matrix. Thus,the
CRB can be computed by taking the inverse of the dimension-
reduced FIM. Similar results have also been considered in
[18], where the last row and column of the FIM are deleted.
However, these assumptions are impractical and identifiability
neither implies nor is implied by a nonsingular FIM [27].
Instead of making additional assumptions onx to force a non-
singular FIM, we can instead use the pseudo-inverse of the full
FIM as a lower bound:

Claim 3.1: For x ∈ CN , the CRB matrix for the phase
retrieval model in (6) is

CRBc = F†
c (20)

where the FIM is given by

Fc =
4

σ2
n

GcG
T
c (21)

with

Gc =

[

Re{Adiag{AHx}}
Im{Adiag{AHx}}

]

. (22)

Proof: The FIM has been derived in [17] and [18] (in
different but equivalent form). When the FIM is rank deficient,
its pseudo-inverse is a valid lower bound on the MSE of any
unbiased estimator [29], [30], albeit this bound is generally
looser than the usual CRB [31]. Perhaps surprisingly, this
‘optimistic’ bound is often attainable in practice and therefore
predictive of optimal estimator performance – see [32] and our
simulations that follow. Strictly speaking, the pseudo-inverse
of a singular FIM is not the usual CRB, and some researchers
distinguish the two bounds; but this is a technical detail with
little practical consequence, so we will refer to the resultant
bound as the CRB.

In the case of realx, Balan’s result in [16] is valid only for
real measurement vectors. The CRB for realx can be easily
derived from Theorem 3.1. The result is as follows.

Claim 3.2: For x ∈ R
N , the CRB matrix for the phase

retrieval model in (6) is

CRBr = F−1
r (23)
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where(·)−1 denotes the inverse and

Fr =
4

σ2
n

GrG
T
r (24)

with

Gr = Re{Adiag{AHx}}. (25)

Balan also derived [19] the FIM for complex white Gaussian
noise addedprior to taking the magnitude square, i.e.,yi =
|aHi x+ni|2, which is different from our model in (1). We also
note [20], where the CRB has been derived for a 2-D phase
retrieval model with 2-D Fourier measurements.

B. CRB on Phase and Amplitude ofx

The phase of a complex signal is often more informa-
tive than its amplitude – see [12] for a striking illustration.
This is particularly true when one is interested in measuring
frequency- or phase-modulated signals, where the amplitude
carries little (if any) information. This motivates using an ex-
plicit amplitude-phase parametrization of the unknown vector,
and computing the associated CRB. This is the subject of the
next theorem. We also note that many other (non-Gaussian)
noise probability density functions possessing everywhere
continuous first and second derivatives can be easily handled –
as the corresponding CRB only differs by a noise distribution-
specific shape factor [28].

Theorem 3.1:The CRB for the phase retrieval model in (6)
on the phase and amplitude ofx is

CRB= F† (26)

where the FIM is given by

F =
4

σ2
n

GGT (27)

with

G =

[

Re
{

diag(e−jθ)Adiag(AHx)
}

Im
{

diag(x∗)Adiag(AHx)
}

]

. (28)

In particular, the CRB for phase and amplitude have closed-
form expressions as

CRBθ = (Fθθ − FθbF
−1

bb Fbθ)
† (29)

CRBb = (Fbb − FbθF
−1

θθ Fθb)
† (30)

whereFθθ, Fbb, Fθb andFbθ are defined in (71)-(74), respec-
tively. Moreover, the variance on phase and amplitude of any
unbiased phase retrieval estimators designed for model (6)is
bounded below by

E

[

∣

∣

∣

∣θ̂ − θ
∣

∣

∣

∣

2

2

]

≥ trace(CRBθ) (31)

E

[

∣

∣

∣

∣|x̂| − |x|
∣

∣

∣

∣

2

2

]

≥ trace(CRBb) (32)

Proof: See Appendix A.

C. Some Useful Properties

The following proposition shows that the FIM in (27) is
always singular for nonzerox.

Proposition 3.1:When A is nontrivial and has full row
rank N , for both real and complexx, the FIM F in (27)
is always singular with rank deficit equal to one, and for any
nonzeroα, [0T

N , α1T
N ]T always lies in the null space ofF.

Proof: See Appendix B.
As we have pointed out in Section III-A, for complexx the

FIM in (21) is always singular. For realx, the FIM in (24) is
nonsingular. Related observations have been noted in [16]-[18]
but without any proof. We provide precise claims and proofs
in the following.

