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Abstract—This paper presents a new framework of identifying the system unobservable, these attacks are termed as “unob-
a series of cyber data attacks on power system synchrophasor servable attack®’in [18].

measurements. We focus on detecting “unobservable” cyberaia — gi410 estimation in the presence of cyber data attacks has

attacks that cannot be detected by any existing method that .
purely relies on measurements received at one time instaritever-  attracted much research attention recently [3], [91/ [12F],

aging the approximate low-rank property of phasor measurenent  [23], [29]-[31]. Existing approaches include protectingnaall

unit (PMU) data, we formulate the identification problem of number of key measurement units such that the intruders
successive unobservable cyber attacks as a matrix decomi@  cannot inject unobservable attacks without hacking ptetec
problem of a low-rank matrix plus a transformed column- units [3], [€], [L7], as well as detectors designed for &tac

sparse matrix. We propose a convex-optimization-based meod . Lo
and provide its theoretical guarantee in the data identificsion. N the observable regime [18]. The research on the detec-

Numerical experiments on actual PMU data from the Central tion of unobservable attacks is still limited. Refs. [2230]
New York power system and synthetic data are conducted to proposed different methods to detect unobservable atiacks

verify the effectiveness of the proposed method. Supervisory Control and Data Acquisition (SCADA) system.
Index Terms—cyber data attacks, low-rank matrix, matrix de- The method in[[30] relies critically on the assumption tHnet t
composition, synchrophasor measurements. measurements at different time instants are i.i.d. sampiies

random variables. This assumption might not hold when the
system is under disturbance. Réf.J[22] focused on the simenar
that an intruder attacks a different set of measurements at

T HE integration of cyber infrastructures into future smafisch time instant, and no theoretical analysis of the detect
grids greatly enhances the monitoring, dispatch, a’b‘%rformance is provided ifi[22].

scheduling of power systems. Such i_ntegration, however,tig paper considers cyber data attacks to PMU mea-
makes the power systems more susceptible to cyber attackg fements. It focuses on the case when an intruder injects

is reported that cyber spies have penetrated U.S. eldanica 5pservable data attacks to the same set of PMUs constantly
[26]. Researchers have also launched an experimental cygBgkause PMUs under attack do not provide any accurate
attack that caused a generator to self-destfuct [15]. measurement at any time instant to the operator, the attack
State estimatiori [1] is a critical component of power syste[gengification in this case is very challenging and has not
monitoring. System state is estimated based on the obtai n addressed before. We propose a method that can identify
measurements across the system. Bad data can affect #e §{al 5 ,ccessive unobservable cyber data attacks and provide
estimation and mislead the system operator. Many effoMs hane theoretical guarantee even when the system is under
been devoted to develop met?ods that can identify bad dajRirhance. The intuition is that even though an intruder ¢
see e.g.,[[6][14],[[25].[27], [35]. _ constantly inject data attacks that are consistent witth eac
Cyber data attacks (firstly studied [n [23]) can be viewed @ner at each time instant, as long as the intruder does not
“the worst interacting bad data injected by an adversaBl’[1 \now the system dynamics, one can identify the attacks by
Malicious intruders with system configuration im‘ormatiorg:omparing time series of different PMUs and locating the
can simultaneously manipulate multiple measurementsa®o th)\1us that exhibit abnormal dynamics.
these attacks cannot be detected by any bad data deuactoéecause PMU measurements are synchronized and corre-
Because the removal of affected measurements would makg,j * ihe high-dimensional PMU data matrix exhibits low-
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medical imaging [[10],[[11], and image processing [2]. The Legend
situation that one component is a transformed column-spars 1311 @ Bus vith PMU installed
. (S Bus without PMU installed

matrix, however, has not been addressed before. P .?\fo i Cument messred by PVIU

The contributions of this paper are threefold. (1) We prepos L A Unmeasured Line Current
the idea of exploiting spatial-temporal correlations in BM -~ ik
measurements to identify unobservable data attacks. (2) We 8 /®\ 3
formulate the identification problem into a matrix decoripos )
tion problem and propose a computationally efficient method o] ¢ 6\[4

that does not require the modeling of power system dynamics.
(3) We provide theoretical guarantees of attack detecsn, rig. 1: PMUs in the Central NY Power System. (Circles and

well as the general matrix decomposition problem. lines represent buses and transmission lines. A PMU measure

The rest of the paper is organized as follows. We formulagge yoltage phasor and the incident current phasors of the bu
our problem and point out its connection to other applic&tio \yhere it is located.)

in SectionJ]. We describe our detection method and analyze
its theoretical guarantee with both noiseless (Seckiah Il
and noisy measurements (Section 1V). Seckidn V records our
numerical experiments. We conclude the paper in SeLfibn VI.

Current magnitude

—~——

Il. PROBLEM FORMULATION AND RELATED WORK

A. Low-rankness of PMU measurements
Consider an-bus power grid with PMUs installed on Fig. 2: Visualization of Partial PMU data (Magnitude of nine

some buses. Let denote the total number of PMU channel§urrent phasors)

that measure bus voltage and line current phscﬂlaasors

are expressed in Cartesian coordinates throughout the.pape Unobservable cyber data attacks and problem formulation

Matrix M € C**P contains the collected phasor measurementsWe use bus voltage phasors as state variables, and let

in ¢ synchronized time instants/ € [p] denotes the set X € C'*" contain the state variables fainstants. We use the

of PMU channels that are under data attacks. The observeéquivalent model to represent a transmission line (Hig. 4).

measurement matrix can be presented as Z% and Y% denote the impedance and admittance of the

M=L+D+N, @ transmission line between busand bus;j. Current/% from

~ busi to busj is related to bus voltag&? and V7 by
where L € C*? represents the actual phasors without data Vi _ Vi v

attacks,D € C'*? represents the additive errors introduced M= ——— +V . (3)
by an intruder, andV represents the measurement noise. i Zv 2
High-dimensional PMU data matrices exhibit low-rank We definel¥ € CP*" as follows. If thekth PMU chan-
property [7], [8], [12], [33]. We analyzed actual PMU datd’€l measures the voltage phasor of buysWi; = 1; if
from six multi-channel PMUs deployed in the Central NeW measures the current phasor from buso bus j, then
York (NY) Power System (Figll1). Six PMUs measure twentydki = 1/Z% +Y" /2, Wy; = —1/2"; Wy; = 0 otherwise.
three Voltage and current phasorS, and the data rate |$ thIFhe PMU measurements and the state variables are related by
samples per second per channel. [fij. 2 shows the current L=xwT. (4)
magnitudes of PMU data in twenty seconds. An event occurs ] S
around2.5s. The obtained data are collected int6G x 23  1he attack at time, denoted by data injectioh; ;, is called
matrix. Fig.[3 plots the singular values of the matrix witte thunobservablgif and only if
ten largest ones being 832.8, 194.8, 35.1, 18.1, 4.3, 215, 2. Dy.=cwT (5)
1.3, 1.2, 0.5. Therefore, we can approximate @@ x 23
matrix by a low-rank matrix with little approximation error
The Singular Value Decomposition (SVD) @f is Li.+ Dy, = (X;. +cHWT, (6)

