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Abstract—This paper presents a new framework of identifying
a series of cyber data attacks on power system synchrophasor
measurements. We focus on detecting “unobservable” cyber data
attacks that cannot be detected by any existing method that
purely relies on measurements received at one time instant.Lever-
aging the approximate low-rank property of phasor measurement
unit (PMU) data, we formulate the identification problem of
successive unobservable cyber attacks as a matrix decomposition
problem of a low-rank matrix plus a transformed column-
sparse matrix. We propose a convex-optimization-based method
and provide its theoretical guarantee in the data identification.
Numerical experiments on actual PMU data from the Central
New York power system and synthetic data are conducted to
verify the effectiveness of the proposed method.

Index Terms—cyber data attacks, low-rank matrix, matrix de-
composition, synchrophasor measurements.

I. I NTRODUCTION

T HE integration of cyber infrastructures into future smart
grids greatly enhances the monitoring, dispatch, and

scheduling of power systems. Such integration, however,
makes the power systems more susceptible to cyber attacks. It
is reported that cyber spies have penetrated U.S. electrical grid
[26]. Researchers have also launched an experimental cyber
attack that caused a generator to self-destruct [15].

State estimation [1] is a critical component of power system
monitoring. System state is estimated based on the obtained
measurements across the system. Bad data can affect the state
estimation and mislead the system operator. Many efforts have
been devoted to develop methods that can identify bad data,
see e.g., [6], [14], [25], [27], [35].

Cyber data attacks (firstly studied in [23]) can be viewed as
“the worst interacting bad data injected by an adversary”[18].
Malicious intruders with system configuration information
can simultaneously manipulate multiple measurements so that
these attacks cannot be detected by any bad data detector.
Because the removal of affected measurements would make

P. Gao, M. Wang and J. H. Chow are with the Dept. of Electrical,Computer,
and Systems Engineering, Rensselaer Polytechnic Institute, Troy, NY. Email:
{gaop, wangm7, chowj}@rpi.edu.

S. G. Ghiocel is with Exponent, New York, NY. Email: sghio-
cel@exponent.com.

B. Fardanesh, and G. Stefopoulos are with New York Power Authority,
White Plains, NY. Email: {Bruce.Fardanesh, George.Stefopoulos}@nypa.gov.

M. P. Razanousky is with New York State Energy Research and Develop-
ment Authority, Albany, NY. Email: mpr@nyserda.org.

Partial and preliminary results have appeared in [33].

the system unobservable, these attacks are termed as “unob-
servable attacks”1 in [18].

State estimation in the presence of cyber data attacks has
attracted much research attention recently [3], [9], [18],[22],
[23], [29]–[31]. Existing approaches include protecting asmall
number of key measurement units such that the intruders
cannot inject unobservable attacks without hacking protected
units [3], [9], [17], as well as detectors designed for attacks
in the observable regime [18]. The research on the detec-
tion of unobservable attacks is still limited. Refs. [22], [30]
proposed different methods to detect unobservable attacksin
Supervisory Control and Data Acquisition (SCADA) system.
The method in [30] relies critically on the assumption that the
measurements at different time instants are i.i.d. samplesof
random variables. This assumption might not hold when the
system is under disturbance. Ref. [22] focused on the scenarios
that an intruder attacks a different set of measurements at
each time instant, and no theoretical analysis of the detection
performance is provided in [22].

This paper considers cyber data attacks to PMU mea-
surements. It focuses on the case when an intruder injects
unobservable data attacks to the same set of PMUs constantly.
Because PMUs under attack do not provide any accurate
measurement at any time instant to the operator, the attack
identification in this case is very challenging and has not
been addressed before. We propose a method that can identify
the successive unobservable cyber data attacks and provide
the theoretical guarantee even when the system is under
disturbance. The intuition is that even though an intruder can
constantly inject data attacks that are consistent with each
other at each time instant, as long as the intruder does not
know the system dynamics, one can identify the attacks by
comparing time series of different PMUs and locating the
PMUs that exhibit abnormal dynamics.

Because PMU measurements are synchronized and corre-
lated, the high-dimensional PMU data matrix exhibits low-
rank property [7], [8], [12], [33]. We formulate the identifica-
tion problem as a matrix decomposition problem of a low-
rank matrix plus a transformed column-sparse matrix. The
matrix decomposition problem has attracted much research
attention recently, see e.g., [4], [5], [28], [34], and havewide
applications in areas like Internet monitoring [19], [24],[32],

1The term “unobservable” is used in this sense throughout thepaper.
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medical imaging [10], [11], and image processing [2]. The
situation that one component is a transformed column-sparse
matrix, however, has not been addressed before.

The contributions of this paper are threefold. (1) We propose
the idea of exploiting spatial-temporal correlations in PMU
measurements to identify unobservable data attacks. (2) We
formulate the identification problem into a matrix decomposi-
tion problem and propose a computationally efficient method
that does not require the modeling of power system dynamics.
(3) We provide theoretical guarantees of attack detection,as
well as the general matrix decomposition problem.

The rest of the paper is organized as follows. We formulate
our problem and point out its connection to other applications
in Section II. We describe our detection method and analyze
its theoretical guarantee with both noiseless (Section III)
and noisy measurements (Section IV). Section V records our
numerical experiments. We conclude the paper in Section VI.

II. PROBLEM FORMULATION AND RELATED WORK

A. Low-rankness of PMU measurements

Consider an-bus power grid with PMUs installed on
some buses. Letp denote the total number of PMU channels
that measure bus voltage and line current phasors2. Phasors
are expressed in Cartesian coordinates throughout the paper.
Matrix M ∈ Ct×p contains the collected phasor measurements
in t synchronized time instants.̄J ∈ [[p]] denotes the set
of PMU channels that are under data attacks. The observed
measurement matrix can be presented as

M = L̄+ D̄ +N, (1)

where L̄ ∈ Ct×p represents the actual phasors without data
attacks,D̄ ∈ Ct×p represents the additive errors introduced
by an intruder, andN represents the measurement noise.

High-dimensional PMU data matrices exhibit low-rank
property [7], [8], [12], [33]. We analyzed actual PMU data
from six multi-channel PMUs deployed in the Central New
York (NY) Power System (Fig. 1). Six PMUs measure twenty-
three voltage and current phasors, and the data rate is thirty
samples per second per channel. Fig. 2 shows the current
magnitudes of PMU data in twenty seconds. An event occurs
around2.5s. The obtained data are collected into a600× 23
matrix. Fig. 3 plots the singular values of the matrix with the
ten largest ones being 832.8, 194.8, 35.1, 18.1, 4.3, 2.5, 2.1,
1.3, 1.2, 0.5. Therefore, we can approximate the600 × 23
matrix by a low-rank matrix with little approximation error.

The Singular Value Decomposition (SVD) of̄L is

L̄ = ŪΣ̄V̄ †, (2)

where Ū ∈ Ct×r, Σ̄ ∈ Cr×r, V̄ ∈ Cp×r (r ≪ t, p). We
assume throughout the paper that nonzero columns ofD̄ do not
lie in the column space of̄L (D̄ 6= Ū Ū †D̄). It is a legitimate
assumption when the intruders do not have full information
about the system dynamics. The notations are summarized
in Table I. MatrixA is column-sparseif it contains a small
fraction of non-zero columns. We call the set of indices of
nonzero columns thecolumn supportof A.

2In three phase AC systems, a phasor is defined as a complex number that
represents both the magnitude and phase angle of the sinusoidal waveforms.

Fig. 1: PMUs in the Central NY Power System. (Circles and
lines represent buses and transmission lines. A PMU measures
the voltage phasor and the incident current phasors of the bus
where it is located.)
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Fig. 2: Visualization of Partial PMU data (Magnitude of nine
current phasors)

B. Unobservable cyber data attacks and problem formulation

We use bus voltage phasors as state variables, and let
X ∈ Ct×n contain the state variables att instants. We use the
π equivalent model to represent a transmission line (Fig. 4).
Zij and Y ij denote the impedance and admittance of the
transmission line between busi and busj. CurrentIij from
bus i to busj is related to bus voltageV i andV j by

Iij =
V i − V j

Zij
+ V i Y

ij

2
. (3)

We defineW̄ ∈ Cp×n as follows. If thekth PMU chan-
nel measures the voltage phasor of busj, W̄kj = 1; if
it measures the current phasor from busi to bus j, then
W̄ki = 1/Zij + Y ij/2, W̄kj = −1/Zij; W̄kj = 0 otherwise.
The PMU measurements and the state variables are related by

L̄ = XW̄T . (4)

The attack at timet, denoted by data injection̄Dt,:, is called
unobservable3 if and only if

D̄t,: = ctW̄T (5)

holds for some nonzero row vectorct ∈ C1×n. In this case,

L̄t,: + D̄t,: = (Xt,: + ct)W̄T , (6)

and the operator would have the wrong impression that the
state isXt,: + ct. We focus on the cases that the attacks from
time 1 to t are all unobservable4, then we have

D̄ =







c1

...
ct






W̄T := C̄WT , (7)

3[23] focuses on DC model where power measurements and state variables
are approximately related by linear equations. Here PMU measurements and
state variables are accurately related by linear equation (4).