Proposition 3.2:When A is nontrivial and has full row
rankN , for complex-valuedx, Fc is always singular with rank
deficit equal to one, and the direction

[

− Im{x}T Re{x}T
]T

is always in its null space.
Proof: See Appendix C.

Proposition 3.3:When A is nontrivial and has full row
rankN , for real-valuedx, Fr is always nonsingular.

Proof: See Appendix D.
We intuitively expect a reduced bound when more mea-

surements are added. The following theorem shows that this
is indeed true.

Proposition 3.4:For givenx and fixedσn, the CRB in The-
orem 3.1 decreases as more measurements are made available:

CRB(A(:, 1 : M + 1)) � CRB(A(:, 1 : M)), (33)

whereA(:, ℓ : r) is (Matlab notation for) the submatrix ofA
comprising columnsℓ to r inclusive.

Proof: To prove (33), we first rewriteG as

G =

[

Re
{

diag(e−jθ)[A1x · · · AMx]
}

Im {diag(x∗)[A1x · · · AMx]}

]

=: [g1 · · · gM ] (34)

where

gi =

[

Re
{

diag(e−jθ)Aix
}

Im {diag(x∗)Aix}

]

. (35)

DefineF(M) andF(M +1) as the FIMs forM and(M +1)
measurements, respectively. Then, we have

F(M + 1) = F(M) +
4

σ2
n

gM+1g
T
M+1. (36)

It is seen that the second term in (36) is positive semidefinite.
By taking the pseudo-inverse of (36), (33) is established
straightforwardly.

IV. H ARMONIC RETRIEVAL FROM RANK -ONE QUADRATIC

MEASUREMENTS

A. Signal Model

In this section, we consider a special case of (6) whenx is
a linear combination ofL Vandermonde vectors where each
vector contains a single frequency, i.e.,

x =

L
∑

ℓ=1

γℓv(ωℓ) (37)
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Here, ωℓ and γℓ stand for theℓth unknown frequency and
complex amplitude, respectively, and

v(ωℓ) =
[

ejωℓ · · · ejNωℓ

]T
. (38)

The main problem here is to estimate the frequencies
{ω1 · · · ωL} from y. Classical line spectra estimators such
as MUSIC and ESPRIT assume thatx is sampled directly
and there is no phase noise. What if we observegeneralized
samples, i.e., linear combinations of the elements ofx, and
these are subject to phase noise, i.e.,p = diag(u)AHx, where
ui models phase noise in theith measurement (|ui| = 1),
which could arise, e.g., due to phase offsets when different
measurements are collected by different sensors in a network
sensing scenario. In this case, the phase ofp is clearly
uninformative, and we might as well get rid of it by working
with |p| - see also [34]. This yields a phase retrieval problem
where the unknownx possesses harmonic structure. Can we
adapt our algorithms and bounds to account for this structure?

B. Sparse B-FPP and LS-FPP

We propose to adapt B-FPP and LS-FPP using sparse
regression with an overcomplete Vandermonde dictionary. Let
Ṽ ∈ CN×P be a known overcomplete basis parametrized by
{ω̃1 · · · ω̃P }. More specifically,Ṽ can be expressed as

Ṽ =
[

v(ω̃1) · · · v(ω̃P )
]

. (39)

Note thatP should be much larger than the number of active
frequenciesL. Assuming a sufficiently dense grid,x can be
approximated as

x ≈ Ṽx̃ (40)

wherex̃ ∈ CP is L-sparse. Substituting (40) into (6) yields

yi ≈ |bH
i x̃|2 + ni, ∀i (41)

where

bi = ṼHai. (42)

The problem of frequency estimation has been converted to
sparse spectrum (x̃) estimation. An ideal description of spar-
sity is theℓ0-norm ||x||0, i.e., the number of nonzero entries
in x. However, this yields a ‘doubly NP-hard’ problem. In
recent years, numerous approximations have been developed
such asℓ1 and ℓp (p < 1) relaxations [35]-[36], to replace
the ℓ0-norm. For sparse B-FPP, we can useℓ1 relaxation as
follows

min
x̃,s

||x̃||1 + λ1

M
∑

i=1

si

s. t. 2Re{zHBix̃}+ si ≥ zHBiz+ yi − ǫ

x̃HBix̃ ≤ yi + ǫ

si ≥ 0, ∀i

(43)

whereBi = bib
H
i ∈ CP×P , x̃ ∈ CP andz ∈ CP . For sparse

LS-FPP, we likewise have

min
x̃,w,s

||w||22 + λ1||x̃||1 + λ2

M
∑

i=1

si

s. t. 2Re{zHBix̃}+ wi + si ≥ zHBiz+ yi

x̃HBix̃+ wi ≤ yi,

si ≥ 0, ∀i.