1234567 al_.g 10 11 12 13 14 15 16 17 18 19 20
Ime(s,

holds for some nonzero row vecter € C1*™. In this case,

L=UsVT, (2) and the operator would have the wrong impression that the
where U € C*", & € C™%", V € CP*" (r < t,p). We state isX;. + ¢'. We focus on the cases that the attacks from

assume throughout the paper that nonzero columisad not {ime 1 tot are all unobservatflethen we have

lie in the column space of (D # UUTD). It is a legitimate ct
assumption when the intruders do not have full information D=| : |WT.=cwT7, @)
about the system dynamics. The notations are summarized Y

in Table[]. Matrix A is column-sparsef it contains a small ¢

fraction of non-zero columns. We call the set of indices of 3p3] focuses on DC model where power measurements and stasbles
nonzero columns theolumn supporbf A. are approximately related by linear equations. Here PMUsumesments and
state variables are accurately related by linear equdfipn (

2In three phase AC systems, a phasor is defined as a complexentinal 4 Our detection method can be extended to cases that both emabke
represents both the magnitude and phase angle of the sialsaveforms. and observable attacks exist. See the beginning of Sddiidq |
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TABLE I: Notations - /YT“
A, A the ith column and theth row of matrix A, respectively. h
A1 the submatrix ofA with column indices in sef. Legend
A¥ AT the conjugate and conjugate transpose maitrixdof @ o ith PMU nvilied
Pr(A) matrix obtained fromA by settingA; to zero for alli ¢ 7. Bus without PMU installod
AePr if and only if Pz(A) = A. - Line Current measured by PMU
All,IAllr  the spectral and Frobenius norm Af respectively.
All« the nuclear norm ofd, which is the sum of singular values.
3 1,2 me Isum 052 norms fOIhthe C|°'Um”5 oft. Fig. 5: Three-bus example. PMUs are installed at bus 1 and bus
00,2 e largest> norm of the columns. : . o
Po(A) — 0T A. the projection ofA onto the column Space af. 2 measuring the corresponding voltage phasors and incident
Py (A) := AVVT, the projection of4 onto the row space. line current phasors.
Pr() = PU(')"'ZDV(‘)_PUPV(')-
Pyi(A) = (I —UUT)A. =T
P (A) — ATV, whereW™ is ) )
Pri(4) = PyiPyi(A4). 1 L4 ¥Y- 1 ., Y" g _ 1 0
A€ Pr ifand only if Pr(A) = A. N A L PN s
Z° the complimentary set of séx. 0 — iz 01 1 om+5 =+ 5
0 0 — 513 0 0 — o3

Suppose the intruder manipulates measurements in all chan-
whereW,; = W;/||W;|. C represents the additive error (upnels of PMU 1 and the channel of PMU 2 that measuiés
to a scaling factor) to bus voltages due to data attacks, i@nd I?> so that the system operator would have the wrong
|[W;]|C; is the error to bus voltagé?. LetZ € [n] denote the impression that the system states @eé + ' V* V? + 37|
column support of. We assumé& is column-sparse becausdor any nonzerod*, g? € C**!. In this case, the observed
intruders might only alter some of the state variables due feasurements under attacks when there is no noise are
resource constraints. With increasing installation of Eﬁ\/IUM: VI8l V2 VR4 g wT
we anticipate that the total number of PMU channelwill L Lo ) ) Lo1s
be larger than the number of buses The transform in[[7) _ (v 1 g1 112 4 B BYT s B8 BY
reduces the degree of freedomih Combining [1) and[{7), zZ12 2 zZ13 2
the obtained measurements under attack can be written as V> I*' = 8'/2? 1 — g%/2%). (10)

The additive errors due to attacks are

D=[g" o gWT =[[W1[8" 0 |Ws|B*WT. (11)

M=L+CWT 4+ N. (8)

The attack identification problem is formulated as foIIowsC c . ¢ isti K
Given M and W, is it possible to separaté and C? We ™ onnections to existing wor
assume noise level is bounded and given, il&V)» < 7. The detection of unobservable cyber data attacks has not
We say a method caidentify an unobservable attack if it been much addressed. [30] andl[22] considered the detection
successfully determines the set of PMU channels that arerungf unobservable attacks to SCADA data and provided numer-
attack and recovers measurements that are not attacked. ical results. [[30] assumes the measurements across time are
Although cannot be detected at a given time instant, tibd: .dlstr|b%1>ted and detects the attacks based on stafist
unobservable attacks can be detected if the time serieein §2Ming- [22] assumes the SCADA measurements under DC

affected PMU channels exhibit dynamics different from thoPoWer flow model are low-rank and proposes to detect the

of unaffected PMUs. Mathematically, the matrix decomposfitacks by decomposing a low-rank matrix and a sparse matrix
tion is possible if columns iD do not belong to the column from their sum. Our work differs from [22] in that we assume

space ofL. the intruder constantly injects data attacks to the same set
. N . :
We e a reeus nework (1.) o utte e o] FHUS e 122 smes e oer stacks sren
tions. LetV® andI¥ (i, € {1,2,3}) in C**! denote the bus . L ’ P
. o theoretical guarantee of our detection method.
voltages and line currents ininstants. Then . . L
Our problem formulation of matrix decomposition is closely
related to those in[[34] and [24]. WheW is an identity

T 1 712 713 2 721 7237 __ 1 2 31T . § .
L=[V I"I" V' IZ I = [V V* V]I 9) matrix, our problem reduces to the onelin|[34]. The diffeeenc



Q
S.t. Z |Mij — Lij - (CWT)ij - Sij|2 S u7721 (16)

i,jEQ tp

Method 1 Unobservable cyber attack identification method
Input: PMU measurement&/ in ¢ instants; coefficient; the
set() of the locationg(i, j) of the observed entries.
Find (L*, C*), the optimum solution to the following
optimization problem

with given positive constants;, A.. We study this extension
numerically in Sectiof V-B.
To formally present the theoretical result, we need the

min IZ||x 4+ A|C||1.2 (12) following definitions. GivenL = USVT and W, we define
LeCtxpr,CeCtxn ’ B
) €= VW ooz, o= max [WIW, - (17)
s.t. Z |Mi; — L;j — (CWT)ij|2 < t_772 (13) ZTJ 1

i.jeQ p andoy, := I%‘c‘lgkll(WzWI) . (18)
Compute the SVD of.* = U*X*V*1, Note thato; = 1 asW has unit-norm columns, anddepends
Find column support oD* = C*W7, denoted by7*. on the rankr of L, since||V||% = r.
Return: L*, C*, L%.., U* and J*. Pick any constantg andc in (0, 1) such that