4 Our detection method can be extended to cases that both unobservable
and observable attacks exist. See the beginning of Section III-A
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Fig. 3: Singular values of PMU data matrix in decreasing order

TABLE I: Notations

Ai, Ai,: the ith column and theith row of matrixA, respectively.
AI the submatrix ofA with column indices in setI.
A‡, A† the conjugate and conjugate transpose matrix ofA.
PI(A) matrix obtained fromA by settingAi to zero for alli /∈ I.
A ∈ PI if and only if PI(A) = A.
‖A‖, ‖A‖F the spectral and Frobenius norm ofA, respectively.
‖A‖∗ the nuclear norm ofA, which is the sum of singular values.
‖A‖1,2 the sum ofℓ2 norms of the columns ofA.
‖A‖∞,2 the largestℓ2 norm of the columns.
PU (A) := UU†A, the projection ofA onto the column space ofL.
PV (A) := AV V †, the projection ofA onto the row space.
PT (·) := PU (·) + PV (·)−PUPV (·).
PU⊥ (A) := (I − UU†)A.
PV ⊥ (A) := A(I − V V †).
PT⊥ (A) := PU⊥PV ⊥(A).
A ∈ PT if and only if PT (A) = A.
Ic the complimentary set of setI.

whereWj = W̄j/‖W̄j‖. C̄ represents the additive error (up
to a scaling factor) to bus voltages due to data attacks, i.e.,
‖W̄j‖C̄j is the error to bus voltageV j . Let Ī ∈ [[n]] denote the
column support of̄C. We assumēC is column-sparse because
intruders might only alter some of the state variables due to
resource constraints. With increasing installation of PMUs,
we anticipate that the total number of PMU channelsp will
be larger than the number of busesn. The transform in (7)
reduces the degree of freedom in̄D. Combining (1) and (7),
the obtained measurements under attack can be written as

M = L̄+ C̄WT +N. (8)

The attack identification problem is formulated as follows.
Given M and W , is it possible to separatēL and C̄? We
assume noise level is bounded and given, i.e.,‖N‖F ≤ η.
We say a method canidentify an unobservable attack if it
successfully determines the set of PMU channels that are under
attack and recovers measurements that are not attacked.

Although cannot be detected at a given time instant, the
unobservable attacks can be detected if the time series in the
affected PMU channels exhibit dynamics different from those
of unaffected PMUs. Mathematically, the matrix decomposi-
tion is possible if columns in̄D do not belong to the column
space ofL̄.

We use a three-bus network (Fig. 5) to illustrate the nota-
tions. LetVi andIij (i, j ∈ {1, 2, 3}) in Ct×1 denote the bus
voltages and line currents int instants. Then

L̄ = [V1
I
12

I
13

V
2
I
21

I
23] = [V1

V
2
V

3]W̄T (9)

Fig. 4: π model of a transmission line

Fig. 5: Three-bus example. PMUs are installed at bus 1 and bus
2 measuring the corresponding voltage phasors and incident
line current phasors.

whereW̄T is




1 1
Z12 + Y 12

2
1

Z13 + Y 13

2 0 − 1
Z12 0

0 − 1
Z12 0 1 1

Z12 + Y 12

2
1

Z23 + Y 23

2
0 0 − 1

Z13 0 0 − 1
Z23



 .

Suppose the intruder manipulates measurements in all chan-
nels of PMU 1 and the channel of PMU 2 that measuresI

21

and I
23 so that the system operator would have the wrong

impression that the system states are[V1 + β1
V

2
V

3 + β2]
for any nonzeroβ1, β2 ∈ Ct×1. In this case, the observed
measurements under attacks when there is no noise are

M = [V1 + β1
V

2
V

3 + β2]W̄T

= [V1 + β1
I
12 +

β1

Z12
+

β1Y 12

2
I
13 +

β1 − β2

Z13
+

β1Y 13

2
V

2
I
21 − β1/Z12

I
23 − β2/Z23]. (10)

The additive errors due to attacks are

D̄ = [β1
0 β2]W̄T = [‖W̄1‖β1

0 ‖W̄3‖β2]WT . (11)

C. Connections to existing work

The detection of unobservable cyber data attacks has not
been much addressed. [30] and [22] considered the detection
of unobservable attacks to SCADA data and provided numer-
ical results. [30] assumes the measurements across time are
i.i.d. distributed and detects the attacks based on statistical
learning. [22] assumes the SCADA measurements under DC
power flow model are low-rank and proposes to detect the
attacks by decomposing a low-rank matrix and a sparse matrix
from their sum. Our work differs from [22] in that we assume
the intruder constantly injects data attacks to the same set
of PMUs, while [22] assumes the intruder attacks different
PMUs at different time instants. Furthermore, we provide the
theoretical guarantee of our detection method.

Our problem formulation of matrix decomposition is closely
related to those in [34] and [24]. WhenW is an identity
matrix, our problem reduces to the one in [34]. The difference



Method 1 Unobservable cyber attack identification method
Input: PMU measurementsM in t instants; coefficientη; the

setΩ of the locations(i, j) of the observed entries.
Find (L∗, C∗), the optimum solution to the following
optimization problem

min
L∈Ct×p,C∈Ct×n

‖L‖∗ + λ‖C‖1,2 (12)

s.t.
∑

i,j∈Ω

|Mij − Lij − (CWT )ij |2 ≤ |Ω|
tp
η2 (13)

Compute the SVD ofL∗ = U∗Σ∗V ∗†.
Find column support ofD∗ = C∗WT , denoted byJ ∗.
Return: L∗, C∗, L∗

J ∗c , U∗ andJ ∗.

between our model and the one in [24] is that the sparse matrix
C̄ in [24] has nonzero entries located independent of each
other, whileC̄ here is a column-sparse matrix. Our method
and analysis are built up those in [34], but we consider a
more general framework of matrix decomposition through the
introduction of the transform matrixW .

The significance of our work is twofold. First, we for the
first time consider the case that the additive error matrixD̄ can
be dense (i.e.,W is a dense matrix), while the error matrices
in [34] and [24] are sparse. We show through both theoretical
analysis and numerical experiments that it is possible to
achieve matrix decomposition with densēD. Second, when
D̄ is a column-sparse matrix itself (i.e.,W is sparse), our
decomposition method outperforms those in [34] and [24] (see
Section V-B and V-C) in the sense that our recovery method
can tolerate a higher level of corruption (i.e., large support
size of D̄). This advance results from exploiting (7), which
reduces the degree of freedom ofD̄.

Note that our method and analysis hold for an arbitraryW
and can be applied to other domains that involve decomposing
a matrix as in (8). As discussed in [24], applications include
unveiling network traffic anomalies [19], [32], dynamic mag-
netic resonance imaging [10], [11], face recognition [2], and
music analysis [20], [21].

III. A TTACK IDENTIFICATION WITHOUT NOISE

A. Identification method and guarantee

We first consider noiseless measurements (η = 0). We
assume a complete set of measurements for analysis, but our
method can be extended to cases when measurements are
partially lost. Moreover, although we consider attack patterns
in (7), our method can be generalized to detect combined
attacks. In this case,̄D is generalized to

D̄ = C̄WT + S̄, (14)

where a sparse matrix̄S represents attacks (observable and/or
unobservable) that have different locations across time. Then
(12)-(13) are generalized to

min
L∈Ct×p,C∈Ct×n,S∈Ct×p

‖L‖∗ + λ1‖C‖1,2 + λ2
∑

ij

|Sij | (15)

s.t.
∑

i,j∈Ω

|Mij − Lij − (CWT )ij − Sij |2 ≤ |Ω|
tp
η2, (16)

with given positive constantsλ1, λ2. We study this extension
numerically in Section V-B.