(44)

Remark 4.1:Similar to Algorithm 1 andAlgorithm 2 for
‘plain’ phase retrieval, (43) and (44) can be solved repeatedly
using the previously obtained̃x to obtain a new supporting
point z. Also note that sparse B-FPP and sparse LS-FPP are
not limited to harmonic retrieval – they are directly applicable
to other cases wherex admits a sparse representation in a
known dictionary.

C. CRB for Harmonic Retrieval from Quadratic Measure-
ments

Whenx is modeled as a sum of a few harmonics, the CRB
is associated to the unknown frequenciesωℓ and complex
amplitudes γℓ rather thanx. The corresponding CRB is
provided in the following theorem.

Theorem 4.1:If x ∈ CN is a superposition ofL Vander-
monde vectors as in (37), the CRB is

CRBv = F†
v (45)

where

Fv =
4

σ2
n

GvG
T
v (46)

with

Gv =





Re{XHA1x} · · · Re{XHAMx}
Re{VHA1x} · · · Re{VHAMx}
Im{VHA1x} · · · Im{VHAMx}



 (47)

X =
[

γ1
∂v1

∂ω1

· · · γL
∂vL

∂ωL

]

(48)

V =
[

v(ω1) · · · v(ωL)
]

(49)
∂vℓ

∂ωℓ

=
[

jejωℓ · · · jNejNωℓ

]T
. (50)

Proof: See Appendix E.
Note thatFv is singular, and its rank deficit is equal to one.

The proof is very similar to those in Appendices B and C, so
it is omitted for brevity.

V. SIMULATION RESULTS

We present simulations of the two proposed methods and
compare them with WF [14], GS [7], PhaseLift [9] and Phase-
Cut [13] in this section. The signalx = exp (j0.16πt), t =
1, · · · , N , is deterministic and fixed throughout all Monte-
Carlo trials. Furthermore, the SNR is defined as

SNR=

∑M
i=1
|aHi x|4

Mσ2
n

. (51)

We consider two different types of measurements: 1) Gaussian
measurements which are generated from a complex Gaussian
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distribution, i.e., the real and imaginary parts of each entry
in ai are generated from the normal distribution; 2) masked
Fourier measurements of the following form

AH =







FD1

...
FDK






(52)

where K = M/N , F is a N × N Fourier matrix and
Di is a N × N diagonal masking matrix with its diagonal
entries independently generated byb1b2, whereb1 andb2 are
independent and distributed as [14]

b1 =



















1 with prob. 0.25

−1 with prob. 0.25

−j with prob. 0.25

j with prob. 0.25

(53)

and

b2 =

{√
2/2 with prob. 0.8√
3 with prob. 0.2.

(54)

The noise is assumed to be white Gaussian with mean zero
and varianceσ2

n. The stopping criterion for B-FPP, LS-FPP,
WF and GS is the relative improvement in the cost function
value dropping below10−7, i.e.,

||y − |AHxk|2||22 − ||y − |AHxk−1|2||22
||y − |AHxk−1|2||22

≤ 10−7 (55)

or a limit on the maximum number of iterations being reached.
This limit is set to 100, 100, 2000 and 2000, iterations for B-
FPP, LS-FPP, WF and GS, respectively.

A. CRB versus SNR

As a first sanity check, Fig. 2 plots the CRB as a function
of SNR for M = 2N, 4N, and8N for the complex-valued
signal (top) and the real-valued signal (bottom), forN = 16.
It is seen that as predicted by Theorem 3.1, the bound on
the standard deviation of the estimatedx decreases as SNR
increases. As expected, we also find that the CRB associated to
a largerM produces a smaller bound on the standard deviation,
which validates our analytical results in (33).

B. MSE Performance Comparison

We now compare the performance of B-FPP and LS-FPP
with PhaseLift, PhaseCut2, WF [14] and GS. For PhaseLift,
PhaseCut, and WF, we use publicly available code3. We use
the LS version of PhaseLift that is appropriate for additive
Gaussian noise. For B-FPP,ǫ is set equal to the standard
deviation of the noise, for all our experiments.