-/ -d) < VTTo/0-a.  (19)

between our model and the onelin[24] is that the sparse mafrir any integer, define

C in [24] has nonzero entries located independent of each 1+ (2 =) e

other, whileC' here is a column-sparse matrix. Our method Amin,k = I — (1< (2—d) Dk (20)
and analysis are built up those in [34], but we consider a — (L4 2= ¥) Dkowp

more general framework of matrix decomposition through the and \ — /DI 21
introduction of the transform matrik/. ek ¥/ (ko). (1)

The significance of our work is twofold. First, we for theéOur detection method is summarized in Method [L] (13) is
first time consider the case that the additive error maifrizgan @ convex program and can be solved efficiently by generic
be dense (i.eW is a dense matrix), while the error matricegolvers such as CVK[13]. Its recovery guarantee is as falow
in [34] _and [24] are sparse. We _show through b_oth thec_)retiCﬂlleorem 1. Suppose there exists nonzéresuch that
analysis and numerical experiments that it is possible to -
achieve matrix decomposition with dengg Second, when kp < ¢, and Amine < Amax, i (22)

D is a column-sparse matrix itself (i.ely’ is sparse), our with ¢ A and\___; defined in[IB)E21). Then as long
decomposition method outperforms thoselin [34] and [248 (s ’

Section\V-B an) in the sense tha_\t our recovery methc? thz ’c/\olumgr]l,stlﬁgpglﬁpﬁ gfi/l th?% c?tlnslgzzﬁfec;r any A €
can tolerate a higher level of corruption (i.e., large suppo ™™"® Mm%
size of D). This advance results from exploiting] (7), which UrUrt =0uT, (23)
reduces the degree of freedom of «_ 7 x T

Note that our method and analysis hold for an arbitriafy J'=JandLy.c =Lge.
and can be applied to other domains that involve decomposingrheorem[l guarantees that the affected PMUs can be
a matrix as in[(B). As discussed in [24], applications ineludcorrectly located and thus, the “clean” PMU measurements
unveiling network traffic anomalies [19]. [32], dynamic magcould be identified. Furthermore, the subspace spannedeby th
netic resonance imaging [10], [11], face recognitibh [2jda actual phasors can be recovered. Since we do not obtain any
music analysis[[20],121]. actual measurements from PMUs that are under attack, it is
impossible to recover the exact measurements in the affecte
PMUs without further regularization. Under the conditiafs
Theorentl, the recovery is also successful when the column
A. ldentification method and guarantee support ofC' is zero. Thus, the false alarm rate is zero.

We first consider noiseless measurements={ 0). We Method 1 is motivated by[[34]. In fact, after post-
assume a complete set of measurements for analysis, but @uttiplying W#(W7Ww#*)~! to both sides of[{1), we have
method can be extended to cases whep measurements]\glgg/i(WTWi)q _ EWi(WTWi)fl_FC«_i_NWi(WTWi)fl
partially lost. Moreover, although we consider attack grais
in @), our method can be genera"zed to detect Combinwere the right—hand side is the sum of a low-rank matrix

min,k’

IIl. ATTACK IDENTIFICATION WITHOUT NOISE

attacks. In this casd) is generalized to plus a column-sparse matrix and noise. Then, the results
o of [34] can be directly applied to our problem. We do not
D=CW" +5, (14)  follow this path due to two reasons. Firgt/ W (W7 w#)-1

where a sparse matri& represents attacks (observable and/ Iannot be computed if some entries/df are missing, while

unobservable) that have different locations across tinenT d;[g]obd j}e(:s?:?cgﬁ e?sgyciﬁg?;ﬁ?s t?tﬂscle??a:fsth\,:tgb?;\s,leng
(I2)-(13) are generalized to y 9 )

measurements. Secondy T W#*)~! does not exist whefl’
min 1L« + M |ICll12 + )\22 |Si;]  (15) s a flat matrix, i.e.p < n, while Method 1 and Theorefd 1
LeCtxr,CeCrxn,5eCrxr i can be applied to an arbitrafy .



B. Discussion of\ and k&

We remark that due to the slackness in the proofg
[Amin > Amax %) IN Theoreni L is sufficient but not necessary
There may exish outside[A ;. 7, A, 7] that can still lead to
correct recovery. We observe from numerical experimeras th
recovery performance is generally much better than the dooun
in TheorenTL. Furthermore, wheh s fixed, ask decreases,
Amin i decreases, and, . ; increases. Thus, intuitively, if Bus i+2
the number of affected PMUs decreases, a wider range of Fig. 6: n-bus ring network
is proper for Method 1. For a detailed discussion, we state th

following lemma and defer its proof to the Appendix.

Lemma 1. Supposéu < 1, thenoy, < (1 — (k— 1))t V2/(n+2), ificTy andj =2k -1
Wi =< — 2/71, if 1 € Zyo andj:Zk ,

Sinceoy, increases irk, o1 > 1, andku < ¢ < 1, together !
with Lemmall, we know; = ©(1)8. Sinces is a constant, h 0, otherwise
= where
one can check that, ; ; =©(e), andA . = 0O(y/1/k).
Note that||[VT||%2 = r. We assume thatVT| is column-
incoherent[[34] with some positive constant- 1, i.e.,

T = {k + (k — 1)% + k' | intergerk’ =0,1,2,..., g} ,
i} Tho = {k +1+ (g + 1)k" | intergerk’ = 0,1, 2, ,g - 1}.
Vo2 < v/ pr/p. (24)

Note that|Zy,| = § + 1, |Txe| = 5 for all k. Here, u =
We assume the number of PMU channels incident to each ys/n2 + 2n. Then we have
is in the range ofd, Cd] for somed > 0 and some constant L
C. This is also the number of nonzero entries in each columpy ), — ¢ V 2/(n+2) e, (Vi, ff J=2k—-1 7
of W with unit column-norm. Thep = ©(dn), and we have —V2/n g, (Vi if j =2k
(26)

TL2 n . . -
€= ||VTW1H0072 < [Pr maXZ [Wi;] = O( Z)_ (25) WhereV € CUr+z)xr contalns_the right 2smgular vc_ectors of
Pt " the rankr measurement matrif, ¢ C>*C5+3)_If |[V1T]| is

Therefore, as long e O(n/r), whenn is sufficiently large, column-incoherent [34] with some positive constanthen