To formally present the theoretical result, we need the
following definitions. GivenL̄ = Ū Σ̄V̄ † andW , we define

ǫ := ‖V̄ †W ‡‖∞,2, µ := max
i6=j

‖W †
i Wj‖, (17)

andσk := max
I:|I|≤k

‖(W †
IWI)

−1‖. (18)

Note thatσ1 = 1 asW has unit-norm columns, andǫ depends
on the rankr of L̄, since‖V̄ ‖2F = r.

Pick any constants̃ψ andc in (0, 1) such that

(2− ψ̃)

√

ψ̃/(1− ψ̃) ≤
√

(1 + c)/(1− c). (19)

For any integerk, define

λmin,k =
(1 + (2 − ψ̃)−1)ǫ

1− (1 + (2− ψ̃)−1)kσkµ
(20)

andλmax,k =

√

ψ̃/(kσk). (21)

Our detection method is summarized in Method 1. (13) is
a convex program and can be solved efficiently by generic
solvers such as CVX[13]. Its recovery guarantee is as follows.

Theorem 1. Suppose there exists nonzerok̃ such that

k̃µ ≤ c, andλmin,k̃ ≤ λmax,k̃, (22)

with c, λmin,k̃, andλmax,k̃ defined in (19)-(21). Then as long

as the column support of̄C has size at most̃k, for anyλ ∈
[λmin,k̃, λmax,k̃], the output of Method 1 satisfies

U∗U∗† = ŪŪ †, (23)

J ∗ = J̄ andL∗
J ∗c = L̄J̄ c .

Theorem 1 guarantees that the affected PMUs can be
correctly located and thus, the “clean” PMU measurements
could be identified. Furthermore, the subspace spanned by the
actual phasors can be recovered. Since we do not obtain any
actual measurements from PMUs that are under attack, it is
impossible to recover the exact measurements in the affected
PMUs without further regularization. Under the conditionsof
Theorem 1, the recovery is also successful when the column
support ofC̄ is zero. Thus, the false alarm rate is zero.

Method 1 is motivated by [34]. In fact, after post-
multiplying W ‡(WTW ‡)−1 to both sides of (1), we have

MW ‡(WTW ‡)−1 = L̄W ‡(WTW ‡)−1+C̄+NW ‡(WTW ‡)−1

where the right-hand side is the sum of a low-rank matrix
plus a column-sparse matrix and noise. Then, the results
of [34] can be directly applied to our problem. We do not
follow this path due to two reasons. First,MW ‡(WTW ‡)−1

cannot be computed if some entries ofM are missing, while
Method 1 can be easily extended to scenarios with missing
data by restricting the constraints in (13) to the observed
measurements. Second,(WTW ‡)−1 does not exist whenW
is a flat matrix, i.e.,p < n, while Method 1 and Theorem 1
can be applied to an arbitraryW .



B. Discussion ofλ and k̃

We remark that due to the slackness in the proof,λ ∈
[λmin,k̃, λmax,k̃] in Theorem 1 is sufficient but not necessary5.
There may existλ outside[λmin,k̃, λmax,k̃] that can still lead to
correct recovery. We observe from numerical experiments that
recovery performance is generally much better than the bound
in Theorem 1. Furthermore, whenL is fixed, ask̃ decreases,
λmin,k̃ decreases, andλmax,k̃ increases. Thus, intuitively, if
the number of affected PMUs decreases, a wider range ofλ
is proper for Method 1. For a detailed discussion, we state the
following lemma and defer its proof to the Appendix.

Lemma 1. Supposekµ < 1, thenσk ≤ (1− (k − 1)µ)−1.

Sinceσk increases ink, σ1 ≥ 1, andkµ ≤ c < 1, together
with Lemma 1, we knowσk̃ = Θ(1)6. Sinceψ̃ is a constant,

one can check thatλmin,k̃ = Θ(ǫ), andλmax,k̃ = Θ(
√

1/k̃).
Note that‖V̄ †‖2F = r. We assume that‖V̄ †‖ is column-

incoherent [34] with some positive constantρ > 1, i.e.,

‖V̄ †‖∞,2 ≤
√

ρr/p. (24)

We assume the number of PMU channels incident to each bus
is in the range of[d, Cd] for somed > 0 and some constant
C. This is also the number of nonzero entries in each column
of W with unit column-norm. Thenp = Θ(dn), and we have

ǫ = ‖V̄ †W ‡‖∞,2 ≤
√

ρr

p
max

i

∑

j

|Wij | = O(

√

r

n
). (25)

Therefore, as long as̃k = O(n/r), whenn is sufficiently large,
λmin,k̃ ≤ λmax,k̃. k̃µ ≤ c requires that̃k = O(1/µ). Note that
µ = Θ( 1

d
). Thus, if bothk̃ = O(n/r) and k̃ = O(d) hold,

then a properλ exists, and Theorem 1 holds.
In the case thatd = Θ(n), k̃ could beΘ(n/r). If r is a

constant, our method succeeds even when a constant fraction
of bus voltages are corrupted. Also consider the case thatk̃ =
1. We pickψ̃ andc in (19) arbitrarily close to one, thenλ = 1
is a proper choice (see Fig. 16 for results on actual PMU data)
provided thatǫ + µ ≤ 0.5. Since ǫ scales as1/

√
n and µ

scales as1/d, the condition will be met in large systems that
are tightly connected. Intuitively,µ is small if the bus degree
is high, and the line impedances are in the same range.

We next use an example to illustrate the existence of proper
λ. Consider ann-bus (n is even) ring network in Fig. 6. Each
odd-numbered bus is connected to all even-numbered buses.
There is no connection among odd buses and no connection
among even-numbered buses. A PMU is installed on each odd
bus and measures the corresponding voltage phasor and all
incident line current phasors. For the simplicity of analysis,
we assumeZij = 1 andY ij = 0 in this ring network.W is
a (n

2

4 + n
2 )× n matrix with unit norm columns. Specifically,

for every integerk,

5Specially, the requirements on dual certificate in Lemma 4 are sufficient
but not necessary. Furthermore, we use loose bounds in the proofs to simplify
analysis.ǫ, µ, andσk are in turn defined based on worst-case scenarios.

6We use the notationsg(n) ∈ O(h(n)), g(n) ∈ Ω(h(n)), or g(n) =
Θ(h(n)) if as n goes to infinity,g(n) ≤ c · h(n), g(n) ≥ c · h(n) or
c1 · h(n) ≤ g(n) ≤ c2 · h(n) eventually holds for some positive constants
c, c1 andc2 respectively.

Fig. 6: n-bus ring network

Wij =











√

2/(n+ 2), if i ∈ Ik1 andj = 2k − 1

−
√

2/n, if i ∈ Ik2 andj = 2k

0, otherwise

,

where

Ik1 :=
{

k + (k − 1)
n

2
+ k′ | intergerk′ = 0, 1, 2, ...,

n

2

}

,

Ik2 :=
{

k + 1 + (
n

2
+ 1)k′ | intergerk′ = 0, 1, 2, ...,

n

2
− 1

}

.

Note that |Ik1| = n
2 + 1, |Ik2| = n

2 for all k. Here,µ =

2/
√
n2 + 2n. Then we have

(V †W ‡)j =

{

√

2/(n+ 2)
∑

i∈Ik1
(V †)i, if j = 2k − 1

−
√

2/n
∑

i∈Ik2
(V †)i, if j = 2k

,

(26)
whereV ∈ C(n2

4
+n

2
)×r contains the right singular vectors of

the rank-r measurement matrix̄L ∈ Ct×(n2

4
+n

2
). If ‖V̄ †‖ is

column-incoherent [34] with some positive constantρ, then

ǫ = ‖V̄ †W ‡‖∞,2 ≤max
(

√

2

n+ 2
|Ik1|,

√

2

n
|Ik2|

)

· ‖V̄ †‖∞,2

≤
√

n+ 2

2
·
√

ρr

(n2 + 1)n2
≤

√

2ρr

n
, (27)

where the first inequality follows from (26), and the second
inequality follows from (24).