To begin, let us illustrate the recovery performance of B-FPP
and LS-FPP by means of example. We setN = 16, M = 64

2PhaseCut works with
√
y; y can have negative elements at low SNR,

so we useRe{√y} for PhaseCut. Also note that, due to the nonlinear
transformation, noise will no longer be additive Gaussian for PhaseCut, which
matches a different measurement model, namelyzi = |aH

i
x|.

3Downloaded from http://www-bcf.usc.edu/∼soltanol/PhaseRetrievalCDP.zip,
http://www.cmap.polytechnique.fr/scattering/code/phaserecovery.zip, and
http://www-bcf.usc.edu/∼soltanol/WFcode.html, respectively.
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Fig. 2. CRB versus SNR for differentM with Gaussian measurements.

and SNR= 25 dB. We consider two different initialization
methods to start B-FPP, LS-FPP, WF and GS:

1) Spectrum initialization - picking the leading eigenvector
of
∑M

i=1
yiaia

H
i as an initial guess ofx;

2) Gaussian random initialization - each element of the ini-
tial point is randomly generated from a complex Gaussian
distribution with zero mean and unit variance.

Figs. 3 and 4 plot the histogram bar chart of 500 independent
MSE samples where MSE is defined as

MSE= 10 log10
(

||x̂− x||22
)

. (56)

It is seen that for masked Fourier measurements, BS-FPP,
LS-FPP, WF and GS perform very similarly and they out-
perform the PhaseLift and PhaseCut algorithms, since the
latter frequently fail to find a rank-1 matrix. In the Gaussian
measurement case, since both real and imaginary parts of
each measurement vector are drawn from a standard normal
distribution,E(aiaHi ) = 2I. Therefore, the expected value of
1

M

∑M
i=1

yiaia
H
i is 2(I+xxH), and the top two eigenvectors

of (I + xxH) might be mixed together and the leading
eigenvector will no longer be a good guess ofx with a finite
number of measurements. Due to this, we can see in Fig.
3(b) that the WF method (which is sensitive to the starting
point), suffers from performance degradation. Furthermore, it
is observed from Fig. 4 that by using random initialization,
all the algorithms have more outages than the case in Fig. 3,

http://www-bcf.usc.edu/~soltanol/PhaseRetrieval_CDP.zip
http://www.cmap.polytechnique.fr/scattering/code/phaserecovery.zip
http://www-bcf.usc.edu/~soltanol/WFcode.html
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and FPP-based methods are better than the others. Quantitative
MSE results summarized in Table I, from which we can see
that LS-FPP achieves the smallest variance in all the scenarios.
Although it is seen from Figs. 3 and 4 that GS has as few
outages as B- and LS-FPP, its MSE is still much larger than the
latter methods. Note that the MSEs reported have been com-
puted after removing outages, where we have defined MSE
larger than 0 dB as an outage. The CRB is an averaged result
over 500 Monte-Carlo tests and is computed via Theorem 3.1.
Furthermore, it is seen in Table II that for masked Fourier
measurements the outage percentage of LS-FPP is slightly
larger than that of WF; while for Gaussian measurements,
FPP-based methods are much better than WF and GS. It is
interesting that, although the MSEs of PhaseLift and PhaseCut
are not as good, the two relaxation-based methods still do very
well in terms of avoiding outages.

Remark:These results suggest using the principal eigenvector
of SDR to initialize FPP, and indeed this further reduces the
number of outages, as well as the number of outer iterations
in B-FPP and LS-FPP. The drawback is that as the size
of N = length(x) becomes larger, SDR quickly becomes
the complexity bottleneck, since it lifts the problem to a
much higher-dimensionalO(N2) space. Still, using SDR for
initialization is well worth the effort for smallerN , as the
overall complexity is still of the same order as that of FPP
per se. This is never the case for WF and GS, which are
relatively lightweight algorithms whose computational cost is
always dominated by SDR.

Next, we compare the MSE performance as a function of
SNR, usingN = 16, M = 128, and 200 Monte-Carlo trials.