- . i i — _ [ 2 2 _
Anin i Sl)\max_’k. ku < crequires thak: = O(1/p). Note that € = |[VTWH|oo.2 < max ( T, \/j|1k2|) AV 2
p = O(5). Thus, if bothk = O(n/r) andk = O(d) hold, n+ 2 n

then a propen exists, and Theorefd 1 holds. n—+2 or 2pr

In the case thatl = ©(n), k could be®(n/r). If r is a S\/ 2 4/ (Z4+1)2 = V (27)
constant, our method succeeds even when a constant fracti%n the first | litv foll froni (26 d th d
of bus voltages are corrupted. Also consider the caseithat where the Tirst inequairly Tollows 1ro ), and the secon

S ) L - inequality follows from [(24). 3
1. We picky andc in (I9) arbitrarily close to one, then= 1 To find ), we pickc — 1/4 and ¢ — 1/8. We choose

is a proper choice (see Fig.116 for results on actual PMU data) ~ ,, One can check thaT19) follows. Then

provided thate + . < 0.5. Sincee scales asl//n andp = e
scales ad /d, the condition will be met in large systems that 7 _ n 2 < o1 1 (28)
are tightly connected. Intuitively; is small if the bus degree K 48pr  /n2+2n = 24pr — 24 T 4 ’

is high, and the line impedances are in the same range. \yhere the last inequality follows singe> 1 andr > 1. Then
We next use an example to illustrate the existence of proggsm Lemmal, we have
. Consider am-bus { is even) ring network in Fid.]6. Each - _1 = g
odd-numbered bus is connected to all even-numbered buses. % < (1 = (k — D)™ < (L= kp)™" < 24/23. (29)
There is no connection among odd buses and no connectiom [20) and[(21),
zmong even-numbered buses. A PMU is installed on each odd (14 (2— ) D 93¢ 23 [2r
us and measures the corresponding voltage phasor and al| . . < = = < — < —y/—.
incident line current phasors. For the simplicity of anays ’ 1= 1+ (2—=14)kpuoy, 14 714 ”(30)
1

we assume&Z¥ =1 andY¥ = 0 in this ring network.WW is
2 /8 1 /23pr
/\max k n Z By : (31)
for every integerk, ’ 0k 2V om

a (- + 5) x n matrix with unit norm columns. Specifically, =

5Specially, the requirements on dual certificate in Lenifhaetsarfficient Since %\/Qnﬂ < 11 / 2‘1&, then Amind < Amax - Then

but not necessary. Furthermore, we use loose bounds indeésio simplify — thare exists\ such that Method 1 correctly identifies the
analysis.e, p, andoy, are in turn defined based on worst-case scenarios. . . ~ "

6We use the notationg(n) € O(h(n)), g(n) € Q(h(n)), or g(n) = corruptions in up tok = o bus voltages. In fact, any
O(h(n)) if as n goes to infinity,g(n) < c¢- h(n), g(n) > c- h(n) or 23 [2por 1 [23pr . Py
c1-h(n) < g(n) < c2 - h(n) eventually holds for some positive constants.)‘ 6 [ﬁ n 2 n | suffices. Note that for a constantk
¢, c1 andcy respectively. is linear inn, the total number of buses.

[ V)



C. Proof sketch of Theoreld 1 Q:=UVi4+d— A — A (39)

The proof of Theoreril1 follows the same line as the progfe show that) in (39) is well defined in Appendix-B. Lemma

of Theorem 1 in[[34]. With the additional projection matri@ shows that) in (39) is the desired dual certificate.
W, our proof is more involved than the one [n_[34].

Like [34], we design the following Oracle Problefni132) by-€mma 4. Suppose there exists nonzéreuch thatky < ¢
adding explicit constraints that the solution pair shoutven for ¢ in (@9), andA .+ < A with A, zandA ¢
the correct column space éfand the correct column supportdefined in[(2D) and(21). Then as long as the column support of
of C. The major step is to show that an optimal solutiof’ Nas size at most, for any A € [A ;7. A, 7l @ defined
(L*,C*) to (I3) is also an solution to the Oracle problém (32in (39) satisfies[(34).

Note that Oracle problem is only designed for analysis,esinc Theorem[ 1L follows when we combine Lemmids 3 and 4.
U andZ are unknown to the operator. Please refer to the Appendix for the proofs.
Oracle Problem rj{ng 1L« + AIC|l1 2
st M=1L+CWT (32) IV. ATTACK IDENTIFICATION WITH NOISE

Py(L) = L, Pz(C) = C. We now analyze the detection performance wiéncon-

i ) tains noise V £ 0) with | N||r < n. Givenk, define
Let (L', C") be an optimal solution to the Oracle problem

ngi? \ivquglxr}’éTDTI/D;an/JrPV/_PU/PV“ where the SVD N (1+(2 _@;1)6 and _ 1 i
- ' MR 2 — (14 (2 — ) ko maxk = 9\

AN txk . /. o — . ~ ~
B(C)={HeC _ | V} €1 N ffl = G/lICl; Theorem 2. Suppose there exists nonzérsuch thatky < ¢
Vie IN(Z): | Hill2 <1}, for cin @3), andX' . <X . Then if column support

k X,k
whereZ’ is the column support of’. We have size ofC' is at mostk, for any\ € N i AL 7] there exists
(PO P AT — T AW Pa(F) — T
Lemma 2 (Lemma 4 and Lemma 5 of [34]) a pair (L, C), where L + CW* = L + CW?", Pg(L) = L
and Pz(C) = C, such that the output of Method 1 satisfies

U'v't =00t W - L
- F
There exists an orthonormal matriX € C**? such that v
S A+ 2= I+(n—1 2
yoh ot <@-§4+ 2TEZY) =i ) 21
Uvt=ovt. (33) A 1—4
Al h (40)
so, we have and||C* — O p
PT' = PU/ + PV/ — PU/PV/ - Pfj + PV - PUPV )\ ﬁ 1 — f’
. . _ <AVt N/ T
The following lemma establishes that the solution to the A Aoky/1+ (k—1)u
Oracle problem[{32) is also a solution {0 (13), moi/1+ (k— L)
S , 41
Lemma 3. An optimal solutionL’, C") to (32) is an optimal 1—1 41
solution to [IB) if there exist§) € Ct*P that satisfies whered := min(t, p)
— [yt . . . . L
(@)Pr(Q) = UV, ONPr+ (@) < 1, The discussion of the existence dfis very similar to the