To find λ, we pick c = 1/4 and ψ̃ = 1/8. We choose
k̃ = n

48ρr . One can check that (19) follows. Then

k̃µ =
n

48ρr
× 2√

n2 + 2n
≤ 1

24ρr
≤ 1

24
≤ 1

4
= c, (28)

where the last inequality follows sinceρ > 1 andr ≥ 1. Then
from Lemma 1, we have

σk̃ ≤ (1− (k̃ − 1)µ)−1 ≤ (1− k̃µ)−1 ≤ 24/23. (29)

From (20) and (21),

λmin,k̃ ≤ (1 + (2− ψ̃)−1)ǫ

1− (1 + (2− ψ̃)−1)k̃µσk̃
≤ 23ǫ

14
≤ 23

14

√

2ρr

n
.

(30)

λmax,k̃ =

√

1/8
n

48ρrσk̃
≥ 1

2

√

23ρr

n
. (31)

Since 23
14

√

2ρr
n

< 1
2

√

23ρr
n

, then λmin,k̃ < λmax,k̃. Then
there existsλ such that Method 1 correctly identifies the
corruptions in up tok̃ = n

48ρr bus voltages. In fact, any

λ ∈ [ 2314

√

2ρr
n
, 12

√

23ρr
n

] suffices. Note that for a constantr, k̃
is linear inn, the total number of buses.



C. Proof sketch of Theorem 1

The proof of Theorem 1 follows the same line as the proof
of Theorem 1 in [34]. With the additional projection matrix
W , our proof is more involved than the one in [34].

Like [34], we design the following Oracle Problem (32) by
adding explicit constraints that the solution pair should have
the correct column space of̄L and the correct column support
of C̄. The major step is to show that an optimal solution
(L∗,C∗) to (13) is also an solution to the Oracle problem (32).
Note that Oracle problem is only designed for analysis, since
Ū and Ī are unknown to the operator.

Oracle Problem min
L,C

‖L‖∗ + λ‖C‖1,2
s.t. M = L+ CWT

PŪ (L) = L, PĪ(C) = C.

(32)

Let (L′, C′) be an optimal solution to the Oracle problem
(32). We definePT ′ := PU ′ +PV ′ −PU ′PV ′ , where the SVD
of L′ = U ′Σ′V ′†. Define

G(C′) := {H ∈ C
t×k | ∀i ∈ I ′ : Hi = C′

i/‖C′
i‖;

∀i ∈ Ī ∩ (I ′)c : ‖Hi‖2 ≤ 1},

whereI ′ is the column support ofC′. We have

Lemma 2 (Lemma 4 and Lemma 5 of [34]).

U ′U ′† = Ū Ū †.

There exists an orthonormal matrix̂V ∈ Ct×p such that

U ′V ′† = Ū V̂ †. (33)

Also, we have

PT ′ := PU ′ + PV ′ − PU ′PV ′ = PŪ + P
V̂
− PŪPV̂

.

The following lemma establishes that the solution to the
Oracle problem (32) is also a solution to (13),

Lemma 3. An optimal solution(L′, C′) to (32) is an optimal
solution to (13) if there existsQ ∈ Ct×p that satisfies

(a)PT ′(Q) = U ′V ′†, (b)‖PT ′⊥(Q)‖ ≤ 1,

(c)(QW ‡)Ī/λ ∈ G(C′), and (d)‖(QW ‡)Īc‖∞,2 ≤ λ.
(34)

If both (b) and (d) are strict, andPJ̄ ∩ PV ′ = {0}, then
any optimal solution(L∗, C∗) to (13) satisfiesPŪ (L

∗) = L∗,
PĪ(C

∗) = C∗.

The major technical step is to constructQ, called thedual
certificate, that satisfies (34). Our construction method is as
follows. Pick Ĥ ∈ G(C′) that satisfies

V̂ †W ‡

Ī
= λŪ †Ĥ. (35)

Define

Φ := λĤ(WT
Ī W

‡
Ī
)−1WT

Ī , ∆1 := PŪ (Φ), (36)

∆2 := PŪ⊥(I − PWĪ
)P

V̂
(I +

∞
∑

i=1

(P
V̂
PWĪ

P
V̂
)i)P

V̂
(Φ),

(37)
wherePWĪ

(X) := XW ‡

Ī
(WT

Ī W
‡

Ī
)−1WT

Ī . (38)

Q := Ū V̂ † +Φ−∆1 −∆2. (39)

We show thatQ in (39) is well defined in Appendix-B. Lemma
4 shows thatQ in (39) is the desired dual certificate.

Lemma 4. Suppose there exists nonzerok̃ such thatk̃µ ≤ c
for c in (19), andλmin,k̃ ≤ λmax,k̃ with λmin,k̃ and λmax,k̃

defined in (20) and (21). Then as long as the column support of
C̄ has size at most̃k, for anyλ ∈ [λmin,k̃, λmax,k̃], Q defined
in (39) satisfies (34).

Theorem 1 follows when we combine Lemmas 3 and 4.
Please refer to the Appendix for the proofs.

IV. ATTACK IDENTIFICATION WITH NOISE

We now analyze the detection performance whenM con-
tains noise (N 6= 0) with ‖N‖F ≤ η. Givenk, define

λ′min,k =
(1 + (2− ψ̃)−1)ǫ

1/2− (1 + (2− ψ̃)−1)kσµ
, andλ′max,k =

1

2

√

ψ̃

kσk
.

Theorem 2. Suppose there exists nonzerok̃ such that̃kµ ≤ c
for c in (19), andλ′

min,k̃
≤ λ′

max,k̃
. Then if column support

size ofC̄ is at most̃k, for anyλ ∈ [λ′
min,k̃

, λ′
max,k̃

], there exists

a pair (L̃, C̃), whereL̃ + C̃WT = L̄ + C̄WT , PŪ (L̃) = L̃
andPĪ(C̃) = C̃, such that the output of Method 1 satisfies

‖L∗ − L̃‖F

≤(2− ψ̃ +
λ+ (2− ψ̃)

√

1 + (n− 1)µ

λ

√
θ + 3r)

2η

1− ψ̃
,

(40)

and ‖C∗ − C̃‖F

≤(1 + (
λ+

√

1 + (n− 1)µ

λ
+

1− ψ̃

λσk
√

1 + (k − 1)µ
)
√
θ + 3r)

2ησk
√

1 + (k − 1)µ

1− ψ̃
, (41)

whereθ := min(t, p).

The discussion of the existence ofλ is very similar to the
discussion for Theorem 1, so we skip it. Ifk̃µ ≤ c and k̃ =
O(n/r) hold, then a properλ exists. Theorem 2 guarantees
that (L∗, C∗) returned by Method 1 is “close” to a pair that
has the correct column space and column support, and the
distance measured by Frobenius norm is proportional to the
noise levelη. The proof of Theorem 2 follows the same line
as the proof of Theorem 2 in [34] mostly with modifications
to address the projection matrixW . We establish Lemma 5, a
counterpart in the noisy case of Lemma 3, that demonstrates
that Method 1 succeeds if there exists a dual certificateQ with
tighter requirements than that in the noiseless case.

Lemma 5. There exists(L̃, C̃) whereL̃+C̃WT = L̄+C̄WT ,
PŪ (L̃) = L̃, PĪ(C̃) = C̃, such that the output of Method 1
satisfies (40) and (41), if there existsQ ∈ Ct×p that satisfies

(a)PT̄ (Q) = Ū V̄ †, (b)‖PT̄⊥(Q)‖ ≤ 1/2,

(c)(QW ‡)Ī/λ ∈ G(C̄), and (d)‖(QW ‡)Īc‖∞,2 ≤ λ/2.
(42)



The construction ofQ is the same as that in Section III
(equations (35) to (39)). We show thatQ is the desire dual
certificate ifλ belongs to[λ′min, λ

′
max] in Lemma 6.

Lemma 6. If the column support size of̄C is at mostk̃, then
for anyλ ∈ [λ′min, λ

′
max], Q defined in (39) satisfies (42).

Theorem 2 follows when we combine Lemmas 5 and 6.
Please refer to the Appendix for the proofs.

V. SIMULATION

We explore the performance of data attack identification
methods on both synthetic data and actual PMU data from
the Central NY power system. We use CVX [13] to solve
(13). We identify a column ofC∗ to be nonzero if itsℓ2
norm exceeds the predefined thresholdǫ1. Method 1 succeeds
if ‖U∗U∗† − ŪŪ †‖ ≤ ǫ2 for some small positiveǫ2, and the
column supports of̄C andC∗ are the same.