MSE on amplitude= 10 log10

(

1

200

M
∑

i=1

|| |x̂|i − |x| ||22

)

MSE on phase= 10 log10

(

1

200

M
∑

i=1

||∠(x̂)i − ∠(x) ||2
2

)

where ∠(·) takes the phase of its argument. The CRB in
Theorem 3.1 is also included as a benchmark. Fig. 5 depicts
the MSE results for masked Fourier measurements, from
which we observe that LS-FPP and WF followed by B-FPP
achieve the best performance and all of them outperform
PhaseLift, PhaseCut and GS when SNR is higher than 10 dB.
In Fig. 6, GS and WF exhibit relative high MSE in the high
SNR regime, which is mainly caused by occasional outages
(we noted that GS and WF produce three or four outages
during the 200 Monte-Carlo trials, at SNR> 30 dB). When
SNR≤ 5 dB, there is no MSE value reported for WF because
WF frequently returns NaN (not a number). The reason is that
the noise variance is commensurate to the useful signal power
and the eigenvalues of

∑M
i=1

aia
H
i are of the same order, thus

the leading eigenvector is no longer useful as initialization.
Note that WF, LS PhaseLift, and LS-FPP actually attempt to
solve the same problem formulation here, however only LS-
FPP is insensitive to initialization and competitive in terms of
statistical efficiency in this scenario.
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Fig. 3. Signal recovery performance comparison with spectrum initialization.

C. Performance Comparison for Harmonic Retrieval from
Rank-one Quadratic Measurements

We consider a scenario wherex has the form of a 1-
D harmonic model. Assume that there are two frequencies
contained inx, i.e.,

x = v(ω1) + v(ω2).

We study the CRB in (45) as a function of SNR. In this
example, we assume thatN = 8 andM = 40. Fig. 7 plots
two CRB curves corresponding to widely-spaced frequencies
(ω1 = −0.15π andω2 = 0.15π) and closely-spaced frequen-
cies (ω1 = −0.05π andω2 = 0.05π). As expected, the CRB
for closely-spaced frequencies is larger than that for widely-
spaced ones. Fig. 8 plots the pseudo power spectra, i.e.,x̃,
obtained by sparse B-FPP and sparse LS-FPP. In this example,
the parameters areω1 = −0.16π, ω2 = 0.16π, N = 8,
M = 16 and SNR= 30 dB. The dictionary is of length 51,
obtained by uniformly sampling the[−π/2, π/2] frequency
sector. It is observed from Fig. 8 that sparse LS-FPP has two
distinct peaks around the trueω, while sparse B-FPP has a
small bias on the estimate ofω2.

VI. CONCLUSIONS

The problem of phase retrieval has been revisited from a
non-convex QCQP point of view. Building upon recent work
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TABLE I
AVERAGED MSE AND CRB (BOTH IN DB) AFTER REMOVING OUTAGES

Setting CRB B-FPP LS-FPP PhaseLift PhaseCut WF GS

Masked Fourier
Spec. Init. -11.4268 -9.6536 -11.4208 -4.8509 -5.8273 -11.4137 -7.9174

Rand. Init. -11.4268 -9.5166 -11.2285 -4.8509 -5.8273 -11.2711 -7.6803

Gaussian Meas.
Spec. Init. -11.0616 -9.3672 -11.0596 -4.6289 -5.5361 -6.1576 -7.5980

Rand. Init. -11.0616 -9.3588 -10.5681 -4.6289 -5.5361 -6.0553 -7.5412

TABLE II
OUTAGE PERCENTAGES

Setting B-FPP LS-FPP PhaseLift PhaseCut WF GS

Masked Fourier
Spec. Init. 2.6% 2.2% 2.8% 1% 1.8% 4.6%

Rand. Init. 22.2% 24% 2.8% 1% 23.2% 28.6%

Gaussian Meas.
Spec. Init. 4.8% 4.4% 3.8% 1.2% 17.8% 7.4%

Rand. Init. 26% 16.8% 3.8% 1.2% 31.4% 27.8%
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Fig. 4. Signal recovery performance comparison with randominitialization.

on feasible point pursuit for non-convex QCQP problems, two
novel algorithms were developed for phase retrieval from noisy
measurements: B-FPP and LS-FPP. B-FPP is designed for
uniform additive noise, such as quantization noise introduced
by high-resolution uniform quantization. LS-FPP is matched to
white Gaussian noise that is added after taking the magnitude
squared of the linear measurements, such as analog trans-
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Fig. 5. Performance comparison with masked Fourier measurements.