()(@QWHz/X € &(C"), and (d)|[(QWH)ze]loo2 < A discussion for Theoreffd 1, so we skip it.4f; < ¢ andk =
(34)  O(n/r) hold, then a propeh exists. Theoreni]2 guarantees
If both (b) and (d) are strict, and®; N Py = {0}, then that (L*, C*) returned by Method 1 is “close” to a pair that
any optimal solution(L*, C*) to (13) satisfies?;(L*) = L*, has the correct column space and column support, and the
Pz(C*) =C~. distance measured by Frobenius norm is proportional to the
The major technical step is to construgt called thedual noise level. The proof of T_heorerﬁ]2 follows the sa_me_line
certificate that satisfies{34). Our construction method is & the proof of Theorem 2 in_[34] mostly with modifications

follows. Pick I € &(C") that satisfies to address the projection matri¥. We establish Lemnia 5, a
A o counterpart in the noisy case of Lemida 3, that demonstrates
Viwl=\U'H. (35) that Method 1 succeeds if there exists a dual certifiGatith

tighter requirements than that in the noiseless case.
- Lemma 5. There exist$L, C') whereL+CW7 = L+CWT,
© = AHWz W7)" Wz, Ar:=Pp(@®), (36) Py(L) = L, Pz(C) = C, such that the output of Method 1
satisfies[(40) and_(41), if there exigisc C!*? that satisfies
(@Pr(Q)=TVT,  (0)|Pr(Q)] < 1/2,

B7)  ()(@WHz/Ae6(C), and (d)(QWH)ze ooz < A/2.
wherePy, (X) == XWE(WIWH)'WE.  (38) (42)

Define

Ag := Pgu(l = Pw, )Py (I + Y (PyPuw, Py) )Py (@),

i=1



The construction of is the same as that in Sectignl Il
(equations[(35) to[(39)). We show thé&t is the desire dual
certificate if A belongs to[\.;,,, A\.x] i Lemmal6.

min»

n =100

Lemma 6. If the column support size @f is at mostk, then g
forany A € [\ ;.. \l..), @ defined in[(3D) satisfie§ (42).

Theorem[2 follows when we combine Lemmids 5 &nd 6. 1
Please refer to the Appendix for the prOOfS. Numger ofllcorruepted?:olur%%s Numger of4t:orru6pted?:olur%10ns

Fig. 8: Matrix decomposition performance for differentvith

V. SIMULATION 80% observed entries

We explore the performance of data attack identification

. 2) Noisy formulation:We generate matrixv € R**? with
methods on both synthetic data and actual PMU data fro|nmdependentGaussia‘vf(o,02) entries. We fix the matrix rank

) C\?\?:g(;e'\rl]:fypc;wscr)l S%S;eg]bﬂyvt% ubsee n%\r/lxegis.]f t.ct) S;OIV? to be 3 and the number of corrupted columns to be 3. We
' ' ! ur z WIS Simulate the observed measurement malfvixaccording to
norm exceed§ 'Ehe predefined threshgldMethod 1 succeeds @). We set; to be | N[ and apply Method 1 to obtain the

if |U*U*T —UUT|| < e, for some small positive,, and the ' 1 r bply

column supports of andC* are the same. estimation(L*, C*). ¢; is set to be 0.001.

(a) Column space . (b) Set of corrupted columns
— Q
A. Performance on synthetic data 5o g
) mOE
Fix ¢ = p = 50. Given rankr, we generate matriced < 5 oos §o4
R**™ and B € RP*" with each entry independently drawn =1 Doz
from GaUSSIaW(O’l) and SetL = ABT' We generate 00 0,050,10,’i‘5q,20,2I503(|)350.40.450.5 c(J 0,050,10&]50;202I50.3(|)350.40.450.5
matrix W € RP*™ with independent\'(0,1) entries. To olse fevel ose fevelr

generate a column-sparse matfik € R*", we randomly Fig. 9: Performance of Method 1 for different noise level
select the column support and set the nonzero entries to be
independentV'(0, 1). We varyr and the number of corrupted  Fig. [8 shows the difference between the original and re-
columns, and take 100 runs for each casés set to be 0.95. constructed column spacgl(*U*" — UUT|)) and the succeed

1) Noiseless formulationWe simulate the observed meatate for determining the set of corrupted columns according
surement matrix\/ according to[{B) withV = 0. We apply t0 different noise levels. We can see that Method 1 can
Method 1 to obtain the estimatig.*, C*). We sete; ande, successfully identify the corrupted columns when the noise
to be 0.002 and 0.01, respectively. Figj. 7 shows the tramsitilevel o is below 0.25. Method 1 can recover the column space
property of Method 1 in gray scale. White stands for 1000ith small errors wher is smaller than 0.1.
success while black denotes 100% failure. Wheis 25, W
is a tall matrix p > n). Whenn is 100, W is a flat matrix g comparison with other methods on synthetic data
(p < n). For both simulations, the identification is successful _

even when rank is six, andC has two nonzero columns. 1) D =Cw" is column-sparseRefs. [34] [22] considered
matrix decomposition problem wheh is column-sparse and

scattered-sparse, respectively. We compare our methdd wit

n=25 n =100 them in the special case that= CW7 is column-sparse. Fix
. . t =p=>50,n =20, andr = 2. We generatd, and C' with
, , the same rules as in Section V-A. We generate a binary matrix
E £ W e RP*™ with two ‘1's each row and five ‘1's each column.
o &° Then the ratio of support sizes @ and C is about five.D
3 $ is column-sparse whe€' is column-sparse. We simulate the
e N RET measurement matrid/ according to[(B) withNV = 0. X in
Number of corrupted columns Number of corrupted columns our method is set to be 0.9’s in methods of [34] and [22]
are set to be 0.5 and 0.1, respectively.
Fig. 7: Matrix decomposition performance for different Fig. 10 shows the success rates of three methods with

different support sizes of’. Our method performs the best
We further assume some of the observations are missisince we exploit the structur® = CW7 besides sparsity.
We generateM as before and then delete some randomijhe false alarm rate of our method is zero.
selected entries. Figl 8 shows the decomposition performan 2) Combination of attack patterns\We consider the gen-
of Method 1 for partial observation. We can see that the sueral case that the attacks satidfy](14). We use the geredlaliz
cessful decomposition rate is close to the complete obsenva version in [I5){(1B) to detect combined attacks.and )\, in
case even only 80% of the entries are observed. (@I5) are set to be 1 and 0.1, respectivelgz in methods of



—— when an intruder alters the channels that measite I°2,
Qos 2 Netadn(z2 I°4, 19, and I'*® to corrupt voltage estimation of Buses 5.
@06 Fig. 18 shows the/; norm of each column of the resulting
8o C matrix in this case. The column with significafit norm
502 \E\x corresponds Bus 5. Thus the recovery is also successful.
0 Noo0-28 B~ - s

o ERORRE) 15 "2
Number of corrupted columns i@

Fig. 10: Success rates whéh= CW7 is column-sparse.