A. Performance on synthetic data

Fix t = p = 50. Given rankr, we generate matricesA ∈
Rt×r and B ∈ Rp×r with each entry independently drawn
from GaussianN (0, 1) and setL̄ := ABT . We generate
matrix W ∈ R

p×n with independentN (0, 1) entries. To
generate a column-sparse matrix̄C ∈ Rt×n, we randomly
select the column support and set the nonzero entries to be
independentN (0, 1). We varyr and the number of corrupted
columns, and take 100 runs for each case.λ is set to be 0.95.

1) Noiseless formulation:We simulate the observed mea-
surement matrixM according to (8) withN = 0. We apply
Method 1 to obtain the estimation(L∗, C∗). We setǫ1 andǫ2
to be 0.002 and 0.01, respectively. Fig. 7 shows the transition
property of Method 1 in gray scale. White stands for 100%
success while black denotes 100% failure. Whenn is 25,W
is a tall matrix (p > n). Whenn is 100,W is a flat matrix
(p < n). For both simulations, the identification is successful
even when rankr is six, andC̄ has two nonzero columns.
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Fig. 7: Matrix decomposition performance for differentn

We further assume some of the observations are missing.
We generateM as before and then delete some randomly
selected entries. Fig. 8 shows the decomposition performance
of Method 1 for partial observation. We can see that the suc-
cessful decomposition rate is close to the complete observation
case even only 80% of the entries are observed.
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Fig. 8: Matrix decomposition performance for differentn with
80% observed entries

2) Noisy formulation:We generate matrixN ∈ Rt×p with
independent GaussianN (0, σ2) entries. We fix the matrix rank
r to be 3 and the number of corrupted columns to be 3. We
simulate the observed measurement matrixM according to
(8). We setη to be‖N‖F and apply Method 1 to obtain the
estimation(L∗, C∗). ǫ1 is set to be 0.001.
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Fig. 9: Performance of Method 1 for different noise levelσ

Fig. 9 shows the difference between the original and re-
constructed column space (‖U∗U∗†− ŪŪ †‖) and the succeed
rate for determining the set of corrupted columns according
to different noise levelσ. We can see that Method 1 can
successfully identify the corrupted columns when the noise
levelσ is below 0.25. Method 1 can recover the column space
with small errors whenσ is smaller than 0.1.

B. Comparison with other methods on synthetic data

1) D̄ = C̄W
T is column-sparse:Refs. [34] [22] considered

matrix decomposition problem when̄D is column-sparse and
scattered-sparse, respectively. We compare our method with
them in the special case thatD̄ = C̄WT is column-sparse. Fix
t = p = 50, n = 20, andr = 2. We generatēL and C̄ with
the same rules as in Section V-A. We generate a binary matrix
W ∈ Rp×n with two ‘1’s each row and five ‘1’s each column.
Then the ratio of support sizes of̄D and C̄ is about five.D̄
is column-sparse when̄C is column-sparse. We simulate the
measurement matrixM according to (8) withN = 0. λ in
our method is set to be 0.9.λ’s in methods of [34] and [22]
are set to be 0.5 and 0.1, respectively.

Fig. 10 shows the success rates of three methods with
different support sizes of̄C. Our method performs the best
since we exploit the structurēD = C̄WT besides sparsity.
The false alarm rate of our method is zero.

2) Combination of attack patterns.:We consider the gen-
eral case that the attacks satisfy (14). We use the generalized
version in (15)-(16) to detect combined attacks.λ1 andλ2 in
(15) are set to be 1 and 0.1, respectively.λ’s in methods of
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Fig. 10: Success rates when̄D = C̄WT is column-sparse.

[34] and [22] are set to be 0.5 and 0.1, respectively.L̄, C̄,
andW are generated the same as above.S̄ is a sparse matrix
with nonzero entries independently drawn fromN (0, 1). We
define the correct estimation of the column space ofL̄ as a
successful recovery. Fig. 11 compares the methods whenC̄ is
a zero matrix. The attacks are scattered-sparse, and our method
performs as well as that in [22]. Fig. 12 compares the methods
when both column-sparse and scattered-sparse attacks exist.
Besides a sparsēS, we randomly select two columns in̄C
and select their entries independently fromN (0, 1). Only our
method succeeds when both attacks exist.
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Fig. 11: Success rates when̄D = S̄ is scattered-sparse.
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Fig. 12: Success rates when̄D = C̄WT + S̄.

C. Performance comparison on actual PMU data

We consider the PMU data shown in Section II-A. Two two-
second PMU datasets are tested. One contains ambient data,
and the other contains an abnormal event (t = 17 − 19s and
t = 2− 4s in Fig. 2, respectively). We first inject data attacks
as an intruder and then use Method 1 to detect the attacks.

We consider the scenario that an intruder alters the PMU
channels that measureI12,I52,I13 andI43 in order to corrupt
voltage estimations of Buses 2 and 3. Fig. 13 visualizes the
actual PMU data and the data after the injection of attacks
for two 2-second datasets.η and λ are set to be 5 and 1
respectively in Method 1. Fig. 14 shows theℓ2 norm of each
column of the resultingD̄ matrix. The columns with signifi-
cantℓ2 norm correspond to channels that measureI12,I52,I13

andI43. Therefore, our method successfully identifies the four
PMU channels under attack. We repeat the same experiment

when an intruder alters the channels that measureV 5, I52,
I54, I59, and I45 to corrupt voltage estimation of Buses 5.
Fig. 15 shows theℓ2 norm of each column of the resulting
C̄ matrix in this case. The column with significantℓ2 norm
corresponds Bus 5. Thus the recovery is also successful.
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Fig. 13: The actual PMU data and PMU data under attack
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Fig. 14: ℓ2 norm of each column of̄D
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Fig. 15: ℓ2 norm of each column of̄C

Fig. 16 compares our method and that in [34] on the ambient
PMU data. Given support size of̄C, the result is averaged
over all possible attack locations. Our method outperforms
[34] because we exploit (7) to reduce the degree of freedom
in D̄. For example, 7 out of 23 channels needs to be attacked
to change the state of Bus 1. That means 30% of the columns
of D̄ are nonzero. This high percentage of corruption inD̄
cannot be handedly by [34].
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Fig. 16: Success rates with varying support size ofC̄, or
equivalently, the number of affected system states.

VI. CONCLUSION

We address the problem of detecting successive unobserv-
able cyber data attacks to PMU measurements. We formulate



the identification problem as a matrix decomposition problem
of a low-rank matrix and a transformed column-sparse matrix.
We propose a convex-optimization-based method and provide
its theoretical guarantee. Although motivated by power sys-
tem monitoring, our results on matrix decomposition can be
applied to other scenarios. One future direction is the analysis
of the detection performance when some of the measurements
are lost during the communication to the central operator.
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APPENDIX

A. Proof of Lemma 1

Proof: We first state the following result that will be used
in the proof.

Lemma 7 (Geršhgorin circle theorem [16]). Let A be a
complexn×n matrix, with entriesaij . Then, every eigenvalue
of A lies within at least one of the Geršhgorin discsDi(A)(i =
1, ..., n), whereDi(A) := {z ∈ C : |z − aii| ≤

∑

j 6=i |aij |}.

For any givenI with |I| ≤ k, sinceW has unit-norm
columns, and|W †

i Wj | ≤ µ for all i 6= j, from Geršhgorin
circle theorem, we have‖I−W †

IWI‖ ≤ (k−1)µ < 1, where

http://cvxr.com/
http://www.foxnews.com/politics/2009/04/08/cyberspies-penetrate -power-grid-leave-software-disrupt/
http://www.foxnews.com/politics/2009/04/08/cyberspies-penetrate -power-grid-leave-software-disrupt/
http://www.cnn.com/2007/US/09/26/power.at.risk/


the last inequality follows fromkµ < 1. Then,

‖(W †
IWI)

−1‖ =‖
∞
∑

i=0

(I −W †
IWI)

i‖ ≤
∞
∑

i=0

‖(I −W †
IWI)

i‖

≤1/(1− (k − 1)µ).

The lemma follows from the definition ofσk.