mission noise. For the latter model, the Cramér-Rao bound
was also derived and studied. Simulations suggest that B-
FPP and LS-FPP attain state-of-art performance, and LS-FPP
outperforms all earlier methods and comes very close to the
CRB under certain conditions (depending on the SNR, and
the type and number of measurements relative to the signal
dimension). It was also shown that what apparently hurts the
average performance of some of the most competitive algo-
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Fig. 6. Performance comparison with Gaussian measurements.
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Fig. 7. CRB versus SNR for harmonic retrieval from quadraticmeasurements.

rithms is outages, even when they are rare. LS-FPP exhibits
the best outage performance among all algorithms considered,
including WF, which seems to be quite sensitive to outages,
especially for systematic (as opposed to i.i.d. Gaussian) mea-
surement vectors, which throw off its initialization. Variations
of B-FPP and LS-FPP (and the corresponding CRB) for
harmonic retrieval from rank-1 quadratic measurements were
also developed and illustrated in simulations. The drawback
of B-FPP and LS-FPP is their relatively high computational
complexity, especially compared to WF. Ways of bringing
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Fig. 8. Signal recovery for harmonic retrieval from quadratic measurements.

down this complexity are currently under investigation.

APPENDIX A
PROOF OFTHEOREM 3.1

The CRB states that the variance of any unbiased estimator
is at least as high as the inverse of the FIM. To determine
the CRB, we should first calculate the FIM and then take
its inverse. The likelihood function for the data model for
complexx is

p(y;x) =
M
∏

i=1

1
√

2πσ2
n

exp

{

− (yi − xHAix)
2

2σ2
n

}

. (57)

Hence, the log-likelihood function can be written as

ln p(y;x) = −M

2
ln(2πσ2

n)−
1

2σ2
n

M
∑

i=1

(yi − xHAix)
2.

(58)

The vector of unknown parameters for complexx is

β = [ b1 · · · bN , θ1 · · · θN ]T (59)

wherebi andθi are the amplitude and phase ofxi, i.e.,

xi = bie
jθi . (60)

Thus, the FIM can be expressed as

F =

[

Fbb Fbθ

Fθb Fθθ

]

(61)

where the(m,n) entry of the FIM is given by

[F]m,n = −E
[

∂2 ln p(y;x)

∂βm∂βn

]

(62)

and

[Fbb]m,n = − E

[

∂2 ln p(y;x)

∂bm∂bn

]

(63)

[Fθθ]m,n = − E

[

∂2 ln p(y;x)

∂θm∂θn

]

(64)

[Fθb]m,n = − E

[

∂2 ln p(y;x)

∂θm∂bn

]

(65)

[Fbθ]m,n = − E

[

∂2 ln p(y;x)

∂bm∂θn

]

. (66)
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The second-order derivative ofln p(y;x) is

∂2 ln p(y;x)

∂βm∂βn

=
1

σ2
n

M
∑

i=1

(

(yi − xHAix)
∂2xHAix

∂βm∂βn

−∂xHAix

∂βm

∂xHAix

∂βn

)

. (67)

Taking the expectation of both sides of (67) produces that

E

[

∂2 ln p(y;x)

∂βm∂βn

]

= − 1

σ2
n

M
∑

i=1

∂xHAix

∂βm

∂xHAix

∂βn

(68)

whereE[yi − xHAix] = 0. Now,

∂xHAix

∂θm
= − jx∗

mA(m, :)x+ jxmxHA(:,m)

= 2Re{−jx∗
mA(m, :)x} (69)

∂xHAix

∂bm
= e−jθmA(m, :)x + ejθmxHA(:,m)

= 2Re{e−jθmA(m, :)x} (70)

where(·)∗ is the conjugate, andA(i, :) andA(:, i) stand for
the ith row and column ofA, respectively. Thus, by substitut-
ing (69) and (70) into (68), after some matrix manipulations,
we obtain the matrix form of the sub-FIMs as

Fbb =
4

σ2
n

Re{diag(e−jθ)AHdiag(Ax)}

× Re{diag(e−jθ)AHdiag(Ax)}T (71)

Fθθ = − 4

σ2
n

Re{diag(x∗)AHdiag(Ax)}

× Re{diag(x∗)AHdiag(Ax)}T (72)

Fθb = −
4

σ2
n

Re{jdiag(x∗)AHdiag(Ax)}

× Re{diag(e−jθ)AHdiag(Ax)}T (73)