—— Actual PMU data
= = = PMU data under attack|

cea=z=TZ

—— Actual PMU data
= = = PMU data under attack|

H
)
=
S

el

Current Magnitude
@

Current Magnitude

[34] and [22] are set to be 0.5 and 0.1, respectivély.C,
and W are generated the same as ab@dVés a sparse matrix ] —————

with nonzero entries independently drawn fro¥f(0, 1). We (@) Ambrent data (5 Disutoance data

define the correct estimation of the column spacelods a Fig. 13: The actual PMU data and PMU data under attack
successful recovery. Fig. 111 compares the methods Whin

a zero matrix. The attacks are scattered-sparse, and ohodhet

o

performs as well as that i [22]. Fig.]12 compares the methods § 8 § 8
when both column-sparse and scattered-sparse attacks exis 8, 8
Besides a spars§, we randomly select two columns i@ <, Z,
and select their entries independently fran{0, 1). Only our £, g,
method succeeds when both attacks exist. 3 T T s T i
0O 5 10 15 20 00 5 10 15 20
Column index Column index
hl (a) Ambient data (b) Disturbance data
—&— Our method ) _
08 e Fig. 14:¢5 norm of each column oD
§ 0.6
§ 04 <€ 30 € 30
3 £ £
02 N § §
\&\ 2 20 2 20
0o 01 02 03 o4 05 35 %
Percentage of corrupted entriesSh E 10 E 10
. — — . [=] o
Fig. 11: Success rates whéh= S is scattered-sparse. s s
00 5 10 00 5 10
Column index Column index
1 (a) Ambient data (b) Disturbance data
—=&— Our method . _
08 o Netodni34 Fig. 15: 45 norm of each column of”
—4— Method in [22

o
)

Fig.[18 compares our method and tha{in/[34] on the ambient
PMU data. Given support size @, the result is averaged
over all possible attack locations. Our method outperforms

T T T Ty ey e _[341 because we exploif]7) to reduce the degree of freedom
Percentage of corrupted entriesSnwhenC has two nonzero columns in D. For example, 7 out of 23 channels needs to be attacked

Fig. 12: Success rates whén= CW7T + 3. to change the state of Bus 1. That means 30% of the columns
of D are nonzero. This high percentage of corruptionZin
cannot be handedly by [34].

I
IS

Success rate

o
N

C. Performance comparison on actual PMU data

We consider the PMU data shown in Secfion 11-A. Two two- 1 ——
second PMU datasets are tested. One contains ambient data, g os
and the other contains an abnormal event(17 — 19s and g 06
t = 2 —4s in Fig.[2, respectively). We first inject data attacks S 04
as an intruder and then use Method 1 to detect the attacks. @02

We consider the scenario that an intruder alters the PMU % : Beoooo
channels that measuré? 752,13 and I3 in order to corrupt Number of buses under attack

Voltage estimations of Buses 2 and 3. F@ 13 visualizes th% 16: Success rates with Varying Support Size&)f or
actual PMU data and the data after the injection of attackguivalently, the number of affected system states.

for two 2-second datasetg. and \ are set to be 5 and 1

respectively in Method 1. Fid._14 shows the norm of each

column of the resultingD matrix. The columns with signifi-

cant/, norm correspond to channels that meastirer>2,1'3 VI. CONCLUSION

andI*3. Therefore, our method successfully identifies the four We address the problem of detecting successive unobserv-
PMU channels under attack. We repeat the same experimable cyber data attacks to PMU measurements. We formulate



the identification problem as a matrix decomposition proble[18]
of a low-rank matrix and a transformed column-sparse matrix
We propose a convex-optimization-based method and provide
its theoretical guarantee. Although motivated by power sygg]
tem monitoring, our results on matrix decomposition can be
applied to other scenarios. One future direction is theyail (20]

O. Kosut, L. Jia, R. Thomas, and L. Tong, “Malicious datéacks on
smart grid state estimation: Attack strategies and com@asures,” in
Proc. IEEE International Conference on Smart Grid Commatidns
(SmartGridComm)2010, pp. 220-225.
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and M. o'”ounou'r?omplem x n matrix, with entriesz;;. Then, every eigenvalue

in the proof.

Lemma 7 (GerShgorin circle theoreni [16])Let A be a

of A lies within at least one of the GerShgorin dideg A)(i =
1, ...,n), WhereDi(A) = {Z eC: |Z — aii| < Z];ﬁz |CLW|}

For any givenZ with |Z| < k, since W has unit-norm
columns, and|Wjo| < u for all i # j, from GerShgorin
circle theorem, we hav¢I—WITWI|| < (k—=1)u < 1, where
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the last inequality follows fromkyu < 1. Then, wherePr.. (G') =0 andPz(Z) = 0. Then

S e : PoP(UVT + G + Py (A)WH = OVIWE, (47
JOVEW) 1 = S0 = wiway| < S0 —whwgyy ToPHEVTE G Pos LW Ik

i=0 i=0 PPz MNH+Z)+Pzre(B')) = \PgPz(H) = \UUTH (48)
<1/(1—(k—1D)u).
<1/ ) Combining [46){(4B), we have
The lemma follows from the definition afy. [ | RS RN
UVIWE =XUU'H. (49)
B. Proof of Lemm&l3 By multiplying U' to both sides of[{49), we obtain Lemria 8.

Proof: For anyA € C™*", (L' + AW, C" — A) is feasi- "

ble to [I3). LetG be such thal{G|| = 1, (G, P (AWT)) = Lemma 9. )
|Pr (AWT)|« and Pr/(G) = 0. ThenPr:(Q) + G is a Y= [|[PyPw, Pyl <t <1
subgradient of|L’||.. Let F' be such thatF; = —A;/||Aill2

if i € Z¢ and A; # 0, and F; = 0 otherwise. Then Proof.
Pz(QWH) /X + F is a subgradient of C’||1 2. Then | Py Pw, Py (X)]|
L'+ AWT |, + MO = Ao — Il = M C' 12 =|XVVIWIWIwhH T wivvi
>(Pri(Q) + G, AWT) = NPz (QWH /A + F,A) QXTI ) WIWEH T AT )T
=[Pr (AWT) [l + APze(A) 1,2 +(Q = P (Q), AWT) <XV IAE | (W)~ IAE [TV

—{(QW? = P7.(QWH), A) (b)
> (1~ [P Q) IPr (AW SN2k oAk
c =
+ O = QW) oo Pre(A) 12 <X ko, < 1135
>0 (43) where (a) follows from Lemmi 8, (b) follows from the fact that
From [@3),(L’, C"} is an optimal solution tdT13). I(34) hoIdsH has at most nonzero columns with unit-norm, (c) follows

. e . . . ; . from the property that < M.y, £ < k and o), < oy, and
with strict inequality, the last inequality df (43) is strignless (d) follows from the definition of». Then Lemma® follows.