B. Proof of Lemma 3

Proof: For any∆ ∈ Ct×n, 〈L′+∆WT , C′−∆〉 is feasi-
ble to (13). LetG be such that‖G‖ = 1,

〈

G,PT ′⊥(∆WT )
〉

=
‖PT ′⊥(∆WT )‖∗ and PT ′(G) = 0. Then PT ′(Q) + G is a
subgradient of‖L′‖∗. Let F be such thatFi = −∆i/‖∆i‖2
if i ∈ Īc and ∆i 6= 0, and Fi = 0 otherwise. Then
PĪ(QW

‡)/λ+ F is a subgradient of‖C′‖1,2. Then

‖L′ +∆WT ‖∗ + λ‖C′ −∆‖1,2 − ‖L′‖∗ − λ‖C′‖1,2
≥〈PT ′(Q) +G,∆WT 〉 − λ〈PĪ(QW

‡)/λ+ F,∆〉
=‖PT ′⊥(∆WT )‖∗ + λ‖PĪc(∆)‖1,2 + 〈Q− PT ′⊥(Q),∆WT 〉
− 〈QW ‡ − PĪc(QW ‡),∆〉

≥(1 − ‖PT ′⊥(Q)‖)‖PT ′⊥(∆WT )‖∗
+ (λ− ‖(QW ‡)Īc‖∞,2)‖PĪc(∆)‖1,2

≥0
(43)

From (43),〈L′, C′〉 is an optimal solution to (13). If (34) holds
with strict inequality, the last inequality of (43) is strict unless

‖PT ′⊥(∆WT )‖∗ = ‖PĪc(∆)‖1,2 = 0. (44)

(44) implies that∆WT ∈ PT ′ and∆ ∈ PĪ . Note that∆ ∈ PĪ

implies that∆WT ∈ PJ̄ . Then

PJ̄ (∆WT ) = ∆WT = PT ′(∆WT )

= PU ′(∆WT ) + PV ′PU ′⊥(∆WT )

= PJ̄PU ′(∆WT ) + PV ′PU ′⊥(∆WT ), (45)

where the last equality holds sincePJ̄ (∆WT ) =
∆WT . Thus, from (45) we havePJ̄PU ′⊥(∆WT ) =
PV ′PU ′⊥(∆WT ), which meansPU ′⊥(∆WT ) ∈ PJ̄ ∩
PV ′ . Then PU ′⊥(∆WT ) is 0 from the assumption. Then,
PŪ (∆W

T ) = PU ′(∆WT ) = ∆WT , where the first equality
holds from (33). Therefore, for any optimal solution〈L′ +
∆WT , C′ − ∆〉 for some∆ 6= 0 to (13), ∆WT ∈ PŪ , and
∆ ∈ PĪ . The claim follows.

C. Construction ofQ

Here we demonstrate thatQ in (39) is well defined. The key
is to show (a) there existŝH ∈ G(C′) such that (35) holds,
and (b) the infinite sum in (37) converges. We prove these two
properties through the following lemmas.

Lemma 8. There existsĤ ∈ G(C′) such that (35) holds.

Proof: Since〈L′, C′〉 is an optimal solution to the Oracle
problem (32), there existsG′, A′ ∈ Ct×p, B′, Z ∈ Ct×n, and
someĤ ∈ G(C) such that

(Ū V̂ † +G′ + PŪ⊥(A′))W ‡ = λ(Ĥ + Z) + PIc(B′), (46)

wherePT ′⊥(G′) = 0 andPI(Z) = 0. Then

PŪPĪ(((Ū V̂
† +G′ + PŪ⊥(A′))W ‡) = Ū V̂ †W ‡

Ī
, (47)

PŪPĪ(λ(Ĥ+Z)+PIc(B′)) = λPŪPĪ(Ĥ) = λŪŪ †Ĥ (48)

Combining (46)-(48), we have

Ū V̂ †W ‡
Ī
= λŪ Ū †Ĥ. (49)

By multiplying Ū † to both sides of (49), we obtain Lemma 8.

Lemma 9.
ψ := ‖P

V̂
PWĪ

P
V̂
‖ ≤ ψ̃ < 1

Proof:

‖P
V̂
PWĪ

P
V̂
(X)‖

=‖XV̂ V̂ †W ‡

Ī
(WT

Ī W
‡

Ī
)−1WT

Ī V̂ V̂
†‖

(a)
=‖XV̂ (λŪ †Ĥ)(WT

Ī W
‡
Ī
)−1(λŪ †Ĥ)†V̂ †‖

≤‖X‖‖V̂ Ū †‖‖λĤ‖‖(W †
Ī
WĪ)

−1‖‖λĤ†‖‖Ū V̂ †‖
(b)

≤‖X‖ · 1 · λ
√
k · σk · λ

√
k · 1

(c)

≤‖X‖λmaxk̃σk̃
(d)
= ‖X‖ψ̃,

where (a) follows from Lemma 8, (b) follows from the fact that
Ĥ has at mostk nonzero columns with unit-norm, (c) follows
from the property thatλ ≤ λmax, k ≤ k̃ and σk ≤ σk̃, and
(d) follows from the definition ofψ̃. Then Lemma 9 follows.

Lemma 10. P
V̂
(I−PWĪ

)P
V̂

is an injection fromP
V̂

to P
V̂

,
and its inverse operation is(I +

∑∞
i=1(PV̂

PWĪ
P
V̂
)i).

Proof: Since ‖P
V̂
PWĪ

P
V̂
‖ < 1 from Lemma 9, then

(I +
∑∞

i=1(PV̂
PWĪ

P
V̂
)i) is well defined. For anyX ∈ P

V̂
,

we have

P
V̂
(I − PWĪ

)P
V̂
(I +

∞
∑

i=1

(P
V̂
PWĪ

P
V̂
)i)(X)

=P
V̂
(I − P

V̂
PWĪ

P
V̂
)(I +

∞
∑

i=1

(P
V̂
PWĪ

P
V̂
)i)(X)

=P
V̂
(X) = X. (50)

Then the lemma follows.

D. Proof of Lemma 4

Proof: We need to show thatQ defined in (39) satisfies
all the conditions in (34). We first summarize some properties
that will be used in the proof. SinceW has unit-norm columns,
|W †

i Wj | ≤ µ for all i 6= j, and |Ī| ≤ k, we have

‖WĪ‖ =
√

λmax(W
†

Ī
WĪ) ≤

√

1 + (k − 1)µ, (51)

where the inequality follows from the Geršhgorin circle theo-
rem. From|Ī| ≤ k and |W †

i Wj | ≤ µ for all i 6= j, we have
‖(W †

Ī
WĪc)‖∞,2 ≤

√
kµ. SinceĤ has at mostk unit-norm

columns while other columns are zero, we have

‖λĤ‖ ≤ λ
√
k. (52)



Step 1: verification of (a) of (34).

PU ′(Q)
(a)
= PŪ (Q) = Ū V̂ † + PŪ (Φ)− PŪ (Φ)− 0 = Ū V̂ †,

(53)
where (a) follows from (23). From (33), we have

V̂ V̂ † = V ′U ′†Ū Ū †U ′V ′† (b)
= V ′U ′†U ′U ′†U ′V ′† = V ′V ′†,

where (b) follows from (33). Thus,PV ′(·) = P
V̂
(·). Then

PV ′(Q) = P
V̂
(Q)

(c)
= Ū V̂ † + P

V̂
(Φ)− P

V̂
PŪ (Φ)

− P
V̂
(I − PWĪ

)P
V̂
(I +

∞
∑

i=1

(P
V̂
PWĪ

P
V̂
)i)P

V̂
PŪ⊥(Φ)

(d)
= Ū V̂ † + P

V̂
(Φ)− P

V̂
PŪ (Φ)− P

V̂
PŪ⊥(Φ)

= Ū V̂ †. (54)

(c) follows sincePWĪ
, P

V̂
, andP

V̂
PWĪ

P
V̂

are all given by
right matrix multiplication, whilePŪ⊥ is given by left matrix
multiplication. (d) follows from Lemma 10. Combining (53)
and (54), we obtain that (a) of (34) holds.

Step 2: verification of (b) of (34).