Fbθ =
4

σ2
n

FT
θb (74)

where θ = [θ1 · · · θN ]T . Inserting (71) to (74) into (62)
produces the whole FIM

F =
4

σ2
n

GGT (75)

where

G =

[

Re
{

diag(e−jθ)Adiag(AHx)
}

Im
{

diag(x∗)Adiag(AHx)
}

]

. (76)

Using block matrix inverse formula, the CRB associated to
the phase and amplitude can be expressed as

CRB†
θ = Fθθ − FθbF

−1

bb Fbθ (77)

CRB−1

b = Fbb − FbθF
†
θθFθb. (78)

APPENDIX B
RANK -1 DEFICIENCY OFF

To show thatF is rank-1 deficient, it suffices to find a non-
zero vectorv such thatFv = 0.

Denotev ∈ R2N as [ vT
1 vT

2 ]T , then

GTv = Re{diag(e−jθ)Adiag(AHx)}Tv1

+ Im{diag(x∗)Adiag(AHx)}Tv2

= Re{diag(x∗)Adiag(AHx)}T ṽ1

+ Im{diag(x∗)Adiag(AHx)}Tv2 (79)

whereṽ1 = diag(|x|)−1v1. Now let u = v2 + jṽ1, then

GTv = Im
{

(

diag(x∗)Adiag(AHx)
)H

u
}

(80)

= Im
{

(AHx)∗ ⊙
(

AHdiag(x)u
)}

. (81)

Let u = α1N ∈ R
N , for anyα 6= 0; then

GTv = Im
{

α
∣

∣AHx
∣

∣

2
}

= 0. (82)

This means that the directionv = α[ 0T
N 1T

N ]T , which is non-
zero, lies in the null space ofG, thus also in the null space of
F. Moreover, suppose the vectorAHx does not contain any
zero elements, which is true almost surely. To find another null
space ofG would require the vectorAHdiag(x)u to be the
all zero vector. Such a vectoru does not exist almost surely,
for example ifA is a random Gaussian matrix. This meansF

is rank-1 deficient almost surely.

APPENDIX C
RANK -1 DEFICIENCY OFFc

Denotev ∈ R2N as [ vT
1 vT

2 ]T , then

GT
c v = Re{Adiag(AHx)}Tv1 + Im{Adiag(AHx)}Tv2.

Now let u = v1 + jv2, then

GT
c v = Re

{

(

Adiag(AHx)
)H

u
}

= Re
{

(AHx)∗ ⊙ (AHu)
}

Let u = jx, we have

GT
c v = Re

{

j
∣

∣AHx
∣

∣

2
}

= 0.

This means the directionv = [ − Im{x}T Re{x}T ]T , which
is non-zero, lies in the null space ofGc, thus also in the null
space ofFc.

Moreover, suppose the vectorAHx does not contain any
zero elements, which is true almost surely. To find another
null space ofGc would require the vectorAHu to be the
all zero vector. Such a vectoru does not exist almost surely,
for example ifA is a random Gaussian matrix. This means
Fc is rank-1 deficient almost surely. It is also interesting to
observe that for the Fisher information matrix with respectto
an arbitrary complex signalx, the directionjx is always in
its null space.



12

APPENDIX D
PROOF OFFULL RANK OF Fr

Similarly, to show thatFr is full rank, it suffices to show
that there does not exist a non-zero vectorv ∈ RN such that
Frv = 0, or equivalentlyGT

r v = 0. Again we have that

GT
r v = Re

{

(AHx)∗ ⊙ (AHv)
}

.

However, we are not allowed to choosev = jx to make this
product zero, becausev can only be real. AssumeAHx does
not contain any zero elements, which is true almost surely,
we must find av such thatAHv = 0, which cannot happen
almost surely. Therefore,Fr is full rank almost surely.

APPENDIX E
PROOF OFTHEOREM 4.1

The likelihood function forx equal to a sum-of-harmonics
as in (37) has the same expression as (57). However, the
parameter vector contains theL unknown frequencies and
the real and imaginary parts of theL unknown complex
amplitudes{γ1 · · · γL}:

ααα = [ω1 · · · ωL,Re{γ1} · · · Re{γL}, Im{γ1} · · · Im{γL}]T .
(83)

The FIM associated toααα is expressed as

Fv =





Fωω FωRe{γ} FωIm{γ}

FRe{γ}ω FRe{γ}Re{γ} FRe{γ}Im{γ}

FIm{γ}ω FIm{γ}Re{γ} FIm{γ}Im{γ}



 (84)

where

FRe{γ}ω = FT
ωRe{γ} (85)

FIm{γ}ω = FT
ωIm{γ} (86)

FRe{γ}Im{γ} = FT
Im{γ}Re{γ}. (87)

Therefore, we only need to calculate the upper triangular part
of Fv.