1Py (AW« = [[Pze(A)]1,2 = 0. (44) -
@3) implies than W € P, andA € Pz. Note thath € P Lemma 10. Py, (1 —Pw; )Py, is anoionjection fronPy, to Py,
implies thatAW” € P ;. Then and its inverse operation i§l + > .~ (Py, Pw, Py )")-
PAAWT) = AWT = Pr(AWT) Proof: Since ||Py, Pw, Py, || < 1 from Lemmal9, then
J (I+ Y2 (PyPw,Py)") is well defined. For anyX € Py,

= PU/ (AWT) —+ PV'PU’L (AWT)
=P;Pu (AWT) + Py Py (AWT),  (45)

we have

Py (I = P, )Py (I + D (PyPw, Py) ) (X)

where the last equality holds since;(AW?) p

AWT. Thus, from [4b) we haveP;Py..(AWT) =

Py Py (AWT), which meansPy . (AWT) € P-n =P (I — PoPu-P) (I PP )Y (X

Pyr. Then Py (AWT) is 0 from the assumption.JThen, il PPyl +;(PV w:Py) )
Po(AWT) = Py (AWT) = AWT, where the first equality Py (X) = X. (50)
holds from [38). Therefore, for any optimal solutigh’ +

AWT,C" — A) for someA # 0 to {@3), AWT € Py, and Then the lemma follows. ]
A € Pz. The claim follows. [ |

D. Proof of Lemma&l4

C. Construction ofQ Proof: We need to show thaf) defined in [[3D) satisfies
Here we demonstrate thatin (339) is well defined. The key all the conditions in[(34). We first summarize some propsrtie

is to show (a) there existdl ¢ &(C’) such that[(35) holds tha}r will be used in the proof. Sind& has unit-norm columns,

and (b) the infinite sum if{37) converges. We prove these WA Wil < pforalli # j, and|Z] < k, we have

properties through the following lemmas.

) IWzll = \/ Amax (WW2) < 1+ (k= T, (51)
Lemma 8. There existsH € &(C") such that[(3b) holds.

where the inequality follows from the GerShgorin circledhe
Proof: Since(L’, C') is an optimal solution to the Oraclerem. From|I| < k and |WTW | < pforall i # j, we have

problem [32), there exist§’, A’ € C**?, B', Z € C"*", and H(W Wze)|loo2 < Vku. Since H has at most unit-norm
someH e &(C) such that columns while other columns are zero, we have

OV + G + Py (AW = NH + Z) + Pr-(B'), (46) M| < AWk (52)



Step 1: verification of (a) of(34).

Pui(Q) Y Py(Q) = UV + Py(®) — Py(®) —0 = TV,
(53)
where (a) follows from[(23). Froni_(83), we have
vt = viotootoyvt Y vioivoto vt = vive,

where (b) follows from[(38). ThusPy-(-) = Py (-). Then

©

Pvi(Q) = Py(Q) = UV + Py (@ )

— Py (I —Pw,)P

PyPy(®)

A% (I + Z(PVPWf
i=1

Py))Py Py (@)
OV + Py (®) ~ Py Py (@) — Py Py (®)
=pvt. (54)

(c) follows sincePyy,, Py,

and [54), we obtain that (a) df (34) holds.
Step 2: verification of (b) ofl(34).

Pr (@) = [Py Pgo (@)~

PPy (I = Pwy)Py(I+ Y (PyPw, Py) )Py ()]
=1
<[|®| + 1+Zw @] = H<I>H
=1
©2—
e zIMHIIII(WTWz) WA
22—)\\/Eak +(k—1)p (55)
1—1!1
(2)2
56
= ,mkfak - u (56)
®2 -4 +<k Dy 57)
1—1/1 = u

% - /1+cJ>
- 1—c ™

where (e) follows from the definition ob, and (f) follows
from (&1) and[(5R). (g) follows from the property that< 1,
1 <k <k X< andop < oy. (h) follows from

max,k’

Lemma[1. (i) follow fromksu < ¢, and (j) follows from [ID).

Then (b) of [3#) holds.
Step 3: verification of (c) of[(34). First consider

(A W)z

Po(I+> (PyPw,Py) )Py (®)WH)z

i=1

(Pyo Py ( I+Z (P P, Pyr)") Py () (1 -
=1
WHWIWhH = WHwi =0

~(Po (I = Puw,)

&)

and Py, Pw, Py, are all given by
right matrix multiplication, whileP . is given by left matrix
multiplication. (d) follows from Lemma_10. Combining (53)

where (k) holds sinc@®yy,, Py, andP;, Py, Py, are all given
by right matrix multiplication, whilePy. is given by left
matrix multiplication. Then

(QWHz = (UVW* + @WH — Py (®)WH)7 — (A W)z
=OVW2 + QW — Py(®)WE -0
ONTOHH + NI - \OUTH
= \H € \&(C"), (58)

where (I) follows from Lemma&l8 and the definition &f in

(38). Then (c) of[(3¥) holds.
Step 4: verification of (d) of [(34). First consider

1(22WH)ze]loo 2
=[Py Py (I + Y (PyPw, Py)’)
=1
VI~ WEWEWDHTWIYWE, | 2
=[Py Py (I + i(PVPWiPVWD(VVTW%C—
=1

VVIWEWEWH W WE .2

<L+ Y- (Py Pw, Py Nl (17117

Te HOO72
=1

+ VIV W W) IWF W oo,z
H(I>H(6+)\\/E0k\/—u) €+ Aeopp e+ Meogp
1-9 T 2-9 2 -1
where the second to last inequality follows from (e) to (j) in
step 2.

QW) ze |02
=|(OVWH + oW — Pa(®)YW — AgWH)7e] 002
=|OVWE, + Poo(®)WE, — (AaWH 2. [loo.2
<NOVWE, ooz + (I = UU)AH(WEWEH T WIWE || 2
+ (AW 2e||oo,2
<NTNVWE oo 2+
(1 = TO) N IAE | |(WAWZ) | WEWE, oo 2+
[(AWH) 2e || 00,2
<e+ )\\/_ak\/_,u—i-
Aou/E + (B2 — k)p(e + oppn/k + (k
11—
1
1+ ——=)(e+ \ko
<( . zp)( ki),
<(1 4+ ——)(e+ Meaip),
<( . 1/})( 40

)

[

(59)

<A
where the last inequality follows fromy > A ; ;. Then (d)
of (34) holds. [ |

E. Proof of Lemm&l5
Proof: We define

C=C+Ps;Py(C*—C)andL = L — PPy (C* —CYWT.