‖PT ′⊥(Q)‖ = ‖P
V̂ ⊥PŪ⊥(Φ)−

PŪ⊥PV̂ ⊥(I − PWĪ
)P

V̂
(I +

∞
∑

i=1

(P
V̂
PWĪ

P
V̂
)i)P

V̂
(Φ)‖

≤‖Φ‖+ (1 +

∞
∑

i=1

ψi)‖Φ‖ =
2− ψ

1− ψ
‖Φ‖

(e)

≤ 2− ψ

1− ψ
‖λĤ‖‖(W †

Ī
WĪ)

−1‖‖WT
Ī ‖

(f)

≤ 2− ψ

1− ψ
λ
√
kσk

√

1 + (k − 1)µ (55)

(g)

≤ 2− ψ̃

1− ψ̃

√

ψ̃

k̃σk̃

√

k̃σk̃

√

1 + (k̃ − 1)µ (56)

(h)

≤ 2− ψ̃

1− ψ̃

√

ψ̃

√

1 + (k̃ − 1)µ

1− (k̃ − 1)µ
(57)

(i)

≤ 2− ψ̃

1− ψ̃

√

ψ̃

√

1 + c

1− c

(j)

≤ 1.

where (e) follows from the definition ofΦ, and (f) follows
from (51) and (52). (g) follows from the property thatψ ≤ ψ̃,
1 ≤ k ≤ k̃, λ ≤ λmax,k̃, and σk ≤ σk̃. (h) follows from
Lemma 1. (i) follow fromk̃µ ≤ c, and (j) follows from (19).
Then (b) of (34) holds.

Step 3: verification of (c) of (34). First consider

(∆2W
‡)Ī

=(PŪ⊥(I − PWĪ
)P

V̂
(I +

∞
∑

i=1

(P
V̂
PWĪ

P
V̂
)i)P

V̂
(Φ)W ‡)Ī

(k)
=(PŪ⊥PV̂

(I +

∞
∑

i=1

(P
V̂
PWĪ

P
V̂
)i)P

V̂
(Φ))(I−

W ‡
Ī
(WT

Ī W
‡
Ī
)−1WT

Ī )W ‡
Ī
= 0

where (k) holds sincePWĪ
, P

V̂
, andP

V̂
PWĪ

P
V̂

are all given
by right matrix multiplication, whilePŪ⊥ is given by left
matrix multiplication. Then

(QW ‡)Ī = (Ū V̂ W ‡ +ΦW ‡ − PŪ (Φ)W
‡)Ī − (∆2W

‡)Ī

= Ū V̂ W ‡

Ī
+ΦW ‡

Ī
− PŪ (Φ)W

‡

Ī
− 0

(l)
= λŪŪ †Ĥ + λĤ − λŪŪ †Ĥ

= λĤ ∈ λG(C′), (58)

where (l) follows from Lemma 8 and the definition ofΦ in
(36). Then (c) of (34) holds.

Step 4: verification of (d) of (34). First consider

‖(∆2W
‡)Īc‖∞,2

=‖PŪ⊥PV̂
(I +

∞
∑

i=1

(P
V̂
PWĪ

P
V̂
)i)

· ΦV̂ V̂ †(I −W ‡
Ī
(WT

Ī W
‡
Ī
)−1WT

Ī )W ‡
Īc‖∞,2

=‖PŪ⊥PV̂
(I +

∞
∑

i=1

(P
V̂
PWĪ

P
V̂
)i)Φ(V̂ V̂ †W ‡

Īc−

V̂ V̂ †W ‡
Ī
(WT

Ī W
‡
Ī
)−1WT

Ī )W ‡
Īc‖∞,2

≤‖I +
∞
∑

i=1

(P
V̂
PWĪ

P
V̂
)i‖‖Φ‖

(

‖V̂ ‖‖V̂ W ‡
Īc‖∞,2

+ ‖V̂ ‖V̂ †W ‡

Ī
‖‖(W †

Ī
WĪ)

−1‖‖WT
Ī W

‡

Īc‖∞,2

)

≤‖Φ‖(ǫ+ λ
√
kσk

√
kµ)

1− ψ
≤ ǫ+ λkσkµ

2− ψ
≤ ǫ+ λkσkµ

2− ψ̃
,

where the second to last inequality follows from (e) to (j) in
step 2.

‖(QW ‡)Īc‖∞,2

=‖(Ū V̂ W ‡ +ΦW ‡ − PŪ (Φ)W
‡ −∆2W

‡)Īc‖∞,2

=‖Ū V̂ W ‡
Īc + PŪ⊥(Φ)W

‡
Īc − (∆2W

‡)Īc‖∞,2

≤‖Ū V̂ W ‡
Īc‖∞,2 + ‖(I − Ū Ū)†λĤ(WT

Ī W
‡
Ī
)−1WT

Ī W
‡
Īc‖∞,2

+ ‖(∆2W
‡)Īc‖∞,2

≤‖Ū‖‖V̂ W ‡

Īc‖∞,2+

‖(I − Ū Ū)†‖‖λĤ‖‖(W †
Ī
WĪ)

−1‖‖WT
Ī W

‡
Īc‖∞,2+

‖(∆2W
‡)Īc‖∞,2

≤ǫ+ λ
√
kσk

√
kµ+

λσk
√

k + (k2 − k)µ(ǫ+ σkµ
√

k + (k2 − k)µ)

1− ψ

≤(1 +
1

2− ψ̃
)(ǫ + λkσkµ),

≤(1 +
1

2− ψ̃
)(ǫ + λk̃σk̃µ), (59)

≤λ,
where the last inequality follows fromλ ≥ λmin,k̃. Then (d)
of (34) holds.

E. Proof of Lemma 5

Proof: We define

C̃ = C̄ +PĪPŪ (C
∗ − C̄) and L̃ = L̄−PĪPŪ (C

∗ − C̄)WT .



Note thatPŪ (L̃) = L̃, PĪ(C̃) = C̃ and L̄ + C̄WT = L̃ +
C̃WT . We further defineNL = L∗ − L̄, NC = C∗ − C̄, and
N+

C = C∗ − C̃. Note thatPĪc(N+
C ) = PĪc(NC) from the

definition ofN+
C . Let E = NL +NCW

T . We have

‖E‖F = ‖L∗ + C∗WT − (L̄+ C̄WT )‖F
≤‖L∗ + C∗WT −M‖F + ‖N‖F ≤ 2η, (60)

where the last inequality holds since (L∗, C∗) is the solution
to (13) and ‖N‖F ≤ η. Let G be such that‖G‖ = 1,
〈

G,PT∗⊥(∆WT )
〉

= ‖PT∗⊥(∆WT )‖∗ andPT∗(G) = 0. Let
F be such thatFi = ∆i/‖∆i‖2 if i ∈ Ī and∆i 6= 0, and
Fi = 0 otherwise. Then

‖L̄‖∗ + λ‖C̄‖1,2
(m)

≥ ‖L∗‖∗ + λ‖C∗‖1,2
(n)

≥‖L̄‖∗ + λ‖C̄‖1,2 + 〈PT̄ (Q) +G,NL〉+ λ〈PĪ(QW
‡)/λ

+ F,NC〉
=‖L̄‖∗ + λ‖C̄‖1,2 + ‖PT̄⊥(NL)‖∗ + 〈PT̄ (Q), NL〉
+ λ‖PĪc(NC)‖1,2 + 〈PĪ(QW

‡), NC〉
=‖L̄‖∗ + λ‖C̄‖1,2 + ‖PT̄⊥(NL)‖∗ + λ‖PĪc(NC)‖1,2
− 〈PT̄⊥(Q), NL〉 − 〈PĪc(QW ‡), NC〉+ 〈Q,NL +NCW

T 〉
≥‖L̄‖∗ + λ‖C̄‖1,2 + (1− ‖PT̄⊥(Q)‖)‖PT̄⊥(NL)‖∗
+ (λ− ‖PĪc(QW ‡)‖∞,2)‖PĪc(NC)‖1,2 + 〈Q,E〉

≥‖L̄‖∗ + λ‖C̄‖1,2 +
1

2
‖PT̄⊥(NL)‖∗ +

λ

2
‖PĪc(NC)‖1,2

− 2η‖Q‖F ,
(61)

where (m) holds because of the optimality of (L∗, C∗) and
(n) holds because of the convexity of the objective functionof
(13). We can see that the last inequality of (61) follows from
(b) and (d) of (42). Then we have

1

2
‖PT̄⊥(NL)‖∗ +

λ

2
‖PĪc(NC)‖1,2 − 2η‖Q‖F ≤ 0. (62)

Note that

‖Q‖F = ‖PT̄ (Q) + PT̄⊥(Q)‖F
=
√

‖PT̄ (Q)‖2F + ‖PT̄⊥(Q)‖2F

=
√

‖Ū V̄ †‖2F + ‖PT̄⊥(Q)‖2F
(o)

≤ 1

2

√

min(t, p) + 3r, (63)

where the last equality follows from (a) of (42). The inequality
(o) holds from‖Ū V̄ †‖F =

√

trace(V̄Ū†ŪV̄†) =
√
r, and

‖PT̄⊥(Q)‖F ≤ rank(PT̄⊥(Q))·‖PT̄⊥(Q)‖ ≤
√

min(t, p)− r

2
.