∂ ln p(y;x)

∂αααm

=
1

σ2
n

M
∑

i=1

(

(yi − xHAix)
∂xHAix

∂αααm

)

. (88)

Let us first compute

∂xHAix

∂ωm

= γ∗
m

(

∂vm

∂ωm

)H

Aix+ γmxHAi

∂vm

∂ωm

= 2Re

{

γ∗
m

(

∂vm

∂ωm

)H

Aix

}

(89)

where

∂vm

∂ωm

=
[

jejωm · · · jNejNωm

]T
. (90)

In the sequel, we compute

∂2 ln p(y;x)

∂ωm∂ωn

=
1

σ2
n

M
∑

i=1

(

(yi − xHAix)
∂2xHAix

∂ωm∂ωn

−∂xHAix

∂ωm

∂xHAix

∂ωn

)

. (91)

To obtain (91), we consider two cases to calculate the value
of ∂2

x
H
Aix

∂ωm∂ωn
. If m 6= n,

∂2xHAix

∂ωm∂ωn

= 2Re

{

γ∗
mγn

(

∂vm

∂ωm

)H

Ai

∂vn

∂ωn

}

. (92)

If m = n,

∂2xHAix

∂ωm∂ωn

= 2|γm|2
(

∂vm

∂ωm

)H

Ai

∂vm

∂ωm

+ 2Re

{

γ∗
m

(

∂2vm

∂ω2
m

)H

Aix

}

(93)

where

∂2vm

∂ω2
m

= −
[

ejωm · · · N2ejNωm

]T
. (94)

Taking the expectation of both sides of (91) yields

[Fωω]m,n =
4

σ2
n

M
∑

i=1

Re

{

γ∗
m

(

∂vm

∂ωm

)H

Aix

}

× Re

{

γ∗
n

(

∂vn

∂ωn

)H

Aix

}

. (95)

We next computeFωRe{γ}. Here, we point out thatαm

corresponds to frequencies whileαn corresponds to the real
parts of the amplitudes.

∂xHAix

∂Re{γn}
= vH

n Aix+ xHAivn = 2Re{vH
n Aix}. (96)

Since the expected value of(yi−xHAix) is zero, we directly
obtain

[FωRe{γ}]m,n =
4

σ2
n

M
∑

i=1

Re

{

γ∗
m

(

∂vm

∂ωm

)H

Aix

}

× Re
{

vH
n Aix

}

. (97)

In a similar manner,

∂xHAix

∂Im{γn}
= 2Im{vH

n Aix} (98)

which results in the following formula forFωIm{γ}

[FωIm{γ}]m,n =
4

σ2
n

M
∑

i=1

Re

{

γ∗
m

(

∂vm

∂ωm

)H

Aix

}

× Im
{

vH
n Aix

}

. (99)

At this point, the expressions for the (m,n)th element of
FRe{γ}Re{γ} andFIm{γ}Im{γ} can be easily derived

[

FRe{γ}Re{γ}

]

m,n
=

4

σ2
n

M
∑

i=1

Re
{

vH
mAix

}

Re
{

vH
n Aix

}

(100)

[

FIm{γ}Im{γ}

]

m,n
=

4

σ2
n

M
∑

i=1

Im
{

vH
mAix

}

Im
{

vH
n Aix

}

.

(101)
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Substituting (95), (97), (99), (100) and (101) into (84), after
some matrix manipulations, we have

Fv =
4

σ2
n

GvG
T
v (102)

where

Gv =





Re{XHA1x} · · · Re{XHAMx}
Re{VHA1x} · · · Re{VHAMx}
Im{VHA1x} · · · Im{VHAMx}



 (103)

X =
[

γ1
∂v1

∂ω1

· · · γL
∂vL

∂ωL

]

(104)

V = [v(ω1) · · · v(ωL)]. (105)

Note that using a similar proof as for the rank-1 deficiency
property of the FIM in (27), it can be easily shown thatFv

is also rank-1 deficient. As a result, the CRB for sum-of-
harmonicsx is computed using the pseudo-inverse ofFv.
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