Note thatP; (L) = L, Pz(C) = C andL + CW™T = L +
CWT. We further defineN, = L* — L, No = C* — C, and
N{ = C* — C. Note thatPz.(NJ) = Pz.(Nc) from the
definition of N/i. Let E = N, + NeW7”. We have

IE|lp = |L* +C*WT —
<|L*+Ccw? -

(L+CWT)|F

M|lr+[|N|F < 27, (60)

where the last inequality holds sincé*( C*) is the solution
to (I3) and||N|jr < n. Let G be such that|G| = 1,

(G, Prar (AWT)) = ||Pp.s (AWT)||, andPr-(G) = 0. Let

F be such thatF; = A;/||A;|]2 if ¢ € Z and A; # 0, and
F; = 0 otherwise. Then

T ~ (m) * *
LI+ AllCllz = (L7l + AICT (1,2

LI+ MGz + (PH@Q) + G, No) + AMP2(QW?)/A
+ F,N¢)
Il 4+ MGz + [Prs (VD] + (Pr(@),
AP (Ne) s + (P2 QW) Ne)
Il 4+ AICla + [Pre (VD[ + AlP2e(Ne) 1.2
— (Pr2(Q), N1) — (Pz.(QW?),N¢) + (Q, Np + NeW™)
L0+ Ml + (1~ [Pos (@D Prs (N2

Np)

+(A - prc(QWi)HooQ)HPiC(NC)Hl 2 +(Q, E)
1
2|\ Ll + AlCll2 + S 1Pr (Nl + 5 H7’zc(Nc)||12
= 2(QllF,
(61)

where (m) holds because of the optimality di*( C*) and
(n) holds because of the convexity of the objective functbn
(@3). We can see that the last inequality [of] (61) follows fro
(b) and (d) of [[4R). Then we have

SIPr (VL) + JIPz(Ne) s — 20]Qllr < 0. (62)
Note that
Q1 = IP2(Q) + Pr (@l
=IPr @I + 1Pr- Q)13
IOV + 1Pr (@ € Lo r) 3. (69

where the last equality follows from (a) ¢f{42). The inedtyal

(0) holds from TV | = /irace(VUTUVT) = /¥, and
(i) =
[P (@Q)]|r < rank P (Q))-||Pre (Q)] < %

Sinced = min(t, p), combining [62) and(63), we have

[Pro (Nl e < [[Pre(NL)l« < 20V0 + 3r, (64)
2
IPze(Ne)lle < [Pze(Nolz < 3nv0 +3r. - (65)

From the definition ofPy, in (38), one can check that

Pw, (Pz(W)T) = Pz (W)™ (66)

Then we have
Pz(NEWT = Px( z(W)"
=Pz(N&)Pw, (Pz(W)") = Pz(N&)Pw, (WT)
=Pw, (NEWT = Pz (NEHWT)
g)ow(E — P71 (N) — P#(N) — PzPy(No)W"

NE)P
")

— Pz(N&HWT)
Q)ow(E — P71 (N) — Pr(E) + Pr(NeWT)
= PzPg(No)W' — Pz (NGHWT)
=Pw, (Pr.(E) — P (Ny) — Pz (No)WT
+ Pr(Pz(No)WT) + Pp(Pze(Ne )W)
— PP (Ne)W™)
QP (Pre(B) — Pro(Ny) — Pre(Ne)WT+

Pr(Pze(Ne)W?) + Py (Pz(Ne)WT)+
Py (Pz(Ne)Pz(W)") = Pg Py (Pz(Ne)W™)
— PzPy(Ne)W™)

DPw, (Pri(E) ~ Pru(Np) —
Pr(Pze(Ne)WT) + Py (N Pz (W
Pr(W)") = PgPy(Pz(No)W™))

CPw, (Prs (E) — Pre(N1) — Pre(Ne)W T+
Pr(Pre(Ne)WT) + Py (NEPz(W)T)). -

where (p) and (q) follow from the definitioR = Ny +NoW7T

and N/, = N¢ — PzPy(Ne). (r) follows the definition of
Pr. (s) holds becaus®y (Pz(Nc)WT) = PPy (Nc)WT.

Pre(No)WT+

)") = Py (Pze(Nc)

r$1t) holds because of the equalify {68) shown as follows:

Py (NePz(W)T) = Pg Py (Pz(Ne)Pz(W)T)
=Py (NcPz(W)" — PrPy(Ne)Pz(W)")
=Py (NEPz(W)T)

Note that

| Pw, Py (NEPz(W) )| e
=[|Pw, Py (N Pw, Pz (W) ")
=|NEPz (W) WEWEWH T WIVVIWIWI W) Wl |

(68)

u) _ B _
SINEPz(W)T ||| VIWEWIWH) WV
=|NEPz(W)T || VVIWEWIWH) T WI vV
=y||Pz(NWT || < Q|| P2(NWT ||,

* where the first equality holds fror (66), and (u) holds beeaus

|AB|F < ||All7||B|l and ||ATA|| = ||AAT|| for matricesA
and B. From [67), we have
[Pz(NHWT ||
<Pz (B)lF + P (No)llF + [|Prs (Pze(Ne)W ) | )
IWEWI W) W ||+ 4 Pr(NE)WT |
<IIE|lp + 1Pre (NL)F + | Pze(Ne) | p | W+

GIPL(NGYWT | g, (69)



where the last inequality uses the property
IWEWIWH W 1. From similar arguments as
in G1), we have|W| < y/1+ (n—1)u. Then combining

(60), (63), [65), and(69), we obtain
IPANEWT | < (14 25 @m)%

(70)
Furthermore,
1PN e = |Pe(NEWTWEWEWE) ™|
<[[Pz(NEWT | e[ WEI[(WFWE) |

<1+ /\+\/l—i/-\(n—l)um)Znak\/l—i—(k—l)u

1—4 ’
where the last inequality follows frorh (70}, (51), ahdl(18k
also have

INEWT || p = |Pze(Ne )W + Pz(NEYWT ||
< Pze(N)W || g + [P (NEW T ||
<[Pz (N e lIWI + [|[Pz(NGWT ||

— 7 p—
< 22O ””m)_f"d;.

Finally, we have
IC* = Cllr = [Pz-(Ne) + Pz(NE) |
< Pze(No)lr + [Pz(NE) I

§(1+(A+\/1—;(n—1)u+
2nok/1+ (K= 1

7 )

L=

1—9
Aop/1+ (k—1)u

VO + 3r)

and
|L* = Ll|p = ||IL* =L+ CWT —CW7T|p
=" —L+CcWr —cwT +CwT — W7l
=|E - NZWT|r < |E|lF + INSWT || p
+ /\+(2_¢)\//\1+(”_1)N\/94_—3T>12—771/;'

(4

<(2-

F. Proof of Lemm&l6
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1P (@I < 1= wxakm <L

From [59) and\ > )\:mn_’l;, we have

1

. )(e + )\l;a];u) <

QWH)ze[loo2 < (1 +

Sy
N | >
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