Sinceθ = min(t, p), combining (62) and (63), we have

‖PT̄⊥(NL)‖F ≤ ‖PT̄⊥(NL)‖∗ ≤ 2η
√
θ + 3r, (64)

‖PĪc(NC)‖F ≤ ‖PĪc(NC)‖1,2 ≤ 2

λ
η
√
θ + 3r. (65)

From the definition ofPWĪ
in (38), one can check that

PWĪ
(PĪ(W )T ) = PĪ(W )T . (66)

Then we have

PĪ(N
+
C )WT = PĪ(N

+
C )PĪ(W )T

=PĪ(N
+
C )PWĪ

(PĪ(W )T ) = PĪ(N
+
C )PWĪ

(WT )

=PWĪ
(N+

CW
T − PĪc(N+

C )WT )

(p)
=PWĪ

(E − PT̄⊥(NL)− PT̄ (NL)− PĪPŪ (NC)W
T

− PĪc(N+
C )WT )

(q)
=PWĪ

(E − PT̄⊥(NL)− PT̄ (E) + PT̄ (NCW
T )

− PĪPŪ (NC)W
T − PĪc(N+

C )WT )

=PWĪ
(PT̄⊥(E)− PT̄⊥(NL)− PĪc(NC)W

T

+ PT̄ (PĪ(NC)W
T ) + PT̄ (PĪc(NC)W

T )

− PĪPŪ (NC)W
T )

(r)
=PWĪ

(PT̄⊥(E)− PT̄⊥(NL)− PĪc(NC)W
T+

PT̄ (PĪc(NC)W
T ) + PŪ (PĪ(NC)W

T )+

PV̄ (PĪ(NC)PĪ(W )T )− PŪPV̄ (PĪ(NC)W
T )

− PĪPŪ (NC)W
T )

(s)
=PWĪ

(PT̄⊥(E)− PT̄⊥(NL)− PĪc(NC)W
T+

PT̄ (PĪc(NC)W
T ) + PV̄ (NCPĪ(W )T )− PV̄ (PĪc(NC)

PĪ(W )T )− PŪPV̄ (PĪ(NC)W
T ))

(t)
=PWĪ

(PT̄⊥(E)− PT̄⊥(NL)− PĪc(NC)W
T+

PT̄ (PĪc(NC)W
T ) + PV̄ (N

+
CPĪ(W )T )).

(67)
where (p) and (q) follow from the definitionE = NL+NCW

T

andN+
C = NC − PĪPŪ (NC). (r) follows the definition of

PT̄ . (s) holds becausePŪ (PĪ(NC)W
T ) = PĪPŪ (NC)W

T .
(t) holds because of the equality (68) shown as follows:

PV̄ (NCPĪ(W )T )− PŪPV̄ (PĪ(NC)PĪ(W )T )

=PV̄ (NCPĪ(W )T − PĪPŪ (NC)PĪ(W )T )

=PV̄ (N
+
C PĪ(W )T )

(68)

Note that

‖PWĪ
PV̄ (N

+
CPĪ(W )T )‖F

=‖PWĪ
PV̄ (N

+
CPWĪ

PĪ(W )T )‖F
=‖N+

CPĪ(W )TW ‡

Ī
(WT

Ī W
‡

Ī
)−1WT

Ī V̄ V̄
†W ‡

Ī
(WT

Ī W
‡

Ī
)−1WT

Ī ‖F
(u)

≤‖N+
CPĪ(W )T ‖F‖V̄ †W ‡

Ī
(WT

Ī W
‡

Ī
)−1WT

Ī V̄ ‖
=‖N+

CPĪ(W )T ‖F‖V̄ V̄ †W ‡

Ī
(WT

Ī W
‡

Ī
)−1WT

Ī V̄ V̄
†‖

=ψ‖PĪ(N
+
C )WT ‖F ≤ ψ̃‖PĪ(N

+
C )WT ‖F ,

where the first equality holds from (66), and (u) holds because
‖AB‖F ≤ ‖A‖F‖B‖ and ‖A†A‖ = ‖AA†‖ for matricesA
andB. From (67), we have

‖PĪ(N
+
C )WT ‖F

≤(‖PT̄⊥(E)‖F + ‖PT̄⊥(NL)‖F + ‖PT̄⊥(PĪc(NC)W
T )‖F )

‖W ‡
Ī
(WT

Ī W
‡
Ī
)−1WT

Ī ‖+ ψ̃‖PĪ(N
+
C )WT ‖F

≤‖E‖F + ‖PT̄⊥(NL)‖F + ‖PĪc(NC)‖F ‖W‖+
ψ̃‖PĪ(N

+
C )WT ‖F , (69)



where the last inequality uses the property that
‖W ‡

Ī
(WT

Ī
W ‡

Ī
)−1WT

Ī
‖ = 1. From similar arguments as

in (51), we have‖W‖ ≤
√

1 + (n− 1)µ. Then combining
(60), (64), (65), and (69), we obtain

‖PĪ(N
+
C )WT ‖F ≤ (1 +

λ+
√

1 + (n− 1)µ

λ

√
θ + 3r)

2η

1− ψ̃
.

(70)

Furthermore,

‖PĪ(N
+
C )‖F = ‖PĪ(N

+
C )WTW ‡

Ī
(WT

Ī W
‡

Ī
)−1‖F

≤‖PĪ(N
+
C )WT ‖F‖W ‡

Ī
‖‖(WT

Ī W
‡

Ī
)−1‖

≤(1 +
λ+

√

1 + (n− 1)µ

λ

√
θ + 3r)

2ησk
√

1 + (k − 1)µ

1− ψ̃
,

where the last inequality follows from (70), (51), and (18).We
also have

‖N+
CW

T ‖F = ‖PĪc(NC)W
T + PĪ(N

+
C )WT ‖F

≤‖PĪc(NC)W
T ‖F + ‖PĪ(N

+
C )WT ‖F

≤‖PĪc(NC)‖F ‖W‖+ ‖PĪ(N
+
C )WT ‖F

≤(1 +
λ+ (2− ψ̃)

√

1 + (n− 1)µ

λ

√
θ + 3r)

2η

1− ψ̃
.

Finally, we have

‖C∗ − C̃‖F = ‖PĪc(NC) + PĪ(N
+
C )‖F

≤‖PĪc(NC)‖F + ‖PĪ(N
+
C )‖F

≤(1 + (
λ+

√

1 + (n− 1)µ

λ
+

1− ψ̃

λσk
√

1 + (k − 1)µ
)
√
θ + 3r)

2ησk
√

1 + (k − 1)µ

1− ψ̃
,

and

‖L∗ − L̃‖F = ‖L∗ − L̄+ C̃WT − C̄WT ‖F
=‖L∗ − L̄+ C∗WT − C̄WT + C̃WT − C∗WT ‖F
=‖E −N+

CW
T ‖F ≤ ‖E‖F + ‖N+

CW
T ‖F

≤(2 − ψ̃ +
λ+ (2− ψ̃)

√

1 + (n− 1)µ

λ

√
θ + 3r)

2η

1− ψ̃
.

F. Proof of Lemma 6

Proof: Since equalities (a) and (c) of (42) are the same
as those in (34) and the construction ofQ remains the same,
then (a) and (c) of (42) have been proved in step 1 and 3 of
the proof of Lemma 4. We only need to show that (b) and
(d) hold whenλ belongs to [λ′

min,k̃
, λ′

max,k̃
]. From (55), that

is proved in the proof of Lemma 4, andλ ≤ λ′
max,k̃

, we have

‖PT ′⊥(Q)‖ ≤ 2− ψ̃

1− ψ̃
λσk̃

√

k̃ + (k̃2 − k̃)µ ≤ 1

2
.

From (59) andλ ≥ λ′
min,k̃

, we have

‖(QW ‡)Īc‖∞,2 ≤ (1 +
1

2− ψ̃
)(ǫ + λk̃σk̃µ) ≤

λ

2
.
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